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A B S T R A C T

Dual-calibrated fMRI is a multi-parametric technique that allows for the quantification of the resting oxygen extraction fraction (OEF), the absolute rate of
cerebral metabolic oxygen consumption (CMRO2), cerebral vascular reactivity (CVR) and baseline perfusion (CBF). It combines measurements of arterial spin
labelling (ASL) and blood oxygenation level dependent (BOLD) signal changes during hypercapnic and hyperoxic gas challenges. Here we propose an extension to
this methodology that permits the simultaneous quantification of the effective oxygen diffusivity of the capillary network (DC). The effective oxygen diffusivity
has the scope to be an informative biomarker and useful adjunct to CMRO2, potentially providing a non-invasive metric of microvascular health, which is known
to be disturbed in a range of neurological diseases. We demonstrate the new method in a cohort of healthy volunteers (n¼ 19) both at rest and during visual
stimulation. The effective oxygen diffusivity was found to be highly correlated with CMRO2 during rest and activation, consistent with previous PET observations
of a strong correlation between metabolic oxygen demand and effective diffusivity. The increase in effective diffusivity during functional activation was found to
be consistent with previously reported increases in capillary blood volume, supporting the notion that measured oxygen diffusivity is sensitive to microvascular
physiology.
1. Introduction

Calibrated fMRI measurement of absolute cerebral rate of oxygen
metabolism (CMRO2) offers a non-invasive method of mapping oxygen
consumption in the brain (Bulte et al., 2012; Gauthier et al., 2012; Wise
et al., 2013), providing quantitative estimates of a critical physiological
function. However, the method does not directly consider the transport
of oxygen into the tissue, which is principally constrained by cerebral
blood flow (CBF) and the effective oxygen diffusivity of the capillaries
(Buxton and Frank, 1997; Gjedde et al., 1999; Hayashi et al., 2003; Hyder
et al., 1998; Mintun et al., 2001; Vafaee and Gjedde, 2000; Valabregue
et al., 2003; Zheng et al., 2002). Effective oxygen diffusivity summarises
the practical ability of the capillary network for oxygen diffusion into the
tissue and limits the speed of oxygen transport out of the microvascula-
ture. One of the primary determinants of the effective oxygen diffusivity
is the capillary density (Gjedde et al., 1999), which is known to be
associated with mitochondrial density (Hoppeler and Kayar, 1988) and
metabolic demand (Harrison et al., 2002). Thus, brain regions with a
high resting CMRO2 are found to be co-localised with regions of high
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capillary density (Sette et al., 1989). However, the effective diffusivity
does not appear to be a fixed property of the tissue and may play a crucial
role in neurovascular coupling, with oxygen diffusivity being observed to
parallel increases in demand and compensate for reductions in oxygen
delivery (Hayashi et al., 2003, 2004; Hyder et al., 1998; Vafaee and
Gjedde, 2000).

Compartmental models of oxygen exchange between the capillaries
and tissue offer a means of estimating the effective oxygen diffusivity
from observations of blood flow and oxygen extraction. The model pro-
posed by (Hyder et al., 1998) suggests a need for the effective diffusivity
to increase during functional hyperaemia in order to meet the metabolic
demands of neural activation. Based on a meta-analysis of CBF and
CMRO2 measurements from a variety of modalities Hyder et al. proposed
a linear coupling between flow and effective diffusivity to account for
this apparently coupled behaviour. Evidence for this linear relationship
between the effective oxygen diffusivity and CBF was demonstrated with
a combined MRI and MRS approach in rat (Hyder et al., 2000). However,
PET experiments conducted by (Vafaee and Gjedde, 2000) demonstrate a
need for the oxygen diffusivity to adapt to the current metabolic demand,
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with alterations in the effective diffusivity appearing to be made inde-
pendently from cerebral blood flow. Alternatively, more recent analysis
presented by (Buxton, 2010) demonstrates that metabolic oxygen de-
mand could be met if there was fixed but significant oxygen tissue con-
tent, without the need for adjustment to the oxygen diffusivity. The exact
mechanism responsible for any such adaptation to metabolic demand is
unclear. However, a plausible candidate for the modulation of the
effective diffusivity is via pericyte control of capillary dilation, either
through a direct increase in the capillary blood volume, or via a ho-
mogenisation of flow heterogeneity (Jespersen and Ostergaard, 2012).
Thus, measurement of the effective diffusivity may in fact provide a
non-invasive probe to investigate the health and action of capillary
pericytes, whose function is known to be degraded in multiple neuro-
degenerative diseases and stroke (Winkler et al., 2013; Yemisci et al.,
2009; Zlokovic, 2011).

In the work presented here we use a compartmental model of oxygen
exchange to model the relationship between blood flow, effective diffu-
sivity and oxygen extraction. The model is included within a dual-
calibrated fMRI estimation framework (Germuska et al., 2016) to
enable simultaneous estimates of the resting blood flow, oxygen extrac-
tion fraction (OEF), effective diffusivity, and CMRO2. The aim of this
study was to examine the coupling between consumption (CMRO2) and
diffusivity at rest, and in response to neural activation (a visual check-
erboard task) using the newly proposed method. Our first hypothesis was
that, due to the tight functional-structural coupling between capillary
density and resting metabolism, there would be a strong correlation
between the basal CMRO2 and effective diffusivity. Secondly, we
hypothesised that the increased metabolic demand due to the visual task
would result in a parallel increase in effective diffusivity, whose
magnitude should be consistent with published recordings of functional
capillary recruitment (Hall et al., 2014).

