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ABSTRACT 

User privacy concerns are widely regarded as a key obstacle to the success and the wide adoption 
of modern smart cyber-physical systems. In this paper, we analyse, through an example, some of 
the requirements that future data collection architectures of these systems should implement to 
provide effective privacy protection for users. Then, we give an example of how these 
requirements can be implemented in a smart home scenario. Our example architecture allows the 
user to balance the privacy risks with the potential benefits and take a practical decision 
determining the extent of the sharing. Based on this example architecture, we identify a number 
of challenges that must be addressed by future data processing systems in order to achieve 
effective privacy management for smart cyber-physical systems. 
 
Index terms: User-centric privacy protection, IoT systems. Privacy. 

 
1. INTRODUCTION 
 
 

We progressively find ourselves surrounded by smart cyber-physical systems that silently track 
our activities and collect sensitive information about us. Among the most prominent examples, we cite 
smart energy grids, smart transportation networks, smart homes and cities, etc. However, while such 
systems promise to ease our lives, they raise major privacy concerns for their users, as the data collected 
is often privacy-sensitive, such as location and habits of individuals, patients' vital signs, etc. In fact, 
collected data could be misused by the providers of such systems or even sold to interested third parties 
and exploited for various purposes [1, 2].  

Recent privacy and data protection laws [3] called for more involvement of users in protecting their 
data by enabling them to control what is collected about them, when, by whom and for what purposes. 
However, existing solutions (e.g. [4,13,14,15] for privacy protection in cyber-physical systems fall short 
of that objective. Most of these solutions are inspired by the old approach employed in databases to 
ensure the privacy of users [5]. In that approach, the user is required by the system to provide her data, 
then she is prompted to specify her privacy preferences (through a set of variables) as to who can access 
the data and for what purposes, and to accept a privacy policy specifying a set of rules that may refer to 
her preferences. Subsequently, the rules are applied to all queries received by the system before 
returning the result. Unfortunately, such an approach does not provide effective protection of privacy. 
In fact, the user does not always understand the privacy policy [6], which could be incomplete, and may 
not be necessarily aware of the direct and indirect risks that may be associated with the disclosure of 
her data to a given entity in order to correctly specify her privacy preferences.  
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The successful involvement of users in protecting their data and ensuring their privacy requires two 
main conditions to be met. First, the user should be empowered to understand the privacy risks 
associated with the disclosure of a piece of data to a given entity and to balance these risks with the 
potential benefits of the disclosure to be able to take a meaningful privacy decision as to disclose or not, 
and to what extent [7] Privacy decisions are intrinsically difficult due to their delayed and uncertain 
consequences that are hard to compare with the immediate rewards of data disclosure. Second, the user 
should be provided with the necessary tools to implement her privacy decision by controlling the 
disclosure level. For example, different data degradation strategies may be used to modify the accuracy 
of the to-be-disclosed data item to achieve the chosen trade-off between the risks and the benefits.  

 
In this article, we present a vision of how users of smart cyber-physical systems (e.g., Internet of 

Things) can be empowered to take a central and effective role in protecting their privacy. We materialise 
our vision by the proposition of a reference data sharing architecture that allows users to take flexible 
and practical data sharing decisions that reconcile their privacy requirements with their desires to be 
rewarded. We also validated our vision by implementing the proposed architecture within a smart 
environment to monitor chronic patients at home. 

 
Compared to similar works that sought to involve users in protecting their data such as [13, 14, 15] 

our solution has the following advantages. First, it allows end-users to assess the implicit privacy risks 
that are associated with the release of their data, compare them in a meaningful way with the benefits 
to choose the best data protection level. Second, privacy protection is ensured in a pragmatic way, 
allowing users to take a pragmatic stance between their interests and the risks implied.  Third, our 
solution does not protect privacy in a rigid way, i.e., as context changes, inferred privacy risks change 
as well, and so is the protection ensured by the solution, allowing for more responsiveness to 
surrounding IoT environment. 

 

The remainder of the paper is organized as follows. Section 2, analyses some of the key 
requirements for effective privacy protection in smart cyber-physical systems. Sections 3 and 4 present 
an example of an architecture implementing the identified requirements in a smart home scenario. 
Section 5 concludes the paper by pointing out future research directions. 

 

 
 
2. PRIVACY FOR SMART CYBER-PHYSICAL SYSTEMS – A WALKING THROUGH 

EXAMPLE 
 

Assume that Alice is the owner of a smart home featuring different types of smart appliances 
including: a refrigerator, stove, microwave, etc. Alice is a CDK (Chronic Kidney Disease) patient and 
has a home haemodialysis machine. The environment includes also smart meters for measuring the 
energy consumption, and different types of sensors including light, presence and temperature sensors, 
etc. These appliances, sensors and meters generate important data volumes that could be exploited by 
different entities for achieving different purposes.  
 
