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‘Many people are aware of the Weak and Strong Anthropic

Principles. The Weak One says, basically, that it was jolly

amazing of the universe to be constructed in such a way

that humans could evolve to a point where they make a

living in, for example, universities, while the Strong One

says that, on the contrary, the whole point of the universe

was that humans should not only work in universities but

also write for huge sums books with words like “Cosmic”

and “Chaos” in the titles.’

Terry Pratchett, Hogfather
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Star formation is a chaotic process, involving the evolution and interaction of a wide
variety of structures. The interstellar medium exhibits substructure over a range of
scales, and the clusters which form from the densest parts of this material may be
imprinted with this clumpy distribution. In this thesis, we describe and evaluate
statistical tools for quantifying structures that are important to the star formation
process, in order to constrain the underlying physics and robustly compare observa-
tions, simulations and synthetic observations.

We describe the basic theory and some common applications of fractal theory
in astronomy. We show that some common measures of fractal structure are incon-
sistent and that comparing values derived from different data types (e.g. continuum
data of molecular cloud maps and discrete data of star distributions) can lead to
confusion.

We introduce the Q+ algorithm which quantifies the substructure in star clus-
ters in terms of a fractal distribution. We describe the derivation and validation of
this method and apply it to observed and simulated data sets. We examine the pos-
sibility of applying this same analysis to continuum data by converting the greyscale
image into a statistically representative distribution of points.

We introduce the J plots algorithm which uses the principal moments of in-
ertia of a two-dimensional pixelated structure to quantify its shape. We show that
this can be used to identify the shapes of structures extracted from astrophysical
images using dendrograms. We apply this method (i) to data from the Hi-GAL sur-
vey to demonstrate the identification of ring-like shapes, and (ii) to simulations of
filament formation to quantify the differences in structure resulting from the nature
of turbulence in the accreting material.
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A philosopher once asked, “Are we human because we gaze at the stars, or do we

gaze at them because we are human?” Pointless, really...“Do the stars gaze back?”

Now, that’s a question.

-Neil Gaiman, Stardust
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6 Chapter 1. Introduction

1.1 An overview of Star Formation

The study of star formation is crucial to our understanding of the Universe.

Stars create most of the heavy elements necessary for life, either by nuclear fusion or in

supernovae. Interaction of newly forming stars, in dense clusters or in stellar multiple

systems, change the properties of disks around those stars, and therefore influence

the formation of planets. Massive stars and clusters can impact the mass budgets

and luminosities of entire galaxies. We therefore need to study how and where stars

are formed, how they evolve, and how they interact with their environment. Star

formation is a chaotic process spanning orders of magnitude in scale, density and

temperature. The interplay of physical and chemical processes is complex, non-linear,

and in most cases impossible to replicate in a controlled laboratory environment.

We therefore rely on the interpretation of observations and the predictive power of

simulations and analytic models to constrain our understanding. A very simple one-

dimensional model was described over a hundred years ago by Jeans (1902). By

examining the dispersion relation of a wave in an isothermal, self-gravitating gas

we can find a critical wavelength, λJ , above which perturbations have exponentially

increasing amplitudes. This defines a critical length at which gas of a set density,

ρ, and temperature, T , will collapse. This can be extended to three dimensions to

define the critical mass, MJ , at which a sphere of ideal gas with constant volume

density ρ and mean gas particle mass µ is confined by the balance between internal

and external pressure and self-gravity:

MJ =
a30

G3/2ρ1/2
, (1.1)

where a0 =
√
(kBT/µ). Masses above this limit are therefore gravitationally unstable

and will contract, while masses below this limit are supported against self-gravity and

will not condense out of the medium.

This leads to a simple picture of star formation in which nature only needs to

assemble the correct amount of mass within a small enough radius for it to contract

and form a star. However, this leads to further questions: how is mass assembled and

compressed to reach the required radius? Why do stars form with different masses?

Why do stars form more readily in some areas than others? In the past century we

have progressed some way towards answering these questions, through the advance

of technology bringing higher resolution observations in many different wavelengths,

through ever increasing computing power enabling larger and more complex simu-

lations, and through the comparison of these using synthetic observations and data

analysis routines. However, there are still many contentious issues in star formation,



1.1. An overview of Star Formation 7

such as the role of magnetic fields, whether feedback from newly formed massive stars

has a positive or negative effect on the star formation rate, and even how to strictly

define such simple terms as ‘cloud’ and ‘cluster’.

Recently, the advent of large scale high resolution surveys has greatly increased

the amount of raw data available, and enabled the analysis of large numbers of ob-

jects as distinct from in-depth studies of single objects. This ‘big data’ revolution

comes with its own challenges, including the reduction, storage and sharing of data

as well as robust, speedy and meaningful methods of analysis. Since the processes

involved in star formation are highly non-linear, we cannot usually directly compare

individual objects or regions, whether observed or simulated. Therefore, we require

effective metrics to compare objects in a statistical sense. There are the additional

complications of projection, confusion, and optical depth effects which make the def-

inition and fidelity of such metrics particularly difficult. In this thesis I will present

some statistical methods for the analysis of astronomical data sets, with the aim of

constraining the underlying physics that controls star formation.

1.1.1 The Interstellar Medium and Molecular Clouds

The diffuse material from which molecular clouds condense and eventually

form stars is called the interstellar medium (ISM). The ISM consists predominantly

of hydrogen gas, along with some helium and heavy elements. About 1% by mass is

dust and an even smaller percentage is high-energy particles. All of this is bathed

in radiation of different intensities and wavelengths, and interacts with the magnetic

field and gravitational potential.

The simplest model of the ISM invokes a mixture of three components in ap-

proximate pressure equilibrium: cold, dense neutral medium (CNM); warm, relatively

dense neutral medium (WNM); and hot rarefied ionised medium (HIM) (McKee &

Ostriker, 1977). Table 1.1 gives typical values for the density and temperature of

each of these three components, along with their approximate filling factor. These

three phases interact dynamically and chemically with one another, and with the

interstellar radiation field.

Temperature (K) Density (10−24 g/cm−3) Filling factor
CNM 100 25 ∼ 0.03
WNM 8000 0.175 ∼ 0.2
HIM 500,000 0.01 ∼ 0.75

Table 1.1. The approximate temperature and density of the three phases in the
simple model of the ISM
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To observe the ISM we need tracers that cover this wide range of physical

conditions. Unfortunately there is no single atom or molecule that is observable

in all these environments. The 21cm line of atomic hydrogen traces the bulk of the

neutral ISM in diffuse HI clouds, and the warm inter-cloud medium. Both neutral and

ionised interstellar matter can be traced by optical and UV absorption against bright

background sources, but this is limited to lines of sight with a suitably characterised

background source. Ionised matter in HII regions can also be traced by Hα and other

recombination lines, as well as free-free emission.

In the dynamic ISM, shocks from supernova or colliding flows compress the

gas. Where gas becomes dense enough for self-shielding to take effect the interstellar

radiation field is no longer able to heat the gas and it can start to condense and form

molecules. We call these regions of higher density Molecular Clouds. They typically

have densities in the range 10−22 g cm−3 ≤ ρ̄ ≤ 10−20 g cm−3 and masses of 102 to

106 M�. In these environments there is a range of molecules we can observe to probe

the different conditions.

Each molecular transition has a different critical density, defined as the density

at which the distribution of level populations is dominated by collisions. This is

usually the typical density at which we observe a particular molecular line, although

other factors such as the optical depth can change the critical density. If the line

is optically thin, we can convert the detected intensity into an estimate of column

density. If it is optically thick we will not be probing the full depth of the cloud,

and so cannot make the same approximation. We therefore need to observe a range

of different molecular transitions in order to fully map the structure of the cloud at

different densities. Molecular line observations also have the advantage of providing

information about the radial velocity of the emitting gas through Doppler shifting,

as well as the velocity dispersion and temperature through broadening of the lines.

Dust blocks our view of certain astrophysical phenomena, absorbing or scat-

tering light at short wavelengths so we cannot see, for example, the light produced

by young stars that are deeply embedded in dusty clouds. However, this energy is

re-emitted in the infrared and can be observed to trace the density and temperature

of the dust, and thereby infer the possible sources of heating. Elongated dust grains

produce polarised light. Polarisation is more challenging to measure than intensity,

but can provide vital information on the strength and direction of the magnetic field,

as elongated grains will preferentially align perpendicular to the field.

Various algorithms have been developed to identify molecular cloud structures

in astronomical images. Scimes (Colombo et al., 2015) uses spectral clustering to

identify regions with similar properties (such as volume or integrated luminosity) in
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Figure 1.1. An illustration of some different methods for identifying Giant Molecular
Clouds (GMCs) applied to the Orion-Monoceros region, taken from Colombo et al.
(2015). The top left panel shows the integrated intensity map of CO(1-0). Each
subsequent panel shows the projection of GMCs identified in the position-position-
velocity data cube by the following algorithms: (a) Scimes (Colombo et al., 2015),
(b) Dendrograms (Rosolowsky et al., 2008), (c) and (d) CPROPS using two different
settings (Rosolowsky & Leroy, 2006), and (e) ClumpFind (Williams, de Geus &
Blitz, 1994).

order to find Giant Molecular Clouds (molecular clouds with mass greater than 105

M�) in molecular line data cubes. GaussClumps (Stutzki & Güsten, 1990) uses

a least-squares fitting procedure to recursively fit the data with Gaussian profiles.

ClumpFind (Williams, de Geus & Blitz, 1994) identifies peaks in PPV data cubes

and follows them to lower intensities taking steps of some user-defined multiple of the

rms noise. This does not assume a set shape for the clumps, but has been noted to be

very sensitive to the contour interval chosen (Elia et al., 2007, and references therein).

FellWalker (Berry, 2015) is a watershed algorithm, taking all emission above a

background threshold and tracing gradients upwards from that level to split the 1, 2

or 3-dimensional data into regions associated with individual significant peaks. This

has the advantage of being less sensitive to user-defined parameters and also not

assuming a shape for the cloud. Figure 1.1 demonstrates the significant differences

in structures identified with different algorithms when applied to the same data set.
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1.1.2 The formation of stars within Molecular Clouds

Molecular clouds can have sizes between 1 and 100 pc, and are not homoge-

neous. They have complex internal structure and the increasing resolution of new ob-

servational facilities, from Herschel to ALMA, is probing substructure within clouds

down to scales of 0.01 pc (André et al., 2010; Hacar et al., 2013). The statistical

similarity of this substructure over a range of scales is understood to be a product of

turbulence, although the exact nature of turbulence and its injection and dissipation

scales are still a matter of debate (Bodenheimer, 2011). The sub-structure within

molecular clouds can be quantified in terms of a fractal dimension, which describes

how clumpy or smooth the cloud is. However, there are many methods of estimating

a fractal dimension and their definitions may not be consistent, so comparisons of

these values are difficult (we discuss this in detail in Chapter 2).

Herschel observations have shown that filaments are common in molecular

clouds, both in low- and high-mass star forming regions, and in regions that are not

actively forming stars (Molinari et al., 2010; André et al., 2010; Hennemann et al.,

2012; Palmeirim et al., 2013). Further studies have estimated that 60% to 75% of

bound prestellar cores lie along filaments whose line mass is greater than the critical

value estimated for the onset of fragmentation (André et al., 2010; Könyves et al.,

2015; Marsh et al., 2016). Recent work examining the velocity-coherent structures

within filamentary regions suggests that these filaments may be made up of smaller

elongated structures, termed ‘fibers’.

Finding elongated structures such as filaments in images is a common task in

computer vision. Several algorithms have been developed specifically for astrophysics,

often borrowing techniques from computer vision or from other astronomical disci-

plines. The most commonly used method, DisPerSe (Sousbie, 2011), was originally

designed for identifying filaments of the cosmic web in cosmological simulations. It

has been widely used in star formation studies, but has been criticised for being too

dependent on user defined parameters. FilFinder (Koch & Rosolowsky, 2015) uses

an adaptive threshold, allowing the recovery of filamentary structures with a range

of brightnesses within the same image. The Hessian matrix method (Schisano et al.,

2014; Salji et al., 2015) uses local orthogonal gradients to identify pixels on the edge

of elongated structures and then aggregates these pixels into continuous filaments.

Molecular clouds are supported against gravitational collapse by thermal pres-

sure, magnetic fields and turbulence. The relative importance of these three forces

is still debated and may vary with the larger scale environment. The dense conden-

sations within molecular clouds are referred to as clumps or cores. Cores are often
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Figure 1.2. The distribution of compact sources across four tiles of the Hi-GAL
survey, taken form Elia et al. (2013). Blue symbols represent protostellar sources
and red symbols represent starless (prestellar or unbound) sources, overlaid on the
column density map. The different symbols (circles, triangles, diamonds and squares)
indicate to which of four CO(1-0) components the source has been associated to give
an estimate of radial velocity.

separated into protostellar, prestellar, and unbound starless cores by examining their

masses and spectral energy distributions (SEDs) (e.g. Elia et al., 2013). Prestellar

and unbound cores will both have SEDs well fit by a simple black body, implying

that they are composed of cool material. Sources that show an excess of emission at

70 µm are classified as protostellar, as this suggests the clump is internally heated by

a deeply embedded protostar. Prestellar and unbound sources are identified by esti-

mating their masses and radii. Elia et al. (2013) use the Bonnor-Ebert mass (MBE)

as the critical mass above which cores are gravitationally bound.

MBE = 2.4RBE a2/G, (1.2)

where RBE is the Bonner-Ebert radius, estimated as the observed radius of the core

at a particular wavelength, a is the sound speed (which depends on the source tem-

perature), and G is the gravitational constant. Objects that have masses greater

than this limit are classified as prestellar, and those with lower masses are labelled

as unbound starless cores.

Figure 1.2 shows the distribution of compact sources across four tiles of the Hi-

GAL survey in the outer Galaxy, taken from Elia et al. (2013). The authors remark

that the compact sources are spatially correlated with the dense filamentary structures

seen in the column density map, in agreement with the other papers discussed above.
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1.1.3 Star clusters and feedback

Star clusters form from dense cores within Giant Molecular Clouds, and it

is often inferred that most stars form in embedded clusters (Lada & Lada, 2003).

These clusters come in many sizes and shapes (Megeath et al., 2016). Young stellar

clusters are important for the study of star formation, because they present several

key observables that can be used to test theories and simulations. Figure 1.3 shows

two clusters of Young Stellar Objects (YSOs), separated into protostars and pre-

main sequence stars, as well as the dense gas traced by 850 µm emission. We can see

that YSOs of different evolutionary stages have different spatial distributions, with

protostars more closely associated with the dense gas and pre-main sequence stars

showing a more extended distribution.

Large young clusters are presumed to have formed from a single cloud and

within a small time frame, so their masses should fully populate the IMF. It is still

debated whether this is universally constant or varies with environment, but it is a

useful metric against which to test simulations and theories of star formation.

The formation of massive stars is another contentious point - how can a large

enough amount of mass be assembled before feedback clears material away? Different

theories of massive star formation, for example, monolithic collapse or competitive

accretion, should lead to differences in where massive stars are born within clusters.

If massive stars are only born in the denser centres of clusters then we should observe

that young clusters are mass segregated. Some observed young clusters do show mass

segregation but it has recently been suggested that these measures are unreliable, as

the blending of sources in very dense regions will result in overestimation of the mass

of point sources (see Khorrami et al. (2016) and references therein).

This discussion is further complicated by different definitions of mass segre-

gation. It can be defined as massive stars being closer to each other on average

than the lower mass stars, or as the massive stars being in regions of locally higher

density (Parker et al., 2014). Unfortunately, clusters can also become dynamically

mass segregated as low mass stars are thrown out of the cluster and more massive

ones sink towards the centre, so mass segregation at a later stage of cluster evolution

may not be able to test the formation scenarios of massive stars. However, if mass

segregation is not imprinted on clusters at birth then it can be used as a measure of

the age of the cluster. N-body simulations have shown that using the combination of

segregation and substructure as a diagnostic of evolution allows us to constrain the

initial conditions of older clusters (Wright et al., 2014). For example, studies of Cyg

OB2 show that it is substructured but has no mass segregation, which implies that
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Figure 1.3. Figures taken from Chabrier (2009). The top left panel shows the
distribution of protostars in IC 348, and the top right panel shows the pre-main
sequence (PMS) stars in IC 348 identified by Muench et al. (2007). The black points
are PMS stars with disks, and the grey points are those without disks. The bottom
left panel shows the protostars in the Serpens cloud core cluster, classified as Class
I/0 and flat spectrum (black and grey markers, respectively). The bottom right panel
shows the PMS stars of this cluster, again with and without disks (black and grey
markers, respectively). All Serpens data was taken from Winston et al. (2007).The
contours show the dense gas detected in an 850 m SCUBA map (IC 348 data from J.
DiFrancesco, personal communication. Serpens data from Davis et al. (2000).)
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it is dynamically young and was not born as a denser cluster (Wright et al., 2014).

Simulations of star formation often involve a box or sphere of turbulent gas

evolving under self-gravity, with some density threshold set for the onset of star

formation. For a long time a persistent problem in star formation has been the

efficiency of converting molecular clouds into stars. Observations indicate that in

most environments this value is very low, on the order of 10% (Lada & Lada, 2003;

McKee & Ostriker, 2007). Simulations involving a range of physical effects have

shown that this is highly dependent on the local environment (Vázquez-Semadeni,

Kim & Ballesteros-Paredes, 2005; Geen, Soler & Hennebelle, 2017; Howard, Pudritz

& Harris, 2017)

Another element of the star formation process that could reduce the SFE is

feedback. Even at the protostellar stage, new stars give off powerful jets which disrupt

the local cloud and drive small scale turbulence. When many stars have formed the

cloud will be dispersed by radiation pressure and stellar winds, and the cluster will

no longer be embedded and therefore be easier to observe. Massive stars have very

strong stellar winds and emit copious energetic radiation. This ionises the material

in a large volume producing a HII region which expands and sweeps up a dense shell.

