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SAF-A: scaffold attachment factor A 

HMM: Hidden Markov Model 

FLIM: Fluorescence Lifetime Imaging Microscopy SIM: Saturated Structured Illumination Microscopy 

STED: Stimulated Emission Depletion 

STORM: Stochastic Optical Reconstruction Microscopy 

PALM: Photoactivation Localization Microscopy 

fPALM fluorescence-based PALM  

SMLM: Single Molecule Localization Microscopy  

SPDM: Spectral Precision Distance/Position Determination Microscopy  

BALM: Binding-Activated Localization Microscopy 

DAB: diaminobenzidine  

ROS: Reactive Oxygen Species   

DAPI: (4′,6-Diamidino-2- phenylindole dihydrochloride)  

IdU: 5-iodo-2-deoxyuridine 

AO: Acridine Orange 

CARS: Coherent anti-Stokes Raman scattering 

MSI: Mass Spectrometry Imaging   

PWS: Partial-wave spectroscopic 

MTG: MitoTracker Green 

ERTG: Endoplasmic Reticulum Tracker Green   

NETs: Neutrophil Extracellular Traps 

m-AMSA: 4'-(9-acridinylamino) methane sulfon-m-anisidide 

MTX: mitoxantrone 

PK-PD-CD: Micro-PharmacoKinetics and cellular PharmacoDynamics with specific Cellular 

Descriptors  

 

Abstract: 

The nuclear-targeting chemical probe, for the detection and quantification of DNA within cells, has 

been a mainstay of cytometry - from the colorimetric Feulgen stain to smart fluorescent agents with 

tuned functionality. The level of nuclear structure and function at which the probe aims to readout, 

or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of detection modalities 

and analytical methods. These methods are invariably limited in terms of the resolution attainable 
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versus the volume occupied by targeted chromatin structures. The scalar challenge arises from the 

need to understand the extent and different levels of compaction of genomic DNA and how such 

structures can be re-modelled, reported or even perturbed by both probes and drugs. New cytometric 

approaches to analysing chromatin released from cells, as in NETosis, demonstrate the potential for 

probes to report defining features. Typical of recent insights into chromatin organisation is the 

'ChromEMT’ study that exploits the properties of the anthraquinone-based cytometric dye DRAQ5™. 

Insights reveals that local and global 3D chromatin structures in the nucleus determine compaction. 

Cytometry can report on complex levels of chromatin order, disorder, disassembly and active 

disruption. The focus of this review is nuclear cytometry, with linked reference to DNA targeting drugs 

and probes,  their impact in the chromatin environment. 
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Introduction 

‘form ever follows function’ 

Louis Henry Sullivan (1856 – 1924) 

American architect and ‘father of skyscrapers’ 

 

Cellular structures, first recognised by von Nägeli in 1842, would later be called ‘chromosomes’ by 

Waldyer in 1888 to reflect their staining behaviour with dyes. The observable packaging of a cell’s 

genetic material and its metrology have provided a continuing source of interest through to modern 

cytogenetics. Cytometry in its widest definition has a considerable track record in the analysis of the 

multi-level organisation of the genetic material in eukaryotic nuclei (1-8). Nuclear cytometry-based 

methods can simplify the analysis and quantification of protein associations to chromatin and reveal 

population heterogeneity (9). Recent methods describe the extraction of nuclei for the purpose of 

probing cellular and transcriptional states (10,11) although preserving native chromatin super-

structure remains a challenge. Extensive information is available from academic and commercial 

sources on the spectral properties of molecular probes for nuclear cytometry that can report nuclear 

states. This review will not explore these in detail. However, understanding the balance of advantages 

and limitations is important when a given probe is used for specific purposes or in a sensitive cellular 

system (12,13). Critical factors in live cell studies are the biological impact of the probe and its access 

to a nuclear target determined by chromatin organisation (14). Such factors are shared by nuclear-

targeted drugs in driving their pharmacodynamic effects. Here these aspects are discussed with 

respect to DNA-interactive probes, with linked reference to DNA targeting drugs, in the context of the 

chromatin environment. 

 

Chromatin organisation 

 

Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. 

Chromatin folding and packaging has to change dynamically as the cell progresses through the cell 

cycle. Chromatin organisation is addressable by DNA-affinic probes. The challenge is how to recognise 

and measure different scalar levels of chromatin organisation, from base-pair to the whole nucleus. 

The scalar levels of chromatin organisation dictate the analytical approach employed and the extent 

to which a probe can be usefully deployed (Fig. 1). The cell deals with an impressive length of linear 

DNA packaged within its nuclear volume. Towards one end of the scale, haploid yeast cells with a 

mean nuclear volume of 3 μm3 has a genome length of ~12 Mbp. This represents some 0.3 % of the 

nuclear volume or around 0.01 μm3. A human diploid cell nucleus with a volume of around 700 μm3 

copes with 3 billion bases and a combined strand length of genomic DNA of  just over 2 m.  

 

There is increasing evidence of a relationship between higher orders of chromatin topology and the 

regulation of global patterns of gene expression (15). One concept is that evolutionary selection 

favours the clustering of widely expressed housekeeping genes. Such clusters adopt an open 

configuration of chromatin structure. Open chromatin fibres have also been found to be enriched in 
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gene-rich domains and not just in those regions that are transcriptionally active (16). The mechanisms 

by which large-scale chromatin structures can be de-compacted or undergo dynamic folding are 

becoming clearer (17). An informative example is how the scaffold attachment factor A (SAF-A) can 

interact with chromatin-associated RNAs in a transcription-dependent manner. SAF-A oligomerization 

de-compacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant 

chromosome folding and the accumulation of genome damage (17). This also highlights  a crucial role 

for chromatin organisation in maintaining a stable environment for the genome.  

