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Improving SNR and reducing training time of
classifiers in large datasets via kernel averaging
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Abstract. Kernel methods are of growing importance in neuroscience
research. As an elegant extension of linear methods, they are able to
model complex non-linear relationships. However, since the kernel ma-
trix grows with data size, the training of classifiers is computationally
demanding in large datasets. Here, a technique developed for linear clas-
sifiers is extended to kernel methods: In linearly separable data, replacing
sets of instances by their averages improves signal-to-noise ratio (SNR)
and reduces data size. In kernel methods, data is linearly non-separable
in input space, but linearly separable in the high-dimensional feature
space that kernel methods implicitly operate in. It is shown that a clas-
sifier can be efficiently trained on instances averaged in feature space
by averaging entries in the kernel matrix. Using artificial and publicly
available data, it is shown that kernel averaging improves classification
performance substantially and reduces training time, even in non-linearly
separable data.
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1 Introduction

In neuroscience, machine learning has been applied as a statistical tool for in-
vestigating brain activity or structure, and as a computational model emulating
brain activity [10]. In the first capacity, it has mostly been employed in the form
of classifiers for applications such as multivariate analysis [7], classification of
clinical data [13], and brain-computer interfaces [11]. Multivariate analysis of
neuroimaging data poses several challenges, two of which are addressed here.
Firstly, signal-to-noise ratio (SNR) in neuroimaging data is typically low [8].
Secondly, the increasing use of large-scale datasets [3] leads to unprecedented
statistical power but also high computational demands for training a classifier.

Cichy and Pantazis [4] presented a simple technique that addresses both
challenges at once. They had participants view images repeated 30 times each
while MEEG was recorded. Trials from the same class were randomly partitioned
into groups of 5, averaged to [=30/5=6 mean trials per class, and then used as
input to a two-class linear Support Vector Machine (SVM). In [5] the authors
averaged across groups of [ = 40 trials. Obviously, averaging reduces the size



2 M. S. Treder

of the data by a factor of [, avoiding a bottleneck in classifier training time.
In addition, averaging improves SNR substantially as evidenced by the high
classification performance reported by the authors [4, 5].

As a linear operation, averaging only applies to linear classification tasks
(see Fig. 1). Unfortunately, this precludes it from being used in kernel methods
which can model more complex, non-linear relationships. Kernel methods are
gaining popularity in social sciences [9] and in cognitive science [12], and they
form the heart of the PRoNTo toolbox [15]. They are efficient when there is more
variables than instances, such as in gene-expression data, since their complexity
grows mainly with sample size [18,14]. More recently, multiple kernel learning
has been explored for the classification of fMRI and EEG data [20, 16].

The purpose of this paper is to extend the instance averaging approach of
[4, 5] to kernel methods. The basic idea is simple: kernel methods are non-linear
in the original input space, but they act as linear models in a high-dimensional
feature space. Therefore, instances can be averaged in feature space rather than
in input space. It is shown that the necessary computations can be efficiently
carried out in input space using the kernel trick. The benefits of kernel averaging
are two-fold: a smaller kernel matrix allows for reduced classifier training times
and less memory consumption. At the same time, the averaging increases the
SNR of the data and hence classification performance.

The paper is structured as follows. At first, classification and averaging are
formally introduced. The effect of data averaging is discussed for the input space
and the feature space and an efficient computation using the kernel trick is pre-
sented. Subsequently, artificial data is used to illustrate that averaging instances
in input space works for linearly separable data but not for linearly non-separable
data, while kernel averaging works in both scenarios. Finally, four publicly avail-
able datasets are used to evaluate the effects of kernel averaging on classification
performance and classifier training time.

2 Method

Let the i-th instance in a dataset be denoted as x; € X', where X" is the input
space. Each instance has a corresponding class label y; € ), where Y is the set
of class labels. A classifier is a function f : X — ) that maps an instance onto
a predicted class label. For a binary classification task with class labels +1 and
—1, any linear classifier can be written in the form

f(x) = sgn(z @; Yi(Xi, X)) (1)

where the x;’s are the training instances, x is a test instance, sgn is the
signum function, and (-, -) is the standard dot product [14].

