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SAFA: scaffold attachment factor A
HMM: Hidden Markov Model
FLIM: Fluorescence Lifetime Imaging Microscopy SIM: Saturated Structured llluminitioscopy
STED: Stimulated Emission Depletion
STORM: Stochastic Optical Reconstruction Microscopy
PALM: Photoactivation Localization Microscopy
fPALM fluorescence-based PALM
SMLM: Single Molecule Localization Microscopy
SPDM: Spectral Precision Distance/Position Determination Microscopy
BALM: Binding-Activated Localization Microscopy
DAB: diaminobenzidine
ROS: Reactive Oxygen Species
W /W -Bidmidido-2- phenylindole dihydrochloride)
IdU: 5-iodo-2-deoxyuridine
AO: Acridine Orange
CARS: Coherent anti-Stokes Raman scattering
MSI: Mass Spectrometry Imaging
PWS: Partial-wave spectroscopic
MTG: MitoTracker Green
ERTG: Endoplasmic Reticulum Tracker Green
NETs: Neutrophil Extracellular Traps
m-AMSA4'-(9-acridinylamino) methane sulfon-m-anisidide
MTX: mitoxantrone

PKPDCD: Micro-PharmacoKinetics and cellular PharmacoDynamics with specificarCellul
Descriptors

Abstract:

The nuclear-targeting chemical probe, for the detection and quantificationNA& Within cells, has
beenamainstay of cytometry - from the colorimetric Feulgen stain to smart fluordsagents with
tuned functionality. The level of nuclear structure and function at which the probe @imsadout
or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of deteditatities
and analytical methods. These methods are invariably limited in terms afe@ution attainable



versus the volume occupied by targeted chromatin structures. The scalar challenge arisélefrom
need to understand the extent and different levels of compaction of genomic &dAhow such
structures can be re-modelled, reported or even perturbed by both probes argsddew cytometric
approaches to analysing chromatin released from cells, as in NETosis, dextetistrpotential for
probes to report defining featuresTypical of recent insights into chromatin organisation is the
'‘ChromEMT%tudy that exploits the properties of the anthraquinone-based cytometric dye DRAQ5
Insights reveals that local and global 3D chromatin structures in the nucttesrdne compaction
Cytometry can report on complex levels of chromatin order, disorder, disasgeant active
disruption. The focus of this review is nuclear cytometry, with linked referenD&id targeting drugs
and probes, their impact in the chromatin environment.
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genetic material and its metrology have provided a continuing source of intdmesigh to modern
cytogenetics. Cytometry in its widest definition has a considerable track record in thesianaf the
multi-level organisation of the genetic material in eukaryotic nu¢le8). Nuclear cytometry-based
methods can simplify the analysis and quantification of protein associatiocisromatin and reveal
population heterogeneity (9)Recent methods describe the extraction of nuclei for the purpose of
probing cellular and transcriptional states (10,11) although preserving enativomatin super-
structure remains a challenge. Extensive information is available from academicoamdercial
sources on the spectral properties of molecular probes for nuclear cytometry that can report nuclear
states. This review will not explore these in detail. However, understanding thedeadd advantages

and limitations is important when a given probe is used for specifipqaes or in a sensitive cellular
system (12,13)Critical factors in live cell studiase the biological impact of the probe and its access

to a nuclear target determined by chromatin organisation (Btch factors are shared by nuclear-
targeted drugs in driving their pharmacodynamic effects. Here these aspects are discussed with
respect to INArinteractive probes, with linked reference to DNA targeting drugs, in the contéleo
chromatin environment.

Chromatin organisation

Genomic DNA is compacted into chromatin through packaging with histone arkistone proteins.
Chromatin folding and packaging has to change dynamically as the cell pegthsough the cell
cycle. Chromatin organisation is addressable by DNA-affinic probeshallenge is how to recognise
and measure different scalar levels of chromatin organisation, from base-pair twhbke nucleus.

The scalar levels of chromatin organisation dictate the analytical approaclysdpand the extent

to which a probe can be usefully deployed (Fig. 1). The cell deals with an impresgiheoleimear

DNA packaged within its nuclear volume. Towards one end of the scale, haploid ytEastitteh

u v vp o E A}opdhas(aigenome length of ~12 Mbp. This represents some 0.3 % of the
vihe o E Alopu }E @ Yuhwmak diploidicell nucleus with a volume of around 706
copes with 3 billion bases and a combined strand length of genomic DNA of justrover 2

There is increasing evidence of a relationship between higher orders of chrotoptitogy and the
regulation of global patterns of gene expression (IBhe concept is that evolutionary selection
favours the clustering of widely expressed housekeeping genes. Such clusters edapen
configurationof chromatin structure. Open chromatin fibres have also been found to be enriohed i



gene-rich domains and not just in those regions that are transcriptionally gdi8)er he mechanisms

by which large-scale chromatin structures can be de-compacted or undergo dyr@diig fare
becoming clearer (17An informative example is how the scaffold attachment factor A (SAF-A) can
interact with chromatin-associated RNAs in a transcription-dependent manner. Siifeherization
de-compacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant
chromosome folding and the accumulation of genome damage (17). Thisigldghtsa crucial role

for chromatin organisation in maintaining a stable environment for the genome.