 

Annotation of the human genome with respect to different chromatin states can reveal signatures for 

functional descriptions. Descriptors can reflect transcription-associated or active large-scale 

repressed states (18). Recently the ChromHMM tool has been described that can seek signatures of 

chromatin-states using a multivariate hidden Markov model (HMM) (19). The tool  performs an 

enrichment analysis of the resulting annotations to allow functional interpretation (19). Advances in 

the high-resolution approaches of electron and super-resolution fluorescence microscopy, together 

with DNA sequencing, have provide views of the relationship between chromatin and nuclear 

machineries within a ‘4D nucleome’ (20). This approach has provided a finer structural definition of 

active and inactive nuclear compartments. An inactive compartment comprises the core of chromatin 

domain clusters. The active compartment locates at the periphery of these clusters.  A further 

compartment links to routes for nuclear import and export via nuclear pores (20). 
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Figure 1: Probing the hierarchy of chromatin organization 

 

 

At its lowest level, DNA wraps around histone octamers to form nucleosomes but needs to eventually 

compact into discrete chromosomes – with conceptual models for the elaboration of chromatin fibre 

structure supported by in vitro studies (Fig. 1). Chromatin experiences a hierarchy of packaging but 

the models become increasingly speculative as the volume of observation increases. Chromatin 

carries negative charges due to incomplete neutralisation of the DNA polymer’s phosphate backbone 

by basic core histones. The result is that chromatin structure is subject to electrostatic repulsion 

between its neighbouring sections. Chromatin also responds to changes in the electrostatic 

microenvironment which interacts both with negatively charged DNA and the positively charged 

histones. As a result chromatin structure can be manipulated in vitro by simply changing the 

electrostatic environment, frequently by supplying divalent cations. In live cells these fundamental 

properties contribute to a state of fluidity – perceived as a ‘liquid-like behaviour’ of the 10-nm 

chromatin fibre (21).  The 30-nm chromatin fibre is often regarded as the secondary structure of 

chromatin directed by nucleosomes, nucleosome-protein complexes and regulatory factors (22).  This 

key structure remains controversial both in its form and the extent to which it is adopted in different 

cells types (23,24). However, even at these primary and secondary levels, it is recognised that the 
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chromatin structural environment does not remain static. In live cells chromatin transitions can occur 

on timescales which range from milliseconds to minutes or even hours (25). 

 

For a DNA probe to work is must reach its target. Inadequate target exposure can also be a factor in 

the pharmacodynamic failure of a drug. Predicting access to intracellular targets can involve a label-

free (26) or fluorescent drug-based modelling approaches (27). However, such methods are yet to 

consider the impact of the chromatin ‘labyrinth’ (26). Chromatin structures present an ‘obstacle 

network’ for diffusing proteins, effective over a distance of 1–2 m, providing a temporal restraint on 

interactions with DNA (20). It remains unclear whether ‘obstructed transport’ through chromatin 

networks (28) can predict probe/drug access to DNA targets. The caveat is that a probe may be limited 

by the chromatin states it can report – a source of unsuspected bias. The stress responses of chromatin 

control chromatin accessibility to facilitates genome stability (29). For example, the ‘relaxation’ of 

chromatin at regions of damaged DNA signals damage location and promotes the assembly of repair 

complexes (30). Nucleosomal structure itself can be considered both a ‘central signalling hub’ and a 

‘landing platform’ in the repair process (31). A range of fluorescence imaging methods can now 

provide descriptions of DNA repair in single cells [review: (32)]. Fluorescent probes for marking sites 

of DNA damage can provide insights into defects in DNA repair.  Such approaches include detection 

of base excision repair intermediates (apurinic/apyrimidinic sites) in DNA (33) and dual-incision steps 

of UV-damaged cellular nucleotides (34) in combination with flow cytometry. 

 

 

Chromatin dynamics 

 

Chromatin remodelling encompasses multiple activities including: DNA replication and repair, 

transcriptional control, epigenetic regulation, programmed disassembly during apoptosis, 

chromosome packaging and segregation. These events are clearly relevant to critical cellular 

transitions in development, neoplastic progression and pluripotency (20,35-37). A current view is that 

regulation of the chromatin nano-environment, over ranges that exhibit chromatin packing-density 

heterogeneity, can allow for a predictable modulation of global patterns in gene expression (38).  A 

‘rational’ modulation of chromatin density fluctuations can lead to a decrease in global transcriptional 

activity. One can view this as ‘macrogenomic engineering’ within the nucleus for directing whole-scale 

transcription levels (38).  

 

ATP-dependent nucleosome-remodelling complexes direct histone behaviour through an ATPase-

translocase 'motor' function that mobilises DNA within the nucleosome (39). ATP-dependent enzymes 

that remodel chromatin are therefore important controllers of structure (36,40,41). Key functional 

components of chromatin, along with histones, condensins, cohesins and regulatory proteins (42-44), 

are the distinct class of topology correcting enzymes – the DNA topoisomerases. Chromatin is a store 

of torsional energy which results in the release of negative superhelicity upon decompaction (45). 