Later, supernovae are even more violent and can disrupt entire giant molecular clouds

and affect star formation on a galactic scale. We can relate the amount of gas residing

within a cluster to its evolutionary stage. For example, Figure 1.3 shows the IC 348

cluster, which has very little dense gas and a centrally concentrated distribution of

stars. These factors indicate that it may be more evolved than the Serpens cluster as

this still has gas residing at the centre of the cluster.

On the scale of individual clusters, ionising radiation is currently considered

to be the most important form of feedback in sculpting or dispersing the molecular

cloud, and therefore impacting the rate of star formation. Simulations have shown

that the impact of feedback on the clouds varies greatly with the mass and/or density

of the cloud (Dale, 2015; Geen, Soler & Hennebelle, 2017).

It is important to note that feedback has both a positive and negative effect

on the star formation efficiency. As material is pushed away from the region already

forming stars, thereby reducing the local efficiency, it may be pushed into other ma-

terial, thereby increasing the density and possibly triggering another wave of star

formation offset from the first. Rigorously identifying sites of triggered star forma-

tion is difficult (e.g. Dale, Haworth & Bressert, 2015) and therefore the net effect of

feedback is not well understood.

Stars are born in the densest parts of molecular clouds and therefore young

clusters should reflect this structure. The motions and gravitational interactions of
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newly formed stars will quickly alter their distribution, and so the morphology of the

molecular cloud structures from which they formed may be lost in as little as one

Myr. The expulsion of molecular gas form a cluster can also affect it’s evolution. The

removal of a large amount of mass changes the potential energy of the cluster and can

result in it becoming unbound. Simulations of young clusters often do not consider

the interaction of the stars with the potential of the gas reservoir, or make simplified

assumptions about gas removal. Hopefully with the increases in computing power

and advanced numerical techniques more simulations will be performed with coupled

hydrodynamical and N-body codes (e.g. Sills et al., 2018) to realistically model the

expulsion of residual gas from young clusters.

1.2 Thesis outline

In Chapter 2 we review the use of fractal dimensions to quantify the chaotic

structures of molecular clouds and young star clusters, and discuss issues relating

to comparing different fractal dimensions. In Chapter 3 we introduce a new algo-

rithm designed to quantify the structure of star clusters in terms of three parameters:

the fractal dimension, the number of levels in the fractal hierarchy, and the density

scaling between levels. In Chapter 4 we apply this algorithm to real observations of

Gould Belt clusters, to simulations of clusters formed by cloud-cloud collisions, and

to simulations of the evolution of massive clusters. In Chapter 5 we discuss how this

algorithm can be applied to molecular cloud data to enable a like-for-like compari-

son with the clusters they will eventually form, and demonstrate its application to

column density maps of the Galactic plane. In Chapter 6 we introduce a second new

algorithm which aims to classify and quantify the shapes of structures in greyscale

images by calculation of their principal moments of inertia, and we show that this is

able to identify centrally concentrated structures, elongated filament-like structures,

and hollow ring-like structures. In Chapter 7 we summarise the main conclusions of

this thesis and discuss future directions for this work.

The appendices contain detailed mathematical definitions which underpin some

areas of this thesis. Appendix A details the construction of Complete Graphs and

Minimum Spanning Trees, which are used in Chapter 3. Appendix B gives a for-

mal definition of the Bayesian framework also applied in Chapter 3. Appendix C

defines some basic terms in matrix algebra, which are in turn used in Appendix D

to describe Principal Component Analysis. This is applied in Chapter 3. Appendix

E details the mathematical identification of the principal axes of a shape, which is

applied in Chapter 6.
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The concept of a fractal dimension is explained and its application to astrophysical

images, as a way to quantify substructure, is reviewed. The many methods used to

estimate a fractal dimension for an astrophysical object are described, and the problem

of comparing values obtained with different methods is discussed.
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2.1 Introduction

Both star clusters and molecular clouds were first defined simply as over-dense

regions with respect to some background or detection limit. Early astronomers even

referred to the entire Milky Way galaxy as a stellar cluster (Mädler, 1847). With

increasing resolution and wavelength range one observes more complex structures,

both in the gas and dust of the ISM, and in the compact sources we associate with

star formation. Many efforts have been made to quantify the morphology and spatial

properties of such structures, and the methods used depend critically on the properties

of the data and the questions being asked of it.

Continuum images such as single waveband intensity images or derived column

density plots can be analysed statistically to describe some aspect of their structure,

for example by using a fractal dimension to describe the degree of substructure. Other

statistics such as the velocity power spectrum or spectral correlation function have

been used to infer the presence of turbulence and estimate its characteristics. A

variety of algorithms have also been designed to find certain shapes in images, such

as filaments or compact objects, which can then be analysed themselves.

The distribution of compact sources (be they clumps of condensed gas, prestel-

lar cores, protostellar objects or stars themselves) has been extensively characterised.

Clusters can be extracted from the multitude of sources using k-means or Minimum

Spanning Trees. Their substructure can also be described by a fractal dimension, and

other elements of their distribution quantified by the two point correlation function,

angular dispersion parameter or nearest neighbour distance.

Henceforth, we will use the term ‘cluster’ to describe any collection of discrete

points representing stars or compact objects, and ‘cloud’ to refer to any greyscale

image of molecular clouds or star forming regions. Fractal dimensions can be applied

to both data types, and therefore they are particularly useful for comparing how

structure changes over the star formation cycle and how substructure in molecular

clouds is transferred to, or affected by, the stars that form in these clouds. In Section

2.2 we describe methods of creating artificial fractal clouds and clusters. In Section 2.3

we present some measures of fractal dimension used in astrophysics, and in Section 2.4

we discuss the difficulties in comparing values given by these methods, with reference

to their different definitions, the different data types they apply to, and the distinction

between measures performed on two dimensional and three dimensional data sets.

As I will be discussing many definitions of fractal dimensions in this Chapter

I will use a different subscript to indicate each method. A summary is given in

Table 2.1. It is worth noting that this is in no way a complete discussion of fractal
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dimensions, or even of those applied to astronomical images, as a great number of

methods are used for different purposes. Here I aim only to give an overview of the

topic and highlight some important issues related to the use of fractal dimensions in

astrophysics. I will describe a few of the multitude of fractal dimensions which I deem

to be important to this discussion due to their prevalence, originality or mathematical

neatness.

2.2 Creating fractal distributions

There are as many ways of creating fractal distributions as there are ways

of measuring fractal dimensions. Here I will limit myself to two of the simplest and

most widely used methods. (i) Three-dimensional artificial fractal star clusters can be

created using the so called ‘box fractal’ method introduced by Goodwin & Whitworth

(2004), which has been the underpinning of the Q (Cartwright & Whitworth, 2004)

and (in an adapted form)Q+ (Jaffa, Whitworth & Lomax, 2017) methods of analysing

clusters. (ii) The fBm method, based initially on simple Brownian motion, creates

realistic looking clouds with a range of fractal properties in two and three dimensions.

Since many methods of analysing fractal distributions apply only to clouds

(or other continuum data sets) or only to clusters (or other discrete point data sets),

I will describe simple mathematical techniques to convert point data into greyscale

maps and vice versa. This allows the direct comparison of different fractal parameters

and analysis tools.

2.2.1 Box-fractals

The algorithm to construct a synthetic three-dimensional fractal star cluster

presented in Goodwin &Whitworth (2004) has two parameters: the fractal dimension,

DBF , and the number of stars in the cluster, N . It uses recursive octal partitioning,

starting with a root-cube of side L0 = 2 centred on the origin, i.e. −1 < x, y, z < +1.

The root-cube constitutes level � = 0, and it is de facto ‘fertile’, meaning it will be

partitioned into 8 sub-cubes, which constitute the next level. The likelihood of a

sub-cube being fertile is controlled by the fractal dimension, DBF . Cubes that are

not fertile are not partitioned into smaller structures and contribute no mass to the

cluster, as shown in the two-dimensional example in Figure 2.1. The partitioning

continues until the number of sub-sub-..cubes on the last level exceeds the number of

stars in the cluster. One star is then randomly placed in each of the fertile cubes on

the last level.
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Figure 2.1. A two-dimensional illustration of the algorithm for creating box-fractal
clusters. This example has a two-dimensional fractal dimension of 1.58, so that 3 out
of 4 sub-cubes are randomly chosen to be fertile at each partitioning.

The probability that a given cube is fertile is given by

P
FERTILE

= 2(DBF−3) , (2.1)

so reducing DBF decreases the probability of a cube being fertile. It follows that,

since there are 8 sub-cubes in each fertile parent cube, the average number of fertile

sub-cubes per parent cube is given by

F = 2DBF (2.2)

The best-behaved results are obtained when F is an integer, as this results in

randomly selecting exactly F fertile sub-cubes at each subdivision. When F is not

an integer we must randomly select either �F� or �F� sub-cubes at each subdivision,

keeping a cumulative remainder, so that over the whole structure we have selected

an average of F fertile sub-cubes per subdivision. This causes problems because

variation in the number of fertile cubes selected at the first subdivision (level 1) can

have a large effect on the resultant structure and the measured D. We therefore limit

the artificial clusters generated to integer values of F and assume that interpolation

between these values is valid.

2.2.2 Fractional Brownian Motion

Fractional Brownian motion (sometimes called fractal Brownian motion), as

presented in detail in Stutzki et al. (1998), can be used to create one, two, or three

dimensional distributions characterised by a power spectrum exponent, β. This can

be analytically related to a fractal dimension DfBm (see Section 2.3.3) by

DfBm = (3E + 2− β)/2, (2.3)
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Figure 2.2. Two-dimensional (E=2) fBm images created with β = 2, 3 and 4, all
with 100 × 100 pixels and σ = 1. These values correspond to fractal dimensions
DfBm = 3, 2.5, 2.

where E is the Euclidean dimension.

Having specified a power law index, we can generate the corresponding am-

plitudes and a set of random phases. Fourier transformation of this spectrum then

creates an image, as shown in the two-dimensional examples in Figure 2.2. Some

book-keeping needs to be done to ensure that the values are real and positive, and

this is discussed in more detail in Stutzki et al. (1998).

The code used here, written by O. Lomax, exponentiates the values and scales

the image to a preset standard deviation, σ. The resulting image is therefore fully

described by three user defined parameters: the power law index, β; the scaling factor,

σ; and the range of scales or number of pixels in the image.

2.2.3 Clouds to points

Creating a set of points with a statistically similar distribution to a greyscale

image is analogous to randomly drawing points from a two-dimensional probability

density function (PDF). We have a two dimensional PDF (image), p(x, y), bounded

by limits xmin, xmax, ymin, ymax, and normalised so that

xmax∫

xmin

ymax∫

ymin

p(x, y) dx dy = 1 . (2.4)

We wish to randomly sample coordinates (X, Y ).

First we find X. Here, we calculate the PDF of x by marginalising (integrating

out) y,

p(x) =

xmax∫

xmin

p(x, y) dy . (2.5)
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We draw a random number Rx from the uniform distribution in the interval [0, 1] and

solve
X∫

xmin

p(x) dx = Rx (2.6)

for X. In practice this is achieved by tabulating

P (X) =

X∫

xmin

p(x) dx (2.7)

and looking up X for P (X) = Rx.

In order to find Y , we calculate the PDF of y, given X,

p(y|X) =
p(X, y)∫ ymax

ymin
p(X, y) dy

. (2.8)

As before, we draw another random number Ry and solve

Y∫

ymin

p(y|X) dy = Ry (2.9)

for Y . Again, we tabulate P (y|X) and lookup P (Y |X) = Ry.

When performing these calculations numerically, p(x, y) is stored in a discrete

grid. Integration is performed using the trapezoidal rule and linear interpolation is

used to find p(x, y) between grid points.

This method can be extended to three dimensions (and beyond) by marginal-

ising z from p(x, y, z) and finding X and Y using the above method. Z may then be

sampled from the distribution p(z|X, Y ).

2.2.4 Points to clouds

The inverse of the above process, converting a set of points into a greyscale

image, can be accomplished in a variety of ways. After choosing a suitable grid size

in two or three dimensions, the most simple method would be to simply increment

each cell that contains a point by the ‘weight’ of that point, where the weight may be

one for every point, or may be the mass of a star or some other important property.

This produces reasonable results when the pixel size is larger than the separation

between points, therefore ensuring that each point is not isolated in a single pixel.

However, if the points are sparsely distributed in some areas or the pixel size is small,
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we need to spread the ‘weight’ of each point over a patch of pixels to create a smoother

distribution.

The most common shape of kernel is a truncated Gaussian. The size of the

kernel, σsmooth, can be chosen by eye or for a specific purpose, or various equations

and rules-of-thumb can suggest an appropriate size (Bashtannyk & Hyndman, 2001).

The most commonly used rules for choosing a suitable Gaussian kernel size are those

suggested by Silverman (1986) and Scott (1992). In two dimensions these are equal

and depend only on the number of points:

σsmooth = N−1/6
pts (2.10)

2.3 Measuring fractal dimensions

2.3.1 Perimeter-ruler: the first fractal dimension

The original concept of a ‘fractional dimension’ is often erroneously attributed

to Mandelbrot (1967) in his description of coastlines. He was indeed the first to

coin the term (later changed to ‘fractal dimension’) and a pioneer in bringing the

abstract mathematical ideas to bear on many real-world problems, but the charac-

teristic equation of fractals (Equation 2.11) was first published six years earlier by

Richardson (1961) as an empirically derived “characteristic of a frontier ... expected

to have some positive correlation with one’s immediate visual perception of the ir-

regularity of the frontier.” The equation given in this first application of a fractal

dimension is

L(G) ∝ G(1−DPR) (2.11)

where G is the length of an ungraduated stick used to measure an irregular coastline,

L(G) is the length that is measured with that particular stick (and therefore an integer

multiple of G), and DPR is the non-integer dimension inferred from a series of such

measurements with sticks of different length. Smaller sticks will be able to follow

more of the small deviations of the coastline, and therefore measure a longer total

length L. This is increasingly true as the complexity of the coastline is increased,

and this is the property that the fractal dimension aims to capture. In this case the

value of DPR is limited to the range 1 < DPR ≤ 2, because this application is in

two dimensions. A lower fractal dimension indicates a more irregular shape and a

higher fractal dimension indicates a smoother shape, up to the limit of the Euclidean

dimension of the shape. This approach is very simplistic and has not been widely
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used in astrophysics, but was originally applied to the shape of coastlines (Richardson,

1961).

2.3.2 Perimeter-area

The perimeter-area relation has been used occasionally in an astrophysical

context (see Sánchez, Alfaro & Pérez (2005) and references therein), as it is easily ap-

plied to molecular cloud structures defined by isocontours. It is defined in Mandelbrot

(1983) as

P (G)(1/DPA) ∝ A(G)1/2

P (G) ∝ A(G)(DPA/2) (2.12)

where P (G) is the perimeter of a two dimensional shape when measured with an

ungraduated stick of length G and A(G) is the surface area in units G2. In practice

this method is often applied, not by using different measurement lengths, G, but by

assuming a set of objects will conform to a single fractal dimension and therefore mea-

suring all their perimeters with a single G and fitting a straight line to the resulting

log-log relation.

This relation can also be extended to three dimensions, as described in Voss

(1988):

S(G) ∝ V (G)(DAV /3) (2.13)

where S(G) is the surface area of a three dimensional shape measured in units G2

and V (G) is the volume measured in units G3. However, as pointed out in Elia et al.

(2014), this describes only the contour or perimeter of the shape and does not reflect

the internal structure of the cloud. The relation between the fractal dimension of the

isocontour and that of the image is unclear in many cases.

2.3.3 Box counting

The box counting dimension, DBC , is popular in many branches of astro-

physics, likely due to its simplicity of application and intuitive analysis. Again, it

was originally described by Mandelbrot (1983), but the details of the procedure ap-

plied may vary between publications.
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Figure 2.3. Representation of the box-counting method for estimating a fractal
dimension. Grids of varying size are overlaid on the distribution of points. The
number of occupied cells is counted for each size of grid. In the bottom figure, a
log-log plot of the box size versus the number of occupied boxes (solid line) can be
fit (dashed line) to yield a gradient which is used to estimate DBC .
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The procedure for calculating the box-counting fractal dimension of a set of

points, illustrated in Figure 2.3, involves overlaying the points with grids of various

box sizes, L. One then finds how many of the boxes are occupied by the points, O(L).

A distribution that is smooth will fill more of the space, and therefore more of the

boxes, while a very porous and clumpy (highly fractal) distribution of points will not

fill as many boxes. If one plots the box size against the number of occupied boxes on

a log-log scale the gradient of the line will reflect the nature of the distribution, and

is therefore used as a fractal dimension:

O(L) ∝ L−DBC (2.14)

Some authors suggest that the results may not be as readily comparable as

expected due to sensitivity to the exact details of application (Sánchez, Alfaro &

Pérez, 2005), such as the initial placement and limits of the bounding box.

2.3.4 ∆-variance

The ∆-variance was developed by Stutzki et al. (1998), derived from the Allan

variance (Allan, 1966) which was originally intended to characterise the properties of

noise in atomic clocks. On a two-dimensional field A(x,y) it is defined as:

σ2
∆(L) =

1

2π
〈(A ∗ �L)

2〉x,y (2.15)

where �L represents a filter function that is convolved with the map. Stutzki et al.

(1998) originally used the so-called French hat function (see Stutzki et al. (1998)

Appendix B), while later improvement of the ∆-variance method by Ossenkopf, Krips

& Stutzki (2008) used the Mexican hat function:

�L (r) =
4

πL2
e

r2

(L/2)2 − 4

πL2(v2 − 1)
[e

r2

(vL/2)2 − e
r2

(L/2)2 ] (2.16)

Plotting the logarithm of �L(r) against the logarithm of L will display a linear

behaviour over a certain range of scales. Fitting the slope of this linear regime gives

a measure of the power spectrum exponent, β, which, by comparison with fractal

Brownian motion (see Section 2.2.2), can then be related to a fractal dimension,

D∆v =
3E + 2− β

2
(2.17)

where E is the Euclidean dimension. It is important to note that β can take values

between two and four, resulting in D∆v having a range between 3 and 2 with 2 being
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smoother and 3 being clumpier, which is in the opposite sense to other measures we

have discussed.

