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Likely equilibria of stochastic hyperelastic spherical shells and tubes

L. Angela Mihai∗ Danielle Fitt† Thomas E. Woolley‡ Alain Goriely§

October 13, 2018

Abstract

In large deformations, internally pressurised elastic spherical shells and tubes may undergo a
limit-point, or inflation, instability manifested by a rapid transition in which their radii suddenly
increase. The possible existence of such an instability depends on the material constitutive model.
Here, we revisit this problem in the context of stochastic incompressible hyperelastic materials,
and ask the question: what is the probability distribution of stable radially symmetric inflation,
such that the internal pressure always increases as the radial stretch increases? For the classic
elastic problem, involving isotropic incompressible materials, there is a critical parameter value
that strictly separates the cases where inflation instability can occur or not. By contrast, for the
stochastic problem, we show that the inherent variability of the probabilistic parameters implies
that there is always competition between the two cases. To illustrate this, we draw on published
experimental data for rubber, and derive the probability distribution of the corresponding random
shear modulus to predict the inflation responses for a spherical shell and a cylindrical tube made
of a material characterised by this parameter.

Key words: stochastic hyperelastic model, spherical shell, cylindrical tube, finite inflation, limit-
point instability, probabilities.

1 Introduction

The idealised model of an internally pressurised hollow cylinder or sphere is instructive as it applies to
many structures from living cells to blood vessels to aircraft fuselages [16,54]. For these structures to be
serviceable they must be able to withstand and function at a certain level of internal pressure without
damage. The finite symmetric inflation and stretching of a cylindrical tube of homogeneous isotropic
incompressible hyperelastic material was initially studied by Rivlin (1949) [40]. For an elastic spherical
shell, the finite radially symmetric inflation was first investigated by Green and Shield (1950) [17] (see
also [2, 44]). A general theory of possible qualitative behaviours for both the elastic tubes and the
spherical shells was developed by Carroll (1987) [7], who showed that, depending on the particular
material and initial geometry, the internal pressure may increase monotonically, or it may increase and
then decrease, or it may increase, decrease, and then increase again. This formed the basis for further
studies where these deformations were examined for different material constitutive laws [15,35,56], and
opened the way to the modelling of more complex phenomena [18,30,55]. Recently, localised bulging
instabilities in an inflated isotropic hyperelastic tube of arbitrary thickness, which were also observed
in some materials, provided that the tube is sufficiently long [14], were modelled and analysed within
the framework of nonlinear elasticity in [13].

∗School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK, Email:
MihaiLA@cardiff.ac.uk
†School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK, Email:

FittD@cardiff.ac.uk
‡School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK, Email:

WoolleyT1@cardiff.ac.uk
§Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK, Email:

goriely@maths.ox.ac.uk

1



Clearly, the behaviour of a structure depends on the inextricable relation between its material
properties and its geometry. It is therefore of the utmost importance to use suitable constitutive mod-
els as confirmed by experience and experiments. Unavoidably, uncertainties are attached to material
properties. For natural and industrial elastic materials, uncertainties in the mechanical responses
generally arise from the inherent micro-structural inhomogeneity, sample-to-sample intrinsic variabil-
ity, and lack of data, which are sparse, inferred from indirect measurements, and contaminated by
noise [6,11,22,37]. Stochastic approaches are thus growing in importance as a tool in many disciplines,
such as materials science, engineering, and biomechanics, where understanding the variability in the
mechanical behaviour of materials is critical. For example, constitutive equations for soft tissues,
including those based on statistical modelling for the evolution of the collagen network, are reviewed
in [9]. and statistical approaches applied to the mechanical analysis of rubberlike networks is presented
in [27]. Further, methods for stochastic stability motivated by applications to stochastic network can
be found in [12].

Within the nonlinear elasticity field theory, which is based on average data values and covers the
simplest case where internal forces only depend on the current deformation of the material and not on
its history, hyperelastic materials are the class of material models described by a strain-energy function
with respect to the reference configuration [16, 38, 52]. For these materials, boundary value problems
can be cast as variational problems, which provide powerful methods for obtaining approximate solu-
tions, and can also be used to generate finite element methods for computer simulations. The tradition
so far has been to only consider average values to fit deterministic models. More recently, the use of
the information about uncertainties and the variability in the acquired data in nonlinear elasticity has
been proposed by the introduction of stochastic hyperelastic models. Specifically, stochastic represen-
tations of isotropic incompressible hyperelastic materials characterised by a stochastic strain-energy
function for which the model parameters are random variables following standard probability laws
were constructed in [47], while compressible versions of these models were presented in [48]. Ogden-
type stochastic strain-energy functions were then calibrated to experimental data for rubber and soft
tissues in [32,49], and anisotropic stochastic models with the model parameters as spatially-dependent
random fields were calibrated to vascular tissue data in [50]. These models are based on the notion
of entropy (or uncertainty) defined by Shannon (1948) [42, 43], and employ the maximum entropy
principle for a discrete probability distribution introduced by Jaynes (1957) [23–25]. However, by
contrast to the tremendous development and variety of stochastic finite element methods, which have
been proposed and implemented extensively in recent years [3,4,20,21], at the fundamental level, there
is very little understanding of the uncertainties in the mechanical properties of elastic materials under
large strains. For these models, the natural question arises: what is the influence of the stochastic
model parameters on the predicted elastic responses?