Conversely, dynamic changes in DNA supercoiling will dictate packaging and transcription (46). 

Nuclear problems can arise when the replication of chromatin loops generates interlinked DNA 

products (catenanes) or when DNA function requires the resolution of torsional stress. The cell’s 

enzymatic solution is via the DNA topoisomerases. These enzymes provide a co-ordinated process of 
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strand passing within a DNA-enzyme complex (type IA and type IB enzymes). They can also allow the 

movement of an actively-cleaved strand around an intact strand prior to re-ligation (type IB enzymes). 

Type IIA enzymes are ‘full decatenases’ (40), passing one duplex through a double-strand break 

generated by the enzyme in another duplex. On the other hand, type IA enzymes strand pass single-

stranded DNA segments by the adjacent duplex and thereby locally changing the linking number (40). 

Type IIA DNA topoisomerases are vital for progression through the cell cycle (47). In terms of probe 

manipulation of superhelicity, intercalation can generate changes in local supercoil relaxation states 

with extension of the duplex. A cell permeant biotinylated 4,5,8-trimethylpsoralen probe, that 

preferentially intercalates with DNA enriched in negative supercoils, has been used to monitor 

changes in DNA supercoiling in vivo (45). RNA polymerase and topoisomerase activities remodel DNA 

supercoiling, creating supercoiling domains that affect the folding of large-scale chromatin structures 

(45). 

 

The DNA topoisomerases present specific and demonstrable targets for several classes of both 

anticancer and antibacterial drugs (41). A flow cytometry-based method has been described for the 

high-throughput analysis of drug-stabilized topoisomerase II cleavage complexes in human cells (48). 

In mammalian cells the DNA damage signalling responses to DNA topoisomerase inhibition can also 

be tracked by flow cytometry to reveal the restraints on DNA replication and cell cycle progression 

(49-51). The human type IIA enzyme is a target for catalytic inhibitors such as the bis-dioxopiperazine 

ICRF-193.  ICRF-193 induces late cell cycle checkpoint stalling, decatenation inhibition, mitotic 

anomalies or even bypass of mitosis to polyploid states in permissive cells (52).  Recent structural 

analyses indicate how type IIA enzymes embrace the helix DNA and how the enzyme-DNA interactions 

inform drug behaviour (53). The human type IIA topoisomerase proteins, topoisomerase IIα 

(Top2alpha) and topoisomerase IIβ (Top2beta), are the targets for several anticancer agents including 

etoposide, the DNA intercalating anthracyclines (doxorubicin, daunorubicin) and the anthraquinone 

mitoxantrone (54). The cellular roles of topoisomerase IIβ (55) and the consequences of inhibition, 

given its expression in terminal differentiation, are less understood compared with the cell cycle 

regulated topoisomerase IIα. Bacterial type II topoisomerases (gyrase and topoisomerase IV) are the 

targets of quinolones and aminocoumarin antibiotics (41).  

 

The eukaryotic type IB topoisomerases (Top1) are classically targeted by camptothecin and related 

derivatives such as topotecan or irinotecan. Genome-wide high-resolution mapping has revealed the 

targeting of transcriptionally active genomic regions by the Top1 inhibitor topotecan and the Top2 

inhibitor etoposide. On the hand, daunorubicin induces DNA breaks and evicts histones from active 

chromatin with a ‘quenching’ of local DNA damage responses (56). Fluorescence lifetime imaging 

microscopy (FLIM) has been used to map the nuclear docking of topotecan at a subset of DNA sites in 

nuclear structures of live breast tumour cells in which the DNA binding probe DRAQ5 has been used 

to uncover sites of drug interaction (57). The anticancer anthracyclines daunorubicin (daunomycin), 

doxorubicin (adriamycin) and epirubicin (4’-epi-doxorubicin, an active isomer of doxorubicin), belong 

to a class recognized as potent Top2 ‘poisons’. Their ability to generate protein-associated dsDNA 

breaks can be detected by cytometric analysis (40). Early studies showed the restricted binding of the 

anthracycline doxorubicin to DNA within chromatin compared to calf thymus free DNA and the ability 

of related drugs to induce compaction of isolated chromatin (58,59). Further evidence indicates that 

anthracycline antibiotic exposure can lead to chromatin unfolding and aggregation (60), DNA torsional 

changes (61) and histone eviction from open chromatin (62). Such drugs are also self-reporting probes 
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for cellular and nuclear micro-pharmacokinetics enabled by their intrinsic fluorescence tracked in real-

time by flow cytometry (63,64).  

 

 

Resolving chromatin organisation:  

 

Super Resolution Optical Microscopy  

New developments in fluorescent sensors based on small-molecule dyes or fluorescent proteins (13) 

are in parallel with expanding options for advanced microscopy methods for visualizing chromatin 

structure (4). Fluorescent sensors for monitoring proteins, DNA, RNA, small molecules and ions (e.g. 