2.3.5 Q-parameter

The Q-parameter (Cartwright & Whitworth 2004; hereafter CW04) uses the

Complete Graph and Minimum Spanning Tree (described in more detail in Appendix

A) to quantify the structure of a star cluster, and can separate sub-structured dis-

tributions from those with a radial density gradient. It has frequently been used to

characterise the three-dimensional structure of observed and simulated star clusters.

It is an empirical measure calibrated against a set of artificial three-dimensional clus-

ters created using the box-fractal method described in Section 2.2.1. These clusters

are then projected at a random viewing angle to create a two dimensional image as

would be observed on the sky, and the three-dimensional fractal dimension is inferred

from the properties of this two-dimensional set.

Q is evaluated by first constructing the Complete Graph of a two-dimensional

set of points (e.g. the projected positions of stars in a cluster) and computing the

mean length, s̄, of all the edges on the Complete Graph (i.e. all the straight lines

connecting each point to all the other points). Next, one constructs the Minimum

Spanning Tree (MST, the set of edges which connects all the points together with

the shortest possible total length) of the points and computes the normalised mean

length, m̄, of the edges on the MST. Finally, one computes Q = m̄/s̄. Values of

Q < 0.8 can be translated into a notional fractal dimension, DQ, for star clusters

with substructure, and values of Q > 0.8 can be translated into a notional radial

density exponent, α = −d ln[n]/d ln[r] for spherically symmetric star clusters (here n

is the mean volume-density of stars at distance r from the centre of the cluster). The

data presented in CW04 are displayed in Figure 2.4, showing how the measured value

of Q can be used to estimate either the fractal dimension or radial density exponent.

In CW04, the number of stars in an artificial cluster was held approximately

constant at ≈ 300 while the fractal dimension, DBF , was varied. For a lower fractal

dimension, this necessitates splitting the root cube more times to produce the required

number of sub-sub-..cubes on the last level. The resulting changes in structure were

attributed to the change in DBF only. In CW04, one star was placed in every fertile

cube on the final level. This constrains the artificial clusters to having a bimodal

density distribution, varying only slightly with the random placement of stars within

their cubes.

An improved method for creating box-fractal clusters which takes account of
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Figure 2.4. Results presented in CW04, showing how the measured value of Q can
be used to estimate either the fractal dimension or radial density exponent. The blue
points are artificial fractal clusters created using the ‘box-fractal’ method of Goodwin
& Whitworth (2004), green points are centrally concentrated clusters created using a
simple algorithm described in CW04, and the dashed lines are lines of constant Q.
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Figure 2.5. The mean edge length of the MST and complete graph for artificial
clusters using the improved box-fractal method. The Q-parameter does not distin-
guish between changes in each of the three parameters that describe the structure.
The parameters D,L, C are defined explicitly in Section 3.2

changes in both the number of levels in the hierarchy and the distribution of mass

on different levels will be described in Section 3.2. When all three parameters are

controlled, we find that the Q-parameter fails to distinguish between the changes in

fractal structure (see Figure 2.5).

2.4 Comparing fractal dimensions in two dimen-

sions
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Many studies of fractal dimensions of star clusters have found values in the

range 1 ≤ D ≤ 2(e.g. Sánchez, Alfaro & Pérez, 2005, and references therein). We

therefore explore artificial clouds and star clusters with fractal dimensions in this

range. We create a set of three-dimensional box-fractal star clusters with known DBF

and all other parameters kept constant, project them at a random angle to create a

two-dimensional cluster, and then measure the box counting fractal dimension.

Intuitively, the measured box counting dimension should be equivalent to the

input box-fractal dimension, as these both use repeated partitioning of space. How-

ever, Figure 2.6 shows that the box counting method gives consistently lower results

than the input box-fractal dimension. Furthermore, when the number of levels in the

hierarchy is varied, the offset changes even though the fractal dimension remains con-

stant. The box counting measure is more accurate for clusters with a higher number

of levels.
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Figure 2.6. The box counting fractal dimension measured on a set of box-fractal
star clusters. The dotted line indicates equality.

The measured ∆-variance dimension should accurately measure the fractal
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Figure 2.7. The value of β measured using the ∆-variance on a set of fBm fractal
clouds. The dotted line indicates equality.

Brownian motion dimension∗. Both of these fractal dimensions are more commonly

quantified in terms of the power spectrum exponent β which is related to the fractal

dimension through Equation 2.17. However, we find that this measure also consis-

tently underestimates the value of β. Also, the range of measured values is very large

when β is small, indicating that the smoother structure is not well constrained.

We can also convert our distributions of points to greyscale images and vice

versa. Firstly, we can convert fractal structures created as greyscale images into a

set of points. Figure 2.8 shows the box counting fractal dimension measured for a

set of fBm fractal structures that have been converted into a distribution of points.

We do not expect a direct correlation in these two measures as, according to their

mathematical definition, they have different ranges and vary in the opposite direction

in terms of clumpy or smooth structure. However, our results do not show an inverse

correlation either. These two descriptions of fractal structure seem to describe a

fundamentally different aspect of the structure as the measured DBC shows no trend

∗To calculate the ∆-variance we use the IDL script DeltaVarWidget described in Ossenkopf,
Krips & Stutzki (2008)
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Figure 2.8. The box counting fractal dimension measured on a set of fBm fractal
structures which have been converted into a distribution of points.

with DfBm. The number of points in the cluster does have an effect on this measure

but does not change the lack of correlation with DfBm.

Secondly, we can convert the box-fractal star clusters to greyscale images by

Gaussian smoothing. Measuring the ∆-variance of these images returns an estimate

of the power law slope β which can be related to a fractal dimension. Figure 2.9

shows that this also does not give the expected inverse correlation. We would expect

that box-fractal clusters with a lower DBF would produce a higher D∆v i.e. a negative

correlation, but the results show a small positive correlation. The box-fractal clusters

used here have varying numbers of points. They therefore have different sizes of

smoothing kernel, σsmooth, because this is calculated from the number of points. As

was pointed out by Turlach (1993), the size of the kernel used can have a large

influence on the resulting structure, even more than the shape of the kernel itself.

The estimation based on the number of points may be over-smoothing in dense areas

of the more substructured distributions.
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Figure 2.9. The ∆-variance fractal dimension measured on a set of box fractal
structures which have been converted into greyscale images.
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2.5 Two- and three-dimensional fractals

As summarised in Table 2.1, some of the fractal dimensions described above

are designed to be applied to two dimensional data sets, and some to three dimen-

sional data sets. The Q-parameter is alone among the measures discussed here in

attempting to directly constrain the three-dimensional fractal dimension from the

two-dimensional image, which is a fundamental problem faced in observational as-

tronomy†. Many authors have discussed this issue, from both a mathematical and

empirical standpoint.

One of the oldest and most commonly used relations is that described by

Mandelbrot (1983) in relation to the surface area-volume and perimeter-area fractal

dimensions:

DPA = DAV − 1 (2.18)

However, this describes a slice through a three-dimensional object rather than

a projection onto a plane. Falconer (1990) derived the following relation for the

projection of Borel sets in any number of dimensions:

Dk−1 = min{2, Dk} (2.19)

Beech (1992) tested the relations derived in Falconer (1990) with a simple

experiment involving the shadows of scrunched up paper balls: measuring the three-

dimensional fractal dimension of the paper balls by the mass-size relation, holding

them in front of a lamp to trace their shadow and calculating the two-dimensional

fractal dimension of the shadow using the perimeter-area relation.

Fractal Brownian motion images (see Section 2.2.2) are mathematically de-

fined such that projection into two dimensions does not change the power law slope,

resulting in a change in the fractal dimension of

DfBm,2 = DfBm,3 − 3/2 (2.20)

Gouliermis, Hony & Klessen (2014) empirically measured the fractal dimension

of box-fractal clusters in three dimensions and in projection into two dimensions, and

found the relation:

†Simulated molecular clouds or star clusters may be viewed in three dimensions or projected into
two dimensions to make them directly comparable to observations.
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Figure 2.10. Various relations in the literature for converting two-dimensional frac-
tal dimensions to the three-dimensional fractal dimensions.

DBF,2 =




DBF,3 DBF,3 ≤ 1.6

1.1 + 0.3DBF,3 DBF,3 ≥ 1.6
(2.21)

Figure 2.10 compares these three relations to illustrate the large differences.

It is also important to note that for the perimeter-area and box-fractal relations, a

lower number indicates a more clumpy distribution and a higher number indicates a

smoother distribution, while the fBm fractal dimension varies in the opposite direc-

tion.

2.6 Conclusions

In his seminal 1967 work on fractal geometry, Benoit Mandelbrot said, “The

concept of ‘dimension’ is elusive and very complex, ...Different definitions frequently
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yield different results, and the field abounds in paradoxes.” Here we have demon-

strated that even the simplest definitions of a fractal dimension may be incompatible,

and the notion that all the statistically important structure in a cloud or cluster can be

constrained by a single number is an oversimplification. However, each of the tested

methods of quantifying fractal structure, when applied correctly to a suitable data

set, does yield sensible results and enables a quantitative and statistical discussion of

some aspects of the internal structure of clouds or clusters.

The box counting method is able to constrain the input fractal dimension

of box-fractal star clusters, and the ∆-variance method can likewise constrain the

input dimension of fBm fractal clouds. However, converting data sets from points to

clouds or vice versa indicates that these two dimensions are not compatible and do

not accurately measure the input dimension of data sets constructed using the other

method, although the effects of the conversion are hard to measure. When converting

a greyscale image into a set of points, the number of points is a free parameter that

may have a large effect on the resultant fractal structure, and when converting a set of

points into a greyscale image the size of the smoothing kernel is similarly important.

Real astrophysical structures are three-dimensional and appear projected on

the plane of the sky. We can create artificial data sets in three dimensions, either

analytically or through simulations and project them at a random angle to test how

the measurable structure changes, but we can only make statistical arguments about

the real three dimensional structures if we can find a well understood relation. The

various equations in the literature produce disparate results and may apply in different

situations.

We conclude that, while the measurement of a fractal dimension is undoubtedly

a valuable tool for quantifying the chaotic structures inherent in the star formation

process, the comparison of measurements from different methods is fraught with issues

which have yet to be fully explored. This makes the case for clear communication of

the exact analysis method used in any published work, and the increase in open source

software being freely shared with the scientific community is strongly encouraged in

this case.
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Fractal distributions need three parameters to fully describe their structure. In the

model that we use, these are: the fractal dimension, D, the number of levels in the

fractal hierarchy, L, and the density scaling exponent, C. These parameters are used

to construct three-dimensional artificial star clusters, which are then projected onto

an arbitrary plane so that they may be compared to two-dimensional observed star

clusters. A set of statistical measures derived from the Complete Graph and Minimum

Spanning Tree, when combined using Principal Component Analysis, are shown to

distinguish between the changes in structure caused by varying D and L. C has a

more subtle effect and so this is considered separately using Bayesian inference. A

robust algorithm for classifying the structure of two-dimensional star clusters is tested

using artificial clusters is shown to reliably constrain the input parameters.

∗The work presented here is published in Jaffa, Whitworth & Lomax, 2017, MNRAS, 446, 1082

39
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3.1 Introduction

Many previous authors have utilised the theory of fractal geometry to quantify

the structure of star clusters by defining a fractal dimension which describes the

clumpiness or substructure of the distribution as against a smooth distribution, as

discussed in Chapter 2. However, even if star clusters are fractally sub-structured,

the fractal dimension, D, is not enough to fully describe the structure.

Firstly, this simple analysis assumes that fractals have an infinite range of

scales over which the self-similarity persists. This is not the case in the study of star

clusters as the range is limited - at its maximum by the size of the parent cloud or

cloud complex, and at its minimum by the spatial scale of individual stars or stellar

systems (see Section 3.4.1 for a discussion of binary and multiple systems in relation

to fractal clustering). Therefore we must specify the range of scales over which the

structure can be self-similar, i.e. the ratio between the overall linear size of the cluster

and the size of the smallest separation between stellar systems. We quantify this by

the number of levels in the fractal hierarchy, L.
Secondly, much of the theory of fractal structures is built on so-called ‘binary

fractal’ structures, in which space can only be occupied or unoccupied. While this can

be analogous to star clusters in terms of individual stars or systems being treated as

discrete objects, so a volume of space may have a single star in it or not, this is only

useful at scales comparable to the average separation between stars. The simplest

definition of a star cluster is a local overdensity of stars compared to the background

of field stars. Therefore we are often interested in the local density of stars, which

means we need to describe the distribution of density in the fractal structure. We

quantify this with a volume-density scaling exponent, C, which dictates how the mass

of the structure is distributed on the different scales of the hierarchy.

It follows that more sophisticated tools are required to constrain these extra

parameters, and we present such a tool here.

This chapter is organised as follows. In Section 3.2, we present a procedure

for generating synthetic fractal star clusters characterised by three parameters, D, L
and C, and illustrate how their properties are influenced by varying these parameters.

In Section 3.3, we explain how Complete Graphs and Minimum Spanning Trees are

constructed, and define the discriminating measures that can be derived from them.

In Section 3.4, we demonstrate how these measures can be combined to express the

maximum variation with D and L by using Principal Component Analysis, and how C
can be found once these have been estimated. In Section 3.5, we apply the algorithm

to synthetic data to evaluate its reliability. In Section 3.6, we summarise our main
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conclusions.

For mathematical convenience, we define a 3-component statistical state vector

for a fractal star cluster,

Y ≡ (D,L, C).

3.2 Constructing synthetic three-dimensional

fractal star clusters

The algorithm to construct a synthetic three-dimensional fractal star cluster

with three statistical parameters is adapted from Goodwin & Whitworth (2004). It

uses recursive octal partitioning, starting with a root-cube of side L0 = 2 centred on

the origin, i.e. −1 < x, y, z < +1. The root-cube constitutes level � = 0, and it is

de facto ‘fertile’, meaning it will be partitioned into 8 sub-cubes, which constitute

the next level. Cubes that are not fertile are not partitioned into smaller structures

and contribute no mass to the cluster. The partitioning continues until the required

number of levels, L, has been reached. The parameter L therefore controls the range

of scales in the cluster. The likelihood of a sub-cube being fertile is controlled by the

fractal dimension, D, and the density of stars in the fertile cubes on different levels

is controlled by the density scaling exponent, C.
In this section, we illustrate three-dimensional clusters generated using the

algorithm summarised in Section 3.2.5 and projected onto a randomly oriented plane,

in order to demonstrate the effect of varying the underlying parameters, D, L and

C, on the structure that would be seen in observations in the plane of the sky. For

reference we define a fiducial cluster with D = 1.58 , L = 5, and C = 3. Figures

3.1, 3.2 and 3.3 show representative randomly generated clusters that have not been

rotated. Viewing along the Cartesian axes we can more clearly identify the structural

influence of each parameter.

3.2.1 The fractal dimension, D

The fractal dimension, D, controls what proportion of sub-cubes are fertile.

This is the same on every level, as the structure is self-similar. The probability that

a given cube is fertile is given by

P
FERTILE

= 2(D−3) , (3.1)
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Figure 3.1. 2D projections of 3D fractal star clusters, all with the same L = 5 and
C = 3, but different D. (a) D = 1.00; (b) D = 1.58 (the fiducial case); (c) D = 2.00.
Increasing D reduces the amount of empty space in the cluster and increases the
number of stars.

so reducing D decreases the probability of a cube being fertile. It follows that, since

there are 8 sub-cubes in each fertile parent cube, the average number of fertile sub-

cubes per parent cube is given by

F = 2D (3.2)

The best-behaved results are obtained when F is an integer, as this results in

randomly selecting exactly F fertile subcubes at each subdivision. When F is not

an integer we must randomly select either �F� or �F� subcubes at each subdivision,

keeping a cumulative remainder, so that over the whole structure we have selected an

average of F fertile subcubes per subdivision. This causes problems because variation

in the number of fertile cubes selected at the first subdivision (level 1) can have a large

effect on the resultant structure and the measured D. We therefore limit the artificial

clusters generated to integer values of F and assume that interpolation between these

values is valid.

The fractal dimension, D, is the only parameter explicitly investigated in

CW04, but the effect it has on the Q-parameter is similar to that of varying L,
as shown in Figure 2.5.

Figure 3.1 shows clusters with three different values of D, but the same L = 5

and C = 3. The left-hand image shows a cluster with D = 1.00; in this case, the

fractal dimension is low, and each parent cube has only 2 fertile child-cubes, so the

cluster is very sparse. The middle image shows a cluster with D = 1.58; this is the

fiducial cluster with a middling fractal dimension, and each parent-cube has 3 fertile

child-cubes, so the cluster is more uniformly populated. The right-hand image shows

a cluster with D = 2.00; this is a higher fractal dimension, and each parent-cube
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Figure 3.2. 2D projections of 3D fractal star clusters, all with the same D = 1.58
and C = 3, but different L. (a) L = 4; (b) L = 5 (the fiducial case); (c) L = 6.
Increasing L decreases the size of the smallest separations compared to the overall
size of the cluster and increases the number of stars.

has 4 fertile child-cubes and 4 sterile child-cubes, so the cluster is populated more

uniformly. Thus the effect of increasing D is to increase the volume-filling factor on

every level and increase the number of stars.

3.2.2 The number of levels, L

The root-cube is labelled as level 0, and at each splitting the fertile parent

cubes are split into 8 children. The recursive division is terminated at level L, as
soon as we have created a level of sub-sub-...-sub-cubes which are smaller than the

root-cube by a factor R, so

L = log2(R) (3.3)

The root-cube has side 2, and the cubes on level � have side 21−�, so the range of sizes

is 2L = R.

In CW04, the number of stars in an artificial cluster was held approximately

constant at ≈ 300. For a lower fractal dimension, this necessitates populating more

levels and therefore L was varied at the same time as D. The resulting changes in

structure were attributed to the change in D only. In this work, we accept that a set

number of stars can only populate a certain fractal dimension to a certain number

of levels, and therefore as these parameters vary the number of stars in the artificial

cluster will also vary.