2. Methods

2.1. Compartmental modelling

The compartmental model of oxygen exchange is based on the model
Fig. 1. Schematic of the simple compartmental model for oxygen exchange
between capillary blood and brain tissue.
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of (Hayashi et al., 2003). As shown in Fig. 1, the model contains a single
capillary compartment with area A and length L, which exchanges oxy-
gen with a cylindrical volume of tissue. The capillary has two compart-
ments, a haemoglobin compartment (with oxygen content CB) and a
plasma compartment (with oxygen partial pressure P). The oxygen in
plasma is assumed to be in equilibrium with the oxygen bound to hae-
moglobin as described by the Hill equation below

P ¼ P50 ⋅ ðCB=ðφ ⋅ ½Hb� � CBÞÞ
1 =

h (1)

where P is the partial pressure of oxygen in the plasma, P50 is the oxygen
partial pressure at half saturation, [Hb] is the haemoglobin concentration
(g/ml), φ is the oxygen binding capacity for Hb (1.34ml/g), h is the Hill
coefficient (2.8), and CB (oxygen bound to haemoglobin) is equal to total
capillary oxygen content, Ct, if the contribution of plasma oxygen is
neglected.

As blood travels along the capillary, the oxygen exchanges between
an infinitesimally thin element of blood plasma and a well-stirred
oxygen compartment some fixed distance from the capillary (with
partial pressure Pm). The permeability of the capillary endothelium
and brain tissue are combined into a single effective permeability, k.
This interpretation of the model is a departure from the model pre-
sented by (Hayashi et al., 2003), who assumed a uniform partial
pressure of oxygen in the radial slice of plasma and zero partial
pressure of oxygen on the tissue side of the capillary-tissue interface,
thus, localising the oxygen transport to within the capillary endothe-
lium. However, in-vivo measurements suggest that the capillary wall
does not present a significant barrier to oxygen diffusion (Duling et al.,
1979), which is instead provided by the tissue (Hudetz, 1999). Thus,
as per (Hyder et al., 1998), we combine both the capillary wall and the
surrounding brain tissue into a single interface between the plasma
and a well-stirred pool at the end of the diffusion path, which is
presumably within or surrounding the mitochondria.

From our compartmental model we can define the differential equa-
tion describing the loss of oxygen from within a capillary as

dCtðx; tÞ
dt

¼ �kðPðx; tÞ � PmðtÞ
�

(2)

where t is time, x is the fractional distance along the capillary (0,1), k is
the effective permeability (mL/mmHg/mL/min), P is the oxygen partial
pressure in the plasma (mmHg), and Pm is the oxygen partial pressure at
the mitochondria (mmHg).

Following (Zheng et al., 2002) and (Hayashi et al., 2003)

CBF ¼ A ⋅ L ⋅
dx
dt

¼ V ⋅
dx
dt

(3)

and when blood flow is constant

dCt

dt
¼ dCt

dx
⋅
dx
dt

(4)

where CBF is cerebral blood flow in ml/100 g/min, A is the cross-
sectional area of the capillary, L is the length, and V is the volume in
ml/100g. Thus, by substituting equations (3) and (4) into equation (2) we
obtain

dCt

dx
¼ �k ⋅ V

CBF
ðP� PmÞ (5)

If we assume that there is minimal partial pressure of oxygen at the
mitochondria (Gjedde et al., 1999, 2005; Herman et al., 2006), i.e.
Pm� 0, then the product k�V is the effective oxygen diffusivity, DC
(ml/100g/mmHg/min). By substituting equation (1) into equation (5),
we can express the differential equation of oxygen loss in terms of
capillary oxygen content, resting CBF, and the effective oxygen diffu-
sivity as
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dCt ¼ �Dc ⋅ P50 ⋅
�

Ct
�1 =

h

(6)
Table 1
Abbreviations for variables and techniques used in the modelling and analysis.

Variable/
abbreviation

Expression (units)

OEF Oxygen Extraction Faction (dimensionless 0–1)
CMRO2 Cerebral Metabolic Rate of Oxygen consumption (μmol/100 g/

min)
CBF Cerebral Blood Flow (ml/100g/mmHg/min)
CVR Cerebral Vascular Reactivity (% CFB change/mmHg Co2)
Dc Effective oxygen diffusivity of the capillary network (ml/100g/

mmHg/min)
P Oxygen tension in capillary plasma(mmHg)
P50 Oxygen tension at which haemoglobin is 50% saturated

(mmHg)
Pm Oxygen tension at the mitochondria (mmHg)
[Hb] Haemoglobin concentration (g/ml)
CB Oxygen content bound to haemoglobin (ml/ml)
Ct Total capillary oxygen content (ml/ml)
CaO2 Oxygen content at the arterial end of the capillary network (ml/

ml)
CvO2 Oxygen content at the venous end of the capillary network (ml/

ml)
SaO2 Arterial oxygen saturation (dimensionless 0–1)
SvO2 Venous oxygen saturation (dimensionless 0–1)
PaO2 Arterial oxygen tension (mmHg)
PaCO2 Arterial carbon dioxide tension (mmHg)
PETO2 End-tidal oxygen tension (mmHg)
PET-CO2 End-tidal carbon dioxide tension (mmHg)
ϕ Oxygen binding capacity of haemoglobin (1.34ml/g)
h Hill coefficient (2.8)
k Effective permeability of capillary endothelium and brain tissue

(ml/mmHg/ml/min)
ε Oxygen plasma solubility (0.0031ml/mmHg/dl)
BOLD Blood oxygenation level dependent MRI signal
ASL Arterial spin labelling
TE Echo time of MRI acquisition (ms)
κ BOLD calibration parameter including venous-weighted blood

volume and water diffusion effects
[dHb] Deoxyhaemoglobin concentration (g/ml)
θ Effective hypercapnic venous flow-volume coupling constant

(0.06)
T1,blood Longitudinal relaxation time of arterial blood (s)
R1,blood Longitudinal relaxation rate of arterial blood (s�1)
M0 MRI signal equilibrium magnetisation (dimensionless)
λ Brain/blood partition coefficient (dimensionless, 0.9)
τ Arterial spin labelling tagging duration (s)
PLD Arterial spin labelling post labelling delay (s)
dx CBF φ ⋅ ½Hb� � Ct

which is the equivalent to equation (6) in (Hayashi et al., 2003), except
that we are assuming negligible oxygen tension at the mitochondria
rather than zero average oxygen tension in the tissue.