Zn2+) can all exploit super-resolution microscopy (13). Some of these approaches are noted briefly 

here. Super-resolution fluorescence microscopy encompasses multiple techniques (65) that are 

applicable to probing chromatin structure (4,66-70). Super-resolution microscopy effectively breaches 

the diffraction limit of optical microscopy and efforts continue to accrue techniques reaching signal 

resolution at length scales of sub-20 nm. Typical approaches employ the principles of patterned 

illumination light, such as Saturated Structured Illumination Microscopy (SIM) and Stimulated 

Emission Depletion (STED). Alternatively, some methods such as Stochastic Optical Reconstruction 

Microscopy (STORM), Photoactivation Localization Microscopy (PALM), and fluorescence-based 

fPALM allow for single molecule detection and localization applicable to the imaging of chromatin 

organisation (4). Approaches include the use of a fluorescent label to image DNA and chromatin in 

situ at the single-molecule level (71-73). A recent application of the DNA dye Vybrant®DyeCycle Violet 

with single molecule localization microscopy (SMLM) has generated images of DNA in nuclei of fixed 

mammalian cells (74). It is estimated that using fixed whole cells and standard DNA dyes, a structural 

resolution of chromatin is attainable of the order of 50-100 nm using SMLM (72). The use of Spectral 

Precision Distance/Position Determination Microscopy (SPDM) has the potential to reveal nuclear 

nanostructures down to few tens of nanometre resolution (75). Several intercalating and minor-

groove binding DNA dyes can be used to register (optically isolate) a few DNA-binding dye signals at a 

time using a variation of Binding-Activated Localization Microscopy (BALM) (71). We should also 

remember that unmodified nucleic acids can show stochastic fluorescence switching at physiological 

concentrations under visible light illumination. This presents an opportunity for label-free super-

resolution imaging of DNA directly (76). However, at this stage super-resolution approaches cannot 

address the problem of how to visualise and reconstruct chromatin ultrastructure through large 3D 

volumes of intact cells – a problem familiar in cytometry. 

 

ChromEMT 

The practical limits on imaging resolution restrict the ability to visualise chromatin organisation in situ 

for informative 3D volumes. A recent report has broken through this analysis barrier for intact cells 

using a new method. ChromEMT enables DNA and chromatin ultrastructure to be visualized and 

reconstructed unambiguously through large 3D volumes (77). The ChromEMT method combines 

electron microscopy tomography (EMT) with a labelling method that selectively enhances the contrast 

for DNA structures.  The ChromEMT technique exploits  unique properties of the fluorescent 

anthraquinone DNA dye DRAQ5, which upon photon-activation can catalyse the deposition of 

diaminobenzidine (DAB) polymers on the chromatin surface, enabling structures to be subsequently 
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visualized with OsO4 in EM [Figure 2; (77)]. DAB photo-oxidation has been used in a range of studies 

that correlate light and electron microscopy, for nanoparticle location and the residence of low levels 

of photosensitizing molecules (78). Advances in multi-tilt EMT have allowed researchers to reveal the 

chromatin ultrastructure and 3D packing of DNA in both human interphase cells and mitotic 

chromosomes. Critically, it appears that there is a disordered nature of the chromatin chains revealed 

by ChromEMT. These chains are flexible, bending and folding into different packing densities. Dynamic 

changes in packing density provide opportunities to fine tune accessibility to DNA sequences, 

nucleosome variations and chromatin modifications. These variations in packing density will be 

important at both local and global levels within the intact nucleus. This opens a new level of 

organisation or indeed dis-organisation for exerting control over function. The anthraquinone dye 

used in ChromEMT recalls a lineage of molecules that link probe and drug properties employed in 

nuclear cytometry. 

 

 

 

 

 

 

 

 

Figure 2. ChromEMT: Jablonski energy diagram of DRAQ5 excitation, fluorescence and the formation 

of a triplet excited state generating reactive oxygen species (ROS) that enable subsequent chromatin 
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visualisation at low scalar distances. Diagrammatic sequence shows the photo-oxidative catalysis of 

the deposition of osmiophilic DAB polymers on DNA in chromatin in situ (77). 

 

 

Nuclear cytometry: DNA reporting  

 

The measurement of cellular DNA content, a common laboratory procedure (12,79), has been 

dependent upon the stoichiometric reporting capacity of fluorescent nucleic acid-affinic dyes.  

In terms of nuclear cytometry,  several classes of ‘vital’ DNA fluorescence probes, in addition to the 

bis-benzimidazoles Hoechst™ dyes offer the ability to explore chromatin dynamics in live cells. This 

expanding palette of probes includes: Syto61™, DRAQ5™ and Vybrant® DyeCycle™. The interactions 

of a range of fluorescent dyes such as quinacrine, Hoechst 33258 (80), daunomycin, chromomycin A3 

and 7-aminoactinomycin D with DNA offer multiple probe-based approaches for exploring chromatin 

structure (5). A recent addition to the suite of small-molecule fluorophores is the near-infrared (IR) 

silicon-rhodamine dyes with spectral properties that aid in vivo imaging (81). Spectral analysis can 

reveal modes of binding, sequence selectivity, probe interactions, consequences of fixation and 

selectivity of nuclease digestion. At a fundamental level, probe performance can be expected to obey 

the law of mass action in relation to unbound fluorochrome concentration (12). In studies on 

anticancer drugs there is always the possibility of interaction between the drug and the fluorochrome 

used to simultaneously probe DNA content. Since some of the DNA-binding drugs are fluorescent, 

their emission can directly overlap with that of the probe, through Förster resonance energy transfer, 

and affect the efficiency of probe detection (82).  

 

With all probes there are caveats. Prolonged exposure of live cells to the nominally non-permeable 

dye propidium iodide (PI) reveals a background granular distribution of the probe in the cytoplasm, 

consistent with accumulation in endosomes, and also dye binding to nucleolar RNA in live cells (83). 