Annotation of the human genome with respect to different chromatin states can reveal sigsdtur
functional descriptions. Descriptors can reflect transcription-associated or actrge-$cale
repressed states (18). Recently the ChromHMM tool has been described that cangseelres of
chromatin-states using a multivariate hidden Markov model (HMM) (19). tdblke performs an
enrichment analysis of the resulting annotations to allow functional interpretatiof. @A8vances in
the high-resolution approaches of electron and super-resolution fluorescence mipsgstocgether
with DNA sequencing, have provide views of the relationship between chromatin andanucl
machineries within aZD nucleom¢d(20). This approach has provided a finer structural definition of
active and inactive nuclear compartmenégiinactive compartment comprises the core of chromatin
domain clusters. The active compartment locates at the periphery of these clusteréurther
compartment links to routes for nuclear import and export via nuclear pores (20).



Analysis level DNA analysis scale| Detection ranges for exemplar Molecular probe &
level methods reporter deployment
micro-community to tissue histopathology, Cell recognitionlocation,
)'Q single cell flow/image/mass cytometry; tracking & status,
Q) (@ [2000-20 vm] Raman scattering; incorporation| differentiation, viability &
—— methods; photoacoustics function
nucleus & cell cycle live and fixed cell Nuclear structure and
dynamics fluorescent state changes, functional
[20-1 vm] reporters, distributions, kinetics,
targeting
sub-chromosomal Banding, telomere,
regions Super Resolution Optical centromere structural
[2-0.1 vm] Microscopy changes; high resolution
Opto-methods (eg FRET) signal location &
ChromEMT relationships
chromatin fibre & Chromatin compaction;
packing atomic ferce microscopy imaging  cynamic changes and
[30-10 nm] electron _microscopy perturbation

phase plate cryo-EM imaging
electron spectroscopic imaging

nucleosome & Structural approaches: DNAmetabolism, winding
protein binding [6 nm] nuclear magnetic resonanrce | and unwinding dynamics;
spectroscopy, receptor binding
duplex DNA & X-ray.crystallography Sequence selectivity anc
sequence/groove structural modification,
interactions damage & repair; ligand
[10bp: 2.4 x 3.4 nm] binding

Figure 1: Probing the hierarchy of chromatin organization

At its lowest level, DNA wraps around histone octamers to form nucleosonmegeds to eventually
compact into discrete chromosomeswith conceptual models for the elaboration of chromatin fibre
structure supported byn vitro studies (Fig. 1). Chromatin experiences a hierarchy of packiaging

the models become increasingly speculative as the volume of observation incrés®snatin
carries negative charges due to incomplete neutralisation of the B&RIfPo Cu E[* %0 Z}* % Z S | }v
by basic core histones. The result is that chromatin structure is subject to electrostatic repulsion
between its neighbouring sections. Chromatin also responds to changes in the siatitro
microenvironment which interacts both with negatively charged DNA and the positivefgetha
histones As a result chromatin structure can be manipulated in vityo simply changing the
electrostatic environment, frequently by supplying divalent cations. In live ttedige fundamental
properties contribute to a state of fluidityt perceived as alfquid-like behavioufof the 10-nm
chromatin fibre (21) The 30-nm chromatin fibre is often regarded as the secondary structure of
chromatin directed by nucleosomes, nucleosome-protein complexes anthtegufactors (22) This

key structure remains controversial both in its form and the extent to whichadopted in different

cels types (23,24)However, even at these primary and secondary levels, it is recognised that the



chromatin structural environment does not remain staficlive cells chromatin transitions can occur
on timescales which range from milliseconds to minutes or even hours (25).

For a DNA probe to work is must reach its target. Inadequate target exposuresodapesh factor in
the pharmacodynamic failure of a drugredicting access to intracellular targets can involve a label-
free (26) or fluorescent drug-based modelling apptwes (27). However, such methods are yet to
consider the impact of the chromatiz o C ®36).SGhfomatin structures present aZ} S o0
v SATEI[ (}E ]((ue]vP ivéodE)a distabte ¢ft2 Bn, providing a temporal restraint on

interactions with DNA (20). It remains uncle&rZ $Z & Z} *SEpn 3 SE VveU%bo }ES] SZE} M

networks (28) can predict probe/drug access to DNA targets. The caveat igtiobeamay be limited

by the chromatin states it can repotta source of unsuspected bias. The stress responses of chromatin
control chromatin accessibilityotfacilitates genome stability (29). For example, tEdaxation[of
chromatin at regions of damaged DNA signals damage locatibpramotes the assembly of repair
complexes (30)Nucleosomal structure itself can be considered batlentral signalling hufanda
landing platform[in the repair process (31A range of fluorescence imaging methods can now
provide descriptions of DNA repair in single cells [review: (BR)hrescent probes for marking sites

of DNA damage can provide insights into defects in DNA repair. Such appromthés detection

of base excision repair intermediates (apurinic/apyrimidinic sites) in DNA (33)uahdhcision steps

of U\V-damaged cellular nucleotides (34) in combination with flow cytometry.