In recognition of the fact that a crucial part of assessing the elasticity of materials is to quantify
the uncertainties in their mechanical responses under large deformations, in the present study, we
determine the probability distribution of stable deformation for spherical shells and cylindrical tubes
of stochastic isotropic hyperelastic material under radially symmetric inflation. For the deterministic
elastic problem, involving isotropic incompressible materials, there is a critical parameter value that
strictly separates the cases where inflation instability can occur, or not. However, for the stochastic
problem, we find that, due to the probabilistic nature of the material law, there is always competition
between the two cases. Therefore, we can no longer talk about ‘equilibria’ but ‘likely equilibria’
obtained under a given internal pressure with a given probability. Our stochastic elastic setting
provides a general mathematical framework applicable to a class of stochastic hyperelastic materials
for which similar results can be obtained. As a specific example, we refer to the experimental data for
vulcanised rubber of Rivlin and Saunders (1951) [41], from which we derive the probability distribution
of the random shear modulus, and predict the inflation responses for a spherical shell and a cylindrical
tube made of a material characterised by this parameter. We begin, in Section 2, with a detailed
description of the stochastic elasticity framework. Then, in Sections 3 and 4, for stochastic spherical
and tubes, respectively, first, we review the solution to the elastic problem under radially symmetric
inflation, then we recast the problem in the stochastic setting and find the probabilistic solution.
Concluding remarks and a further outlook are provided in Section 5.
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2 Stochastic isotropic hyperelastic materials

In this Section, we summarise the stochastic elasticity framework developed in [32] using the method-
ology and previous results of [47–49]. This theoretical framework was used to analyse the role of
stochasticity in stability problems in [33,34].

2.1 Stochastic setting

We briefly recall that a homogeneous hyperelastic material is characterised by a strain-energy function
W (F) that depends on the deformation gradient tensor, F, with respect to the reference configuration
[16, 38, 52]. It is typically characterised by a set of deterministic model parameters, which then
contribute to defining the constant elastic moduli under small strains, or the nonlinear elastic moduli,
which are functions of the deformation, under large strains [31]. By contrast, a stochastic homogeneous
hyperelastic material is described by a stochastic strain-energy function for which the parameters are
random variables that satisfy standard probability laws [32, 47–49]. Specifically, each parameter is
described in terms of its mean value and its variance, which includes information about the range
of values about the mean value. The mean value and the variance are the most commonly used to
provide information about a random quantity in many practical applications [22]. Here, we combine
information theory with finite elasticity, and rely on the following assumptions [32,33]:

(A1) Material objectivity: the principle of material objectivity (frame indifference) states that con-
stitutive equations must be invariant under changes of frame of reference. It requires that the
scalar strain-energy function is unaffected by a superimposed rigid-body transformation (which
involves a change of position) after deformation, i.e., W (RTF) = W (F), where R ∈ SO(3) is
a proper orthogonal tensor (rotation). Material objectivity is guaranteed by considering strain-
energy functions defined in terms of invariants.

(A2) Material isotropy: the principle of isotropy requires that the scalar strain-energy function is
unaffected by a superimposed rigid-body transformation prior to deformation, i.e., W (FQ) =
W (F) where Q ∈ SO(3). For isotropic materials, the strain-energy function is a symmetric
function of the principal stretches of F, λ1, λ2, λ3, i.e., W (F) =W(λ1, λ2, λ3).

(A3) Baker-Ericksen inequalities: in addition to the fundamental principles of objectivity and mate-
rial symmetry, in order for the behaviour of a hyperelastic material to be physically realistic,
there are some universally accepted constraints on the constitutive equations. Specifically, for
a hyperelastic body, the Baker-Ericksen (BE) inequalities state that the greater principal stress
occurs in the direction of the greater principal stretch [5]. In particular, under uniaxial tension,
the deformation is a simple extension in the direction of the tensile force if and only if the BE
inequalities hold [28]. Under these mechanical constraints, the shear modulus of the material is
positive [31].

(A4) Finite mean and variance for the random shear modulus: we assume that, at any given fi-
nite deformation, the random shear modulus, µ, and its inverse, 1/µ, are second-order random
variables, i.e., they have finite mean value and finite variance [47–49].

Assumptions (A1)-(A3) are long-standing principles in isotropic finite elasticity [16, 38, 52], while
(A4) concerns physically realistic expectations on the random shear modulus, which will be described
by a probability distribution.