DAPI (4′,6-Diamidino-2- phenylindole dihydrochloride) is usually referred to as a semi membrane-

permeant dye because of its reduced penetration through viable cell membranes but it is 

concentration sensitive with respect to toxicity especially at levels for attempts at DNA content 

reporting (84). A non-permeable very low toxicity dye, such as DRAQ7, offers the opportunity to 

monitor subpopulations of cells that lost cellular barriers to chromatin access but without perturbing 

the viable cell fraction (85). This approach is particularly useful when monitoring transitions in cell 

behaviour (86). In the case of the of vital cell dyes, problems of cell proliferation inhibition (14) and 

phototoxicity (87) can arise, but these effects will be time, dose and system dependent. The 

anthraquinone DRAQ5 when used at levels that reveal efficient DNA content reporting in live cells can 

interfere with the binding of H2B core histones to DNA, not observed after binding to DNA of a minor 

groove binder Syto17 (88,89). Hoechst 33342, DRAQ5, and DyeCycle Violet induce various degrees of 

DNA damage responses and cell cycle changes, which should be a matter of concern when using these 

dyes as supravital DNA probes inappropriately (90). Photo-toxicity of dyes is an issue. This is 

particularly the case a shorter wavelengths as observed with UV-excited Hoechst 33342 in time-lapse 

fluorescence microscopy (87). However, this known ‘adverse’ effect of UVA irradiation on dye-treated 

cells can be used to investigate the kinetics of dye residence at critical chromatin sites capable of 

generating photo-induced DNA-protein crosslinks (91). The potential for photosensitisation is 
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appreciated in the context of photothermal therapy (PTT) and photodynamic therapy (PDT). Here 

there have been recent advances in the synthesis and application of NIR-absorbing organic 

nanoparticles as phototherapeutic ‘nanoagents’ (92).  

 

Small DNA-affinic molecules can be used to reveal not only DNA content but also accessibility within 

higher orders of chromatin structure. This opportunity was recognised in earlier cytometry studies 

(93) by exploiting the metachromatic properties of acridine orange (AO) (94,95). Many of our current 

methodological approaches and signal interpretations were developed using this cytometric probe. 

Differences in chromatin structure can be revealed by the metachromatic effects detecting DNA 

‘melting’ – the differential susceptibility of DNA in situ to undergo denaturation upon exposure to heat 

or acid. Differential stainability of dsDNA (green fluorescence) versus ssDNA (red fluorescence) with 

AO made it possible to discriminate between G0, G1, S, G2 and M cells (94,95) (Fig. 3). Multiple 

cytometry techniques have been applied to cell cycle profiling, including exploitation of chromatin-

protein bindings events, chromatin modification and the nuclear translocation of cyclins. DNA content 

and chromatin-bound proteins to reveal sub-phases in G1 (96). Mass cytometry using 5-iodo-2-

deoxyuridine (IdU) can co-mark cells in S phase using cyclin antibodies and the phosphorylation 

patterns a specific histone H3 (97). Live cell tracking of a cyclin B1-GFP sensor can detect cell-cycle 

phase routes to mitotic traverse, arrest or endoreduplication confirmed by flow cytometric mapping 

using DRAQ5 (98). 

 

 

 

 

Fig. 3. Cytometric analysis showing differences in chromatin structure of lymphocytes in different 

phases of the cell cycle. Sub-sets revealed by changes in susceptibility of DNA to denaturation induced 

by acid followed by differential staining of dsDNA versus ssDNA with metachromatic fluorochrome 

acridine orange (AO). (A) Unstimulated cells, (B) cells stimulated with phytohemagglutinin (PHA) for 

18 h, (C) cells stimulated for 3 days, (D) cells stimulated for 3 days; vinblastine included in the cultures 

for the final 6 h to arrest cells in mitosis. Evident is the transition (T) cells from G0 to G1 after 18 h, 

associated with an increase in green fluorescence and a decrease in red.  Subpopulations of cells in G0, 

G1, S, G2 and M can be distinguished based on changes in green and red fluorescence (94,95). 
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Fluorescent dye-chromatin interactions borrow from the experience with chromosome banding. 

These can reveal the spectacular capacity of cells to show shifts in chromosome organisation at its 

highest levels (99,100). At a highly practical level, metachromatic staining by AO reveals any defective 

packaging of DNA in chromatin of infertile sperm cells (101). Fig. 4 shows the classic flow cytometry 

methodological study of human fertile versus infertile sperm cells (102). Defective packaging of DNA 

correlates with DNA fragmentation, not unlike that seen in apoptotic cells (103,104). This 

methodology was adopted in clinical practice for detecting fertility status of human males and in 

animal husbandry (105,106). 

 

 

 

 

Figure 4. Susceptibility of DNA to denaturation as detected by staining with AO reveals the presence 

of human sperm cells with defective chromatin structure (H) correlated with infertility. Bivariate 

frequency distribution histograms representing intensity of total fluorescence (Tot. Fl.; red+ green) 

versus αt (ratio of red to total fluorescence intensity) of two samples of sperm cells, one characterized 

by a small fraction of cells with high sensitivity of DNA in situ to denaturation (left) and the other with 

a higher proportion of such cells (right). The borderline discriminating between the cells characterized 

by low (L) and high (H) sensitivity to denaturation (at, index) is marked by thick arrows. The frequency 

of H cells in infertile subjects was shown to be correlated with frequency of cells with fragmented DNA 

detected by the TUNEL assay (103). 