At the macroscopic level we consider a volume of tissue to contain a
collection of identical capillaries arranged such that Pm can be considered
uniform (note this does not pre-suppose any particular structural
configuration). For simplicity we also assume that all other parameters
are identical across the capillaries, such that there is no flow heteroge-
neity or variation in haemoglobin concentration [Hb]. Thus, the
modelled oxygen diffusivity represents a combination of vascular pa-
rameters including capillary blood volume, flow heterogeneity, and any
underlying variation in Pm.

Equation (6) was solved numerically (using MATLAB's ordinary
differential equation solver (Mathworks, MA, USA.)) for different
combinations of Dc, CBF, P50, and [Hb] to create a lookup table of re-
sults that could be used to fit in-vivo data. The oxygen extraction fraction
was calculated by evaluating (Ct(x)jx¼0 - Ct(x)jx¼1)/Ct(x)jx¼0 for each
combination of parameters, where Ct(x)jx¼0 is the oxygen content at the
arterial end of the capillary (CaO2), assumed to be 0.95 of the maximum
(Jespersen and Ostergaard, 2012), and Ct(x)jx¼1 is the oxygen content at
the venous end of the capillary (CvO2).

2.2. Calibrated fMRI signal modelling

Quantification of the oxygen extraction fraction and resting blood
flow (from which CMRO2 is calculated) is performed using the dual-
calibrated fMRI method (Bulte et al., 2012; Gauthier et al., 2012;
Wise et al., 2013) within a forward modelling framework (Germuska
et al., 2016). The method is based upon the isometabolic alteration of
flow and venous oxygenation using hypercapnic and hyperoxic respi-
ratory modulations. Here we utilise the simplified calibration model
(Merola et al., 2016), where the change in BOLD signal is defined by
equation (7).

ΔS
S0

¼ TE ⋅ κ ⋅ ½dHb�0
(
1�

�
CBF
CBF0

�θ� ½dHb�
½dHb�0

�)
(7)

where S is the MR signal magnitude, TE is the echo time of the acquisi-
tion, κ is a composite calibration parameter that represents the combi-
nation of the venous-weighted blood volume and water diffusion effects,
[dHb] is the deoxyhaemoglobin concentration and is equal to [Hb]�(1-
SvO2), θ (assigned a value of 0.06) is an empirical parameter combining
contributions from venous blood volume changes during hypercapnic
hyperaemia and extra-vascular water diffusion effects around the
microvasculature, and the subscript 0 represents the a parameter's
baseline value.

The deoxyhaemoglobin ratio is modelled as shown in equation (8)
(Wise et al., 2013), and as before, OEF ¼ (CaO2 – CvO2)/CaO2.

½dHb�
½dHb�0

¼ CBF0

CBF
� 1
½dHb�0

�
1
φ

�
CaO2 � CBF0

CBF
CaO2j0

�
þ ½Hb�

�
CBF0

CBF
� 1
��
(8)

The arterial spin labelling (ASL) sequence used for the calibrated
acquisition uses a pCASL labelling scheme with pre-saturation and
background suppression (Okell et al., 2013), and a dual-excitation
(DEXI) EPI readout (Schmithorst et al., 2014). As such it differs from
the dual-echo PASL acquisition previously employed in the forward
modelling framework (Germuska et al., 2016), and the methods have
been adapted to reflect this. In the current implementation, BOLD
contamination is removed from TE1 via surround subtraction, and ASL
contamination is removed from TE2 via surround averaging. Thus,
only the BOLD model (equations (7) and (8) is used to estimate TE2
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data, while TE1 time courses are estimated according to the simplified
pCASL kinetic model (Alsop et al., 2015), equation (9).

ΔS ¼
2 ⋅ α ⋅ αinv ⋅ CBF ⋅ T1;blood ⋅M0 ⋅

�
1� e

� τ
T1;blood

�
6000 ⋅ λ ⋅ e

PLD
T1;blood

(9)

where ΔS is the tag/control difference, α is the tagging inversion effi-
ciency (0.85), αinv is a scaling factor to account for the reduction in
tagging efficiency due to background suppression (0.88)(Mutsaerts et al.,
2014; Shin et al., 2011), T1,blood is the longitudinal relaxation time of
arterial blood, M0 is the equilibrium magnetisation, λ is the brain/blood
partition coefficient (0.9), τ is the tagging duration, and PLD is the post
labelling delay. See Table 1 for a summary of the parameters used in the
modelling of ASL, BOLD and oxygen exchange.
2.3. Data acquisition

Nineteen healthy volunteers (13 males, mean age 31.9� 6.5 years)
were recruited to the study. Volunteers' tolerance of hypercapnic periods
and breathing through a face-mask was tested with a non-MRI session
prior to MRI scanning. The study was approved by the local ethics
committee. Written informed consent was obtained from each partici-
pant. All data were acquired using a Siemens MAGNETOM Prisma
(Siemens Healthcare GmbH, Erlangen) 3T clinical scanner with a 32-



Fig. 3. Pulse sequence timing diagram for dual-excitation pseudo-continuous
arterial spin labelling (DEXI-pCASL) acquisition. Sequence timings are in ms to
the nearest 5ms.