Utilities and edge services: The electricity provider of Alice would be interested in exploiting the 
generated data (e.g., the energy consumption) to improve the energy distribution across the city and 
avoid service cut-offs. It can also use it to provide Alice with personalized recommendations for 
reducing her energy consumption and bills. Edge services include businesses providing services to 



energy consumers based on energy consumption data. Examples of services include, real-time energy 
usage monitoring to optimize the consumption (e.g., by proposing actions to users such as turning on/off 
a certain device, etc.), raising the energy awareness by allowing consumers to monitor their carbon 
emissions and compare them to those of friends on social media, etc.  
 
Law enforcement agencies: They may use the collected data for different purposes, such as performing 
real-time (or near real-time) surveillance on suspects by determining if they are present and their current 
activities inside the home. Police investigators may also screen the energy consumption records of the 
utility to identify houses where some illegal activities may take place, e.g., potential drug production 
sites across the city.  
 
Marketers: Marketers may be interested in determining the living profile of Alice to send her targeted 
advertisements. For example, they may be interested in knowing the appliances she may or may not 
own, or her eating patterns to send her special offers, etc. 
 
2.1. Privacy concerns 
 

The cited possible data uses may raise several privacy concerns for Alice. First, even though Alice 
may be interested in reaping the benefits offered by a utility or some edge services, like for instance the 
usage optimization of her appliances, either by explicitly providing detailed information about the 
appliances’ usage or by providing energy consumption data that is granular enough to infer the 
appliances usage (through their consumption signatures [9]), she may not want to disclose the fact that 
she is a CKD patient (through the use of her haemodialysis machine). Such sensitive information, if 
was disclosed inadvertently or intentionally by one of the entities processing her data, would 
irreversibly affect her professional and social life. Second, Alice may not wish to disclose her habits 
and living style, e.g., presence/absence, walking/sleeping, eating and watching TV patterns, etc. Such 
information, if misused, would harm her in different ways, e.g., she might become a target for 
housebreakers, or get penalized by her employers and/or her social entourage, etc. Alice, may not wish 
to be under permanent surveillance. This would make her feel uncomfortable and impact her natural 
behaviour. 
 
 
In this work, we uphold the privacy definition given in [11], where the privacy is described as consisting 
of four dimensions: (1) privacy of the personal information, (2) privacy of the person (i.e., the integrity of her 
body), (3) privacy of personal behaviour and (4) privacy of personal communications. We therefore consider 
all the data items that may be used to compromise the privacy of a person in at least one of these 
dimensions as sensitive. 

 
 
 

2.2. Practical privacy decisions 
 

Alice is also a pragmatic person and may be willing to trade off the anticipated benefits (of sharing 
some of her data with some of the cited entities) with the potential privacy risks and make compromises. 
For example, she may accept to release fine-grained energy consumption data (i.e., consumption 
readings with high sampling frequency) to her electricity provider to help it better optimize its energy 
distribution, provided some financial benefits (e.g., bill reductions or bonuses, etc.). She may also 



accept to share with an edge service only the data necessary to compute her daily carbon emission and 
compare it with those of friends on a social network (to gain some social recognition), but not to infer 
the list of owned appliances.  Similarly, she may accept to provide law enforcement services with the 
necessary data to check for illegal activities, but not to perform real-time surveillance. 
 

In all of these examples, Alice takes her practical decision after evaluating how trustworthy the data 
consumer is, and for what purposes (that potentially relate to her privacy requirements and preferences) 
the released data can be exploited, and what are the benefits of the data sharing decision. 
 
 

2.3. Identified requirements 
 
Based on our simple example, we identify below some of the key requirements for ensuring effective 
privacy protection for cyber-physical systems. 
 
R1: User-centric privacy protection: As required by data protection regulations, users (i.e., data 
owners) should be enabled to play a central role in protecting their own data. This implies that before 
sharing a data item with a given data consumer, the user should be (i) enabled to understand the privacy 
risks that pertain to her subjective vision of privacy, and (ii) provided with the necessary mechanisms 
to control the extent of the sharing. For example, the data sharing architecture should warn Alice, 
before releasing her fine-grained energy consumption readings to her electricity provider or to an edge 
service, that these bodies may determine her appliances (based on their signatures) and consequently 
know that she is a CDK patient. The architecture, should also allow Alice to reduce the frequency of 
released energy consumption readings to prevent such privacy breach. 
 