Chromatin dynamics

Chromatin remodelling encompasses multiple activities including: Ddjpcation and repair,
transcriptional control, epigenetic regulation, programmed disassembly during agispto
chromosome packaging and segregation. These events are clearly relevant to criticalr cellul
transitions in development, neoplastic progression and pluripotency §2873. A current view is that
regulation of the chromatin nano-environment, over ranges that exhibit chromatin paddngity
heterogeneity, can allow for a predictable modulation of global patténngene expression (38)A

rational [modulation of chromatin density fluctuations can lead to a decrease in di@ecriptional

activity. One canviewthisadu @E}P v}iu] VvP]v E]vP[ A]3Z]v 8Z vpsalgis (}E
transcription levels (38)

ATP-dependent nucleosome-remodelling complexes direct histone behaviowgthran ATPase-
translocase 'motor’ function that mobilises DNA within the nucleosome (39)dAp&adent enzymes

that remodel chromatin are therefore important controllers of structure (36,40,41). Kegtibumal
components of chromatin, along with histones, condensins, cohesins anidteguproteins (4244),

are the distinct class of topology correcting enzynéise DNA topoisomerases. Chromatin is a store
of torsional energy which results in the release of negative superhelicity upon decompaction (45)
Conversely, dynamic changes in DNA supercoiling will dictate packagingaasdription (46).
Nuclear problems can arise when the replication of chromatin loops generates nkéztliDNA
products (catenanes) or when DNA function requires the resolution of torsioredsstiThe cef
enzymatic solution is via the DNA topoisome&sd hese enzymes provide a co-ordinated process of

1@



strand passing within a DNA-enzyme complex (type IA and type IB enzymes). They aliovalbe
movement of an actively-cleaved strand around an intact strand prior to re-ligétipe IB enzymes).
Type IIA enzymes ar& (L0 O S (40) pdssing one duplex through a double-strand break
generated by the enzyme in another duplex. On the other hand, type IA enzymes strand pass single-
stranded DNA segments by the adjacent duplex and thereby locally changing the dinkibgr (40)
Type IIA DNA topoisomerases are vital for progression through the cell cyclén(48ims of probe
manipulation of superhelicity, intercalation can generate changes in local supetieoiation states
with extension of the duplexA cell permeant biotinylated 4,5,8-trimethylpsoralen probe, that
preferentially intercalates with DNA enriched in negative supercoils, has been usedritom
changes in DNA supercoiling in vivo (45). RNA polymerase and topoisomeradtesaiviodel DNA
supercoiling, creating supercoiling domains that affect the folding of large-scalmatinostructures
(45).

The DNA topoisomerases present specific and demonstrable targets for several classes of both
anticancer and antibacterial drugs (41). A flow cytometry-based method has been édsfritthe
high-throughput analysis of drug-stabilized topoisomerase Il cleavage compldxanam cells (48)

In mammalian cells the DNA damage signalling responses to DNA topoésaninhibition can also

be tracked by flow cytometry to reveal the restraints on DNA replication anctyel progression

(4961). The human type IIA enzynea target for catalytic inhibitors such as the bis-dioxopiperazine
ICRF-193 ICRF-193 induces late cell cycle checkpoint stalling, decatenatioritiamhibmitotic

anomalies or even bypass of mitosis to polyploid states in permissive(&2Jls Recent structural

analyses indicate how type IIA enzymes embrace the helix DNA and how the enzyrimteddfions

inform drug behaviour (53). The human type IIA topoisomerdseE& }S [veU S} %o}]e}u & « [/
~d} %1 0% Z » Vv 3}%}]elu E ¢ //t ~d}%i 3§ U E 5Z 3 EFPUSWPIE « A
etoposide, the DNA intercalating anthracyclines (doxorubicin, daunorubicthjrenanthraquinone
mitoxantrone (54X d Z oopo E E}lo * }( (53Yang thelicaBsequdrides of inhibition,

given its expression in terminal differentiation, are less understood compartdthe cell cycle

E Ppo 8§ S} %}]etu &  [/rX poisSmédsas (§@ase and tdpoisomerase 1V) are the

targets of quinolones and aminocoumarin antibiotics (41)

The eukaryotic type IB topoisomerases (Topl) are classically targeted by camptothecin amtl relate
derivatives such as topotecan or irinotecan. Genome-wide high-resolution maipaéigevealed the
targeting of transcriptionally active genomic regions by the Topl inhibifpotecan and the Tap
inhibitor etoposide. On the hand, daunorubicin induces DNA breaks and bigtdses from active
chromatin with aZ <y v Z piBgal DNA damage responses (56). Fluorescence lifetime imaging
microscopy (FLIM) has been used to map the nuclear docking of topotecan at AcUDBEA sites in
nuclear structures of live breast tumour cells in which the DNA binding @éb%Q5 has been used

to uncover sites of drug interaction (57). The anticancer anthracyclines dauoordaunomycin),
doxorubicin (adriamycin)v. = %0 ] E p Jepindoxdijibicin, an active isomer of doxorubicin), belong
to a class rec® v]I e %18 vS d} %1 Z%}]e}veéderate pitdein-apedcaizdsdsDNA
breaks can be detected by cytometric analysis.(B@jly studies showed the restricted binding of the
anthracycline doxorubicin to DNA within chromatin compared to calf thymuddi& and the ability

of related drugs to induce compaction of isolated chromatin (58,59). Eudhidence indicates that
anthracycline antibiotic exposure can lead to chromatin unfolding and aggredg#&t), DNA torsional
changes (61) and histone eviction from open chromatin (62). Such aregéso self-reporting probes



for cellular and nuclear micro-pharmacokinetics enabled by their intrinedscence tracked in real-
time by flow cytometry (63,64)

Resolving chromatin organisation:

Super Resolution Optical Microscopy

New developments in fluorescent sensors based on small-moldgakeor fluorescent proteins (13)
are in parallel with expanding options for advanced microscopy methadgigoalizing chromatin
structure (4) Fluorescent sensors for monitoring proteins, DNA, RNA, small moleculesrasd.d.
Zrt) can all exploit super-resolution microscopy (I39me of these approaches are noted briefly
here. Super-resolution fluorescence microscopy encompasses multiple techniques (63rehat
applicable to probing chromatin structure (4,86). Super-resolution microscopy effectively breash
the diffraction limit of optical microscopy and efforts continue to accrue tealesgreaching signal
resolution at length scales of sub-20 nm. Typical approaches employ the pringiptesterned
illumination light, such as Saturated Structured lllumination Microscopy (SIM) Stimulated
Emission Depletion (STED). Alternatively, some methods such as Stochastic OptitstiirR¢ion
Microscopy (STORM), Photoactivation Localization Microscopy (PALM), angsdknce-based
fPALM allow for single molecule detection and localization applicable tanthging of chromatin
organisation (4). Approaches include the use of a fluorescent label teeildB@\ and chromatin in
situ at the single-molecule level (7B). A recent application of the DNA dye Vybrant®DyeCycle Violet
with single molecule localization microscopy (SMLM) has generated ima@@$foin nuclei of fixed
mammalian cells (74). It is estimated that using fixed whole cells and standard DNA dyestusast
resolution of chromatin is attainable of the order of 50-100 nm usingMs2). The use of Spectral
Precision Distance/Position Determination Microscopy (SPDM) has the potentialeal nuclear
nanostructures down to few tens of nanometre resolution (75). Several intercalatidgminor-
groove binding DNA dyes can be used to register (optically isolate) a fAvbiDding dye signals at a
time using a variation of Binding-Activated Localization Microsd®&#LM) (71). We should also
remember that unmodified nucleic acids can show stochastic fluorescence switchihgsidlpgical
concentrations under visible light illumination. This presesut opportunity for label-free super-
resolution imaging of DNA directly (76). However, at this stage super-resokpiproaches cannot
address the problem of how to visualise and reconstruct chromatin ultrastructure through 3&rg
volumes of intact cellg a problem familiar in cytometry.

ChromEMT

The practical limits on imaging resolution restrict the ability to visualisematin organisatioim situ

for informative 3D volumes. A recent report has broken through this analysis barnrigttdat cells
using a new method. ChromEMT enables DNA and chromatin ultrastructure to ladizeéduand
reconstructed unambiguously through large 3D volumes.(The ChromEMT method combines
electron microscopy tomography (EMT) with a labelling method that setdgtenhances the contrast

for DNA structures The ChromEMT technique exploits unique properties of the fluorescent
anthraquinone DNA dye DRAQS5, which upon photon-activation can catalyseefwsition of
diaminobenzidine (DAB) polymers on the chromatin surface, enabling structures to be subsgquentl
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visualized with Os{n EM [Figure 2; (7}/)DAB photo-oxidation has been used in a range of studies
that correlate light and electron microscopy, for nanopatrticle location and thieleace of low levels
of photosensitizing molecules (7&dvances in multi-tilt EMT have alledresearchers to reveal the
chromatin ultrastructure and 3D packing of DNA in both human interphase cellsmitotic
chromosomes. Critically, it appears that there is a disordered nature of the chromatin chadaded
by ChromEMT. These chains are flexible, bending and folding into differentgdekisities. Dynamic
changes in packing density provide opportunities to fine tune accessibilitt)Né sequences,
nucleosome variations and chromatin modifications. These variations in padensity will be
important at both local and global levels within the intact nucleus. This opens alee of
organisation or indeed dis-organisation for exerting control over fonctiTrhe anthraquinone dye
used in ChromEMT recalls a lineage of molecules that link probe and arpegriees employed in
nuclear cytometry.
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Figure 2. ChromEMTTablonski energy diagram of DRAQ5 excitation, fluorescence and the formation
of a triplet excited state generating reactive oxygen species (ROS) that enable subsbhgueatin
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visualisation at low scalar distances. Diagrammatic sequence shows the photo-oxidativseicatialy
the deposition of osmiophilic DAB polymers on DNA in chromatin if7 8)tu

Nuclear cytometry: DNA reporting

The measurement of cellular DNA content, a common laboratory procedure (12,79), has bee
dependent upon the stoichiometric reporting capacity of fluorescent nucleic acid-affinic dyes.

In terms of nuclear cytomgECU +« A E 0 0 *+ » }( ZA]S o[ E (Opu}E * Vv % E}

bis- viJu] 1}o ¢ ,} Z+8j C « }(( € &z ]013C 8} /AEPsod[B ZdBPX X
% V JVP % 0 S5 }( %@E&} < Jv op W ~CS}0ijUo gZKéinteractions &E vS§

of a range of fluorescent dyes such as quinacrine, Hoechst 33258 (80), daunomycin, chroni@nyci

and 7-aminoactinomycin D with DNA offer multiple probe-based approaches for expthriogpatin

structure (5). A recent addition to the suite of small-molecule fluoropkads the near-infrared (IR)

silicon-rhodamine dyes with spectral properties that aid in vivo imaging &iBctral analysis can

reveal modes of binding, sequence selectivity, probe interactions, consequences whfizad

selectivity of nuclease digestion. At a fundamental level, probe performanceecaxgected to obey

the law of mass action in relation to unbound fluorochrome concentration). (12 studies on

anticancer drugs there is always the possibility of interaction between the drug andidredhrome

used to simultaneously probe DNA content. Since some of the DNA-bitidigg are fluorescent,

their emission can directly overlap with that of the probe, through Forster restmanergy transfer,

and affect the efficiency of probe detection (82).