Figure 3.2 shows clusters with three different values of L, but the same D =

1.58 and C = 3. The left hand image shows a cluster with L = 3. The middle image

again shows the fiducial cluster with L = 5. The right hand image shows a cluster

with L = 7. The broad structures seen in the higher-L cases are visible, but less
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Figure 3.3. 2D projections of 3D fractal star clusters, all with the same D = 1.58
and L = 5, but different C. (a) C = 1; (b) C = 3; (c) C = ∞. Increasing C concentrates
the star more on the lower levels (smaller structures) of the hierarchy and decreases
the number of stars.

clearly defined, in the lower-L case.

3.2.3 The volume-density scaling exponent, C

Once the overall structure of fertile cubes has been specified by D and L, we
then have to decide how the mass of the star cluster will be allocated to this structure.

In CW04, one star was placed in every fertile cube on the final level. This constrains

the artificial clusters to having only a single volume density, varying only slightly

with the random placement of stars within their cubes. In this work we populate all

levels of the hierarchy, assuming that the smaller structures will be of equal or higher

density than the larger structures they are nested inside. We therefore define the

volume-density scaling exponent, C, which specifies by how much the extra density

in a fertile child-cube will exceed the density of its parent.

We define the volume-density initially assigned to the root-cube as n0 . The

additional volume-density assigned to the fertile cubes on level � = 1 is then δn1 =

n02
C. The additional volume-density assigned to the fertile sub-cubes on level � = 2

is δn2 = δn12
C = n02

2C. Sub-sub-...-sub-cubes on level � are assigned additional

volume-density δn� = n02
�C. We define our clusters such that each of the smallest

fertile cubes on the lowest level contains one star and scale the densities of the larger

cubes on higher levels accordingly.

Figure 3.3 shows clusters with three different values of C, but the same D =

1.58 and L = 5. The left hand image shows a cluster with C = 1; this is a small

scaling exponent, which means that the excess volume-density in a child-cube is not

much greater than that of its parent-cube (i.e. the substructure is not very well
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defined). The middle image again shows the fiducial cluster with C = 3, with child-

cubes slightly denser than their parent-cubes. The right hand image shows a cluster

with C = ∞, where all the stars are located in the cubes on the final level. When

C = 1 the many stars on the first level swamp any substructure on the lower levels.

We therefore concentrate on clusters with C > 1.

3.2.4 The number of stars, N�

The volume of space occupied by all the fertile cubes on level � is Vg =

8P�
FERTILE

, and hence the total number of stars in the root-cube (including stars as-

signed to the smaller cubes that are its descendants in the hierarchy) is

N
ROOT CUBE

= V0n0 +
L∑

�=1

V
�
δn

�

= 8n0

L∑

�=0

B�

=
8n0

(
B(L+1) − 1

)

(B − 1)
, (3.4)

B = 2(C+D−3) . (3.5)

The additional number of stars in a single fertile cube on the last level is

n02
3+L(C−3), and we constrain this to be unity, to be compatible with the original

‘box-fractal’ algorithm of Goodwin & Whitworth (2004). Therefore,

n0 = 2(L(3−C)−3) , (3.6)

N
ROOT CUBE

=
2(L(3−C)) (B(L+1) − 1

)

(B − 1)
. (3.7)

Each fertile cube on level � is therefore allocated

δN� = 2(�−L)(C−3) (3.8)

stars, which are positioned randomly within the cube. Non-integer numbers of stars

can occur when C < ∞ and are accommodated with a cumulative remainder.

The cluster is then pruned to fit within a sphere of radius unity, which decreases

the number of stars by a factor of approximately π/6. The total number of stars in
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Figure 3.4. A two-dimensional illustration of the repeated partitioning described in
Section 3.2.5. This example has a two-dimensional fractal dimension of 1.58, so that
3 out of 4 sub-cubes are randomly chosen to be fertile at each subdivision.

the cluster is therefore

N� �
π

6

2(L(3−C)) (B(L+1) − 1
)

(B − 1)
. (3.9)

The number of stars in a cluster increases with increasing D, increasing L, and
decreasing C.

3.2.5 Summary of algorithm

1. Start with a fertile cube of side 2 (level 0).

2. Split this cube into 8 sub-cubes and randomly select F fertile sub-cubes (level

1).

3. Split each fertile sub-cube into 8 new sub-cubes and randomly select F to be

fertile (level 2).

4. Repeat step 3 until L levels have been generated.

5. Calculate the number of stars to be placed in each fertile cube in each level,

δN�, where δNL ≡ 1.

6. Randomly position each star within its cube to reduce the imposition of a

regularly gridded structure.

7. Finally, prune the root-cube to a sphere† with radius r = 1, and project it into

two dimensions from a random viewing angle.

†We do not expect real star clusters to be exactly spherical. However, most cluster finding
algorithms will search for spherical (or circular) overdensities.



3.3. The Q+ algorithm 47

3.3 The Q+ algorithm

Given a 2D image of a star cluster containing N� stars, we seek to constrain

the parameters, Y, describing its intrinsic 3D structure. Implicitly, we assume that

the intrinsic 3D structure conforms to the fractal model described in Section 3.2.

We consider star clusters with the following properties,

D = 1.00, 1.58, 2.00, 2.32; 0.00

L = 3, 4, 5, 6, 7, 8;

C = 1, 2, 3, ∞.

There are 96 combinations in total. For each tabulated Y = (D,L, C), we calculate

the expected number of stars (Equation 3.9). We exclude clusters whose N� would

give too few stars for statistical significance or too many for computational efficiency,

leaving 65 Y states with 20 � N� � 10000. For each of these Y states, we generate

100 independent star clusters and compute a variety of measures that might help to

constrain the parameters of the underlying cluster structure.

3.3.1 Measures derived from Complete Graphs and Mini-

mum Spanning Trees

We define a set of discriminating measures that distinguish the 3 parameters

of an artificial fractal model based on the Minimum Spanning Tree and the Complete

Graph (see Appendix A for a full description of these graphs and their derivation).

D and L influence many of these measures so we combine the 6 best measures using

Principle Component Analysis. However, C has a more subtle effect on the struc-

ture and does not strongly influence most of the measures. We therefore treat this

parameter separately once D and L have been estimated.

We first construct the Complete Graph, i.e. the collection of N�(N� − 1)/2

edges (straight lines) connecting each star with every other star. The length of the

edge joining stars i and j on the Complete Graph is termed sij.

Next we construct the Minimum Spanning Tree (MST), i.e. the collection of

N�−1 edges that connects every star directly to at least one other star with no closed

loops, and has the minimum total length. The length of the kth shortest edge on the

MST is termed mk.

We assume that the cluster is spherical, and therefore its projection is circular,

with radius r. We do not introduce the notion of a convex hull (c.f. Schmeja & Klessen,

2006), since a cluster generated on the assumption of spherical symmetry, but with
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a low fractal dimension, D, and/or a high volume-density scaling exponent, C, can
have an extremely elongated convex hull (see Figures 3.1, 3.2 and 3.3); it still belongs

to a family of clusters built upon the assumption of spherical symmetry.

The 7 statistical measures that are most useful in classifying the structure are

the following:

1. the logarithm of the number of stars,

log(N�); (3.10)

2. the logarithm of the range of edges on the Complete Graph, log(R), which is

given by

log(R) =
s
MAX

s5

, (3.11)

where s
MAX

is the largest edge on the Complete Graph, and s5 is the fifth

smallest;‡

3. the normalised mean edge length on the Minimum Spanning Tree, m̄, which is

given by

m̄ =
(N� − 1)

(πN�)1/2r

k=N�−1∑

k=1

{mk} ; (3.12)

4. the normalised mean edge length on the Complete Graph, s̄, which is given by

s̄ =
2

N�(N� − 1)r

i=N�−1∑

i=1

j=N�∑

j=i+1

{sij} ; (3.13)

5. the mean of the edge lengths on the Minimum Spanning Tree, µm, which is

given by

µm =
1

N� − 1

k=N�−1∑

k=1

{mk} ; (3.14)

6. the standard deviation of the edge lengths on the Minimum Spanning Tree, σm,

‡Whereas the largest edge on the Complete Graph, s
MAX

, is relatively robust – in the sense that,
if (D,L, C) are held constant, it varies very little from one realisation to another – the smallest edge,
sMIN , is not. sMIN has a large variance because it is usually determined by one chance alignment,
and therefore can be arbitrarily small. We mitigate this problem by using the fifth smallest edge,
s
5
. In the same spirit, Larsen (2009) used the 5th brightest cluster in a galaxy as representative of

the absolute magnitude, and this practice is often used in extragalactic statistics.
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which is given by

σ2
m =

1

N� − 1

k=N�−1∑

k=1

{
(mk − m̄)2

}
; (3.15)

7. the area above the cumulative distribution of MST edges, A, normalised by the

number of stars and the size of the cluster. This is given by

A = 1−
m0 +mN�−1

+ 2
N�−2∑
k=1

m
k

2smax(N� − 1)
, (3.16)

and reflects the proportion of very short edges on the MST (see Section 3.3.3).

Figure 3.5 shows how the means and standard deviations of the 7 statistical

measures (log(N�), log(R), m̄, s̄, µm, σm, A) vary when each of the parameters defining

the statistical state, Y, is varied, with the other two held constant at their fiducial

values, D = 1.58, L = 5, and C = 3. The frames in the left hand column show what

happens when D is varied. The frames in the middle column show what happens

when L is varied. And the frames in the right hand column show what happens

when C is varied. The plotted points are the means, and the error bars represent the

standard deviations. The seventh measure, A, is only used to find C and therefore

not plotted against D and L.

3.3.2 Estimating D and L

We use Principal Component Analysis (PCA, described in detail in Appendix

D) to combine the measures described in Section 3.3.1 to reduce the number of di-

mensions.

In this work we have 6 variables, Z = (log(N�), log(R), m̄, s̄, µm, σm), and 6500

data points (100 randomly generated clusters for each of the 65 Y-states). Most of

the measures can be reasonably approximated as linear except for µm and σm (see

Figure 3.5). The ranges of the measures vary considerably, which would suggest that

the correlation matrix should be used in this case. However, after analysing the

effectiveness of this algorithm when using the correlation and covariance matrices,

we find that using the covariance matrix results in a better separation of Y-states.

Examination of the relative weights of the measures in the two selected PCs reveals

that when the covariance matrix is used, the weight of the non-linear measures is
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Figure 3.5. The variation of the statistical measures, (log(N�) (first/top row),
log(R) (second row), m̄ (third row), s̄ (fourth row), µm (fifth row), σm (sixth row),
and A (seventh/bottom row)) with the parameters defining the statistical state, (D
(left hand column), L (middle column), and C−1 (right hand column)). The line gives
the mean and the error bar gives the standard deviation. Whichever statistical-state
parameter is being varied, the other two are held constant at their fiducial values,
viz. D = 1.58 , L = 5, and C = 3.
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Figure 3.6. The variation of the principal components with the parameters defining
the statistical state, (D, L, C). The line gives the mean and the error bar gives one
standard deviation. Whichever statistical-state parameter is being varied, the other
two are held constant at their fiducial values, viz. D = 1.58, L = 5, and C = 3. D
and L vary almost orthogonally in the PC space, while the variation in C overlaps
with D and is therefore more difficult to separate.

suppressed because of their much smaller ranges. We therefore use the covariance

matrix in calculating the Principal Components.

We chose to keep only the two most significant PCs (henceforth referred to as

PC1 and PC2), where

(
PC1

PC2

)
=




−0.354 −0.832

−0.934 0.300

0.026 −0.417

0.022 −0.193

0.031 −0.019

0.020 0.082




T

× [
(
Z
)
−
(
Z̄
)
]T (3.17)

as they encapsulate most of the variance of the data set and make the system very

easy to visualise. Figure 3.6 shows how the values of PC1 and PC2 change as the

structure of the clusters is changed around the fiducial values.

Each of the 6500 clusters (100 for each of the 65 Y states) is transformed into
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Figure 3.7. The variation of the principal components with D (top row) and L
(bottom row). The colour corresponds to the mean value (left hand plots) and stan-
dard deviation (right hand plots) of each parameter for each square in a 50x50 grid
covering the full parameter space. Areas where there are no data points are white.

PC space using Equation 3.17. In order to estimate the parameters of a test (real or

artificial) cluster and quantify the uncertainty on this measurement, we grid all the

6500 clusters in PC space on a 50 x 50 regular grid covering the full extent of the

data. In each grid square we find all clusters falling in that area, and calculate the

mean and standard deviation of their D and L values (see Figure 3.7).

The fractal dimension increases somewhat with decreasing PC 1, and increases

strongly with decreasing PC 2 (see Figure 3.7, top row). Areas of low D have very

low σD (in many cases zero) because in this area a small change in parameters makes

a large difference in detectable structure, so the different Y values are quite well

separated. Middling fractal dimensions (D � 1.58) have higher errors (σD > 0.3)

because the Y states are less well separated; however even the maximum standard

deviation from the mean would only encompass the immediate neighbours in Y-space

(D = 1.00 or 2.00). The areas of highest D have again lower errors in D; even though

clusters in this area are not well separated, they all have high D as it is the edge
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of the parameter space explored. We find that any cluster with D ≥ 2.32 becomes

indistinguishable from smooth structure. In three dimensions, clusters with D = 2.32

occupy ≈ 60% of the volume of their containing sphere. However, when projected into

two dimensions this will fill ≥ 90% of the area of the containing circle, so they appear

smooth. We therefore classify all clusters with D ≥ 2.32 as not having distinguishable

fractal structure. It should be noted that clusters with very low C also fall in this

region, regardless of their D values, since the larger structures swamp the substructure

on lower levels and erase the signs of substructure.

The number of levels increases with decreasing PC 1 and increasing PC 2 (see

Figure 3.7, bottom row). The errors on L are low in most areas, particularly on the

edges of parameter space where they drop to zero. The high values of σL occurring

for PC 1 > 4 and PC 2 ≈ 0.2 are caused by small number statistics at the very edge

of the parameter space. We consider that clusters with L < 4 will not have enough

of a nested hierarchy to be described in terms of fractal structure. Clusters falling in

this area are therefore classified as not fractal.

D and L both vary systematically across the range of the PCs (see Figure 3.6).

C, on the other hand, varies only locally around a particular Y-state, and in the same

direction as the variation in D. Another method is therefore needed to estimate C
once D and L have been estimated from the principal components.

3.3.3 Estimating C

Figure 3.8 shows how the cumulative distribution of MST edges (normalised

by the size of the cluster, smax, and the total number of edges, N� − 1) varies with C
for set values of D and L. A cluster with higher C will have a greater proportion of

short edges, shifting this curve to the right. The area above this curve, A, therefore

increases with increasing C, but this also varies with D and L. Therefore, for each

combination of D and L we measure A for all artificial clusters and find how it changes

with C.
For a test cluster, once D and L have been estimated using the PCs, we use

Bayes’ theorem to infer the posterior probability of C, given A.

P (C|A) = P (A|C)P (C)
P (A)

(3.18)

This equation is explained in greater detail in Appendix B. The likelihood of a

particular A, given C (P (A|C)) is calculated from the mean and standard deviation of

A (µAC , σAC) over the 100 realisations at each Y-state. We calculate the probability



54 Chapter 3. Q+ algorithm

0.00 0.02 0.04 0.06 0.08 0.10
mk/smax

0.0

0.2

0.4

0.6

0.8

1.0

k
/(
N

−
1)

C = 1

C = 2

C = ∞

Figure 3.8. The cumulative distribution of minimum spanning tree edges for differ-
ent density scaling exponents, and the fiducial D = 1.58, L = 5.

of the test A value belonging to each Y-state,

P (A|C) = 1

σ
√
2π

exp

{
− (A− µAC)

2

2 σ2
AC

}
(3.19)

P (C) is a weight given to each value of C based on prior knowledge of the distribution.

In this case, each value of C is given equal weight. P (A) is a normalisation constant

to ensure that the probabilities add up to unity. We calculate the expectation value

of C and its standard deviation from the posterior probabilities, i.e.

EC =

∑
P (C|A)C∑
P (C|A)

(3.20)

σ2
C =

∑
P (C|A)(C − EC)

2

∑
P (C|A)

(3.21)
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Figure 3.9. The Chamaeleon I cluster with (open star) and without (filled star)
binaries superimposed on the L grid. It lies outside the parameter space if binaries
are left in, but moves into the area of fractal clusters when binaries are removed. The
colour gives the average value of D in each pixel, as in Figure 3.7.

3.4 Usage

The only input to this algorithm is the two-dimensional positions of the stars

in the real, synthetic or simulated cluster.

3.4.1 Binaries and multiple systems

The artificial clusters generated for this analysis model hierarchical nested

clustering, which provides a suitable way to quantify the sub-structure of young star

clusters. However, one major feature of the structure of real star clusters that is not

modelled in this work is binary or higher order multiple systems. If these are present

in a cluster, they will produce many of the shortest edges in both the Complete Graph

and the Minimum Spanning Tree, and will therefore significantly skew some of the

measures.
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Larson (1995) discussed the relation between hierarchical clustering and mul-

tiple systems and found that they showed a distinctly different distribution of sep-

arations. Gladwin et al. (1999) examined this in several clusters and found a char-

acteristic separation of ≈ 0.03 pc that distinguishes hierarchical clustering from the

regime of binary and multiple systems. We use this to remove the effect of binaries

from real clusters before analysis.

Pairs of stars separated by less than 0.03 pc are classified as binaries. How-

ever, some pairs of stars with small enough separations to be defined as “binary” will

be generated when an artificial cluster is viewed in two dimensions, due to chance

alignments of stars which are well separated in the third dimension. Numerical ex-

periments with artificial clusters across the parameter space show that this is simply

dependent on average surface density:

log
10
(Nbin) = 1.86 log

10
(N�/πR

2
cluster)− 0.56 (3.22)

where Nbin is the number of chance alignments smaller than 0.03 pc and Rcluster is

the maximum distance in parsecs of any star from the mean position of all the stars.

This can be easily calculated for a real cluster. When small separations are found

in a real cluster they are randomly removed until the number does not exceed the

predicted Nbin, thereby removing the effect of binaries on the statistical measures but

without removing the proportion of small separations expected from projection. In

the case of higher order multiples, this will result in the whole system being replaced

by a single star. In effect, we are studying the hierarchical distribution of systems,

rather than of stars.