M. Germuska et al. NeuroImage 184 (2019) 717–728
channel receiver head coil (Siemens Healthcare GmbH, Erlangen). Dur-
ing each scanning session an 18-min dual-calibrated fMRI scan was ac-
quired with interleaved periods of hypercapnia, hyperoxia and medical
air being delivered to the subjects according to the protocol previously
proposed by our lab (Germuska et al., 2016). End-tidal gases, PETCO2 and
PETO2, were sampled from the volunteer's facemask using a rapidly
responding gas analyzer (AEI Technologies, Pittsburgh, PA, USA), see
Fig. 2 for a summary of end-tidal recordings and timings of the gas
paradigm.

All calibrated fMRI data were acquired using a prototype pCASL
acquisition using pre-saturation and background suppression (Okell
et al., 2013) and a dual-excitation (DEXI) readout (Schmithorst et al.,
2014), see Fig. 3 for a sequence timing diagram. The labelling duration
and PLD were both set to 1.5s, GRAPPA acceleration (factor¼ 3) was
used with TE1¼ 10ms and TE2¼ 30ms. An effective TR (total repetition
time including labelling scheme and both readout periods) of 4.4 s was
used to acquire 15 slices, in-plane resolution 3.4� 3.4mm and slice
thickness 7mm with a 20% slice gap. A calibration (M0) image was ac-
quired for ASL quantification with pCASL and background suppression
switched off, with TR of 6 s, and TE¼ 10ms.

For a subset of volunteers (n¼ 7, 3 males, mean age 37.4� 6.7 years)
an additional 8-min black and white visual checkerboard task (reversing
at a frequency of 2Hz, alternating between 30 s rest and 30 s stimulus)
was performed during pCASL DEXI data acquisition. In each volunteer a
T1-weighted structural image was acquired for grey matter segmentation
and to aid registration to standard (MNI) space.

Blood samples were drawn via a finger prick prior to scanning and
were analysed with the HemoCue Hb 301 System (HemoCue, €Angelholm,
Sweden) to calculate the systemic [Hb] value for each participant. The
partial pressures of end-tidal gas concentrations were assumed to be in
equilibrium with arterial blood, such that PaO2 ¼ PETO2 and PaCO2 ¼
PETCO2. Baseline PaCO2 recordings were used to estimate resting blood
pH based on the Henderson-Hasselbalch equation (equation (10)),
assuming HCO3-¼ 24mmol/L (Gai et al., 2003).

pH ¼ 6:1þ log
�
HCO�

3

	ð0:03 ⋅ PCO2Þ



(10)

From which the resting P50 was calculated according to the linear
Fig. 2. Mean (solid line) and standard deviation (shaded area) of end-tidal recordi
oxygen partial pressure (red) and relative change in end-tidal carbon dioxide partia
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correlation, P50¼ 221.87–26.37�pH, reported by (Gai et al., 2003). The
Severinghaus equation (Severinghaus, 1979) was used to convert PaO2
recordings into SaO2 time series, which were then converted to CaO2 via
equation (11).

CaO2 ¼ φ ⋅ ½Hb� ⋅ SaO2 þ ε ⋅ PaO2 (11)

where ε is the O2 plasma solubility (0.0031ml/mmHg/dL). The T1 of
arterial blood was calculated from a linear fit to SaO2, PaO2 and R1,blood
in-vivo data presented in (Pilkinton et al., 2012), equation (12).

R1;blood ¼ 1:527� 10�4 ⋅ PaO2 þ 0:1713 ⋅ ð1� SaO2Þ þ 0:5848 (12)

where R1,blood is the longitudinal relaxation rate of arterial blood in
seconds.

2.4. Data analysis

Data were pre-processed using a combination of MATLAB code and
FSL (Jenkinson et al., 2012). Motion correction was performed with the
FSL MCFLIRT function and spatial smoothing (FWHM¼ 4.5mm) of the
BOLD data (surround average of TE2) was performed with SUSAN (Smith
and Brady, 1997). ASL data (surround subtraction of TE1) and M0
acquisition were spatially smoothed using a 3D Gaussian kernel (FWHM
4.5mm). DEXI data was registered to the structural T1 data using FSL's
epi-reg tool. Following grey matter segmentation of the structural T1
ngs from all subjects included in analysis (n¼ 16). Absolute value of end-tidal
l pressure (mmHg).



M. Germuska et al. NeuroImage 184 (2019) 717–728
image, using FAST (Zhang et al., 2001), grey matter estimates were
transformed to native space and used for grey matter masking (threshold
of 0.5). DEXI data was masked prior to analysis using a binarised M0
image to reduce processing time.

End-tidal traces were aligned with the DEXI data via a cross-
correlation between PaCO2 and the mean grey matter ASL signal.
Measured [Hb] and calculated P50 values were used to resample the
initial 4D effective diffusivity lookup table to a high-resolution 2D lookup
table relating CBF0 and Dc to OEF, enabling simple linear interpolation to
be used during fitting. MATLAB's non-linear least squares minimisation
routine (lsqnonlin) was used to simultaneously optimise voxelwise esti-
mates of Dc, OEF0, CBF0, κ, and the cerebral vascular reactivity (CVR) by
minimising the least squares difference between the acquired data and
modelled ASL and BOLD timeseries (MATLAB code for pre-processing of
end-tidal traces and parameter estimation is available from 10.5281/
zenodo.1285862 and 10.5281/zenodo.1285845). See Fig. 4 for a flow
diagram representing the forward model used in the analysis framework.
In line with the forward modelling approach previously published
(Germuska et al., 2016) regularisation was applied to reduce instability
Fig. 4. Flow diagram showing how measured physiological data and estimated pa
parameter estimation. The forward model incorporates oxygen diffusivity modelling
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in fitting a non-linear model to the data (see appendix for full details).
Briefly, regularisation was applied to DC and OEF in an adaptive manner
to reduce the sensitivity to noise variation across voxels and subjects. The
regularisation parameter for oxygen extraction fraction was assumed to
be uniform, with a nominal OEF0 of 0.4. We make the assumption that
oxygen diffusivity varies with capillary density (and therefore grey
matter partial volume) to impose spatial variation on the diffusivity
regularisation. Grey matter partial volume estimates were calculated by
normalising an initial perfusion estimate by its maximum value (median
value in 100 voxels with greatest signal intensity) and then multiplying
by 0.15ml/100g/mmHg/min. We use an initial perfusion estimate
(rather than a segmented structural image) to estimate grey matter par-
tial volume to avoid bias due to segmentation and registration errors. As
per our previous work (Germuska et al., 2016), we used digital phantom
experiments to determine the optimal level of regularisation for each
parameter, OEF and DC. Additionally, we explored the influence of the
SNR on the mean squared error of regularised fits to the simulated data;
see the appendix for further details of the simulations.