With all probes there are caveats. Prolonged exposure of live cells to the nomioalyenmeable
dye propidium iodide (PI) reveals a background granular distributidheoprobe in the cytoplasm,
consistent with accumulation in endosomes, and also dye binding to nuckRblArin live cells (83)

W/ ~Bidhi@ino-2- phenylindole dihydrochloride) is usually referred t@ aemi membrane-
permeant dye because of its reduced penetration through viable cell membranes hst it
concentration sensitive with respect to toxicity especially at levels for attempts at DNt&nton
reporting (84). A non-permeable very low toxicity dye, such as DRAQ?7, offers theumity to
monitor subpopulations of cells that lost cellular barriers to chromatin access but without pergurb
the viable cell fraction (85). This approach is particularly useful when monitoringjttoens in cell
behaviour (86). In the case of the of vital cell dyes, problems of cellgradidn inhibition (14) and
phototoxicity (87) can arise, but these effects will be time, dose and system deperfeat.
anthraquinone DRAQS5 when used at levels that reveal efficient DNA content reparting cells can
interfere with the binding of H2B core histones to DNA, not observed after bitaliD§lA of a minor
groove binder Syto17 (88,8%oechst 33342, DRAQ5, and DyeCycle Violet induce various degrees of
DNA damage responses and cell cycle changes, which should be a matter of concern wtaesesing
dyes as supravital DNA probes inappropriately (90). Photo-toxicitdyes is an issue. This is
particularly the case a shorter wavelengths as observed with UV-excited HoechstiB3g4e-lapse
fluorescence microscopy (87). However, thisknain A €+ [ (( § }( hs ]E@eatpds]}v }v C
cells can be used to investigate the kinetics of dye residence at criticahatin sites capable of
generating photo-induced DNA-protein crosslinks (91fe potential for photosensitisation is
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appreciated in the context of photothermal therapy (PTT) and photodynamic theff2PT). Here
there have been recent advances in the synthesis and application of NIR-absorbizgjc
VV}% ES] 0 ¢ * %Z}S}SZ E ¥W2uS] Zv v} P vSe]

Small DNA-affinic molecules can be used to reveal not only DNA conteaisblaccessibility within
higher orders of chromatin structure. This opportunity was recognised in earlier cytprsieidies
(93) by exploiting the metachromatic properties of acridine orange (AO) (P4BHy of our current
methodological approaches and signal interpretations were developed tsimgytometric probe.
Differences in chromatin structure cdre revealed by the metachromatic effects detecting DNA
melting 1t the differential susceptibility of DNA in situ to undergo denaturation uggoosure to heat

or acid Differential stainability of dsDNA (green fluorescenaesusssDNA (red fluorescence) with
AO made it possible to discriminate betwees, G, S, G and M cells (94,95) (Fig. 3). Multiple
cytometry techniques have been applied to cell cycle profiling, inajudikploitation of chromatin-
protein bindings events, chromatin modification and the nuclear translocafiogains DNA content
and chromatin-bound proteins to reveal sub-phases in G1 (96). Mass eytomsing 5-iodo-2-
deoxyuridine (IdU) caco-mark cells in S phase using cyclin antibodies and the phosphorylation
patterns a specific histone H3 (97). Live cell tracking of a cyclin B1-GFP cansletect cell-cycle
phase routes to mitotic traverse, arrest or endoreduplication confirmed by flownegtoc mapping
using DRAQ5 (98).

Fig. 3. Cytometric analysis showing differences in chromatiustre of lymphocytes in different
phases of the cell cycl&ub-sets revealed by changes in susceptibility of DNA to denaturation induced
by acid followed by differential staining of dsDNA versus ssDNA with metstivdluorochrome
acridine orange (AO). (A) Unstimulated cells, (B) cells stimulated with phytohemagglutiniffdiPHA)
18 h, (C) cells stimulated for 3 days, (D) cells stimulated for 3 days; vinblastine inctheéeclitures

for the final 6 h to arrest cells in mitosis. Evident is the transition (T) celisGyto G after 18 h,
associated with an increase in green fluorescence and a decrease in red. $ilgmspof cells in 6

Gi, S, Gand M can be distinguished based on changes in green and red fluorescence (94,95).
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Fluorescent ge-chromatin interactions borrow from the experience with chromosome banding
These can reveal the spectacular capacity of cells to show shifts in chromosome orgaras#s
highest levels (99,100t a highly practical level, metachromatic staining by AO reveals any defective
packaging of DNA in chromatin of infertile sperm cells (18i&)) 4 shows the classic flow cytometry
methodological study of human fertile versus infertile sperm cells (102). Defguackaging of DNA
correlates with DNA fragmentation, not unlike that seen in apoptoticscéll03,104). This
methodology was adopted in clinical practice for detecting fertility statiluman males and in
animal husbandry (105,106).