In the 4 real clusters analysed in Section 4.1 the effect of removing binaries

decreases log(R) by ≈ 30% and increases µm by ≈ 20%.

Figure 3.9 shows the effect of binary systems in a real cluster on its position

in Principle Component space. Using the original data of Chamaeleon I from Kirk

& Myers (2011) as an example, the result lies well outside the parameter space of

artificial fractal clusters. Once binaries have been removed, the cluster falls well

within the parameter space explored. This procedure is therefore applied to all real

clusters before the Q+ analysis.

3.4.2 Running and results

We first build the CG and MST of these points, and compute the six measures,

Z = (log(N�), log(R), s̄, m̄, µm, σm). These are transformed into principal components

via Equation 3.17. The values of the PCs identify which grid square the test cluster
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falls into (see Figure 3.7) and the mean and standard deviation of artificial clusters

in that grid square give an estimate and uncertainty for the D and L values of the

test cluster. We then calculate the value of A for the test cluster and compare to the

analytic clusters with the same D and L using a Bayesian approach to estimate C
and its error.

3.4.3 Observational effects

Our methods of identifying and delineating star clusters are not perfect. When

this algorithm is applied to observations of real star clusters there are several obser-

vational effects that need to be considered.

Stars in the background or foreground may be erroneously identified as cluster

members. Assuming this population is more evenly distributed than the substruc-

tured young cluster being analysed, this should make the cluster appear smoother,

with a higher D. The addition of more evenly distributed stars would decrease the

average edge length of the Minimum Spanning Tree as well as increasing log(N�).

This would lead to a small decrease in PC1 and a larger decrease in PC2, which in

turn would result in a small overestimate of the fractal dimension and number of

levels. This would also affect the estimate of C, as the addition of more short edges

to the MST would lead to a lower C.
Crowding and incompleteness are very different issues observationally, but will

have similar effects on the Q+ algorithm. Both result in a reduced number of stars -

crowding in the centre of dense clusters causes multiple stars to blur together and be

detected as one bright source, while incomplete observations will neglect a population

of lower mass stars. Incompleteness only affects the lower mass stars, while crowding

affects stars of any mass but only in the densest areas, but the Q+ algorithm does not

take into account the mass of the stars so the effects will be similar. Both will reduce

the number of stars and increase the average edge length of the MST. They may

remove many of the shortest edges of the MST, therefore increasing log(R) which has

a large effect on PC1. This will reduce the estimate of the number of levels. However,

the Q+ algorithm does not examine the separation of binary and multiple systems,

as discussed in Section 3.4.1. This puts a limit on the scales we need to resolve in

order for the results to describe the true fractal structure.

Finally, observations are limited in terms of their field of view. In the fractal

model described in Section 3.2 we account for this effect by imposing a spherical

outline on the clusters. This will remove some of the outlying stars, but this effect

should be the same in observed clusters as we tend to focus our observations on the
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bright centre of clusters and therefore may miss outlying members. If a small section

of a cluster is analysed we would expect the fractal dimension of the cluster to still be

recovered, as the nature of fractals implies similarity over a range of scales. However,

this is only the case if there are enough levels in the hierarchy to still give meaningful

results. If the full cluster has a high number of levels, we would expect the analysis

of a part of that cluster to result in the same D and C but a lower L.

3.5 Evaluation with synthetic star clusters

In order to test the reliability of this algorithm, we apply it to artificial clusters

with known structure and test the accuracy of the Q+ method in recovering the

input parameters. We focus our attention on clusters with D = 1.00, 1.58 and 2.00,

L = 4, 5 and 6 and C = 2, 3 and ∞. For each of these 27 Y-states, we have created

10 synthetic fractal star clusters, projected them at a random angle, and analysed

them using the algorithm described in Section 3.3. We find the means and standard

deviations of D
OUT

/D
IN
, L

OUT
/L

IN
, C

OUT
/C

IN
, where Y

i, IN
is the value of Yi that went

into the construction of a synthetic three-dimensional star cluster, and Y
i,OUT

is the

value of Yi estimated from the projected two-dimensional image of this cluster. These

values are given in Table 3.1.

We can see that D and L are reliably estimated across the parameter space,

although a low D is often overestimated when L is low. C is not as well constrained,

particularly when C = ∞. This could be improved by creating more analytic clusters

with different values of C to give more a priori information for the Bayesian analysis,

but as this is fairly computationally intensive we leave this to future work. Once use

of this algorithm has revealed the areas of parameter space populated by real and

simulated clusters, we can focus our attention on improvements in these regions.
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3.6 Conclusions

We present a new algorithm for quantifying the fractal nature of young star

clusters in terms of three parameters:

• the fractal dimension, D - a measure of the clumpiness or smoothness of the

distribution;

• the number of levels, L - a measure of the range of scales of substructure within

the overall cluster;

• the density scaling exponent, C - a measure of the relative distribution of mass

on the different scales.

The algorithm is able to reliably classify the internal structure of young stellar clusters

within a parameter space bounded by the following limitations:

1. L ≤ 3 will not have enough substructure to be detectably fractal.

2. D ≥ 2.32 will fill most of the area when projected into 2D, and therefore appear

smooth.

3. C ≤ 1 will overpopulate the higher levels and swamp any substructure on smaller

scales.

We anticipate that this method will be useful for:

• quantitative and objective analysis of large numbers of structures in the huge

data sets available from modern observing methods;

• unbiased analysis of the results of simulations in 2 or 3 dimensions;

• analytical comparison of observational and simulated data sets to validate re-

sults and inform inferences about the similarity of observed regions to simulated

regions.

The Q+ algorithm is available at https://github.com/SJaffa/Q_plus.

https://github.com/SJaffa/Q_plus
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The Q+ algorithm is applied to observed positions of YSOs in some well known

clusters, and to data sets from SPH simulations of colliding clouds. The resulting

estimates for (D,L, C) are discussed and explained in terms of the visually apparent

variation in structure. The evolution of fractal substructure is discussed and simula-

tions of high mass cluster evolution are analysed.

∗The work presented here is published in Jaffa, Whitworth & Lomax, 2017, MNRAS, 446, 1082,
and in Sills, Rieder, Scora, McCloskey & Jaffa, 2018, MNRAS, in press
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4.1 Application to observed star clusters

4.1.1 Data

Kirk & Myers (2011) have used Spitzer (Werner et al., 2004) near-IR data,

in combination with ground based spectral surveys, to examine the clustering of

Young Stellar Objects (YSOs) in four nearby star forming regions. They restrict

their analysis to stars which are less than several Myr old, so that they are unlikely

to have migrated far from their birthplace, but are old enough to have a reliable

estimate of spectral type (Class I/II). For full details of the source catalogues, see

their Appendix A. We use their data (plotted in Figures 4.1, 4.2, 4.3, and 4.4 and

summarised in Table 4.1) to show the capabilities of the Q+ algorithm to quantify

structure in observations.

Region: Taurus ChaI Lupus 3 IC348
Number of sources: 352 237 70 363

Distance adopted (pc): 140 160 200 300

Table 4.1. Properties of the YSO groups collected by Kirk & Myers (2011)

4.1.2 Results

Figure 4.5 shows the placement of the 4 real clusters in Principal Component

space after binaries have been removed. The estimated parameters of the 4 clusters

are given in Table 4.2 along with previous estimates of their structure.

Both Taurus and Chamaeleon I show clear sub-structure, but Taurus appears

to be more clumpy, which is reflected in the lower D. Taurus is the largest of these 4

regions, so the sub-structure has a greater range of scales. This is quantified by the

high value of L. The estimated parameters are compatible with a visual inspection of

the data (see Figures 4.1, 4.2, 4.3, and 4.4) whilst having the merit of being objective

and quantitative, whereas visual inspection is subjective and qualitative.

The estimated fractal dimensions are lower than those obtained using the

original Q parameter, but the trend is the same. IC 348 was classified by CW04 as

not having sub-structure but being centrally concentrated. Our analysis agrees with

this, although we are not able to quantify the structure, only to say that it is not

measurably sub-structured. Lupus 3 was not analysed in CW04, but our analysis
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Figure 4.1. Young stellar objects in Taurus and the corresponding MST.
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Figure 4.2. Young stellar objects in Lupus 3 the corresponding MST.



4.1. Application to observed star clusters 65

Figure 4.3. Young stellar objects in Chamaeleon I and the corresponding MST
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Figure 4.4. Young stellar objects in IC 348 and the corresponding MST.
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Figure 4.5. Real clusters superimposed on the background of mean D.

shows it to be highly sub-structured, but over a smaller range of scales than Taurus

(lower L). It also has a higher C, which reflects the fact that there are very few stars

outside the main dense clump, while Taurus and Chamaeleon I have more widely

distributed stars outside the densest regions.

The distribution of young stars is expected to follow that of the molecular

clouds from which they are born (Elmegreen & Falgarone, 1996). Most fractal mea-

sures of molecular clouds have found values in the region of 2.3, which suggests a

smoother distribution than that found in these clusters. However, combining frac-

tal dimensions measured with different methods may be misleading (see Chapter 2).

Furthermore, previous methods have often considered the fractal dimension to be the

only parameter of import. In Chapter 5 we discuss the application of the Q+ algo-

rithm to continuum images such as molecular cloud maps, which will enable a more

meaningful like-for-like comparison.
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Cluster: Lupus 3 Chamaeleon I Taurus IC 348
D = 1.0± 0.0 1.5± 0.2 1.0± 0.0 Not Frac.
L = 7.0± 0.3 5.2± 0.4 8.0± 0.0 –

C−1 = 0.1± 0.0 0.4± 0.0 0.4± 0.0 –
CW04 N/A D = 2.25 D = 1.5 α = 2.2

Table 4.2. Parameters estimated for the four real clusters after the removal of
binary or multiple systems. The fourth row gives the results quoted in CW04 using
the original Q parameter method, where D is the fractal dimension and α is the radial
density exponent.

4.2 Application to simulations of cloud-cloud

collisions

4.2.1 Data

Balfour et al. (2015) conducted Smooth Particle Hydrodynamics (SPH) simu-

lations of colliding clouds to investigate how the collision speed influenced the resul-

tant star formation. Figure 4.6 shows representative images from their simulations;

the background image represents the column density of the cloud and the black dots

are sink particles representing protostars. Each of these simulations is viewed along

the collision axis. The slower collisions produced a ‘hub and spoke’ pattern of radial

filaments in the compressed layer, with most star formation taking place in the centre.

The higher speed collision produced a more complex ‘spider’s web’ structure, where

protostars are formed at the junctions between filaments.
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v0: 1.2 1.4 1.6 1.8 2.0
D = 1.0±0.0 1.1±0.2 1.2±0.3 1.0±0.1 Not Frac.
L = 6.3±0.4 4.8±0.6 4.8±0.7 5.1±0.6 –
C = 1.0±1.7 0.0±0.9 0.0±0.9 1.3±3.3 –

Table 4.3. Parameters estimated for the sink particles from the simulations of
Balfour et al. of clouds colliding at different speeds, v0, given in km s−1.

4.2.2 Results

Figure 4.7 and Table 4.3 show the results of analysis of these clusters. At

the slowest speed, the compressed layer between the two clouds begins to collapse

radially, resulting in a centrally concentrated layer. Star formation predominantly

takes place in the centre of this layer resulting in a very tight cluster of stars with a

low fractal dimension and a high number of levels. The results for the intermediate

speeds are very similar as the gas distribution is still dominated by radial filaments

but the central clump is not as tight. This is characterised by a lower L than the

slowest collisions. These intermediate collisions also have a higher C than the slowest

collisions. This indicates that more of the stars are concentrated in the small dense

cluster. In the case of the slowest collision we believe that many of the stars that are

outside the central clump were not formed there but ejected by dynamical interactions

in the dense central clump. This therefore does not reflect the position at which the

stars were born, but this dynamical evolution is very rapid in small, dense clusters

so the chance of observing a cluster before this occurs is very small. The fastest

collisions produce an extended network of filaments, with star formation taking place

at the junctions between filaments. This produces a more dispersed cluster that is

classified as not sub-structured.

The estimated parameters given for the slowest collision simulation are similar

to the observational results for Lupus 3. Figure 4.8 shows the positions of YSOs

in Lupus 3 and the sink particles in the simulation, for comparison. This similarity

suggests that Lupus 3 may have formed following a slow collision like that simulated

by Balfour et al. (2015).
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Figure 4.7. Results of analysis of sink particles produced by colliding clouds with
different relative velocities superimposed on the background of mean D.
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Figure 4.8. Comparison of the Lupus 3 cluster and simulation results for slowly
colliding clouds.
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4.3 Application to simulations of evolving young

embedded clusters

4.3.1 Data

Sills et al. (2018) have performed simulations of the evolution of massive young

clusters in a gas envelope. Using initial conditions drawn from the MYStIX Project

(Feigelson et al., 2013) and supplemented by a low mass stellar population (to extend

the IMF from 0.83 down to 0.08 M�) and an extrapolated gas envelope, they couple a

collisional N-body code with a hydrodynamics code to follow the interaction of stars

and gas. They study the evolution of three initially sub-structured massive clusters:

DR 21, NGC 6357, and M17. The structure of each of these has been analysed by

Kuhn et al. (2014) to identify sub-clusters, and the gas envelope and low mass stars

have been constructed to match this substructure.They perform a range of simulations

varying the initial velocities of the stars and gas, the gas mass fraction and the galactic

position of each cluster. We concentrate here on the fiducial simulations which are

initialised in virial equilibrium and with no relative velocity between the sub-clusters.

4.3.2 Results

All of the clusters were initially analysed with the Q+ algorithm, to constrain

their fractal structure. When the clusters evolved to become centrally concentrated

we then used the original Q parameter to constrain their radial density exponent.

The fractal dimension of the DR21 fiducial simulation was consistently low (quite

clumpy) until the sub-clusters merged at around 0.5 Myr. However, during that

time, the number of levels and the density scaling exponent both decrease, suggesting

that the stars from the smallest sub-clump(s) are spreading out to fill the larger

hierarchy. The fractal parameters are given in Table 4.4. After the clumps merge

at ∼ 0.5 Myr, the region completely loses its fractal structure and is consistent with

a centrally concentrated system. The central stellar density increases with time, as

does the radial density gradient.

If we limit our analysis to only the high mass stars (M > 0.83M�) that were

taken from the MYStIX observations, and exclude the low mass stars added for

completeness, we can compare the structure that would theoretically be seen by an

observer to the full structure in the simulations. These results are shown in Figure 4.9.

For the initial conditions of DR21, this mass limited analysis gave a lower fractal

dimension and density scaling exponent than analysis of the full cluster, but a similar
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Table 4.4. Fractal parameters recovered for the simulation of the evolution of DR
21. After 0.5 Myr the fractal structure is lost and the system becomes centrally
concentrated.

Timestep (Myr) D L C
0.0 1.6± 0.0 8.0± 0.0 20± 0
0.1 1.6± 0.0 8.0± 0.0 20± 0
0.2 1.6± 0.0 8.0± 1.0 20± 0
0.3 1.6± 0.0 7.7± 0.0 20± 0
0.4 1.6± 0.0 7.0± 0.0 3± 10
0.5 1.6± 0.0 7.0± 0.0 3± 10

number of levels. This suggests that the observable higher mass stars populate a

more clumpy distribution, but are not confined to the smallest sub-clumps. Their

evolution showed the same trend as the full cluster. The high mass stars in M17

and NGC 6357 exhibit similar behaviour; the initial conditions have a low fractal

dimension and high number of levels, but the substructure is quickly erased (within

1-2 Myr) and the cluster becomes centrally concentrated. We note that when the

full clusters are analysed, M17 would not be classified as fractally sub-structured and

NGC 6357 only just so. It is only when we analyse the high mass component of these

two clusters that the sub-structure is reliably detected.

4.4 Conclusions

The analysis of observed clusters shows that real star clusters have structure

across a large range of the parameter space modelled in this work, from highly sub-

structured to smooth or centrally concentrated, and with a large difference in scales.

Analysis of the four clusters studied in CW04 has confirmed that the Q+ method

detects the same trends in structure as previously detected, although the estimates

of fractal dimension are somewhat lower. Further investigations of observed data

sets may reveal interesting similarities and differences between clusters in different

environments that could constrain the underlying physical processes.

The quantitative analysis of simulation results enables a robust measurement

of the effects of changing conditions as well as direct comparison to observations.

The analysis of clusters produced in slow cloud-cloud collisions are fractally substruc-

tured, but faster collisions produce centrally concentrated clusters. While synthetic

observations are invaluable in connecting simulation results to observable effects, the

analysis of raw simulation data is also a useful tool for model testing and deeper

understanding of the complex star formation process.
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Figure 4.9. Figure showing the evolution of the structure over time in simulations
of DR 21, M17 and NGC 6357. We analyse only the massive stars taken from the
MYStIX observations, as this should be similar to what observers would be able to
detect. Filled symbols indicate lower limits (α ≥ 3) as the analysis we perform cannot
estimate radial density exponents greater than 3. The larger symbols on the x-axis
indicate the time at which each cluster has lost its fractal substructure.
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The evolution of the fractal parameters of young embedded clusters in sim-

ulations shows that the substructure with which clusters are born is very quickly

dynamically erased, usually within 1 Myr. They then become increasingly centrally

concentrated. This fits with the observationally informed picture that younger clus-

ters are more substructured than older clusters, but investigation of a broader range

of initial conditions would be needed to investigate how and when substructure can

survive dynamical evolution.
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The adaptation of the Q+ algorithm to analyse continuum images is discussed and

tested. Column density maps of star forming regions are transformed into a statis-

tically similar distribution of points and analysed to measure the fractal structure of

star forming regions.
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5.1 Introduction

The Q+ algorithm is designed to statistically constrain the 3D structure of

a set of points from a 2D projection, and quantify the presence of sub-structure in

terms of three parameters:

• the fractal dimension, D - a measure of the clumpiness or smoothness of the

distribution;

• the number of levels, L - a measure of the range of scales of substructure;

• the density scaling exponent, C - a measure of the relative distribution of mass

on the different scales.