In particular, we confine our attention to a class of stochastic homogeneous incompressible hyper-
elastic materials described by the constitutive law [32,49],

W(λ1, λ2, λ3) =
µ1

2m2

(
λ2m1 + λ2m2 + λ2m3 − 3

)
+

µ2
2n2

(
λ2n1 + λ2n2 + λ2n3 − 3

)
, (1)

where m and n are deterministic constants, and µ1 and µ2 are random variables. Consistent with
the deterministic elastic theory [31], the random shear modulus for infinitesimal deformations of the
stochastic model (1) is defined as µ = µ1 + µ2. One can also consider models where the exponents
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m and n are characterised as random variables as well. However, this additional complexity is not
relevant for the problem at hand.

For these materials, condition (A4) is guaranteed by the following constraints on the expected
values [32,33,47–49]: {

E [µ] = µ > 0,

E [log µ] = ν, such that |ν| < +∞,
(2)

i.e., the mean value µ of the shear modulus, µ, is fixed and greater than zero, and the mean value of
log µ is fixed and finite, implying that both µ and 1/µ are second-order random variables, i.e., they
have finite mean and finite variance [45,46]. These expected values are then used to find the maximum
likelihood probability for the random shear modulus, µ, with mean value µ, and standard deviation

‖µ‖ =
√

Var[µ], defined as the square root of the variance, Var[µ]. Critically, under the constraints
(2), µ follows a Gamma probability distribution with hyperparameters ρ1 > 0 and ρ2 > 0 satisfying

µ = ρ1ρ2, ‖µ‖ =
√
ρ1ρ2. (3)

The corresponding probability density function takes the form [1,26]

g(µ; ρ1, ρ2) =
µρ1−1e−µ/ρ2

ρρ12 Γ(ρ1)
, for µ > 0 and ρ1, ρ2 > 0, (4)

where Γ : R∗+ → R is the complete Gamma function

Γ(z) =

∫ +∞

0
tz−1e−tdt. (5)

When µ1 > 0 and µ2 > 0, we can define the auxiliary random variable [32]

R1 =
µ1
µ
, (6)

such that 0 < R1 < 1. Then, under the following constraints [32,47–49],{
E [log R1] = ν1, such that |ν1| < +∞,
E [log(1−R1)] = ν2, such that |ν2| < +∞,

(7)

the random variable R1 follows a standard Beta distribution [1,26], with hyperparameters ξ1 > 0 and
ξ2 > 0 satisfying

R1 =
ξ1

ξ1 + ξ2
, ‖R1‖ =

1

ξ1 + ξ2

√
ξ1ξ2

ξ1 + ξ2 + 1
. (8)

where R1 is the mean value, ‖R1‖ =
√

Var[R1] is the standard deviation, and Var[R1] is the variance
of R1. The corresponding probability density function takes the form

β(r; ξ1, ξ2) =
rξ1−1(1− r)ξ2−1

B(ξ1, ξ2)
, for r ∈ (0, 1) and ξ1, ξ2 > 0, (9)

where B : R∗+ × R∗+ → R is the Beta function

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt. (10)

Then, for the random coefficients µ1 = R1µ and µ2 = µ− µ1, the corresponding mean values are

µ
1

=
ρ1ρ2ξ1
ξ1 + ξ2

, µ
2

=
ρ1ρ2ξ2
ξ1 + ξ2

, (11)
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and the variances and covariance are, respectively,

Var [µ1] =
ρ1ρ

2
2ξ1
(
ξ21 + ξ1 + ξ2 + ξ1ξ2 + ρ1ξ2

)
(ξ1 + ξ2)

2 (ξ1 + ξ2 + 1)
, (12)

Var [µ2] =
ρ1ρ

2
2ξ2
(
ξ22 + ξ1 + ξ2 + ξ1ξ2 + ρ1ξ1

)
(ξ1 + ξ2)

2 (ξ1 + ξ2 + 1)
, (13)

Cov [µ1, µ2] =
ρ1ρ

2
2ξ1ξ2 (ξ1 + ξ2 − ρ1)

(ξ1 + ξ2)
2 (ξ1 + ξ2 + 1)

. (14)

We further note that, when ρ1 → ∞, assuming that the standard deviation, ‖µ‖, is constant, by
(3), ρ2 = ‖µ‖/√ρ1. Next, defining u = µ+ ‖µ‖/√ρ1 > ‖µ‖/

√
ρ1, the probability density function (4)

takes the form

g1(u− ‖µ‖/
√
ρ1; ρ1, ‖µ‖/

√
ρ1) =

(
u− ‖µ‖/√ρ1

)ρ1−1 e−(u−‖µ‖/
√
ρ1)/(‖µ‖/

√
ρ1)(

‖µ‖/√ρ1
)ρ1 Γ(ρ1)

.