 

In the native nucleus, the extent and modes of binding of DNA interacting agents are informed not 

only by agent properties and chromatin access but also by cellular routes for handling small molecule 

probes. For example, contrast to fixed cells, live cells exposed to AO at low concentrations (<5 M) 

selectively accumulate the probe in acidic vesicles, including lysosomes where it luminesces red, and 

is not a useful chromatin probe (107,108). The situation is complicated further by dynamic chromatin 

structures responding to the presence of a probe/drug itself and linked downstream stress responses. 

Not surprisingly there is significant interest, in both nuclear cytometry and anticancer targeting 

strategies, to gain an understanding of critical chromatin structures and their perturbation. 
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Nuclear cytometry: alternatives  

 

Not all methods depend upon the intrinsic or enhanced fluorescence of a probe or indeed that of a 

nuclear-locating drug. Mass cytometry has exploited metal-based unique signals for DNA-affinic 

molecules for: the study of cellular uptake and the linked anticancer effects of platinum-containing 

drugs (109), the use of cisplatin-antibody-conjugates for immunophenotyping (110) and the 

incorporation of a platinum-based covalent reagent to act as a discriminator in cell viability 

measurements (111). Alternative detection modalities can assess the subcellular disposition of 

reporter probes. Raman spectroscopy as applied to microscopy has been used to measure the 

chemical signature of a sample or identify the presence and quantity of a molecular species (112) 

(Figure 5). The characteristics and behaviour of a probe can in turn be used to extract biological 

information via the state of the probe at specific locations. The two typical methods of collecting the 

Raman spectral data to generate images are Raman mapping and Raman imaging. Raman mapping 

collects a spectral hypercube (a Raman spectrum from each position on the sample in a single file), 

rather than a simple intensity image. The hypercube is analysed to produce Raman images. There are 

several Raman mapping methods, including point-by-point mapping and line focus mapping. Here, 

there is a balance between under-sampling and acquisition time for sample regions of interest. Spatial 

resolution is determined by a combination of the laser spot size and the spacing between acquisition 

points on the sample (e.g. sample stage step sizes down to 100 nm). On the other hand, Raman 

imaging allows for rapid acquisition, by collecting spectral intensity values simultaneously from an 

entire region of interest, especially if high laser power is available. However this approach yields 

limited information with an ultimate resolution to a little under a micrometre. 
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Figure 5: Diagrammatic representation of some of the light scattering modes of interest and the 

differential detection of a Raman signature for a cell permeant DNA binding probe. The more 

familiar Rayleigh scattering can be described as ‘elastic’ scattering since the photon energies of the 

scattered photons are not changed. When a Raman active probe is irradiated with photons of a 

selected frequency, that avoids peak fluorescence excitation, a minority of the incident photons 

interact with a vibrational mode of the irradiated probe and are ‘inelastically’ scattered. The 

inelastically scattered photons are shifted in frequency. This shift can be to a higher frequency (anti-

Stokes) or to a lower frequency (Stokes). The frequency versus intensity Raman spectrum provides a 

unique detection signal for the probe at a selected location. (Acknowledgement: exemplar data for 

DRAQ5 provided courtesy of L Jamieson, D Graham & K Faulds, Centre for Molecular Nanometrology, 

Department of Pure and Applied Chemistry, University of Strathclyde, UK). 

 

Many materials have characteristic Raman spectra, with a growing number of applications within 

biology. The approach can provide chemical and compositional information and does not typically 

suffer from interference from water molecules. Further, cellular components, including DNA, have 

distinct intrinsic Raman scattering spectra (113). Chromatin density variation among the individual 

sub-phases of mitosis affect Raman and infrared micro-spectroscopic intensities (114). Label-free DNA 

imaging in vivo has been demonstrated using stimulated Raman scattering microscopy (115,116). 

Hyperspectral Coherent anti-Stokes Raman scattering (CARS) microscopy (117) can be used to provide 

label-free quantitative volumetric imaging of cell composition defined in terms of water, protein, 

chromatin and lipids (Fig. 6). 

 

 

Figure 6 Hyperspectral CARS of a mitotic cell - detection of key cellular components and their spectra 

in a human osteosarcoma cell. Cells were imaged in 3D in the CH stretching vibrational range (ω=2400-

3800 cm-1) using a 60X 1.27NA water objective and 1.4NA oil condenser. The point spread function 

(PSF) informs the imaged volume for chemical components [volume dimensions of approximately 0.3 

µm lateral and 0.9 µm axial full width at half maximum (FWHM)]. Note that the imaged volume 

contains about 95% water. Y axis shows hyperspectral averaged 𝔍(χ)  data (118). To analyze the data, 

a three step method was applied which includes singular value decomposition (SVD), phase corrected 

Kramer’s Kronig (PCKK)(118) and factorization into susceptibilities and concentrations of chemical 

components (FSC3) [(a: blue = water; b: green = protein; c: red = DNA)]. (Unpublished: exemplar data 

by A Karuna, F Masia, P Borri, R Errington, and W Langbein at the Schools of Physics, Biosciences and 