This allows us to reliably constrain and compare structures in observed and simulated

star clusters. However, the molecular clouds and cloud complexes in which star

formation takes place also exhibit substructure, famously characterised by Larson’s

scaling relation (Larson, 1981),

M ∝ R2. (5.1)

We assume that the hierarchical structure inherent in molecular clouds can also be

described in terms of fractal geometry, and could therefore be analysed using Q+.

The Larson scaling relation would be analogous, although not strictly identical, to a

density scaling exponent of C = 1.

Using this method to analyse both the molecular cloud structure and the

clusters that form within it would enable unbiased comparison of structure between

these two main phases of star formation. In Section 5.2 we describe the method to

convert an image into a set of points, and in Section 5.2.1 we discuss how many points

should be used to adequately represent the full cloud structure. Finally, in Section

5.3 we show how the Q+ algorithm can be applied to continuum data to analyse the

structure in observations of the Galactic plane.

5.2 Turning clouds into points

The Q+ method is calibrated against star clusters created using the ‘box frac-

tal’ method described in Section 3.2. Synthetic clouds created by simple Gaussian

smoothing of these clusters should therefore give the most reliably similar cloud struc-

ture. We have tested this by smoothing the clusters to create a cloud and then con-

verting the cloud back to a set of points (using the method discussed in Section 2.2.3),

and reanalysing the results with the Q+ algorithm, to show that the statistically sig-

nificant structure is maintained.
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Figure 5.1. One fractal cloud decomposed into distributions with different Npts,
resulting in different locations in Principal Component space.

5.2.1 The number of points, Npts

In the method explained is Section 2.2.3, the choice of how many points to place

within the distribution is a free parameter. However, when analysing the data using

the Q+ algorithm, the number of points can have a large effect on the parameters

recovered. For example, Figure 5.1 shows the effect of analysing the same cloud

(D = 1.58,L = 6, C = ∞) having converted it into different numbers of points.

Lomax, Whitworth & Cartwright (2011) used an alternative method of decomposing

an image into a set of points and advocated using Npts = Npixels. However, in the

box fractal method of creating artificial star clusters, on which the Q+ algorithm is

based, each particular Y-state (D,L, C) is populated by a set number of points, as

we scale all densities to the smallest scale which is constrained to have one star per

fertile leaf cube. There is a small variation due to imposing a spherical envelope onto

the cube structure, which slightly varies the final number of stars.

To test this we create synthetic fractal clouds with varied D, L, and C around

the fiducial values (D,L, C) = (1.58, 5, 2). In this case we use a lower fiducial density

scaling exponent than when this method is applied to clusters, because clouds are
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Figure 5.2. The range of fractal clouds with varying parameters when populated
with 400 points in Principal Component space. The different symbols denote the
number of levels of the input distribution and the colour denotes the fractal dimension.
The scattered points also include varied density scaling exponent but this is not shown
as it displays no clear trend.

expected to have C = 1 from Larson’s scaling law (Larson, 1981). We create 2D images

each with 20 x 20 pixels and then convert each of these into points distributions with

Npts = Npixels = 400. We can see in Figure 5.2 that the recovered parameters are

confined to a thin strip of Principal Component space, corresponding to combinations

of D and L that give N ≈ 400. This severely limits the parameters that can be

recovered and is therefore not suitable to recover the true fractal structure of the

clouds.

An alternative approach is to scale the number of points proportional to the

mass of the cloud. For example, the synthetic clouds constructed using the ‘box

fractal’ method have masses in the range 102 − 104 M�. The artificial clusters used

to calibrate the Q+ method contained 101 − 103 points. We therefore assume each

point represents 10 M�, to produce a number of points that fits within the expected

distribution. This method does not confine the results to a subset of (D,L, C) values,
and gives a better estimate of the input parameters of the artificial cloud. This is
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demonstrated in Table 5.1, which shows the ratio between the parameters used to

construct the cloud and the parameters recovered by the Q+ algorithm. This method

tends to overestimate the density scaling parameter C, but gives a reliable estimate

of the fractal dimension, D, and number of levels, L.
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Figure 5.3. HiGAL tiles in the third galactic quadrant, taken from Elia et al. (2014).

5.3 Applying Q+ to observations

The Hi-GAL survey provides detailed images of the Galactic plane in 5 wave-

length bands. We select 4 tiles in the third galactic quadrant, with longitudes between

217◦ and 224◦, shown in Figure 5.3. Table 5.2 gives the results of the Q+ algorithm on

these column density maps. The number of levels is reasonably consistent across the

tiles. The central two tiles (�222 and �220) have lower fractal dimensions, indicating

a more clumpy structure than the outer tiles (�224 and �217). At first glance this

seems contrary to a visual inspection of the maps, as our eye is drawn to the bright

substructures prominent in the outer tiles. However, the density scaling exponent of

the outer tiles is very high, indicating that the mass is concentrated in the smallest

levels of the hierarchy, while in the inner two tiles the density scaling exponent is

lower, indicating that the mass is more evenly distributed on all levels.

Elia et al. (2014) (hereafter E+14) used these observations to examine the

structure of the ISM. E+14 used the ∆-variance method (see Section 2.3.4) to infer

a fractal dimension, D∆v, for each of the 4 emission maps at different wavelengths

(160, 250, 350, and 500 µm) for the 4 tiles across this longitude range, as well as the

column density maps. Their results for the column density maps are also presented

in Table 5.2. It should be noted once again that the fractal dimension measured by

Q+ varies from 1 (clumpy) to 3 (smooth), while DfBm varies from 3 (clumpy) to 2

(smooth). We therefore expect an inverse correlation. However, we do not find any

clear correlation between the fractal dimensions measured using the two methods, as

shown in Figure 5.4.
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Tile : � = 224 � = 222 � = 220 � = 217
D = 2.2± 0.2 1.8± 0.2 2.1± 0.2 2.3± 0.0
L = 5.5± 0.5 5.4± 0.5 5.0± 0.0 5.0± 0.0
C = 10.0± 0.0 2.0± 0.0 2.0± 0.0 3.3± 0.0
D∆v 2.61 2.64 2.83 2.93

Table 5.2. Parameters estimated for the HiGAL column density maps. The fourth
row gives the results quoted in E+14, using the ∆-variance method. This measure of
fractal dimension ranges from 2 (smooth) to 3 (clumpy), i.e. in the opposite direction
to the Q+ definition of DQ+ .

1.5 2.0 2.5 3.0 3.5 4.0
D∆v

1.0

1.5

2.0

2.5

3.0

D Q
+

�217

�220

�222

�224

160µm

250µm

350µm

500µm

Col dens

Figure 5.4. A comparison of the fractal dimension measured by the ∆-variance
method (E+14) and the Q+ algorithm for 4 Hi-GAL tiles. The colour indicates the
approximately central longitude of the tile and the symbol indicates whether the
analysis used the Herschel image at a particular wavelength or the column density
estimated from them.
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5.4 Conclusions

The Q+ algorithm has previously been shown to robustly quantify the fractal

substructure of star clusters in terms of three parameters: the fractal dimension,

DQ+ ; the number of levels, L; and the density scaling exponent, C. Molecular clouds

also display substructure and we expect the they would impart this structure to the

clusters they spawn. We therefore test methods of applying this same algorithm to

continuum data to enable a direct comparison of the fractal properties of molecular

clouds and young star clusters.

We describe a method for converting a continuum image into a statistically

representative set of points by using it as a probability density function. We dis-

cuss the number of points that should be used as this strongly affects the range of

parameters that can be recovered. We conclude that scaling the number of points

by the total mass of the clouds being studied gives the best estimate of the fractal

parameters.

We apply this analysis to four tiles of the Herschel Hi-GAL survey, testing

the individual intensity maps at different wavelengths as well as the derived column

densities. These tiles have previously been studied using an alternative method of

calculating a fractal dimension, but we find no clear relation between the fractal

dimensions found in this analysis. However, different methods of calculating fractal

dimensions are known to produce different results. We hope that future analysis of a

wider sample will illuminate these differences.
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An astrophysical image can be segmented into contiguous structures based on isoden-

sity contours using dendrograms. The shape of these structures can then be analysed

using the moments of inertia about their principal axes. This separates and quantifies

elongated, hollow, and centrally concentrated structures, enabling us to classify the

structures from the dendrogram and identify astrophysically interesting objects. This

method is illustrated by examining the well known RCW 120 bubble in Hi-GAL col-

umn density maps, and quantifying the effect of turbulent accretion on the structure

of filaments in simulations. We discuss the extension of this method to three dimen-

sional data sets, both from simulations in position-position-position space and from

observations or radiative transfer modelling in position-position-velocity space.

∗The work presented here is published in Jaffa, Whitworth, Clarke & Howard, MNRAS, 2018, in
press
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6.1 Introduction

The multi-phase interstellar medium (ISM) is a chaotic environment in which

many physical processes interact over a large range of scales. These processes sculpt

the ISM into a variety of structures, and many of these structures play important

roles in determining and/or revealing the locations of star formation. For example,

Herschel observations have shown that elongated filamentary structures are a common

feature in molecular clouds, in both low- and high-mass star forming regions, and also

in regions that are not actively forming stars (Molinari et al., 2010; André et al., 2010;

Hennemann et al., 2012; Palmeirim et al., 2013). Further studies have estimated that

60% to 75% of bound prestellar cores lie on filaments whose line mass is greater than

the critical value for the onset of fragmentation (André et al., 2010; Könyves et al.,

2015; Marsh et al., 2016). Feedback processes, from small scale stellar winds up to

individual or clustered supernovae, can create hollow shells or bubbles which show

up in observations as dense rings, sometimes with an ionising source at the centre

(Churchwell et al., 2006; Simpson et al., 2012; Ingallinera et al., 2016). Finally,

gravitationally bound objects, from clouds to cores and even clusters of stars, are

often characterised as being centrally condensed (Cartwright & Whitworth, 2004; Li

et al., 2015; Rathborne et al., 2015; Storm et al., 2016; Jaffa, Whitworth & Lomax,

2017). Each of these different types of structure can coexist in astrophysical images,

and are relevant to different parts of the star formation process. We therefore need

methods to identify and quantify such structures, in order to compare their properties

and build a coherent picture of the interaction and interdependence of stars and the

ISM.

A variety of algorithms are used in star formation to segment astronomical

images into regions of interest, as discussed in Section 1.1.1. In this work we construct

dendrograms to segment images into an hierarchical set of contiguous structures, using

the astrodendro† Python package. We then analyse these structures using their

principal moments of inertia. We limit the discussion to the case of 2D data; in future

work we hope to extend the method to 3D data, using it (a) to explore the relationship

between structures identified in PPP and PPV data-cubes from simulations, and (b)

to inform the interpretation of structures identified only in PPV data-cubes from

observations.

In Section 6.2 we briefly describe the use of dendrograms for segmenting as-

tronomical images into discrete structures; we explain how the principal moments

of inertia can be combined to construct J moments, which distinguish structures

†The astrodendro package is documented at http://www.dendrograms.org/
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according to their degree of central concentration (or central rarefaction) and their

degree of elongation; and we illustrate the use of J plots to quantify some simple

synthetic images. In Section 6.3 we give examples of the application of J plots to

observed and simulated data. In Section 6.4 we discuss the extension of this method

to three-dimensional data, and in Section 6.5 we summarise our main conclusions.

6.2 Methods

In this section we give a brief outline of how dendrograms are used to segment a

pixelated 2D grey-scale image into hierarchically nested structures. Then we describe

how these structures can be analysed using J moments and J plots. In order to

make the discussion less abstract, we assume that the intensity of the 2D grey-scale

image being analysed represents surface-density, Σ. Hence the grey-scale contours are

surface-density thresholds. For a more comprehensive discussion of dendrograms, see

Rosolowsky et al. (2008).

6.2.1 Image segmentation with dendrograms

Dendrograms represent the morphology of a greyscale image in terms of hier-

archically nested contiguous structures at different surface-density thresholds. At the

specified minimum surface-density threshold (‘min value’ parameter in astroden-

dro), there is usually a single contiguous structure, which is termed the ‘trunk’ of the

tree. Any structure lower than this threshold is considered part of the background

and not included in further analysis. As the surface-density threshold is increased,

the trunk splits into smaller ‘branch’ structures.‡ A structure that does not split

into smaller structures but reaches its peak surface-density as a contiguous whole is

termed a ‘leaf’, and corresponds to a local maximum. Leaves are only retained if

(i) they comprise a minimum number of pixels (‘min pixels’ in astrodendro) and

(ii) there is a minimum surface-density contrast between their peak surface-density

and the surface-density threshold at which they merge with another leaf or branch

(‘min delta’ in astrodendro). Leaves that do not satisfy both these conditions are

simply absorbed into a larger structure. Thus a dendrogram analysis divides any

greyscale image into a set of structures defined by their surface-density thresholds,

‡The astrodendro package imposes binary mergers, meaning that if a large structure at surface-
density threshold i splits into 3 smaller structures at surface-density threshold i + δi, additional
intermediate thresholds are examined to find one at which the large structure splits into two struc-
tures, one of which will split again. Other dendrogram building methods such as that described in
Storm et al. (2014) do not enforce binary mergers.
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and results in a two dimensional ‘tree’ graph which summarises the connectivity of

structures at different thresholds. See, for example, Figure 6.3 which shows the den-

drogram corresponding to the Hi-GAL tile shown in Figure 6.2. In the following

analysis we extract the structures defined by the dendrogram, and use moments to

measure their degree of central concentration and their overall shape.

We must choose carefully the parameters of the dendrogram, so as to capture

the structures we are interested in. Reducing the minimum surface-density thresh-

old (‘min value’) will increase the size of the trunk, until it encompasses the entire

observed area. Conversely, increasing the minimum threshold may split the dendro-

gram into separate trees, i.e. multiple trunks. It is recommended that this value be

set to some multiple of the noise level of the image, in order to exclude small struc-

tures caused by noise, but it can be set higher if we wish to isolate denser structures.

The minimum number of pixels (‘min npix’) and minimum surface-density contrast

(‘min delta’) can change what is defined as a leaf. Reducing either of these parame-

ters results in more leaves, and their values should therefore also be chosen to reflect

the noise level of the data set. The intermediate branches of the tree are not greatly

affected by any of these parameters.

6.2.2 J moments

Any point on a dendrogram (be it on a leaf, branch or trunk) corresponds to a

contiguous region R inside which the surface-density, Σ(x, y), exceeds or equals some

threshold, ΣR . We can therefore compute the total area, A, and mass, M , of the

corresponding object,

A =

∫

R

dx dy = P ∆A , (6.1)

M =

∫

R

Σ(x, y) dx dy =

p=P∑

p=1

{Σp} ∆A . (6.2)

Here p is the dummy ID of a pixel inside R, P is the total number of pixels inside R,

Σp is the surface-density in pixel p, and ∆A is the area of a pixel; we are assuming

that all pixels have the same area.

We can also compute the principal axes of this object, êi (i = 1, 2), and the

associated principal moments, Ii (see Appendix E). By convention, if the two principal

moments are different (which is generally the case), the first principal axis, ê1 is the

one associated with the smaller principal moment. Hence I1 ≤ I2, by construction.
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Figure 6.1. Some simple two dimensional test-structures and their positions on the J
plot. A circularly symmetric disc with uniform surface-density (structure 0) occupies
the centre of the plot, J1 = J2 = 0. Circularly symmetric, centrally concentrated discs
(structure 1) occupy the top right quadrant, getting closer to J1 = J2 = 1 as their
central concentration increases. Circularly symmetric, hollow structures (structures
6, 7 and 8) occupy the bottom left quadrant, getting closer to J1 = J2 = −1 as their
thickness decreases. Elongated objects (structures 2, 3, 4 and 5) occupy the bottom
right quadrant, getting closer to (J1, J2) = (1,−1) as their aspect ratio increases.
Nothing falls in the top left quadrant, as this would require I1 > I2.
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Now consider the very simple case of an infinitesimally thin circular region (a

disc) with radius R, and uniform surface-density Σ
O
, hence area A = πR2 and mass

M = πR2Σ
O
. Because of symmetry, the principal axes can be any pair of orthogonal

axes, and without loss of generality we choose the Cartesian axes, i.e. ê1 → êx and

ê2 → êy. The corresponding principal moments are

I1 = I2 =
1

2

r=R∫

r=0

r2 Σ
O
2πrdr =

πR4Σ
O

4
=

AM

4π
, (6.3)

where we have invoked the Perpendicular Axis Theorem.

Next, whilst maintaining circular symmetry, change the radial profile of the

surface-density, Σ(r), holding the area, A, and mass, M , constant. If the surface-

density profile is made more centrally concentrated (e.g. a centrally condensed 3D

core seen in projection), I1 and I2 are decreased, and therefore I1 = I2 < AM/4π.

Conversely, if the surface-density profile is altered so it has a central rarefaction

(e.g. a ring or 3D limb-brightened bubble), I1 and I2 are increased, and therefore

I1 = I2 > AM/4π.

Finally, revert to a uniform surface-density, and again hold the area, A, and

mass, M , constant, but stretch the disc into a very eccentric ellipse (i.e. a filament).

This has the effect of reducing I1 and increasing I2, so we have I1 < AM/4π < I2.