Then, the limit of the above function as ρ1 →∞ is equal to

lim
ρ1→∞

g1(u− ‖µ‖/
√
ρ1; ρ1, ‖µ‖/

√
ρ1) =

e−(u−µ)
2/(2‖µ‖2)

√
2π‖µ‖

. (15)

Hence, the Gamma probability density function (4) is approximated by a normal (Gaussian) density
function

h(u;µ, ‖µ‖) =
e−(u−µ)

2/(2‖µ‖2)
√

2π‖µ‖
, (16)

where u is a random normal variable with mean value µ and standard deviation ‖µ‖.
When ρ1 ≈ 1, the probability distribution (4) reduces to an exponential distribution,

g2(µ; ρ2) =
e−µ/ρ2

ρ2
, for µ > 0 and ρ2 > 0. (17)

In this case, the mean value, µ, and standard deviation, ‖µ‖, defined by (3), take comparable values.
This situation may arise, for example, when the sampled data contain a lot of noise.

2.2 Rubberlike material

For rubberlike material, the first experimental data in large deformations were reported by Rivlin
and Saunders (1951) [41]. In light of these data, and assuming that such a material can be described
by the stochastic hyperelastic model (1) under sufficiently small deformations, here, we derive the
probability distribution for the random shear modulus, µ = µ1 + µ2, for this material (see Figure 1).
Note that we only make this assumption in order to provide examples of probability distributions
based on some real data measurements, and do not attempt to optimise a specific hyperelastic strain-
energy function to the given data. For example, deterministic hyperelastic models calibrated to mean
data values for rubberlike material under finite deformations were proposed in [10, 19, 31, 39, 51, 53],
statistical models were derived computationally from artificially generated data in [8,36], while explicit
stochastic hyperelastic models based on available data sets consisting of mean values and standard
deviations were obtained in [32].

The chosen data values are recorded in Table 1. The Gamma probability distribution fitted to
the shear modulus data, together with the normal distribution derived from the Gamma distribution,
and also the standard normal distribution fitted to the data, are represented in Figure 1. Note the
similarity between the Gamma and normal distributions in this case. For each probability distribution,
the mean value, µ, and standard deviation, ‖µ‖, are recorded in Table 2. For the normal distribution
derived from the Gamma distribution, the mean value and standard deviation are given by (3), as
for the Gamma distribution. For the auxiliary random variable R1 = µ1/µ, the mean value, R1, and
standard deviation, ‖R1‖, are provided in Table 3.
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Figure 1: Probability distributions derived from the data values for the random shear modulus, µ =
µ1 + µ2, given in Table 1. Left: the Gamma distribution takes the form (4), while the normal
distribution derived from it and the one fitted to data are given by (15) and (16), respectively. The
parameters for these distributions are recorded in Table 2. Right: the Beta distribution takes the form
(9), with parameters recorded in Table 3.

Table 1: Experimental data for rubberlike material under sufficiently small deformations, with the
values of µ1/2 and µ2/2 selected from Tables 1 and 2 of [41].

λ1 1.90 1.80 1.70 1.90 1.80

λ2 1.07 1.25 1.39 1.02 1.09

µ1/2 (kg/cm2) 1.77 1.89 2.01 1.68 1.76

µ2/2 (kg/cm2) 0.20 0.23 0.21 0.29 0.21

µ = µ1 + µ2 (kg/cm2) 3.94 4.24 4.44 3.94 3.94

Table 2: Parameters of the probability distributions derived from the data values for the random shear
modulus, µ = µ1 + µ2, given in Table 1.

Probability density function (pdf) µ ‖µ‖ ρ1 ρ2

Gamma pdf (4) fitted to data 4.0907 0.2037 405.0214 0.0101

Normal pdf (15) derived from Gamma pdf 4.0907 0.2037 - -

Normal pdf (16) fitted to data 4.0907 0.2302 - -

Table 3: Parameters of the probability distribution for the random variable R1 = µ1/µ derived from
the data values provided in Table 1.

Probability density function (pdf) R1 ‖R1‖ ξ1 ξ2

Beta pdf fitted to data 0.8883 0.0175 287.2297 36.1194

6



In the next sections, we analyse the radially symmetric inflation of a spherical shell and of a
cylindrical tube of stochastic hyperelastic material defined by (1), with the random shear modulus, µ,
following either the Gamma or the normal probability distribution fitted to the given data. We can
regard the stochastic spherical shell (or tube) as an ensemble (or population) of shells (tubes) with
the same geometry, such that each shell (tube) is made from a homogeneous isotropic incompressible
hyperelastic material, with the elastic parameters not known with certainty, but drawn from known
probability distributions. Then, for each individual shell (tube), the finite elasticity theory applies.
The question is: what is the probability distribution of stable radially symmetric inflation, such that
the internal pressure always increases as the radial stretch increases?

3 Stochastic incompressible spherical shell

We consider first a spherical shell of stochastic hyperelastic material described by (1), subject to the
following radially symmetric deformation (see Figure 2),

r = f(R)R, θ = Θ, φ = Φ, (18)

where (R,Θ,Φ) and (r, θ, φ) are the spherical polar coordinates in the reference and the current
configuration, respectively, such that A ≤ R ≤ B, and f(R) ≥ 0 is to be determined.