Visual data was subject to the same pre-processing steps as the
rameters are combined to estimate ASL and BOLD signal time courses during
into a dual-calibrated fMRI framework.

https://doi.org/10.5281/zenodo.1285862
https://doi.org/10.5281/zenodo.1285862
https://doi.org/10.5281/zenodo.1285845


Table 2
Mean (�standard deviation) systemic and grey matter estimates at baseline, (n¼ 16).

[Hb] g/dl P50 mmHg CBF ml/100 g/min OEF CMRO2 μmol/100 g/min DC ml/100g/mmHg/min CVR %/mmHg

14.3� 1.5 27.1� 0.1 55.6� 6.3 0.38� 0.04 157.4� 12.3 0.092� 0.009 2.4� 0.4
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baseline data, additionally it was registered (FLIRT) to baseline data to
account for any gross subject motion between the datasets. Percentage
change in CBF and the BOLD signals were calculated using FEAT to fit the
pre-processed data with the visual paradigm. CMRO2 was calculated both
on a voxel-wise basis, and from a grey matter ROI, which was thresh-
olded to include only voxels with significant BOLD and CBF activation (z-
stats> 2.3). Because resting data was quantified using a simplified BOLD
model (Merola et al., 2016), the standard calibration model (Davis et al.,
1998) was modified as per equation (13) to calculate the visual CMRO2.

CMRO2 ¼ CMRO2;0 ⋅

 
1�

ΔBOLD
BOLD0

TE ⋅ κ ⋅ ½dHb�0

!
⋅
�
CBF
CBF0

�1�θ

(13)

Estimates of CMRO2 and CBF during visual activation were used to
calculate OEF via the Fick principle, while estimates of DC were made by
inverting the look-up table and assuming constant [Hb] and P50.

3. Results

The mean and standard deviation of baseline PETO2 and PETCO2 were
116� 5mmHg and 41.6� 3.6mmHg, the hyperoxic respiratory modu-
lation resulted in an average PETO2 of 325.2� 12.8mmHg, while hy-
percapnia produced an average PETCO2 of 51.7� 3.5mmHg. Three
subjects did not return to a stable PETCO2 baseline during the medical air
periods of the DEXI acquisition; this was judged to be a deviation of
greater than 4mmHg below the starting value. These subjects were
excluded from further analysis. The mean increase in grey matter CBF
during hypercapnia was 24.0� 3.7%. Group average values of the resting
grey matter physiological parameters are reported in Table 2.

The mean grey matter value of the effective diffusivity was
0.092� 0.01ml/100g/mmHg/min, or 3.62� 0.39 μmol/100g/mmHg/
min, which is in good agreement with the PET measurements made by
(Ibaraki et al., 2010) and (Vafaee and Gjedde, 2000) who report value of
3.38 and 4.09 respectively. Baseline values of CMRO2 are strongly
correlated with the effective oxygen diffusivity (R2¼ 0.81, p< 0.01),
across participants, as shown in Fig. 5a. This coupling between CMRO2
and oxygen diffusivity is also demonstrated within subjects, with a clear
spatial similarity between the baseline parameter maps. Example resting
parameter maps (CBF0, CMRO2,0 and Dc,0) for an individual subject are
shown in Fig. 6. The similarity between the parameter maps is clear, with
the maps of effective diffusivity closely following CMRO2.

While the effective diffusivity appears to be strongly coupled to
resting demand, we observed a strong negative correlation between
baseline oxygen delivery (CaO2�CBF) and oxygen extraction (R2¼ 0.57,
p< 0.01) (Fig. 5b). This is consistent with previous findings of a strong
negative correlation between OEF0 and CBF0 (Germuska et al., 2016; Lu
et al., 2008) when [Hb] was assumed to be constant. By incorporating a
measured [Hb] in the calculation of CaO2, the correlation with oxygen
delivery is revealed; demonstrating the action of the cerebrovascular
system to maintain a tightly controlled resting metabolic rate of oxygen
consumption across participants.

To investigate the observed linear relationship between CMRO2,0

and DC,0, we solved the inverse model with fixed [Hb] (14.3 g/dl), P50
(27.1 mmHg), and CaO2,0 (0.189ml O2/ml blood). By doing so we are
able to examine the modelled co-variance between CMRO2,0 and CBF0
in isolation of other physiological factors, see Fig. 7. The analysis
suggests a small positive correlation between CBF0 and CMRO2,0 is
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required to produce a strictly linear relationship between CMRO2,0
and DC,0, which agrees well with the in-vivo data (p< 0.05 for a paired
t-test comparison between the predicted CBF0 and the normalised
CBF0 estimates (CaO2,0 x (CBF0/0.189)). However, if the effective
oxygen diffusivity is considered to be a constant physiological
parameter, as is sometimes assumed (Vafaee et al., 2012), then a
significant non-linear (exponential) relationship is predicted between
CBF0 and CMRO2,0. Finally, we explored a hypothetical scenario in
which the inverse of the correlation observed in this study exists be-
tween CMRO2,0 and DC,0. This scenario requires a much larger increase
in CBF0 with CMRO2,0, but it is still mathematically and physiologi-
cally feasible to produce such a relationship. This analysis highlights
the fact that even though DC,0 and CMRO2,0 appear to be coupled (in
the examined cohort of young healthy volunteers) they provide com-
plementary information, with CMRO2 reporting on the rate of oxygen
consumption and DC reporting on the ability of the capillary network
to supply oxygen to the tissue/mitochondria. The coupling between
these parameters is likely the result of the expected correlation be-
tween microvascular structure (diffusivity) and function (metabolism).