2.1 The effect of averaging

Let instances from a given class be drawn from a probability distribution D
defined over X, that is, Vi : x; ~ D. The average over [ instances converges
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Fig. 1. Effect of averaging, illustrated for two classes (red and turquoise). (a) Linear
classifiers use a linear decision boundary in input space (dashed line). When the red
instances ”1” and ”2” are averaged (arrows), their average tends to be on the correct
side of the hyperplane. The same applies to the turquoise instances ”3” and 74”. (b)
Kernel classifiers use a non-linear decision boundary in input space (dashed circle).
Averaging can pull the average onto the wrong side of the hyperplane even when the
instances are on the correct side (see average of 71”7 and 72”). However, after projection
into feature space using ¢, data are linearly separable.

towards the expectation E[x] in probability, that is, + 22:1 x; 5 E[x] as | — oo.
Does a classifier applied to averages perform better than a classifier applied to
the original instances? If the support of D is a convex set, averaging can likely
improve class separation (Fig. 1la). However, if it is non-convex, averaging can
be detrimental. In extreme cases, the expected value occupies a part of input
space wherein instances from this class are never observed, i.e. P(x = E[x]) = 0.
For instance, in Fig. 1b the turquoise class inhabits a circular region of input
space. The region is convex so that averages remain within the circular region.
However, the region inhabited by the red class is not convex and averages can
end up within the circle although red instances are never observed there.

2.2 Averaging instances in input space

Cichy et al. [4,5] averaged sets of instances prior to linear classification. Linear
classifiers partition input space into convex regions so that averaging improves
performance if the data is linearly separable. This can easily be demonstrated
for the special case of a multivariate Gaussian distribution, i.e. x; ~ A (m, X)
with mean m and covariance matrix 3. The distribution of the average across
[ instances is %Zé:l x; ~ N(m,3/l). In other words, the covariance matrix
is scaled down by a factor of [. Since it is usually conceived of as the noise,
averaged instances move closer to the class mean, increasing class separability.
This approach is referred to as instance averaging in the rest of the paper.

2.3 Averaging instances in feature space

Kernel classifiers partition input space into potentially non-convex regions. The
data is implicitly projected to a high-dimensional feature space F by applying a
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function ¢ : X — F. A linear classifier is then applied in F. The formula in Eq.
(1) applies when replacing x by ¢(x):

fx) = Sgn(z ; Yi(p(x:), ¢(x) ))- (2)

In other words, a kernel classifier acts as a linear classifier in feature space.
Therefore, it is permissible to perform instance averaging in feature space. Next,
an efficient way for averaging in feature space is developed.

If F is associated with a Reproducing Kernel Hilbert space, dot products in F
can be represented by a kernel function &k : X x X — R, k(x, x") = (¢(x), ¢(x')).
Crucially, this 'kernel trick’ can also be used in order to train a classifier on
averages of instances in feature space. To see this, let z = [¢(x1) + ¢(X2) + ... +
d(x1)]/l and 2’ = [p(x]) + ¢(x5) + ... + &(x))]/l, | € N be two such averages.
Then exploiting the bilinearity of the dot product one obtains

)= Y G =g Y KX @)

i,5€{1,2,..,1} i,5e{1,2,..,1}

Inserting this result into Eq. (2) yields a classifier trained on instances aver-
aged in feature space. The quantity in Eq. (3) corresponds to a single entry in
the averaged kernel matrix. It is obtained by averaging several entries in the full
kernel matrix. Therefore, this approach is referred to as kernel averaging in the
rest of the paper.

2.4 Artificial data

Linear [4 classes] Radial [2 classes] Checkerboard [3 classes]

LDA 2
Variable 2
Variable 2

A O R N W A O

-10 0 10 -1 0 1 0 2 4
LDA 1 Variable 1 Variable 1

Fig. 2. Artificial datasets. The linear (Gaussian) dataset has been projected from 10
dimensions to the first 2 linear discriminant coordinates.

If the data is linearly separable, both instance averaging and kernel averaging
should improve classification compared to no averaging. If the data is linearly
non-separable, only kernel averaging should improve classification. To test this,
three artificial datasets were generated and no averaging was compared to in-
stance averaging and kernel averaging with groups of [ = 50 instances. ’Linear’
data was sampled from a multivariate Gaussian distribution in 10 dimensions.
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Four classes were created with different means but an equal covariance matrix
sampled from a Wishart distribution. Two non-linearly separable datasets were
generated in two-dimensional input space, a ’radial’ (2 classes) and a ’checker-
board’ (3 classes) dataset. For each dataset, 6000 data points were created and
Gaussian noise was added to every point. The datasets are depicted in Fig. 2.

2.5 Real data

To measure classification performance and computation time in real data, four
publicly available datasets were analysed.

— EEG (http://bnci-horizon-2020.eu/database/data-sets). EEG from 11 par-

ticipants performing an auditory oddball task [17]. Data were epoched in the
interval [-0.2, 1] s and baseline corrected. Non-EEG channels were removed.
To create a large dataset, trials from all participants were pooled, yielding
25,247 trials (instances), 63 variables (EEG electrodes), 241 time points, and
2 classes. Data was averaged in the typical interval for the P300 component
(300-500 ms).