The deformation gradient is F = diag (λ1, λ2, λ3), with

λ1 = f(R) +R
df

dR
= λ−2, λ2 = λ3 = f(R) = λ, (19)

where λ1, λ2, λ3 represent the radial, tangential, and azimuthal stretch ratios, respectively, and df/dR
denotes differentiation of f with respect to R.

The radial equation of equilibrium is [7]

dP11

dR
+

2

R
(P11 − P22) = 0, (20)

or equivalently,
dP11

dλ
λ−2 + 2

P11 − P22

1− λ3
= 0, (21)

where P = (Pij)i,j=1,2,3 is the first Piola-Kirchhoff stress tensor. For an incompressible material,

P11 =
∂W
∂λ1
− p

λ1
, P22 =

∂W
∂λ2
− p

λ2
, (22)

where p is the Lagrange multiplier for the incompressiblity constraint (detF = 1).

3.1 Limit-point instability criterion for spherical shells

Denoting
W (λ) =W(λ−2, λ, λ), (23)

where λ = r/R > 1, we obtain

dW

dλ
= − 2

λ3
∂W
∂λ1

+ 2
∂W
∂λ2

= −2P11

λ3
+ 2P22. (24)

Next, setting the external pressure (at R = B) equal to zero, by (21) and (24), the internal pressure
(at R = A) is equal to

T = −P11

λ2
|λ=λa ,

= −2

∫ λb

λa

P11

λ3
dλ+

∫ λb

λa

dP11

dλ
λ−2dλ,

= −2

∫ λb

λa

P11

λ3
dλ− 2

∫ λb

λa

P11 − P22

1− λ3
dλ,

=

∫ λb

λa

dW

dλ

dλ

1− λ3
,

(25)
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where λa = a/A and λb = b/B are the stretch ratios for the inner and outer radii, respectively. We
recall that a volume element dV from the reference configuration is transformed, after the deformation,
into a volume element dv = (detF)dV in the current configuration [52, p. 240], [38, p. 87], [16, p. 274].
Then, by the material incompressibility condition, detF = 1, the material volume in the spherical
shell is conserved, i.e., 4π

(
b3 − a3

)
= 4π

(
B3 −A3

)
, or equivalently, as a = Aλa and b = Bλb,

λ3b =
(
λ3a − 1

)(A
B

)3

+ 1. (26)

Hence, the internal pressure T given by (25) can be expressed as a function of the inner stretch ratio,
λa, only.

As for the deterministic elastic shell, for the stochastic spherical shell, a limit-point instability
occurs if there is a change in the monotonicity of T , defined by (25), as a function of λa. When the
spherical shell is thin, i.e., 0 < ε = (B − A)/A � 1, we can approximate the internal pressure as
follows [16, p. 443],

T (λ) =
ε

λ2
dW

dλ
, (27)

and find the critical value of λ where a limit-point instability occurs by solving for λ > 1 the following
equation,

dT

dλ
= 0, (28)

where T is described by (27).

3.2 Deterministic elastic shell

In the deterministic case, for a spherical shell of hyperelastic material defined by the strain-energy
function taking the form (1), but with µ1 and µ2 fixed positive constants, and µ = µ1 + µ2 > 0 the
corresponding shear modulus, the function (23) is equal to

W (λ) =
µ1

2m2

(
λ−4m + 2λ2m − 3

)
+

µ2
2n2

(
λ−4n + 2λ2n − 3

)
. (29)

Then, the internal pressure given by (27) takes the form

T (λ) = 2ε
[µ1
m

(
λ2m−3 − λ−4m−3

)
+
µ2
n

(
λ2n−3 − λ−4n−3

)]
, (30)

and the equation (28) is equivalent to

µ1
m

[
(2m− 3)λ2m−4 + (4m+ 3)λ−4m−4

]
+
µ2
n

[
(2n− 3)λ2n−4 + (4n+ 3)λ−4n−4

]
= 0. (31)

Specifically, if µ2 = 0, then, when −3/4 < m < 3/2, the internal pressure increases to a maximum
value then decreases, otherwise the internal pressure increases monotonically. If µ2 > 0, then (31) is
equivalent to

µ1
µ

=
m
[
(2n− 3)λ2n−4 + (4n+ 3)λ−4n−4

]
m [(2n− 3)λ2n−4 + (4n+ 3)λ−4n−4]− n [(2m− 3)λ2m−4 + (4m+ 3)λ−4m−4]

, (32)

where 0 < µ1/µ < 1.
In particular, for a spherical shell of Mooney-Rivlin material, with m = 1 and n = −1, the

minimum value of µ1/µ, such that inflation instability occurs, is the minimum value of the following
function,

η(λ) =
λ8 + 5λ2

λ8 + 5λ2 + λ6 − 7
, λ ≥ 71/6, (33)

i.e.,
ηmin ≈ 0.8234. (34)

In this case:
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Figure 2: Schematic of inflation of a spherical shell, showing the reference state, with inner radius
A and outer radius B (left), and the deformed state, with inner radius a and outer radius b (right),
respectively.