During visual simulation cerebral blood flow increased within the
defined ROI (in the primary visual cortex, as expected) by
21.4� 4.6%, while CMRO2 increased by 15.1� 3.5%, resulting in a
CBF to CMRO2 coupling ratio of 1.44� 0.24. The effective oxygen
diffusivity was found to increase by 12.5� 3.6%. The CMRO2 and
diffusivity increases are of a similar magnitude to those observed with
PET measurements using a 4Hz yellow-blue contrast-reversing check-
erboard, where CMRO2 and oxygen diffusivity were found to increase
by 14.9% and 9.0% respectively. Fig. 8 shows the mean (n¼ 7) ab-
solute change in physiological parameters evoked by the visual stim-
ulus overlaid onto the selected slice in standard (MNI) space. Changes
in diffusivity are co-localised with changes in CMRO2, whereas
changes in CBF are more widespread.

Fig. 9 shows the correlation between the average CMRO2 and
effective diffusivity within the visual ROI at baseline (crosses) and
during activation (diamonds) for each participant. It is clear from the
graph that the coupling between demand and diffusivity, that was
previously observed in the grey matter baseline data, is preserved
during activation, R2 (baseline)¼ 0.95, R2 (activation)¼ 0.96,
p< 0.01 for both datasets.

Under the assumption that Pm is minimal and the effective perme-
ability is held constant during activation, the apparent change in capil-
lary blood volume is linearly related to the effective diffusivity (see
equations (5) and (6)). Thus, we can calculate the apparent flow-volume
coupling relationship, CBV/CBV0 ¼ (CBF/CBF0)η, implied from the
diffusivity data. Using this line of reasoning we find that a coupling
constant of 0.62� 0.13 is required, relating the 21% flow change to an
apparent 12.5% volume increase. This result agrees surprisingly well
with in-vivo observations of functional capillary vasodilation. Where the
6.7% increase in capillary diameter observed by (Hall et al., 2014) was
calculated to produce a 19% increase in blood flow according to Pois-
euille's law. Assuming constant capillary length this observation would
predict a flow-volume coupling exponent of approximately 0.75 for their
data.

4. Discussion and conclusions

In this manuscript we have presented a novel framework for the



Fig. 5. Scatter plots of whole brain grey matter parameter estimates at baseline for each subject (n¼ 16). Top panel (A) demonstrates a strong correlation between
baseline metabolic oxygen consumption and effective oxygen diffusivity. Bottom panel (B) shows a strong negative correlation between oxygen extraction and oxygen
delivery, such that delivery is elevated when OEF is low.
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analysis of dual-calibrated data to produce simultaneous estimates of
CMRO2 and effective oxygen diffusivity. The combined analysis of these
two physiological parameters has the potential to provide useful insight
into the underlying metabolic and vascular responses to different brain
states and disease. The method was applied at rest and in combination
with a visual task. The resting data showed a tight coupling between grey
matter diffusivity and the basal rate of oxygen metabolism. This result is
expected in the healthy brain, as there is significant evidence of a
structural link between the density of capillaries (a significant determi-
nant of the effective diffusivity) and metabolism (Gjedde et al., 1990;
Harrison et al., 2002; Sette et al., 1989).

The effective diffusivity was also found to increase during func-
tional activation, with a 12.5% increase in diffusivity being associated
with a 15.1% increase in CMRO2 and 21.4% increase in CBF. The
coupling ratio between CBF and CMRO2, 1.44, is at the lower end of
in-vivo observations, which typically range from 1.3 to 5 for MRI
methodologies (Leithner and Royl, 2014). Thus, the change in effec-
tive diffusivity is likely to be at the higher end of the expected range
(in order to meet the oxygen demands of the elevated CMRO2 in the
absence of a greater increase in CBF). Possible mechanisms to provide
such an increase in effective diffusivity include a direct increase in
capillary blood volume (Hyder et al., 1998), a homogenisation of
capillary flow heterogeneity (Jespersen and Ostergaard, 2012), a
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reduction in the mitochondrial oxygen tension (Gjedde et al., 2005),
or a high resting tissue oxygen tension (Buxton, 2010). While each of
these factors could play a role in modulating the diffusivity of the
capillary network, in-vivo measurements suggest that tissue oxygena-
tion initially increases during functional activation and then normal-
ises to a level slightly above its resting value (Ances et al., 2001).
Thus, it is unlikely that there is a significant reduction in mitochon-
drial oxygen tension, which would be expected to lower tissue
oxygenation rather than increase it. Alternatively, a high resting
mitochondrial oxygen tension would result in a small vessel-to-tissue
PO2 gradient, which, as highlighted by (Hyder et al., 2000), in-
creases the effectiveness by which CBF can increase O2 delivery to the
tissue. Our model predicts that the mitochondrial oxygen tension
would need to be unrealistically high, approximately 30 mmHg to
explain the CBF/CMRO2 increases observed in this study. While there
is uncertainty in the value of Pm in the human brain, animal studies
suggest that it is between 0.1 and 10mmHg (Herman et al., 2006),
thus a significant resting mitochondrial oxygen tension is unlikely. An
alternative explanation explored in this paper is that there is a direct
increase in capillary blood volume, potentially mediated by capillary
pericytes; which have been demonstrated to alter capillary volume
independently of arteriolar dilation (Mishra et al., 2016) and appear to
play a significant role in neurovascular coupling (Kisler et al., 2017).