Medicine, Cardiff University, UK). 
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Mass Spectrometry Imaging (MSI) can qualitatively describe drug distribution in 2D tissue sections 

while 3D MSI can reveal the heterogeneity in tumours (119). MALDI imaging mass spectrometry has 

been applied to the analysis of the spatial distribution of histone modifications in tissues (120), with 

recent studies achieving high lateral resolution of the order of 5 micrometre approaching a cell-to-cell 

methodology. Partial-wave spectroscopic (PWS) microscopy is a label-free quantitative imaging 

technique (resolution range of 20 and 200 nm), capable of tracking  changes in chromatin structure 

after DNA damage in live cells (121). This approach reveals that UV-excited Hoechst 33342 can cause 

damage to chromatin within seconds. Over a time-frame of minutes, the dye itself can cause a global 

alteration in chromatin nano-architecture independent of its excitation (121). PWS microscopy reveals 

the  not unexpected chromatin disrupting effects of fixation (122). This disruption highlights the 

relevance of live cell imaging techniques, or the advantage of cryo-fixation, when exploring native 

chromatin organisation (122). The ability to combine PWS microscopy with fluorescence confocal 

microscopy for the co-localization of cellular nanostructures is a welcome route for functional 

annotation (123). Alternative modes of light interaction with DNA dyes can be exploited in nuclear 

cytometry. For example, the unique light absorption properties and high DNA affinity DRAQ5 (124) 

coupled with low fluorescence quantum yield (125), have been exploited in hybrid ultra-high 

frequency acoustic/photoacoustic microscopy. The generation of photoacoustic signals from a cell’s 

nuclei reveals gross conformation and nuclear dimensions (126).  

 

 

Apoptosis, autophagy & NETs 

 

Chromatin disassembly is a feature of the various cell death processes and will only be discussed here 

briefly. Multiple cytometric methods can track the irreversible apoptotic process of chromatin 

disassembly (127,128) and real time progression to the ‘fait accompli’ of plasma membrane disruption 

(85). In the case of apoptosis, nuclear DNA undergoes extensive fragmentation and release from the 

cell within apoptotic bodies (42). RNA and DNA are segregated and packed into separate apoptotic 

bodies (129) detectable in peripheral blood (130). Specialization of phagosomes of macrophages 

facilitates heterophagic degradation of nucleic acids during apoptosis (129). An exciting and emerging 

area is the balance between autophagy, providing an environment for cell survival, versus the 

enactment of cell death processes via apoptosis. The cell survival and housekeeping process of 

autophagy involves the breaking down and reusing of cytoplasm components. Fluorescence 

microscopy and flow cytometry is commonly used to study autophagy of discrete structures such as 

mitochondria (131) and lysosomes (107). Flow cytometric methods are also available to detect the 

linked changes in organelle mass using MitoTracker Green (MTG) and Endoplasmic Reticulum Tracker 

Green (ERTG) (132). Evidence is mounting that there is cross-talk between the dysfunction of 

apoptotic and autophagic pathways in disease states including neurodegeneration (133) and cardiac 

pathology (134). Participants in this cross-talk are modifications to histones, providing critical 

structural codes (135).  

 

Chromatin ‘function’ or rather ‘value’ can extend beyond the cell’s boundary (136) presenting a 

distinct focus area for cytometry. The cell death process termed NETosis, creates homogenised 
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chromatin together with granule proteins that undergo release from actively disintegrating neutrophil 

granulocytes. A variety of triggers promote NET formation. These chromatin structures form a 

tethered extracellular mesh (Neutrophil Extracellular Traps; NETs; (137)). NETs enmesh and degrade 

virulence factors and kill bacteria. The DNA backbone of NETs is  vulnerable to extracellular DNase 

digestion. Although NETosis is distinct from apoptosis and necrosis, there is conflicting evidence of its 

dependence on autophagy for extracellular DNA trap formation (138,139). Further there is a 

distinction between the formation of NETs from mitochondrial of nuclear DNA (140). Nuclear 

chromatin-originating DNA masses are less structured (the DNA mass being some 3-5-fold greater in 

volume than condensed chromatin) and less beneficial for antimicrobial trapping (141). The more 

structured mitochondrial originating NETs are built around the tight packaging of mtDNA as nucleoids 

and their organization into higher-ordered assemblies (142).  

 

Developing cytometric methods that distinguish different NET origins and structures have applications 

in measuring inflammatory vascular injury and tissue damage (143) and in a variety of disease 

processes including autoimmunity, thrombosis, cancer and antiviral responses (144). NET formation 

has been examined using correlative microscopy - combining TEM, SEM, immunofluorescence and live 

cell imaging techniques (145). Such imaging approaches can be supported by automated image 

quantification software (146). A range of probe-based methods are also available for quantifying 

NETosis (145,147). They include flow cytometry and staining with the plasma membrane-

impermeable DNA-binding dye SYTOX Green and its correlation with image-based detection (148). Co-

staining for DNA (DAPI) and myeloperoxidase positivity has also been used (149). DRAQ5 and SYTOX 

Green staining patterns can enable NET detection by both flow cytometry (150) and imaging (151). 

DRAQ5 and human neutrophil elastase immunostaining and microscopy have been used to profile 

NETs capturing Candida albicans yeast cells (152). An interesting recent approach uses the 

ImageStream® platform (Millipore Sigma, Darmstadt, Germany) detecting the morphology of DRAQ5-

stained NET DNA trails tethered to the remaining cell structure (153). 

 

 

One man’s probe is another man’s poison 

 

In vivo probes and drugs have to deal with adverse extracellular microenvironments (154) and a 

metabolic environment frequently determined by gene expression patterns (e.g. p450 family; (155)). 