— Gene expression (http://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-
Seq). Part of the RNA-Seq (HiSeq) PANCAN dataset containing a random
extraction of gene expressions of patients having different types of tumor
[19]. It totals 801 instances, 20,531 variables, and 5 classes.

— p53 mutants (http://archive.ics.uci.edu/ml/datasets/p53+Mutants). The dataset
models mutant p53 transcriptional activity (active vs inactive) based on data
extracted from biophysical simulations [6]. It totals 16,772 instances, 5409
variables, and 2 classes.

— Cardiotocography (http://archive.ics.uci.edu/ml/datasets/Cardiotocography).
Fetal cardiotocograms with classes corresponding to morphologic pattern [1].

It totals 2126 instances, 23 variables, and 10 classes.

2.6 Analysis

All analyses were conducted using MATLAB R2017a (Natick, USA) on an Intel
Core i7-6700 CPU 3.40GHz x 8 computer with 64 GB RAM running on Ubuntu
18.04. Kernel Fisher Discriminant Analysis (FDA) and SVM were considered as
classifiers. For kernel FDA, an open-source implementation (https://github.com/treder/MVPA-
Light/tree/devel) was used. For SVM, LIBSVM |[2] was used. LIBSVM does not
implement kernel averaging, but it allows for pre-computed kernels to be pro-
vided. For this reason, the kernel matrix was pre-computed for all analyses and
manually averaged. The same kernel with the same hyperparameters was used
for kernel FDA and SVM. For the simulations and the EEG and gene expression
datasets, an RBF kernel was used. For the p53 mutants and the Cardiotocog-
raphy datasets, a polynomial kernel was used. Hyperparameters were fixed to
gamma=1/#variables, degree = 2, and coef0 = 0. All variables were z-scored.
Five-fold cross-validation was used to estimate classification accuracy. The
procedure was repeated 10 times. Training time corresponds to the time it takes
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to train a single classifier in one fold. Classification accuracy and training time
were averaged across folds and repetitions. Its standard deviation was also cal-
culated across folds and repetitions.

2.7 Complexity and memory

Kernel averaging reduces the size of the kernel matrix by a factor of I. The
complexity implications are discussed for kernel FDA and SVM. The most com-
putationally demanding part of kernel FDA is an inversion and an eigenvalue
decomposition of n x n matrices at a complexity of O(n?). It is reduced to
O(n?/1?) with kernel averaging. The complexity of the LIBSVM algorithm is
reported as #iterations x O(n) if the n x n matrix can be cached [2]. Conse-
quently, kernel FDA has a higher overall complexity than SVM and hence it
should reap larger computational benefits from kernel averaging.

Memory consumption for storing the kernel matrix grows with n2. For the
largest dataset used in this paper (EEG data with 25,247 instances), the kernel
matrix consumes about 2.3 GB RAM at single precision (4 bytes). The quadratic
growth means that by just averaging 10 instances the memory required for the
kernel matrix is reduced to about 23 MB, a factor of 100 smaller. The averaged
kernel matrix can be built row-by-row or even entry-by-entry, so that the full
kernel matrix is never actually required in memory.

3 Results
Dataset = Linear Dataset = Radial Dataset = Checkerboard
1.0
0.8
9
© 06 Classifier
é mmm kernel FDA
< 0.4 s SVM
0.0
None Instance Kernel None Instance Kernel None Instance Kernel
Averaging approach Averaging approach Averaging approach

Fig. 3. Results on the artificial data. Similar results are obtained for kernel FDA (blue
bars) and SVM (brown bars). When the data is linearly separable (Linear dataset),
both instance averaging and kernel averaging improve classification performance. When
the data is linearly non-separable (Radial and Checkerboard datasets), kernel averaging
still improves classification performance but instance averaging does not.

Fig. 3 shows the results obtained on the artificial data. For linearly separable
data, both instance averaging and kernel averaging improve classification perfor-
mance from about 30% to about 80%. However, for the Radial and Checkerboard
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Fig. 4. Classification performance for participant #1 of the EEG dataset. Classification
accuracy is plotted for every time point, comparing no averaging and kernel averaging
with [ = 20 and [ = 50.

data, which are linearly non-separable, only kernel averaging leads to an improve-
ment from about 60% to almost 100%. Instance averaging even has a slightly
detrimental effect, leading to an accuracy < 60%. Qualitatively, the same effects
are observed for kernel FDA and SVM.