Now, if we introduce

I0 =
AM

4π
, (6.4)

and define the J moments

Ji =
I0 − Ii
I0 + Ii

, i = 1, 2 , (6.5)

the uniform surface-density disc has J1 = J2 = 0; the centrally concentrated disc

(3D core in projection) has J1 = J2 > 0; the centrally rarefied disc (ring or 3D

limb-brightened bubble) has J1 = J2 < 0; and the eccentric ellipse (filament) has

J1 > 0, J2 < 0. Thus, if we plot J1 against J2, centrally concentrated objects occupy

the top right quadrant, centrally rarefied objects occupy the bottom left quadrant,

and elongated objects occupy the bottom right quadrant.
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Figure 6.2. Hi-GAL surface-density tile �347. The colour bar gives surface-density,
on a logarithmic scale, and in units of H2 cm

−2.
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Figure 6.3. Top: the dendrogram of the HI-GAL tile shown in Figure 6.2 constructed
using the parameters specified in the text. Bottom: the J plot of the identified
structures. Leaves are shown as triangles, branch structures are shown as circles, and
the trunks are shown as squares. Grey lines show which structures merge to form
larger structures. Note that this image is focused on only the portion of the J plot
occupied by the detected structures. To aid orientation, the background colouring is
identical to that in Figure 6.1.
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6.2.3 J plots

Figure 6.1 shows a J plot of some simple test cases; filled circles mark the

locations of the pixelated test-structures that are illustrated in the margin. The circle

with uniform surface-density (structure 0) occupies the origin (J1 = J2 = 0). The

circularly symmetric, centrally concentrated disc (structure 1) occupies the upper

right quadrant (J1 = J2 > 0) as the principal moments are equal, I1 = I2, but

both less than I0; such discs move further from the origin with increasing central

concentration. The circularly symmetric hollow rings (structures 6 and 7) occupy

the lower left quadrant (J1 = J2 < 0) as their principal moments are equal, I1 = I2,

but both greater than I0; such rings move further from the origin with decreasing

thickness (decreasing ∆R/R). Elongated straight structures with uniform surface-

density (structures 2, 3, and 4) occupy the lower right quadrant (J2 < 0 < J1) as

I1 < I0 and I2 > I0; elongated structures move further from the origin with increasing

aspect ratio. Nothing falls in the top left quadrant, or indeed above the line J2 = J1,

since this would imply I2 < I1, in violation of the definition given earlier.

Structures that do not fit perfectly into one of these categories can still be

represented usefully on the J plot. For example, the broken ring (structure 8) still

falls in the lower left quadrant of the J plot. And the centrally concentrated ellipse

(structure 5) falls between the locus for elongated structures with uniform surface-

density and the locus for circularly symmetric, centrally concentrated structures,

indicating that it has elements of both.

A single dendrogram structure (leaf, branch or trunk) spans a range of surface-

densities, and in general its J moments will depend on the surface-density at which

we analyse it. For the structures in Figure 6.1 we have treated each structure in its

entirety, which is equivalent to analysing it at its base, i.e. at the lowest surface-

density before it merges with another structure. However, we can also look at how

the J moments of a dendrogram structure migrate on the J plot as the surface-

density threshold is changed, as discussed in Section 6.3.2. For example, the circularly

symmetric, centrally concentrated structure on Figure 6.1 (structure 1) would become

less centrally concentrated and migrate towards the origin if we were to analyse it

at higher and higher surface-density thresholds; the mapping of surface-density onto

this path would depend on the details of the surface-density profile.

6.2.4 Observational effects

We accept that observations of molecular cloud structures are imperfect, and

there are several observational effects that should be considered when applying J
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plots to observed images. As we can only observe the two-dimensional projection

on the sky, we may be seeing the overlapping structure of several clouds along the

line of sight, especially if we are observing close to the plane of the galaxy. In

molecular line observations, the radial velocity can be used as a proxy for the third

spatial dimension to separate cloud structures (e.g. Colombo et al., 2016), but this

assumes that each cloud is a relatively quiescent structure all moving as one. For

dust continuum observations, the temperature or dust opacity index can be recovered

using PPMAP (Marsh et al., 2017).

Interferometers filter out large-scale structure, so should be combined with

single-dish data of the same region in order to analyse the full cloud structure. Fur-

thermore, Alves, Lombardi & Lada (2017) highlighted the importance of the lim-

ited field of view, in that statistics should only be derived for values above the last

closed contour of an image. In the dendrogram algorithm this can be set to be the

min value parameter so that the structure below this limit is not included. The

min pixels parameter also limits the smallest scale analysed, which should be related

to the resolution limit of the observations to avoid spurious small structures caused

by noise.

6.3 Results and discussion

6.3.1 Bubbles in observations

The Herschel Hi-GAL survey has delivered an unprecedented view of the

Galactic plane in five wavebands between 70µm and 500µm (Molinari et al., 2016),

and the images in the different wavebands have been smoothed to a common reso-

lution and fit with SEDs to obtain surface-density maps. As a simple example of

the application of J plots to observational images, we take the ‘tile’ from the Hi-

GAL survey shown in Figure 6.2, which contains the well known RCW 120 bubble

centred near � = 353.20o, b = 0.30o. This HII region has been described as ‘the

perfect bubble’ (Deharveng et al., 2009), and much work has been done studying the

physical conditions in and around the bubble (Anderson et al., 2010; Pavlyuchenkov,

Kirsanova & Wiebe, 2013; Rodón et al., 2015), and the likelihood of triggered star

formation in the swept up shell (Motte et al., 2010; Walch et al., 2015; Figueira et al.,

2017). We therefore use this well characterized bubble as a test case to see how it

appears on the J plot.

To construct the dendrogram we use a minimum surface-density threshold

(‘min value’) of 5× 1021 H2 cm−2, a minimum surface-density contrast (‘min delta’)
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of 1 × 1022 H2 cm−2, and a minimum number of pixels (‘min npix’) of 200. These

values are deliberately chosen to be quite high, since we are looking for large, clearly

defined structures. The value of the minimum surface-density threshold results in two

separate trunks. In total the dendrogram contains 48 structures (trunks, branches

and leaves).

For each dendrogram structure, we consider the lowest surface-density thresh-

old (i.e. the surface-density at which it merges with another structure), and compute

J1 and J2. The bottom panel of Figure 6.3 shows the J plot for this data set, focusing

on the region of the J plot that is actually occupied. We use different symbols on

the J plot to distinguish different types of dendrogram structure: the highest level

structures, leaves, are shown as triangles; intermediate branch structures are shown

as circles; and the trunk, the lowest level structure, is shown as a square. Lines show

where smaller high-level structures merge to form a larger lower-level structure. Most

of the structures fall in the lower right quadrant, indicating that they are elongated.

Six structures fall in the lower left quadrant, indicating that they are ‘ring-like’, al-

though two are very close to the boundary and therefore not clearly defined as rings.

The morphologies of the 4 structures clearly defined as rings are shown in Figure 6.4.

We note that structure 45 is embedded in structure 38, which in turn is embedded in

structure 24.
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Structure 38 is the region identified as the RCW 120 bubble; in this surface-

density image it is a partial ring with a lumpy boundary. Structure 45 is a small leaf

structure at the top edge of the bubble wall. A visual inspection confirms a broken ring

type morphology, but its astrophysical significance is unclear. Structure 24 is formed

by the merging of the RCW 120 ring structure with a filamentary structure to the

south. This creates an asymmetrical curved shape which the algorithm identifies as

a ring, but a visual inspection would not readily identify this as a bubble candidate.

Structure 33 is a collection of 4 cores that appear to be spaced regularly around

a circle. These sources have been confirmed as compact sources by other surveys

including the Hi-GAL point source catalogue (Elia et al., 2017) and the ATLASGAL

dust condensation catalogue (Csengeri et al., 2014). However their unusually regular

arrangement has not been noted previously. We can speculate that they might be a

set of fragments formed out of a swept up ring or shell, but equally they might be at

different distances and causally unrelated.

As demonstrated in Figure 6.1, the distance from the origin in the bottom

left quadrant is associated with the thickness of the ring, although this is only an

exact relation in the case of idealised test-structures. The J values, given on Figure

6.4 for each of the ring-like structures, support this interpretation: the thickest ring

(structure 45) lies significantly closer to the origin than the others, and the thinnest

(structure 33) lies furthest from the origin.

6.3.2 Filaments and cores in simulations

Sub-structure in filaments

Clarke et al. (2017) have performed SPH simulations of filaments forming by accreting

from a turbulent medium. They perform a suite of simulations in which the initial

turbulence is characterised either by purely compressive modes, or by a thermal mix

of solenoidal and compressive modes (i.e. in the ratio 2:1), and they set the initial

turbulent energy to be either subsonic or supersonic. For each case they perform

ten simulations with different random seeds. Here we analyse the surface-density

maps taken from these simulations to investigate how the fragmentation morphology

appears on a J plot.

They find that when the turbulence is subsonic, filaments fragment into quasi-

periodic cores and the mix of turbulent modes (purely compressive or thermal) does

not significantly influence the fragmentation. When the turbulence is supersonic, the

filament first fragments into numerous sub-filaments. This change in structure can

be identified by eye in the three dimensional volume-density cubes, as well as in two
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Figure 6.5. J plots of simulations of filament formation (Clarke et al., 2017) in
which the turbulence in the accretion flow involves a thermal mix of modes, and
is (a) subsonic or (b) supersonic. Each plot presents the results of 10 simulations,
analysed at the end when 10% of the mass has been accreted into sink particles. The
open triangles are leaves, the grey circles are branches, and the black squares are
trunks.
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Figure 6.6. J plots for simulations of filament formation (Clarke et al., 2017) in
which the turbulence in the accretion flow is supersonic, and involves (a) purely
compressive modes, or (b) a thermal mix of modes. Each plot presents the results of
10 realisations, analysed after 0.5Myr. The open triangles are leaves, the grey circles
are branches, and the black squares are trunks.
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dimensional projected surface-density images. Using J plots we can quantify this

difference of morphology in an automated and objective way.

Figure 6.5 shows the J values of all the structures from the simulations of

growing filaments in which the turbulence in the accreting material has a thermal

mix of modes: (a) 10 simulations with subsonic turbulence, and (b) 10 simulations

with supersonic turbulence. The dendrograms built on each surface-density image use

the same parameters as Clarke et al. (2017), viz. min value = 10−20 g cm−3, min pixels

= 100 and min delta = 5 × 10−21 g cm−3. The simulations with subsonic turbulence

(Figure 6.5a) only create very long thin structures, similar in shape to the whole

filament; the trunk of each dendrogram is shown as a black square in Figure 6.5, and

the other structures (branches and leaves) are simply the spine of the filament broken

up into smaller structures. In contrast, the simulations with supersonic turbulence

(Figure 6.5b) create filamentary structures with a range of sizes and curvatures, filling

more of the lower right quadrant on the J plot. These are the curved sub-filaments

described in Clarke et al. (2017) and are significantly different in their morphology

to the trunk structure which encompasses the whole filament.

This change in morphology is seen predominantly in the simulations that in-

voke a thermal mix of solenoidal and compressive turbulence; when the turbulence

is purely compressive, the formation of sub-filaments is suppressed. Clarke et al.

(2017) use dendrograms to quantify this. They find that in dendrograms built in

three-dimensional PPP space using the volume-density distribution, the number of

leaves in the dendrogram (N
LEAVES

) is higher in the simulations using a thermal mix

of turbulent modes (than those using purely compressive modes), indicating that the

filaments are more sub-structured. The number of branches between the highest leaf

and the trunk (N
LEVELS

) is also higher in the simulations using a thermal mix of

turbulent modes (than those using purely compressive modes), indicating that the

sub-structure is more hierarchical. However, there is no significant difference in these

measures if the dendrogram is built in two-dimensional PP space using surface-density

images. We can use J plots to analyse the shape of structures in two dimensions.

This can be applied to the structures extracted from the two-dimensional image, but

also to projections of structures extracted in three dimensions. We can therefore

quantify the shape of structures in the three dimensional data to test if the change

in substructure also represents a change in morphology.

Figure 6.6 shows the J values of all structures from the simulations of grow-

ing filaments in which the turbulence in the accreting material is supersonic: (a) 10

simulations with purely compressive modes, and (b) 10 simulations with a thermal

mix of modes. In both cases, the main population of structures is filamentary, but in
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Figure 6.7. Histograms showing the perpendicular distance from each point in the
J plot to the diagonal line J1 = −J2. Top. The black striped histogram shows the
results obtained with thermal mix of turbulent modes, and the blue striped histogram
shows the results obtained with purely compressive turbulent modes, both analysed
at 0.5 Myr. Bottom. The difference between the two histograms (purely compressive
minus thermal mix in each bin). This highlights the excess of structures above and to
the right of the diagonal in the purely compressive case (more centrally concentrated
structures), and the excess below and to the left of the diagonal in the thermal-mix
case (more curved filamentary structures).
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the case of purely compressive turbulent modes there are more centrally concentrated

structures, while in the case of a thermal mix of turbulent modes there are more

structures that are curved or even ring-like (J1 ≤ 0). We can illustrate this difference

more clearly by looking at the distance of each point from the diagonal line J1 = −J2.

This line represents the location in J space of a theoretical ‘perfect’ filament: an ex-

actly symmetrical straight filament with uniform surface-density. Structures below

and to the left of this line are more curved, and structures above and to the right of

this line are more centrally concentrated. Figure 6.7 shows that, whilst both cases

peak just below zero, the simulations with purely compressive turbulent modes have

a significant positive tail of centrally concentrated structures, and the simulations

with a thermal-mix of turbulent modes have a small negative tail indicating more

curved structures. We can therefore use J plots to identify objectively, in two dimen-

sions, differences in structure that were previously identified only by eye or in three

dimensions.

Persistence of individual structures

Another way to characterise a dendrogram structure is to consider both the structure

itself, and the smaller structures it contains – for example a parent-branch and all

the branches and leaves at higher surface-density thresholds that are descended from

the parent-branch. We can then analyse how the J moments change as the surface-

density threshold is increased, from the minimum value at which the structure is first

defined, to the maximum value in the densest leaf that it contains. In general, an

increased J moment means that the mass is more concentrated towards the centre of

mass along the corresponding axis, and a decreased J moment means that the mass

is less concentrated towards the centre of mass along the corresponding axis.

In Figure 6.8 we illustrate the results obtained for two typical filaments, one

in which the turbulence in the accretion flow is subsonic, and one in which it is

supersonic; in both cases there is a thermal mix of turbulent modes. In the subsonic

case (top panel of Figure 6.8), the filament is very narrow, straight, and continuous;

a few small gaps appear at the highest surface-density threshold. In the supersonic

case (bottom panel of Figure 6.8), the filament is much broader, bendier, and more

fragmented; already, at a fairly low surface-density threshold, there are just two

separate fragments.

Figure 6.9a shows how the J moments of the filaments in all ten subsonic

cases evolve as the surface-density threshold is increased from ∼ 0.024 g cm−2 to ∼
1.3 g cm−2. With one exception, the J moments remain very close to (J1, J2) = (1,−1)
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Figure 6.8. Filaments analysed at different density thresholds. Top: subsonic
turbulence. Bottom: supersonic turbulence. The surface-density threshold is given in
the bottom right corner of each image. Only four of the ten surface-density thresholds
analysed in Figure 6.9 are illustrated. For the subsonic turbulence case we show the
first, third, fifth and seventh thresholds. For the supersonic case we show the first,
second, third and fourth thresholds. The filaments are 3 pc in length and the scales
are the same in all images. The overall shape of the structures shown here is more
important than the internal density variation.
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Figure 6.9. The dependence of the J moments on surface-density threshold for
filaments forming in a medium with a thermal mix of turbulent modes. Top: 10
simulations with subsonic turbulence. Bottom: 10 simulations with supersonic tur-
bulence. Filled blue squares represent values of J1, and filled green triangles represent
values of J2.
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at all thresholds, confirming objectively that the filaments are very straight and nar-

row, and the dense gas is rather evenly distributed along them. We describe this

structure as ‘persistent’, meaning that the J moments do not change much when the

surface-density threshold is increased. The one exception arises because the filament

is slightly more fragmented in this particular case and so J2 is somewhat higher.

However, the pattern observed in the J plots for the nine similar filaments is very

specific, and could be used to identify automatically filaments forming in a medium

where the turbulence is subsonic.

Figure 6.9b shows how the J moments of the filaments in all ten supersonic

cases evolve as the surface-density threshold is increased from ∼ 0.024 g cm−2 to

∼ 1.3 g cm−2. For eight cases there is a clear pattern: at low thresholds, J1 is of

order unity, and J2 is negative, as we would expect for filaments; then, at higher

surface-densities, as the filament breaks up into two fragments, J1 and J2 decrease,

with J2 quickly tending to ∼ −1. The two cases that do not conform to this pattern

are ones in which the filament only produces a single fragment, and therefore, as

the surface-density threshold increases, J2 abruptly increases to positive values and

then decreases towards zero. This is essentially a consequence of the fact that the

simulation only treats a rather short filament. Most observed filaments contain more

than one fragment, so the pattern observed in the J plots for the eight similar filaments

is probably more representative, and could be used to identify automatically filaments

forming in a medium where the turbulence is supersonic.

6.4 Three dimensional analysis

We have so far discussed the analysis of only two dimensional datasets, but

this method can theoretically be extended to any number of dimensions.

Observations of molecular line emission provide information about the radial

velocity of the emitting gas and so lie in the three-dimensional position-position-

velocity (PPV) space. A J moment analysis of PPV structures could reveal both

the shape of the structure on the plane of the sky, and its distribution in velocity

space. Consider two circular compact cores, one turbulent core with high line-widths,

and one quiescent core with low line-widths. A two-dimensional (PP) J plot will

be unable to differentiate between these structures. If a three-dimensional analysis

is performed the structures can be differentiated because their shapes in PPV space

would be very different. However, interpreting moments in spaces which combine

different units (here position and velocity) is non-trivial and requires further study.

Another three-dimensional application is simulation output. Simulations can
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output density information in all three physical dimensions and so lie in position-

position-position (PPP) space. J plots can be easily extended into three spatial

dimensions: circular cores become spherical, filaments become cylinders and rings

become bubbles. This would allow quantitative analysis of the structures formed

in simulations, but could not be compared to observations without invoking some

assumptions to convert the available velocity space information into a third spatial

dimension.

6.5 Conclusions

We have developed a new method for analysing the structures in a segmented

two dimensional image. Here we illustrate the method using dendrograms to segment

the image into contiguous structures at varying surface-density thresholds. For each

contiguous structure, the method first finds the area, A, mass, M , and principal

moments of inertia, I1, I2. These parameters are then used to calculate the structure’s

J moments (Equation 6.5). The J moments allow one to distinguish structures that

are centrally concentrated from structures that are centrally rarefied, and structures

that are approximately circularly symmetric from structures that are elongated.