Figure 4. Susceptibility of DNA to denaturation as detecteddtgining with AO reveals the presence

of human sperm cells with defective chromatin structure (H) oelated with infertility. Bivariate
frequency distribution histograms representing intensity of total fluorescence (Tot. Fl.;resh) g
versus.; (ratio of red to total fluorescence intensity) of two samples of sperm cells, one characterized
by a small fraction of cells with high sensitivity of DNA in situ to denaturation (left) and thendtihe

a higher proportion of such cells (right). The borderline discriminating between the cedistehzed

by low (L) and high (H) sensitivity to denaturatiof i(aex) is marked by thick arrows. The frequency
of H cells in infertile subjects was shown to be correlated with frequency of cellsagittefited DNA
detected by the TUNEL assay (103).

In the native nucleus, the extent and modes of binding of DNA interactiagtagre informed not
only by agent properties and chromatin access but also by cellular rartésifidling small molecule
probes For example, contrast to fixed cells, live cells exposed to AO at low concentrigtiomiist)
selectively accumulate the probe in acidic vesicles, including lysosomes wherenigdaes red, and
is not a useful chromatin probe (107,108he situation is complicated further by dynamic chromatin
structures responding to the presence of a probe/drug itself and linked downstream stressisespo
Not surprisingly there is significant interest, in both nuclear cytometry anccamter targeting
strategies, to gain an understanding of critical chromatin structures and their perturbation.
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Nuclear cytometry: alternatives

Not all methods depend upon the intrinsic or enhanced fluorescence oflaepoindeed that of
nuclear-locating drug. Mass cytometry has exploited metal-baseduangignals for DNA-affinic
molecules for: the study of cellular uptake and the linked anticancer effects of piatocmntaining
drugs (109), the use of cisplatin-antibody-conjugates for immunoptypimag (110) and the
incorporation of a platinum-based covalent reagent to act as a discriminatocell viability
measurements (111)Alternative detection modalities can assess the subcellular disposition of
reporter probes. Raman spectroscopy as applied to microscopy has been used to megsure
chemical signature of a sample or identify the presence and quantity of a moleculaes&t?)
(Figure 5). The characteristics and behaviour of a probe can in turn be usedract biological
information via the state of the probe at specific locations. The two typical oustlof collecting the
Raman spectral data to generate images are Raman mapping and Raman imaging. Rapiag map
collects a spectral hypercube (a Raman spectrum from each position on the samplagdtedils),
rather than a simple intensity image. The hypercube is analysed to produce Raagssirihere are
several Raman mapping methods, including pbippoint mapping and line focus mapping. Here,
there is a balance between under-sampling and acquisition time for samgiens of interest. Spatial
resolution is determined by a combination of the laser spot size and thersp between acquisition
points on the sample (e.g. sample stage step sizes down tnd)0On the other hand, Raman
imaging allows for rapid acquisition, by collecting spectral intensity vaimegltaneously from an
entire region of interest, especially if high laser power is available. Hawiis approach yields
limited information with an ultimate resolution to a little under a micrometre.

Identification & quantification at location of
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Figure 5: Diagrammatic representation of some of the lighatering modes of interest and the
differential detection of a Raman signature for a cell permeaDfNA binding probe.The more
familiar Rayleigh scattering can be describedg&astic[scattering since the photon energies of the
scattered photons are not changed. When a Raman active probe is irradiated with pradtan
selected frequency, that avoids peak fluorescence excitation, a minority of the incident photons
interact with a vibrational mode of the irradiated probe and aigelastically] scattered. The
inelastically scattered photons are shifted in frequency. This shift can beidbex Frequency (anti-
Stokes) or to a lower frequency (Stokes). The frequency versus intensity Raman spectrum provides a
unique detection signal for the probe at a selected location. (Acknowledgement: exelaialdor
DRAQS5 provided courtesy of L Jamieson, D Graham & K Faulds, Centre for Madeoatetidlogy,
Department of Pure and Applied Chemistry, University of Strathclyde, UK).

Many materials have characteristic Raman spectra, with a growing number of applications within
biology. The approach can provide chemical and compositional informatid does not typically
suffer from interference from water molecules. Further, cellular components, includingy Bave
distinct intrinsic Raman scattering spectra (113Ghromatin density variation among the individual
sub-phases of mitosis affect Raman and infrared micro-spectroscopic intensidgsl(dbel-free DNA
imaging in vivo has been demonstrated using stimulated Raman scatteringsoaipso (115,116).
Hyperspectral Coherent anti-Stokes Raman scattering (CARS) microscopy (117) edridpraside
label-free quantitative volumetric imaging of cell composition definedeiims of water, protein,
chromatin and lipids (Fig. 6).

Figure 6 Hyperspectral CARS of a mitotic eeletection of key cellular components and their spectra

in a human osteosarcomacel.@os A E Ju P Jv i Jv 8Z , «8E § Z]JvP-A] & §]}v
3800 cm-1) using a 60X 1.27NA water objective and 1.4NA oil condenspnifithgpread function

(PSF) informs the imaged volume for chemical components [volume dimensions of approximately 0.3
pm lateral and 0.9 um axial full width at half maximum (FWHM)]. Note thatineged volume
contains about 95% water. Y axis shows hyperspectral avergg@d«-data (118)To analyze the data,

a three step method was applied which includes singular value decompositid)) (hase corrected