These states can enhance or even frustrate delivery to targets (154). For example cytometry has 

revealed the DNA targeting potential of fluorescent anthraquinone-based prodrugs (156,157) in their 

response to their metabolic activation in hypoxic microenvironments (158). Flow- and image-assisted 

cytometry can profile individual molecular events in DNA damage responses (159) linked to effective 

targeting of a probe (160) of cross-resistance to a drug (161). The ability of drug molecules to quench 

Hoechst 33342-DNA fluorescence signatures can be used to track the binding of molecules with low 

fluorescence [e.g. the anti-leukemic drug 4'-(9-acridinylamino) methane sulfon-m-anisidide; m-AMSA; 

(162)] or spectrally distinct fluorescence properties (125,163). DNA targeting agents face cellular 

membrane barriers (112,164), active efflux (161) and sequestration at cytoplasmic sites (156). The 

nucleic acid target is clearly in competition with different kinds of molecules. Even the packaging of 

the genome by histone proteins into nucleosomes can alter how different DNA sites interact 

preferentially with an agent. A DNA affinic drug such as mitoxantrone (MTX) can significantly impact 
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upon chromatin protein residence and function (51,165,166), DNA topoisomerase function (167). The 

pharmacodynamic effects  of MTX appear to be dependent upon persistence at the chromatin target 

(54) an indicator that probe residence time at target is critical. Probe efflux provides information on 

cell heterogeneity that can correlate with drug response heterogeneity. The detection of ‘side-

populations’ characterizing stem cells (168) is based on the extent of the binding-dependent shift in 

the Hoechst 33342-DNA emission spectrum (169,170). Changes in Hoechst 33342 (171,172) and 

Vybrant® DyeCycle™ Violet (173) cellular fluorescence effectively track dye efflux capacity. The efflux 

signature of DNA interactive agents and drugs can be explored using a compartmental modelling 

approach, providing a mathematical description of the activity of the anti-cancer agent. Such models 

can take into account intracellular modification and delivery to a nuclear DNA target (27). This can 

also be extended to model the subsequent perturbation of the cell cycle (174). Smart DNA-targeted 

reporters will enable mathematical constructs of single cells that link Micro-PharmacoKinetics and 

cellular PharmacoDynamics with specific Cellular Descriptors (PK-PD-CD). Descriptors, such as 

aldehyde dehydrogenase enzyme expression (175), bring a finer cytometric dimension to early drug 

development (176).  

 

Figure 7: Chemical structure of Mitoxantrone (MTX) - an anthracenedione antibiotic with 

antineoplastic activity. Chemical structure information and properties are obtainable from the 

PubChem Substance and Compound databases (177). 

 

The problem of understanding the biological impact of a DNA targeting molecule and probe properties 

in the context of chromatin structure his exemplified here by the anthracenediones. Mitoxantrone 

(MTX; Novantrone®), (1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-

anthracenedione) is a anthracenedione - structurally related to the classical anthracyclines. MTX has 

also provided an impetus for the generation of derivatives including prodrug forms (178-181) for a 

more selective targeting of tumour cell populations (182). Its behaviour in the chromatin environment 

(166) is an exemplar of multi-level action (40). A principal mechanism of action of MTX is the persistent 

inhibition of DNA topoisomerase complexes (54). However, MTX also has a striking ability to condense 

nucleic acids by both trapping and excluding chromatin proteins (166,183). The MTX chromophore 

(Exmax 610 and 660 nm; Emmax 685 nm ; (184)) permits fluorescence microscopy and flow 

cytometry to determine uptake and nuclear distribution revealing drug resistance (185) and the 

behaviour of alkylamino-anthraquinones derivatives and their N-oxides (156). The structurally related 

far-red fluorescent DNA dyes and the nuclear counterstains DRAQ5™ (124,186-188), DRAQ7™ 
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(85,128,189-191) and the spectrally shifted  CyTRAK Orange™ (192) have applications in nuclear 

cytometry (193). The spectrally-compatible combination of the nuclear stain DRAQ5 and the anionic 

counterstain eosin also provides a dual-component fluorescent staining protocol. This is analogous to 

haematoxylin & eosin and intended for use on fresh, non-sectioned tissues (186) in clinical settings – 

an innovation loop in nuclear cytometry that now spans centuries (194). 

 

 

 

 

 

 

 

 

 

 

Conclusion 

 

In terms of nuclear cytometry there is a widening of the opportunities to deploy smart molecular DNA 

probes, not restricted by their fluorescence profiles. Novel probes offer  distinct and often unique 

properties. Molecular probe design is clearly informed by drug development highlighting a constant 

caveat for the use of vital probes, in which their biological effects can be a known unknown. The 

ambition here is to reveal fundamental aspects of nuclear function and chromatin form. New 

opportunities arise from understanding the photophysical and photochemical properties of probes in 

conjunction with the targeting of discrete biological structures while also exploiting new detection 

modalities. Downstream impact lies in the promise of methodologies that can inform chromatin 

structures and organisational levels that are targets for anticancer drugs or indeed reflect disease 

progression. Further, using these new approaches to nuclear cytometry, to describe the chromatin 

changes that occur both globally and locally during key transitions such as a somatic to pluripotent 

states (195,196), will reveal the extent to which such changes have regulatory roles in both disease 

and health. 
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