We apply the method to a tile from the Hi-GAL survey and show that it can

identify and quantify the well-known RCW 120 bubble, as well as other ring-like

structures in the same area. We also apply it to simulations of filaments growing in

a turbulent medium and fragmenting, and show that J plots are able to identify and

quantify, objectively, the difference in projected structure that results from changes

in the nature of the turbulence. We also discuss the extension of this method to three

dimensional data sets.

An analysis tool based on J plots is freely available online at

https://github.com/SJaffa/Jplots.
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I don’t know anything with certainty, but seeing the stars makes me dream.

- Vincent van Gogh
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7.1 Introduction

Star formation is a chaotic process that involves a huge variety of complex and

dynamic structures. Understanding the physical processes that sculpt these structures

requires unbiased, quantitative analysis. In this thesis we aim to present and develop

tools to quantify the structure in star clusters and the interstellar medium. We first

review the use of fractal dimensions to describe astrophysical objects, and highlight

the challenges of comparing values found by different methods. We then present two

new analysis tools: the Q+ algorithm is designed to characterize the fractal structure

of sets of points in terms of three parameters which fully constrain the fractal structure

in our model; the J plots algorithm is designed to quantify the shape of pixelated

structures taken from continuum images and separate centrally concentrated shapes,

hollow circular shapes, and elongated filamentary shapes. We will now summarise

the main conclusions and describe the future directions of this work.

7.2 Fractals

In Chapter 2, we review the use of fractal dimensions to describe the sub-

structured nature of molecular clouds and star clusters. It is important to have quan-

titative measures of the clumpy shapes we observe, in order to compare observations

or simulations in an unbiased way, and to build up a statistically robust picture of

the structures involved in star formation. We describe methods for creating artificial

fractal clouds or star clusters, as well as a few of the more commonly used measures

of a fractal dimension.

We find that the box-counting method accurately constrains the fractal di-

mension of artificial star clusters created using the box-fractal method, although it is

sensitive to the number of levels in the fractal hierarchy, which it cannot constrain.

The ∆-variance method is able to constrain the fractal dimension (or power law in-

dex) of artificial fractal Brownian motion images, which have statistically similar

structures to molecular clouds. However, when converting data sets from one type to

another (greyscale images to sets of points or vice versa) we find that both methods

are unable to accurately measure the fractal dimension. We conclude that the fractal

dimensions measured by each method are not compatible and should not be regarded

as representing the same underlying properties of the data set.

We also discuss the various relations used in the literature for inferring the real

three-dimensional fractal dimension of astrophysical structures from projected two-

dimensional images. We find that the different relations quoted are inconsistent and
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sometimes misapplied. We therefore conclude that estimates of fractal dimensions

should be treated with caution and not compared unless they have been estimated

using the same method.

7.3 The Q+ algorithm

In Chapter 3, we describe an algorithm for estimating the three-dimensional

fractal structure of young star clusters from a two-dimensional image, and quantify

the structure in terms of three parameters:

• the fractal dimension, DQ+ , reflects the clumpiness or smoothness of the distri-

bution;

• the number of levels, L, reflects the range of scales over which the fractal struc-

ture exists;

• the density scaling exponent, C, reflects how the mass of the cluster is distributed

over these scales.

This algorithm is calibrated against a set of analytical box-fractal clusters

generated using a method adapted from Goodwin & Whitworth (2004).

The algorithm computes a set of statistics based on the Minimum Spanning

Tree and complete graph and uses principal component analysis to compare the test

cluster to the analytical ones and estimate the parameters that best describe its

structure. We test its ability to constrain the input parameters of artificial clusters

and estimate the errors on the results.

In Chapter 4, we apply this algorithm to some observed and simulated young

star clusters. The analysis of observed clusters of young stars in the Gould Belt

shows that real star clusters have structure across a large range of the parameter space

modelled in this work, from highly substructured to smooth or centrally concentrated,

and with a large difference in scales. The estimated properties of Taurus, Lupus 3,

Chamaeleon I and IC 348 fit with a visual assessment of their structure, and the new

algorithm reduces problems encountered using the Q parameter of CW04 due to their

methodology not considering all 3 parameters inherent in an artificially generated

fractal cluster.

Secondly, we analyse clusters produced in simulations of cloud-cloud collisions

of different speeds. We find that the clusters produced in slower collisions are fractally

substructured, while faster collisions produce centrally concentrated clusters.
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Young clusters are expected to show similar sub-structure to the densest parts

of the clouds from which they are born, but this structure will be erased by dynamical

interactions. We analyse simulations of the dynamical evolution of young embedded

clusters, with initial conditions taken from the MYStIX survey. The results show

that the substructure is very quickly dynamically erased, usually within 1 Myr. The

clusters then become increasingly centrally concentrated.

Molecular clouds also display substructure and intuitively we would expect

them to pass on this structure to the clusters they spawn. We therefore test methods

of applying the Q+ algorithm to continuum data to enable a direct comparison of the

fractal properties of molecular clouds and young star clusters.

In Chapter 5, we convert a continuum images into statistically representative

sets of points by using it as a probability density function. We discuss the number of

points that should be used, as this strongly affects the range of parameters that can

be recovered. We conclude that scaling the number of points by the total mass of the

clouds being studied gives the best estimate of the fractal parameters.

We apply this analysis to four column density maps from the Herschel Hi-

GAL survey, testing the individual wavelength intensity maps as well as the derived

column densities. Comparing this to other estimates of the fractal dimension of these

data sets does not show a correlation between the two measures of fractal dimension.

7.4 J plots

In Chapter 6, we present a new tool for analysing structures in pixelated

images. We first use dendrograms to segment an image into a set of nested structures

defined by a bounding density or intensity contour. This method then finds the

principal axes of each structure and calculates the moment of inertia about each

principal axis. The J values are derived from these principal moments in comparison

to that of a thin disk of constant density. These two J values can distinguish between

roughly flat symmetric shapes, hollow ring-like shapes, elongated filamentary shapes

and centrally concentrated shapes.

We apply this tool to an example tile from the Hi-GAL survey that contains

the well-known RCW 120 bubble and show that it can identify and quantify the

bubble, as well as other ring-like structures in the same area. We also apply it to

the simulations of filament fragmentation presented in Clarke et al. (2017), which

examined how turbulence affects the structures formed within an accreting filament.

We show that, in projected two-dimensional images, J plots are able to identify the

differences in structure which had previously been identified only by visual inspection.
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7.5 Future work

The wealth of observational data available from wide field surveys and increas-

ingly large and complex simulations provides an excellent opportunity to utilise some

of the ‘big data’ tools that have recently emerged in computer science. Machine learn-

ing tools can automate many of the tasks commonly applied in astrophysics including

classification and regression. However, the usefulness of the results depends on the

quality of the input data (i.e. the training data set). The statistical descriptors pre-

sented here would make an excellent feature for the application of machine learning

to astronomical data.

7.5.1 Fractals

An empirical exploration of the relation between two- and three-dimensional

measures of the fractal dimension would be important in understanding which of the

relations discussed is applicable to different data sets. Secondly, fractal distributions

can be nested (smaller, higher density clumps only located inside larger, lower density

clumps) or not nested (the position of higher density clumps is not related to the

position of larger, lower density clumps). This may explain the incompatibility of the

Q+ and ∆-variance measures of fractal dimension, and should be explored further in

relation to real astrophysical objects.

Furthermore, we have confined this discussion to artificially created clusters

because they have known fractal dimensions and we assume that they are a good

representation of the variation of structure we see in real clouds and clusters. Testing

each of these methods on a greater range of real data would challenge this assumption

and allow us to test how the results are affected by noise or whether the artificial

models are too simplified.

7.5.2 Q+

Our analysis of the evolution of young clusters shows that the sub-structure

can be erased in a very short time. Performing simulations with a range of initial

conditions and taking many snapshots would allow a better statistical analysis of this

process.

Analysis of more observed clusters would allow us to understand where in

the parameter space real objects reside. Many surveys provide catalogues of point

sources, young stellar objects, or evolved stars which can be used to statistically trace

how the structure of clusters evolves with age.
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When examining real observations we must also understand how observational

effects such as incompleteness at lower masses or confusion of sources in very dense

clusters will affect the structure we recover. Synthetic observations allow us to add

these effects to simulated star clusters and test how well the Q+ algorithm identifies

the structure under non-ideal conditions.

The statistical and unbiased comparison of fractal properties between star clus-

ters and molecular clouds is an important step in understanding how their structures

are related. Further testing of the application of Q+ to continuum images, such as

exploring different ways to convert data sets from one type to another, would enable

more robust results.

7.5.3 J plots

The Hi-GAL survey has provided us with a wealth of data containing filamen-

tary structures. The Milky Way project leveraged the power of Citizen Scientists

worldwide to identify rings of a range of sizes and morphologies. Many surveys pro-

duce catalogues of point sources. Each of these could be analysed with J plots to

quantify the size and shape of these structures and whether there are any trends that

may reveal something about the underlying physics of the environment.

This work is currently confined to two dimensions, but simulations can give

us a third spatial dimension, and molecular line observations allow us to examine the

radial velocity of real astrophysical structures. We plan to extend J plots to three

dimensional spaces, for example to understand how structures identified in observed

position-position-velocity space may relate to their real shape in three dimensional

positional space.
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A ‘graph’ is a collection of N points (vertices) and/or edges (lines) connecting the

points in any number of dimensions. In this work the weight of an edge is simply it’s

Euclidean length in two or three dimensions, but other weightings can be given for

different applications.

Complete Graph

The Complete Graph (CG) is the collection of N(N−1)
2

straight edges connecting each

point to every other point. The length of the edge joining points i and j on the

Complete Graph is termed sij. An example is shown in the centre panel of Figure

A.1.

Figure A.1. Graphs demonstrated for a randomly generated set of 10 points (left):
the complete graph (centre), connecting every point to every other point; and the
Minimum Spanning Tree (right), the set of edges that join every point into a single
set with the shortest possible total length.
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Minimum Spanning Tree

A spanning tree is defined as a set of edges that connects all the points in a graph

together without forming any closed loops. The minimum spanning tree (MST) is

the spanning tree where the N − 1 edges have the smallest possible total length. An

example MST can be seen in the right panel of Figure A.1.

The most popular algorithms for constructing MSTs are those of Prim (1957)

and Kruskal (1958).

Prim’s algorithm proceeds as follows:

1. Start from a randomly chosen point.

2. Find the shortest edge connecting that point to any other point and add the

edge to the tree.

3. Find the shortest edge connecting any point in the tree to any point not in the

tree and add that edge to the tree.

4. Repeat 3 until all points have been connected into the tree.

Kruskal’s algorithm proceeds as follows:

1. Find the length of all edges on the complete graph and sort in ascending order.

2. Starting with the shortest edge, add edges to the tree only if they do not form

a closed loop.

3. Repeat 2 until all points have been connected into the tree.

Both these algorithms will result in the same MST unless two or more edges

the graph have the exact same weight. This is unlikely if the weighting used is length,

but some applications may use more restricted weightings and therefore have a higher

probability of two edges having the same weight. In such cases the edge to be added

can be chosen at random, so while the MST for a set of points may not be unique,

any statistics based on its total or average weight will be unaffected.
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Bayesian statistics relies on conditional probabilities to estimate the probability of

an event based on prior knowledge of related factors. The central equation was first

proposed by Bayes & Price (1763) and developed into the modern form by Laplace

(1820).

P (B|A) = P (A|B)P (B)

P (A)
(B.1)

P (B|A) is the posterior probability of event B given event A. This is the

term we wish to calculate. P (A|B)/P (A) is the likelihood ratio, which describes the

probability of event A given B, normalised by the total probability of A. P (B) is the

prior probability of B, and acts as a weighting function to incorporate any knowledge

we already have of the probability of event B. In words, this equation updates our

belief about a system (the prior) with some evidence (the likelihood ratio) to create

a new belief (the posterior).

From this we can calculate the expectation value of B, EB, and estimate the

uncertainty, σB, on this value:

EB =

∑
P (B|A)B∑
P (B|A)

(B.2)

σ2
B =

∑
P (B|A)(B − EB)

2

∑
P (B|A)

(B.3)

This equation is simple but its application can be very powerful and it un-

derpins a lot of machine learning and artificial intelligence, such as spam filtering of

emails.
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For an arbitrary n× n square matrix An×n, we define the following:

• Ai,j denotes the element occupying the i-th row and j-th column position, where

0 ≤ i, j ≤ n.

• AT is the transpose of the matrix A, which is a reflection of A in the diagonal.

Formally, [AT ]i,j = [A]j,i. Therefore [AT ]T ≡ A.

• |A| signifies the determinant of the matrix A, defined by

|A| =
n∑

i=1

(−1)(i+j)|Mi,j|Ai,j, (C.1)

where Mi,j is the minor of A, which is formed by removing row i and column j

from A, resulting in an n− 1× n− 1 matrix.

• The eigenvectors, E, of a matrix are a set of vectors which satisfy the following

equation:

AE = λE. (C.2)

That is when multiplied by the matrix they give a scalar multiple of themselves.

(Strictly this defines right eigenvectors because they are multiplied on the right

of the matrix. A similar equation can be formed for left eigenvectors.) λ is the

eigenvalue associated with a given eigenvector, E.

An n × n matrix will have n eigenvectors and n corresponding eigenvalues.

These can be found by solving the equation

|A− λI| = 0, (C.3)
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where I is the identity matrix - an n × n matrix where all diagonal elements

(Ii,i) are one and all off-diagonal elements (Ii,j, j 	= i) are zero.
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Principal component analysis is a mathematical technique first introduced by Pearson

(1901), which allows a data set with many dimensions to be represented by a best

fit in a lower dimensional space. This is used to compress data without losing too

much information, and to find patterns and subsets within multi-dimensional data

sets which would otherwise be difficult to identify. It is used in image compression,

facial recognition, financial risk management and many other applications.

Taking a data set with n data points measuring v variables in the form of a

two-dimensional matrix Xv×n, the procedure is as follows:

1. For each variable, Vi, subtract the mean, µVi
, to create an adjusted data matrix,

X ′, where the origin is now at the centroid of the data.

X ′
i,j = Xi,j − µVi

(D.1)

2. Calculate the covariance or correlation of each variable with all other variables

to form a correlation or covariance matrix, C. (The choice of correlation or

covariance and its impact on the results is discussed below.)

C =




co(V0, V0) co(V0, V1) · · · co(V0, Vv)

co(V1, V0)
. . .

...
...

. . .
...

co(Vv, V0) co(Vv, V1) · · · co(Vv, Vv)




(D.2)

where co can represent either the correlation or covariance function. The diag-

onal elements of this matrix are the correlation or covariance of each variable

with itself. If the covariance is used these terms will therefore be the variance

121



122 Appendix D. Principal Component Analysis

of each variable. If the correlation is used these terms will be 1.

3. Calculate the eigenvectors and eigenvalues of the matrix, C. The eigenvectors

are, by definition, an orthogonal set of linear combinations of the variables.

This is equivalent to a rotation of the original data set where the eigenvector

with the highest eigenvalue follows the direction of maximum possible variance

of the data set.

4. Order the eigenvectors by the magnitude of their eigenvalues and choose a

number, e, of eigenvectors with the highest eigenvalues (strongest variance) to

form an eigenvalue matrix, Ee×v.

5. Transform data into Principal Component space by multiplying the transpose

of the eigenvalue matrix by the tranpose of the adjusted data matrix:

PCe = (Ee×v)
T × (X ′

v×n)
T (D.3)

The main limiting assumption of this method is that all parameters vary lin-

early, which is very often not the case. Slight deviations from linearity will only cause

minor problems, but, if some or all of the variables are significantly non-linear, the

principal components will not reflect the underlying variance of the data very well.

The choice of whether to use the correlation or covariance matrix relates to the

ranges of the variables being used. If all variables are measured in the same units, and

over similar ranges, then using the covariance matrix will give good results. However,

if some variables have a much larger range then they will have a larger variance and

will therefore be given more weight in the eigenvectors. This can be a problem if the

difference is simply due to different units of measurement. In this case the correlation

matrix should be used as this normalises each term by the variance of both variables

before calculating eigenvectors.

The best choice of number of eigenvectors is subjective and depends on the

data set being studied and the purpose of the analysis. The eigenvalues, W , show the

contribution of each eigenvector to the variance of the data set, so a measure of the

proportion of the variance represented by a subset of the eigenvectors can serve as

a guide for how many principal components should be used. Since the original data

set has v variables, the matrix C has size v× v, and therefore v eigenvectors in total.

Hence we can define the proportional variance in a subset of k eigenvectors as

g(k) =

∑k
e=1 We∑v
e=1 We

. (D.4)
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A general guide is to choose the set of k eigenvectors with the highest eigenvalues

such that they represent 90% of the variance (g(k) � 0.9).





f¨¨¡ª~0¬ E

��0ª}0¨{§ f¬¡� {ª~ t©«¡ª��

For a dendrogram structure represented by P equal pixels, each with area ∆A, we

can compute the following moments,

M0 = ∆A

p=P∑

p=1

{Σp} , Mx = ∆A

p=P∑

p=1

{Σpxp} ,

My = ∆A

p=P∑

p=1

{Σpyp} , Mxx = ∆A

p=P∑

p=1

{
Σpx

2
p

}
,

Mxy = ∆A

p=P∑

p=1

{Σpxpyp} , Myy = ∆A

p=P∑

p=1

{
Σpy

2
p

}
,

(E.1)

where Σp is the surface-density in pixel p, and (xp, yp) is the position of its centre.

The centre of mass is then given by

X =
Mx

M0

, Y =
My

M0

, (E.2)

and the moments about the Cartesian axes by

Ixx = Mxx −MxX, Ixy = Mxy −M0XY,

Iyy = Myy −MyY. (E.3)
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The principal moments are then

I1,2 =

(
Ixx+Iyy

2

)
∓

{(
Ixx+Iyy

2

)2

−
(
IxxIyy−I2xy

)
}1/2

,

(E.4)

(where the ∓ means that I1 corresponds to the minus sign, and I2 to the plus sign).

The first principal axis has the equation

y1 = Y +
(I1 − Ixx) x

Ixy
, (E.5)

and the second principal axis

y2 = Y − Ixy
(I1 − Ixx) x

. (E.6)
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