Fig. 6. Example baseline (CBF0, CMRO2,0 and Dc,0) parameter maps for an individual subject. The spatial similarity between oxygen diffusivity and the basal rate of
oxygen metabolism is evidence of a strong structural-functional coupling between the two parameters in the basal state.

Fig. 7. Modelled relationship between CMRO2,0 and CBF0 for linear increase in
DC,0 with CMRO2,0 (blue), constant DC,0 (orange), and linear decrease in DC,0

with CMRO2,0 (yellow). In-vivo CMRO2,0 and normalised CBF0 (CaO2,0⋅CBF0/
0.189), mean grey matter values overlaid (circles).
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For a given rate of perfusion, an increase in capillary volume would
increase the mean transit time for blood to transverse the capillary
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network, producing a proportional increase in the effective diffusivity,
and thus enabling greater extraction of the oxygen from the capillary
bed. Our data suggest that a flow-volume coupling exponent of
approximately 0.62 is required in the capillaries to provide the
observed increase in effective diffusivity during visual stimulation.
The implied 12.5% increase in capillary blood volume agrees well with
the data and analysis presented by (Hall et al., 2014) in the mouse
brain, suggesting this is a plausible explanation for the observed in-
crease in diffusivity. Indeed more recent studies in the mouse brain
suggest that such an increase in capillary blood volume is well within
the range of normal physiological responses, where capillary volume
has been found to increase by 10–26% during functional activation
depending on the baseline diameter (Ito et al., 2017).

Although modulation of capillary blood volume appears to be
sufficient to provide local control of capillary diffusivity, we cannot
rule out a contribution from flow heterogeneity (Jespersen and
Ostergaard, 2012), which is likely to be reduced during functional
activation where smaller capillaries have been observed to dilate more
than larger capillaries in rat (Kleinfeld et al., 1998; Stefanovic et al.,
2008). However, the influence of flow heterogeneity is known to be
dependent on the transit time distribution (Angleys et al., 2015), and
confounding factors such as the heterogeneity of [Hb] have not been
considered in the modelling, thus it is still unclear if this theoretical
model of control is realised in-vivo.

As previously discussed, there is unlikely to be a significant resting
Pm in the studied cohort, meaning the assumption of negligible Pm is



Fig. 8. Overlay of the mean absolute change in CBF, CMRO2, and effective oxygen diffusivity evoked by the visual checkerboard stimulus for n¼ 7 subjects.

Fig. 9. Summary plot of visual ROI data for CMRO2 and effective oxygen
diffusivity (including resting and activation data for n¼ 7 subjects). A tight
correlation between CMRO2 and effective diffusivity is observed both at baseline
(crosses) and during activation (diamonds), indicative of a tight coupling be-
tween the effective diffusivity and oxygen demand. The dashed lines are lines of
best fit (linear regression) the dotted lines connect baseline and activation data
for each subject.
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unlikely to impact the results. However, this may not always be true.
In theory Pm could increase in the presence of significant mitochon-
drial dysfunction due to the lack of oxygen uptake in the mitochon-
dria. Currently the only direct evidence we are aware of for an
increase in tissue (and therefore most likely mitochondrial) oxygen
tension during mitochondrial dysfunction is from simulated dysfunc-
tion (due to a cyanide infusion) in piglets (Nielsen et al., 2013).
However, there is increasing evidence of mitochondrial dysfunction in
a number of neurodegenerative diseases such as Parkinson's disease
(Powers et al., 2008) and Alzheimer's disease (Wang et al., 2014).
Therefore, it should be highlighted that reductions in basal DC may not
always correspond to a purely vascular origin and may also incorpo-
rate mitochondrial dysfunction.

In line with our previously published methods for analysis of dual-
calibrated data (Germuska et al., 2016; Wise et al., 2013) we have
included priors to stabilise the fitting process (see appendix). In the
current implementation the priors are incorporated into parameter
estimates via adaptive regularisation. Whenever priors are used to
guide the fitting process there is always a trade off to be made between
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overfitting (not enough regularisation) and underfitting (too much
regularisation). Digital phantom simulations were used to optimise the
amount of regularisation and balance this trade-off. The proposed
method employs regularisation on two parameters, the resting OEF
and the effective diffusivity. In the case of underfitting we would
expect the results to closely follow the prior, thus there would be little
variation in OEF or the effective diffusivity between subjects. In
contrast we find that OEF is highly correlated with resting oxygen
delivery, and the effective diffusivity is tightly coupled to the resting
CMRO2. Thus, it is unlikely that the results are significantly affected by
underfitting. While we cannot rule out overfitting of the data, the
appearance of the parameter maps is physiologically plausible and
they do not suffer from significant instability within the grey matter.
To further explore the influence of the proposed framework on the
parameter estimates we performed simulations where DC was not
estimated. In this implementation OEF was estimated directly as in
(Germuska et al., 2016), and thus no regularisation was/could be
placed on DC. These simulations (see appendix) showed similar levels
of error to the proposed method, albeit with slightly increase RMSE in
OEF estimates at low tSNR.

In conclusion, we have presented an MRI method for mapping the
effective oxygen diffusivity of the capillary bed in combination with
metabolic oxygen consumption. The method shows good agreement with
PET literature and inferred changes in capillary blood volume are in
agreement with two-photon laser microscopy measurements in animals,
however, direct validation of the method is still outstanding. The pro-
posed method is non-invasive and can be performed in a short timeframe.
Previous measurements of effective oxygen diffusivity suggest it may be a
valuable tool to understand the brain's response to altered oxygen supply
and demand. Thus, the introduction of this method could offer a useful
insight into a range of conditions and diseases with alteredmetabolism or
vascular function.
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Appendix. Digital phantom simulations

We can model the observed MRI data, ASL and BOLD signals that we wish to fit, via equation (A1).