<E u E[+ PE(R8)~and factorization into susceptibilities and concentrationsewiiczh
components (FSC3) [(a: blue = water; b: green = protein; c: red = DNA)]. idhepluleixemplar data

by A Karuna, F Masia, P Borri, R Errington, and W Langbein at the Schogtsasf, Biosciences and
Medicine, Cardiff University, UK).
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Mass Spectrometry Imaging (M$bBn qualitatively describe drug distribution in 2D tissue sections
while 3D MSI can reveal the heterogeneity in tumours (IMBLDI imaging mass spectrometry has
been applied to the analysis of the spatial distribution of histone modifinatio tissues (120), with
recent studies achieving high lateral resolutadrthe order of 5 micrometre approaching a dcelicell
methodology. Partial-wave spectroscopic (PWS) microscopy is a label-freétafiven imaging
technique (resolution range of 20 and 200 nm), capable of trackimagnges in chromatin structure
after DNA damage in live cells (121). This approach reveals that UV-excite¢t-B83:A? an cause
damage to chromatin within seads Over a time-frame of minutes, the dye itself can cause a global
alteration in chromatin nano-architecture independent of its excitation (121). PWS migroseveals

the not unexpected chromatin disrupting effects of fixation (122). This disruptiginlights the
relevance of live cell imaging techniques, or the advantage of cryo-fixation, wheoriegphative
chromatin organisation (122)'he ability to combine PWS microscopy with fluorescence confocal
microscopy for the co-localization of cellular nanostructures is a wedcooute for functional
annotation (123). Alternative modes of light interaction with DNA dyes eaaxploited in nuclear
cytometry. For example, the unique light absorption properties higth DNA affinity DRAQS5 (124)
coupled with low fluorescence quantum yield (125), have been exploitedylmich ultra-high
frequency acoustic/photoacoustic microscogydZ P v & S]}v }( %Z}S} }ueS] <]Pv o° (
nuclei reveals gross conformation and nuclear dimensions (126)

Apoptosis, autophagy & NETs

Chromatin disassembly is a feature of the various cell death processes aadiyile discussed here
briefly. Multiple cytometric methods can track the irreversible apoptotic precet chromatin
disassembly (127,128) and real time progression toftieaccompliff plasma membrane disruption
(85). In the case of apoptosis, nuclear DNA undergoes extensive fragmentation and releaieefro
cell within apoptotic bodies (42). RNA and DNA are segregated and packed intaesepanatotic
bodies (129) detectable in peripheral blood (130). Specializatiorhafigsomes of macrophages
facilitates heterophagic degradation of nucleic acids during apoptosis (A@®xciting and emerging
area is the balance between autophagy, providing an environment forsoelival, versus the
enactment of cell death processes via apoptosis. The cell survival and housekpepiess of
autophagy involves the breaking down and reusing of cytoplasm components. Fluorscenc
microscopy and flow cytometry is commonly used to study autophagysofale structures such as
mitochondria (131) and lysosomes (107). Flow cytometric methods areaastable to detect the
linked changes in organelle mass using MitoTracker Green (MTG) and EmdoBRaticulum Tracker
Green (ERTG) (132). Evidence is mounting that there is cross-talk between the dysfohction
apoptotic and autophagic pathways in disease states including neurodegenerati@nafis cardiac
pathology (134) Participants in this cross-talk are modifications to histones, providirgcal
structural codes (135)

Chromatin function[ }E E $Z E zéktem@ beyond the cellsboundary (136) presenting a
distinct focus area for cytometry. The cell death process termed NETosis, creabegdrosed
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chromatin together with granule proteins that undergo release from actively digiatang neutrophil

granulocytes. A variety of triggers promote NET formation. These chromatin structurasafo
tethered extracellular mesh (Neutrophil Extracellular Traps; NETs; (137)). NETs enthdsigrade

virulence factors and kill bacteria. The DNA backbone of NETs is vulnerable to eddrab®iase
digestion. Although NETosis is distinct from apoptosis and necrosis, therdlisticmy evidence of its
dependence on autophagy for extracellular DNA trap formation (138,1B®ther there is a
distinction between the formation of NETs from mitochondrial of nucleAtAD(140) Nuclear

chromatin-originating DNA masses are less structured (the DNA mass being somiel grgdter in

volume than condensed chromatin) and less beneficial for antimicrobial trapp#it).(The more
structured mitochondrial originating NETs are built around the tight packagingiiflAas nucleoids
and their organization into higher-ordered assemblies (142)

Developing cytometric methods that distinguish different NET originsamndtures have applications

in measuring inflammatory vascular injury and tissue damage (143)ramadvariety of disease
processes including autoimmunity, thrombosis, cancer and antivirabresgs (144). NET formation
has been examined using correlative microscopy - combining TEM,mNhdfluorescence and live
cell imaging techniques (145). Such imaging approaches can be supported by taedtdomage
guantification software (146). A range of probe-based methods are alstalaleafor quantifying
NETosis(145,147). They include flow cytometry and staining with the plasma membrane
impermeable DNA-binding dye SYTOX Green and its correlation with imagkdetsction (148). Co-
staining for DNA (DAPI) and myeloperoxidase positivity has also kedn(149). DRAQ5 and SYTOX
Green staining patterns can enable NET detection by both flow cytometry &Dimaging (151)
DRAQ5 and human neutrophil elastase immunostaining and microscopybkaneused to profile
NETs capturingCandida albicansyeast cells (152). An interesting recent approach uses the
ImageStream® platform (Millipore Sigma, Darmstadt, Germany) detecting the morpbbDRAQS5-
stained NET DNA trails tethered to the remaining cell structure (153).