Figure 3: The normalised internal pressure, T (λ) defined by (30), for the inflation of spherical shells
of Mooney-Rivlin materials, with m = 1 and n = −1. In this deterministic case, inflation instability
occurs if µ1/µ > 0.8234.
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Figure 4: Probability distributions (35)-(36) of whether instability can occur or not for a spherical
shell of stochastic Mooney-Rivlin material, described by (1) with m = 1 and n = −1, and the shear
modulus, µ, following either a Gamma distribution (4) with ρ1 = 405.0214, ρ2 = 0.0101 (continuous
lines), or a normal distribution (16) with µ = 4.0907, ‖µ‖ = 0.2302 (dashed lines). Darker colours
represent analytically derived solutions, given by equations (35)-(36), whereas lighter colours represent
stochastically generated data. The vertical line at the critical value, µ1 = 3.3683, separates the
expected regions based only on the mean value of the shear modulus.

Figure 5: Computed probability distribution of the normalised internal pressure, T (λ) defined by (27),
for the inflation of a spherical shell of stochastic Mooney-Rivlin material, given by (1) with m = 1 and
n = −1, when µ follows a Gamma distribution (4) with ρ1 = 405.0214, ρ2 = 0.0101, and R1 = µ1/µ
follows a Beta distribution (9) with ξ1 = 287.2297, ξ2 = 36.1194. As µ

1
= 3.6338 = 0.8883 · µ >

0.8234 · µ, instability is expected to occur, but there is also around 10% chance that the inflation is
stable. The dashed black line corresponds to the expected pressure based only on mean parameter
values.
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(i) When 0.8234 ≤ µ1/µ < 1, the internal pressure increases to a maximum, then decreases to a
minimum, then increases again;

(ii) When 0 < µ1/µ < 0.8234, the internal pressure is always increasing.

For spherical shells of Mooney-Rivlin material, with m = 1 and n = −1, the internal pressure,
T (λ) defined by (30) and normalised by 2εµ, is plotted in Figure 3 (see also [7, 15, 56], [38, pp. 283-
288], [16, pp. 442-447] and the references therein).

3.3 Stochastic elastic shell

For a spherical shell of stochastic Mooney-Rivlin material, characterised by the strain-energy function
(1) with m = 1 and n = −1, the probability distribution of stable inflation, such that internal pressure
monotonically increases as the radial stretch increases, is

P1(µ1) = 1−
∫ µ1/0.8234

0
p1(u)du, (35)

where 0.8234 is given by (34), p1(u) = g(u; ρ1, ρ2) if the random shear modulus, µ, follows the Gamma
distribution (4), with ρ1 = 405.0214 and ρ2 = 0.0101, and p1(u) = h(u;µ, ‖µ‖) if µ follows the normal
distribution (16), with µ = 4.0907 and ‖µ‖ = 0.2302 (see table 2).

The probability distribution of inflation instability occurring, such that the internal pressure begins
to decrease, is

P2(µ1) = 1− P1(µ1). (36)

The probability distributions given by equations (35)-(36) are illustrated numerically in Figure 4
(blue lines for P1 and red lines for P2). Specifically, µ1 ∈ (0, µ) was divided into 100 steps, then for each
value of µ1, 100 random values of µ were numerically generated from a specified Gamma (or normal)
distribution and compared with the inequalities defining the two intervals for values of µ1. For the
deterministic elastic shell, which is based on the mean value of the shear modulus, µ = ρ1ρ2 = 4.0907,
the critical value of µ1 = 0.8234 ·µ = 3.3683 strictly separates the cases where inflation instability can
occur or not. For the stochastic problem, for the same critical value, there is, by definition, exactly
50% chance of a randomly chosen shell for which inflation is stable (blue solid or dashed line if the
shear modulus is Gamma or normal distributed, respectively), and 50% chance of a randomly chosen
shell, such that a limit-point instability occurs (red solid or dashed line). To increase the probability of
stable inflation (P1 ≈ 1), one must consider sufficiently small values of µ1, below the expected critical
value, whereas a limit-point instability is certain to occur (P2 ≈ 1) only if the model reduces to the
neo-Hookean case. However, the inherent variability in the probabilistic system means that there will
also exist events where there is competition between the two cases.

To illustrate this, in Figure 5, we show the probability distribution of the normalised internal pres-
sure T (λ), defined by (27), as a function of the inner stretch λ, when µ follows a Gamma distribution
with ρ1 = 405.0214 and ρ2 = 0.0101, and R1 = µ1/µ follows a Beta distribution with ξ1 = 287.2297
and ξ2 = 36.1194 (see table 3). In this case, µ

1
= 3.6338 = 0.8883 · µ > 0.8234 · µ, and instability is

expected to occur. Nevertheless, the probability distribution suggests that there is also around 10%
chance that the inflation is stable.