Yi ¼ f ðwi;XÞ þ ei; e � N
�
0; σ2

�
(A1)

Where Y represents the observed MRI signal data, X represents the corresponding physiological traces and their derived parameters (see Fig. 2), w is a
vector of physiological parameters, e is signal noise with zero mean and an unknown variance σ2, and i is the voxel index.

In order to estimate the physiological parameters, w, we perform regularised non-linear least squares minimisation (via MATLAB's lsqnonlin
function), as defined by equation (A2).

wijRLS ¼ min
w

� k f ðwi;XÞ � Yik22 þ λbσ2
i k w'

i � vik22
�

(A2)

Where wijRLS is the regularised least squares estimate of the physiological parameters at the ith voxel. λ is a vector of regularisation coefficient, bσ2 is a
voxelwise estimate of noise variance (calculated from the variance of the residuals), w’ is a vector comprising the parameter estimates for DC and OEF,
and v is a vector of the corresponding expected values. The expected value for OEF is set to 0.4 for all voxels (representing a nominal OEF near the mid-
point of the physiological range), while the expected value for diffusivity estimates are linearly related to voxel-wise grey matter partial volume es-
timates. In this way we impose a prior belief that the effective diffusivity will be linearly related to grey matter content (due to the associated rela-
tionship with CBV). The expected value for pure grey matter voxels is set to a nominal DC value of 0.15ml/100g/mmHg/min, corresponding to an OEF
of 0.35 (Ibaraki et al., 2008), when Hb¼ 0.15 g/ml, P50¼ 26mmHg, and CBF¼ 90ml/100 g/min (Asllani et al., 2008).

Because the noise variance is estimated on a voxel-wise basis the regularisation is spatially adaptive; with greater regularisation applied when the
noise variance estimate is greater. It should also be noted that the magnitude of the regularisation reduces as the minimisation routine approaches the
solution, which has been shown to reduce the bias at convergence (Hong et al., 2017). The value of the regularisation coefficients λDc and λOEF, which
define the vector λ, were determined from digital phantom simulations, as described below.

Simulated phantoms were created with 245 time points (matching the in-vivo acquisition), for both the ASL and BOLD data, and 4200 ele-
ments. Effective diffusivity values were randomly chosen in the range 0.03–0.18, OEF values were assigned values from 0.25 to 0.55, Hb was set to
0.15 g/ml, P50 was set to 26 mmHg, if any combination of values implied a CBF below 20 or above 150 ml/100 g/min (according to the flow-
diffusion modelling) another value was randomly chosen until this criteria was met. The tSNR of the simulated data was set to match that of
the acquired data (after spatial smoothing), which were approximately 4.5 for the ASL data and 150 for the BOLD data. In order to match to in-
vivo noise statistics, simulated ASL and BOLD time series were band-pass filtered with a second order infinite impulse response filter using the
MATLAB ‘designfilt’ function. The relative bandpass frequencies were 0.08–0.2 for the ASL data and 0.01 to 0.2 for the BOLD data (pass band
ripple 1 dB in each case).

The RMS error in OEF and DC estimates were calculated for varying levels of regularisation under two conditions; with regularisation applied
only to OEF and with regularisation applied only to DC. Thus, optimising the required regularisation for each parameter separately. By analogy to
the standard L-curve method (Hansen, 1992), the optimal level of regularisation was chosen to be the maximum of the curvature of the λ vs RMS
error plot (see figures A1 and A2). Thus, selecting the transition point above which further regularisation ceases to provide significant reductions
in RMS error. Because we are optimising the regularisation for two parameters (and in two conditions), there are two transition points to choose
between in each condition. To minimise the chances of underfitting we chose the point that corresponds to the smallest amount of regularisation in
each case.

Fig. A1. Plot of λOEF vs. curvature of rms error for effective diffusivity (solid line) and OEF (dashed line). The curvature of the diffusivity error reaches a maximum
before the curvature of the OEF error, therefore this point (0.03) was chosen for lambda.
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Fig. A2. Plot of λDc vs. curvature of rms error for effective diffusivity (solid line) and OEF (dashed line). The curvature of the diffusivity error reaches a maximum
marginally before the curvature of the OEF error. The peak of the DC curvature is at approximately 1.8� 10�3, and therefore this value is used to set the level of
regularisation for DC estimates.

Having optimised λ for a fixed tSNR we explored the noise sensitivity of OEF and DC estimates for ASL tSNR ranging from 0.5 to 8.5 (BOLD tSNRwas
linearly scaled with ASL tSNR and so ranged from 17 to 280). The results of these simulations are shown in figure A3 and demonstrate a non-linear
increase N-RMSE for both OEF and DC as the tSNR is reduced. It is apparent from the simulation that there is less uncertainty in OEF estimates,
with a 15% error occurring for a tSNR of approximately 3, while DC requires a tSNR of approximately 5 to achieve the same level of uncertainty. For
comparison with previous methods, which do not fit for DC, we have also included the error in OEF estimates when fitting for OEF directly. This is
equivalent to the implementation in (Germuska et al., 2016), but with adaptive (rather than fixed) regularisation placed only on OEF. The regularisation
for this approach was tuned to match the current implementation when the ASL tSNR¼ 4.5. As can be seen from the plot, the error in OEF estimates are
similar to the newly proposed method, with a slight reduction for high tSNR and a decrease in performance for low tSNR. This decrease in performance
for low tSNR is likely due to the convergence of the fit to a uniform prior, rather than a prior informed by the estimate of baseline CBF.

Fig. A3. Plot of normalised RMSE in OEF and DC predicted with varying levels of tSNR (ASL) from digital phantom simulations.
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