Kv u v[e % @&} ] Vv}SZ E u v[e %}]*}v

In vivo probes and drugs have to deal with adverse extracellular microenvimts (154) and a
metabolic environment frequently determined by gene expression patterns (é5f) family; (155))
These states can enhance or even frustrate delivery to targets (154). For exampieeirythas
revealed the DNA targeting potential of fluorescent anthraquinone-based prodrugs (156)XB6&ix
response to their metabolic activation in hypoxic microenvironments (F38)v- and image-assisted
cytometry can profile individual molecular events in DNA damage respd8€) linked to effective
targeting of a probe (160) of cross-resistance to a drug (161). The ability ahdtagules to quench
Hoechst 33342-DNA fluorescence signatures can be used to track thegoafdimolecules with low
fluorescence [e.g. the anti-leukemic drug(@-acridinylamino) methane sulfon-m-anisidide; m-AMSA,;
(162)] or spectrally distinct fluorescence properties (125,163). DNA targeting agents flutar cel
membrane barriers (112,164), active efflux (161) and sequestration at cytoplases (156). The
nucleic acid target is clearly in competition with different kinds of moleculesn Ehe packaging of
the genome by histone proteins into nucleosomes can alter how different Di¢a witeract
preferentially with an agent. A DNA affinic drug such as mitoxantrone (MTX) carcaighjifimpact
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upon chromatin protein residence and function (51,165,166), DNAisopwerase function (167). The
pharmacodynamic effects of MTX appear to be dependent upon persistence at the chromatin target
(54) an indicator that probe residence time at target is critical. Probe efflux mewdormation on

cell heterogeneity that can correlate withEpuP & *%}ve Z S E}P v ]SCX dZ S
%}% o S]}ve[ Z E § Ag)ismasad an the extent of the binding-dependent shift in

the Hoechst 33342-DNA emission spectrum (169,170). Changes in Hoech2t(2334172) and

sC &E v8 C C o(1i7r33 tekuldr fluorescence effectively track dye efflux capacity. The efflux
signature of DNA interactive agents and drugs can be explored using a compartmentalingodel
approach, providing a mathematical description of the activity of the anti-cancer agecih. models

can take into account intracellular modification and delivery to a nuclé#k Earget (27). This can

also be extended to model the subsequent perturbation of the cell cycle (174). BiNaArtargeted
reporters will enable mathematical constructs of single cells that link Micro-Phakiastics and
cellular PharmacoDynamics with specific Cellular Descript&P4RPDCD). Descriptors, such as
aldehyde dehydrogenase enzyme expression (175), bring a finer cytometgasion to early drug
development (176).

Figure 7: Chemical structure of Mitoxantrone (MTX) an anthracenedione antibiotic with
antineoplastic activity. Chemical structure information and properties arminable from the
PubChem Substance and Compound databases (177).

The problem of understanding the biological impact of a DNA targeting melendlprobe properties

in the context of chromatin structure his exemplified here by the anthracenedidié@exantrone
(MTX; Novantrone®), (1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyhajethyllamino]-9,10-
anthracenedione) is a anthracenedione - structurally related to the classical anthracyclines. MTX has
also provided an impetus for the generation of derivatives including profinugs (178-181) foa
more selective targeting of tumour cell populations (18%)behaviour in the chromatin environment
(166) is an exemplar of multi-level action (4®)principal mechanism of action of MTX is the persistent
inhibition of DNA topoisomerase complexes (54). However, Msoalsa striking ability to condense
nucleic acids by both trapping and excluding chromatin proteins (165,T88 MTX chromophore
(Ex@nax 610 and 660 nm; E@nax 685 nm ; (184)) permits fluorescence microscopy and flow
cytometry to determine uptake and nuclear distribution revealing dragistance (185) and the
behaviour of alkylamino-anthraquinones derivatives and their N-oxide9.(Ibé structurally related
far-red fluorescent DNA dyes and the nuclear counterstains DREQE4,186-188), DRAQE
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(85,128,189-191) and the spectrally shifted CyTRAK Of&(d@82) have applications in nuclear
cytometry (193). The spectrally-compatible combination of the nuclear &AQ5 and the anionic
counterstain eosin also provides a dual-component fluorescent stainingqbtThis is analogous to
haematoxylin & eosin and intended for use on fresh, non-sectioned tiss86}i(iLclinical settings
an innovation loop in nuclear cytometry that now spans centuries (194).

Conclusion

In terms of nuclear cytometry there is a widening of the opportunities to deptoart molecular DNA
probes, not restricted by their fluorescence profiles. Novel probes offstindt and often unique
properties. Molecular probe design is clearly informed by drug developmeghtiginting a constant
caveat for the use of vital probes, in which their biological effects can be a knownwnkiite
ambition here is to reveal fundamental aspects of nuclear function andnwtio form. New
opportunities arise from understanding the photophysical and photochemicgigsties of probes in
conjunction with the targeting of discrete biological structures while also expdpitew detection
modalities Downstream impact lies in the promise of methodologies that canrimfohromatin
structures and organisational levels that are targets for anticancer drugs or indeed reflectediseas
progression. Further, using these new approaches to nuclear cytometry, to describe timeatinro
changes that occur both globally and locally during key transitions such as acstongitiripotent
states (195,196), will reveal the extent to which such changes have regulatoryrrdieth disease
and health.
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