To illustrate the effect of kernel averaging on the EEG data, classification was
performed for every time point for participant #1 using kernel FDA, comparing
no averaging to kernel averaging with [ = 20 and [ = 50. Results are depicted
in Fig. 4. Clearly, kernel averaging improves classification performance. For the
rest of the analyses, EEG data was averaged in the 300-500 ms interval and
all participants were pooled. Table 3 depicts the results for the 4 datasets. In
all cases, kernel averaging leads to a consistent improvement of classification
performance. For the EEG data, accuracy increases from 62% to 99%. For the
Cardiotocography data, it increases from 88% to 98% (kernel FDA) and 91%
to 99% (SVM). Even for the gene expression and p53 mutants datasets, kernel
averaging improves performance although the classification is almost at ceiling
to start with. The results are consistent across classifiers and kernels.

Kernel averaging also leads to a reduction of training time. This is especially
evident for the two largest datasets, EEG and p53 mutants. In the EEG dataset,
averaging | = 200 instances reduces training time from 248.07 s to 5.78 s for
kernel FDA (40x faster), and from 15.67 s to 5.78 for SVM (3x faster). In
the pb3 mutants dataset, averaging [ = 10 instances reduces training time from
151.25 s to 3.42 s for kernel FDA (40x faster), and from 4.17 s to 3.1 s for SVM
(1.3x faster).
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Dataset Classifier Kernel Classification Training
averaging accuracy  time [sec]
EEG Kernel FDA None .62 + .006 248.07 £+ .49
=50 .96 + .02 7.06 £ .08
=200 .99 + .01 5.78 £ .12
SVM None .62 + .01 15.67 £+ .26
=50 .96 + .02 7.06 £ .07
=200 .99 £+ .002 5.78 £ .16
Gene expression  Kernel FDA  None .989 + .007 .05 £ .04
=5 1+0 .01 £ .01
SVM None 988 + .007  .008 + .003
=5 1+0 .006 £ .002
p53 mutant Kernel FDA None 987 + .002 151.25 + 25.52
=5 993 £ .003  5.67 £ 1.2
=10 2999 + .002 342+ .7
SVM None 9933 £+ .0013 4.17 + .65
=5 9989 £ .0013 4.03 + .67
=10 .9998 + .0004 3.1 £+ .53
Cardiotocography Kernel FDA None .88 + .02 .635 £ .141
=5 .98 £ .01 .075 + .024
SVM None 91 + .01 .079 £ .019
=5 99 + .01 .057 £ .011

Table 1. Classification accuracy and training time for each of the 4 real datasets,
classifier, and number of averages.

4 Discussion

An approach for averaging data in high-dimensional feature space has been de-
veloped. The analysis of the artificial data shows that instance averaging (in
input space) fails to improve classification performance when the data is linearly
non-separable. In contrast, kernel averaging (in feature space) improves classi-
fication performance for both linearly separable and non-separable data. This
illustrates that kernel averaging is a genuine generalisation of averaging to non-
linear input spaces. In fact, instance averaging arises as a special case of kernel
averaging when a linear kernel is used.

The analysis of 4 real datasets reveals a consistent improvement of classifica-
tion performance by kernel averaging. Even classification on the gene expression
and pH3 mutants datasets improves significantly, despite the fact that perfor-
mance is close to 100% to start with. Furthermore, there is a consistent reduc-
tion in training time. The benefit is most pronounced for kernel FDA with up
to 40 times faster training on the EEG and p53 mutants datasets; smaller time
benefits are obtained for SVM, in line with the complexity calculations.

Why not just subsample? For very large datasets, a simple alternative to
kernel averaging is subsampling wherein just a subset of the data is selected.
Because subsampling just discards large parts of the data, it does not offer the
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simultaneous improvement of SNR. However, if SNR is high to start with and
performance is the only bottleneck, subsampling is a viable alternative.

How to interpret classification performance after averaging? If the classi-
fier operates on averages rather than single instances, classification performance
measures how well groups of instances can be classified. This nicely dovetails with
many neuroscience applications. Often, a typical question is whether the classi-
fier can differentiate between a patient group and a control group, or whether
trials wherein participants viewed a face can be classified from trials wherein
they viewed a scene. Whether or not a classifier trained using kernel averaging is
also beneficial in the original, single-instance classification setting, is a separate
question that will be addressed in future research.

How many instances should be averaged? The present results suggest that
even for moderate values of [, such as 5 or 10, a significant improvement in
class separability is achieved. For low SNR data such as EEG, larger values for
[ such as 20 or 50 can yield improvement without reaching ceiling performance.
Conversely, [ is bounded by data size. At least, [ should be small enough such
that a handful of averaged samples of each class occur in every training set.

Concluding, a novel kernel averaging approach has been developed that gen-
eralises the notion of instance averaging to kernel classifiers. It allows for a
significant improvement of SNR in conjunction with computational benefits,
particularly for large datasets.
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