4 Stochastic incompressible cylindrical tube

Next, a cylindrical tube of stochastic hyperelastic material given by (1) is deformed through the
combined effects of radially symmetric inflation and axial extension [40], as follows (see Figure 6),

r = f(R)R, θ = Θ, z = αZ, (37)

where (R,Θ, Z) and (r, θ, z) are the cylindrical polar coordinates in the reference and the current
configuration, respectively, such that A ≤ R ≤ B, α > 0 is a given constant (when α < 0, the tube is
inverted, so that the inner surface becomes the outer surface), and f(R) ≥ 0 is to be determined.
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The deformation gradient is F = diag (λ1, λ2, λ3), with

λ1 = f(R) +R
df

dR
= λ−1α−1, λ2 = f(R) = λ, λ3 = α, (38)

where λ1, λ2, λ3 are the radial, tangential, and longitudinal stretch ratios, respectively.
For the cylindrical tube, the radial equation of equilibrium is given by (20), and is equivalent to

dP11

dλ
λ−1α−1 +

P11 − P22

1− λ2α
= 0. (39)

4.1 Limit-point instability criterion for cylindrical tubes

Denoting
W (λ) =W(λ−1α−1, λ, α), (40)

where λ = r/R and α = z/Z, we obtain

dW

dλ
= − 1

λ2α

∂W
∂λ1

+
∂W
∂λ2

= − P11

λ2α
+ P22. (41)

Setting the external pressure (at R = B) equal to zero, by (39) and (41), the internal pressure (at
R = A) is equal to

T = −P11

λα
|λ=λa =

∫ λb

λa

dW

dλ

dλ

1− λ2α
, (42)

where λa = a/A and λb = b/B are the stretches for the inner and outer radii, respectively. Due to the
material incompressibility, the material volume in the cylindrical tube is conserved, i.e., πα

(
b2 − a2

)
=

π
(
B2 −A2

)
, or equivalently, as a = Aλa and b = Bλb,

λ2b =

(
λ2a −

1

α

)(
A

B

)2

+
1

α
. (43)

Hence, the internal pressure T described by (42) is a function of the inner stretch ratio, λa, only.
For the cylindrical tube, a limit-point instability occurs if there is a change in the monotonicity of

T , given by (42), as a function of λa. Assuming that the tube is thin, i.e., 0 < ε = (B − A)/A � 1,
we approximate the internal pressure as [38, p. 290]

T (λ) =
ε

λα

dW

dλ
, (44)

and find the point of instability by solving for λ > 1 the following equation,

dT

dλ
= 0, (45)

with T given by (44).

4.2 Deterministic elastic tube

In the deterministic case, for a cylindrical tube of hyperelastic material defined by the strain-energy
function (1), with µ1 and µ2 given positive constant, the corresponding function (40) takes the form

W (λ) =
µ1

2m2

(
λ−2mα−2m + λ2m + α2m − 3

)
+

µ2
2n2

(
λ−2nα−2n + λ2n + α2n − 3

)
. (46)

Then, the internal pressure given by (44) is equal to

T (λ) =
ε

α

[µ1
m

(
λ2m−2 − λ−2m−2α−2m

)
+
µ2
n

(
λ2n−2 − λ−2n−2α−2n

)]
, (47)
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Figure 6: Schematic of inflation and stretching of a cylindrical tube, showing the reference state, with
inner radius A and outer radius B (top), and the deformed state, with inner radius a and outer radius
b (bottom), respectively.

Figure 7: The normalised internal pressure, T (λ) defined by (47), for the inflation of cylindrical tubes
of hyperelastic materials, with m = 1/2 and n = −3/2. In this deterministic case, inflation instability
occurs if µ1/µ > 0.8035.
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Figure 8: Probability distributions (52)-(53) of whether instability can occur or not for a cylindrical
tube of stochastic hyperelastic material, described by (1) with m = 1/2 and n = −3/2, and the shear
modulus, µ, following either a Gamma distribution (4) with ρ1 = 405.0214, ρ2 = 0.0101 (continuous
lines), or a normal distribution (16) with µ = 4.0907, ‖µ‖ = 0.2302 (dashed lines). Darker colours
represent analytically derived solutions, given by equations (52)-(53), whereas lighter colours represent
stochastically generated data. The vertical line at the critical value, µ1 = 3.2869, separates the
expected regions based only on the mean value of the shear modulus.

Figure 9: Computed probability distribution of the normalised internal pressure, T (λ) defined by (44),
for the inflation of a cylindrical tube of stochastic hyperelastic material, given by (1) with m = 1/2 and
n = −3/2, when µ follows a Gamma distribution (4) with ρ1 = 405.0214, ρ2 = 0.0101, and R1 = µ1/µ
follows a Beta distribution (9) with ξ1 = 287.2297, ξ2 = 36.1194. As µ

1
= 3.6338 = 0.8883 · µ >

0.8035 · µ, instability is expected to occur, but there is also around 5% chance that the inflation is
stable. The dashed black line corresponds to the expected pressure based only on mean parameter
values.
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and the equation (45) becomes

µ1
m

[
(m− 1)λ2m−3 + (m+ 1)λ−2m−3α−2m

]
+
µ2
n

[
(n− 1)λ2n−3 + (n+ 1)λ−2n−3α−2n

]
= 0. (48)

In this case, if µ2 = 0, then, when −1 < m < 1, the internal pressure increases to a maximum value
then decreases, otherwise the internal pressure is always increasing. If µ2 > 0, then (48) is equivalent
to

µ1
µ

=
m
[
(n− 1)λ2n−3 + (n+ 1)λ−2n−3α−2n

]
m [(n− 1)λ2n−3 + (n+ 1)λ−2n−3α−2n]− n [(m− 1)λ2m−3 + (m+ 1)λ−2m−3α−2m]

, (49)

where 0 < µ1/µ < 1.
Next, we specialise to the case where m = 1/2, n = −3/2, and α = 1, for which (49) takes the

form
µ1
µ

=
1 + 5λ−6

1 + 5λ−6 + 3λ−2 − 9λ−4
. (50)

Then, the minimum value of µ1/µ, such that inflation instability occurs, is the minimum of the function

η(λ) =
λ6 + 5

λ6 + 5 + 3λ4 − 9λ2
, λ > 1,

i.e.,
ηmin ≈ 0.8035. (51)

For cylindrical tubes of hyperelastic material with m = 1/2 and n = −3/2, under the deformation
(37), with α = 1, the internal pressure, T (λ) defined by (47) and normalised by 2εµ, is plotted in
Figure 7 (see also [7], [38, pp. 288-291]).

4.3 Stochastic elastic tube

For a cylindrical tube of stochastic hyperelastic material described by the strain-energy function (1)
with m = 1/2 and n = −3/2, the probability distribution of stable inflation, such that the internal
pressure always increases as the radial stretch increases, is

P1(µ1) = 1−
∫ µ1/0.8035

0
p1(u)dµ, (52)

where 0.8035 is given by (51), p1(u) = g(u; ρ1, ρ2) if the random shear modulus, µ, follows the Gamma
distribution (4), with ρ1 = 405.0214 and ρ2 = 0.0101, or p1(u) = h(u;µ, ‖µ‖) if µ follows the normal
distribution (16), with µ = 4.0907 and ‖µ‖ = 0.2302 (see table 2).

The probability distribution of inflation instability occurring is

P2(µ1) = 1− P1(µ1). (53)

The probability distributions given by (52)-(53) are shown in Figure 8 (blue lines for P1 and red
lines for P2). For the deterministic elastic tube, the critical value µ1 = 0.8035 · µ = 3.2869 strictly
divides the cases of inflation instability occurring or not. However, in the stochastic case, to increase
the chance that inflation is always stable (P1 ≈ 1), one must take sufficiently small values of the
parameter µ1, below the expected critical point, while instability is guaranteed (P2 ≈ 1) only for the
stochastic neo-Hookean tube.

As an example, in Figure 9, we show the probability distribution of the normalised internal pressure
T (λ), defined by (44), as a function of the inner stretch λ, when µ follows a Gamma distribution with
ρ1 = 405.0214 and ρ2 = 0.0101, and R1 = µ1/µ follows a Beta distribution with ξ1 = 287.2297 and
ξ2 = 36.1194 (see table 3). Hence, µ

1
= 3.6338 = 0.8883 ·µ > 0.8035 ·µ, and instability is expected to

occur. However, the probability distribution suggests there is also around 5% chance that the inflation
is stable.
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5 Conclusion

For hyperelastic spherical shells and cylindrical tubes under symmetric finite inflation, we showed
that, when material parameters are random variables, there is always competition between monotonic
expansion and limit-point instability. Specifically, by contrast to the deterministic elastic problem,
where there is a single critical value that strictly separate the cases where either the radially symmetric
inflation is stable or a limit-point instability occurs, for the stochastic problem, there are probabilistic
intervals for the model parameters, where there is a quantifiable chance for both the stable and unstable
states to be found.

For numerical illustration, we considered experimental data for rubberlike material, and derived
the probability distribution of the corresponding random shear modulus to predict the inflation be-
haviour of internally pressurised hollow cylinders and spheres made of a material characterised by this
parameter. The general framework provided by our stochastic elastic setting is applicable to a class
of stochastic hyperelastic materials for which similar results can be obtained.

This study addresses the need for a deeper understanding of the influence and sources of ran-
domness in natural and industrial materials where mathematical models that take into account the
variability in the observed mechanical responses are crucial.
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