R2: Pragmatic privacy decision making: Recent studies [9] showed that users, in practice, tend to take 
a pragmatic stance on sharing their private data, i.e., they would accept the release of some of their 
private data in return for some incentive. This has motivated an important drive in the database research 
field to monetize private data, based on potential privacy risks, and compensate end users directly [10]. 
Based on that observation, privacy protection in cyber-physical systems should not be ensured in a rigid 
fashion by deciding whether a data item should be shared with a given entity or not. Rather, users (e.g., 
Alice) should be empowered to assess the privacy risks that they accept to take, balance them against 
the benefits offered by data consumers, and potentially negotiate with data consumers before taking 
their sharing decisions. Data owners and consumers will play roles very much similar to the roles of 
sellers and buyers in a free market, where buyers and sellers may bargain with each other to reach a 
suitable deal. 
 
R3: Adaptive privacy protection to cope with context evolution: The data sharing decision may depend 
on the user's context. For example, Alice may accept, in the general case, to release fine-grained energy 
consumption data to her electricity provider that would allow the latter to infer her appliances usage, 
but not when she uses her haemodialysis machine. The data sharing architecture should detect the 
context changes that would lead to privacy breaches and take the necessary actions to avoid them. For 
instance, the architecture could warn Alice when she turns on her medical machine about the potential 
leakage of her health condition to her energy provider and could propose to her to decrease the sampling 
frequency of the released energy consumption readings. 
 
 



3. A REFERENCE DATA SHARING ARCHITECTURE FOR USER-CENTRIC PRIVACY 
PRESERVATION FOR IoT 

 
In this section, we describe an example of a data sharing architecture for a smart home that satisfies 

the requirements discussed above and gives the control over data sharing back to end-users.  
 
 

3.1. Architecture overview 

We use the terms “data owners” to designate the users of cyber-physical systems that generate data 
by interacting with the systems (e.g., occupants of smart homes, monitored patients, etc.), and “data 
consumers” to designate the stakeholders that are interested in collecting and exploiting the data 
generated, such as electricity companies in smart grids, healthcare providers in intelligent healthcare 
networks, third parties that would provide data owners with smart services, etc.  

In our architecture (Figure 1) raw data generated by connected things (IoT objects) is stored within 
a Personal Data Store before released to data consumers. All data flows between data owners and 
consumers pass by the proposed reference architecture. When a data consumer queries a data item from 
a data owner (either directly, or by getting the data owner to use a service/application provided by data 
consumer), our architecture processes the received query as follows: 

● It assesses, through the Privacy Risks Inference component (or the Privacy Oracle), the risks 
associated with releasing the requested data to data consumer. Since privacy is a subjective notion 
(i.e., different people may be concerned with different privacy risks), the privacy oracle takes into 
account several factors including the profile of data owner, her context, her trust in data consumer, 
etc. Context is a key input to the privacy oracle, it is monitored in a continuous way (by observing 
the data sent by IoT objects) and exploited in identifying the risks. 

● Then, it monetizes (i.e., quantifies) the identified privacy risks and the potential benefits using a 
numerical model, through the Trade-off Data Sharing component (TDS), and helps data owner take 
a pragmatic decision balancing the two. The decision denotes the data items that can be shared 
with the consumer, along with their accuracy (i.e., precision). Data owners and consumers could 
also negotiate before reaching a pragmatic data sharing decision. 

● Finally, it modifies, through the Query/Result Modification component (QRM), the query before 
being applied to the personal data store to discard the data items to which the data consumer is not 
entitled, and the query’s result to change its accuracy before its release.   

 
Privacy risks closely relate to what can be inferred from collected data. For example, granular 

readings of smart electricity meters can be analysed to infer information about the occupants such as 
their presence/absence, the possession of specific devices, etc. The disclosure of such information could 
lead to privacy risks such as being subject to discrimination, surveillance, burglaries, etc. Our 
architecture identifies the relevant risks, through the Privacy Risks Inference component, by rendering 
the implicit relationship between raw collected data and risks explicit.  

 
Context changes could lead to privacy breaches in previously taken decisions. Therefore, context is 

monitored and risks are analysed in a permanent way (i.e., old data sharing decisions might be 
recomputed when context changes).  
 

Our architecture would use any data protecting scheme (whose efficacy is well known) to anonymise 
the data once a data sharing decision is taken. For examples, differential privacy can be used to alter 
the precision of released smart meter readings, data anonymization can be used to anonymise the 
location, etc. 



 
 
 

 
 
 

 
 

Figure 1: A reference architecture for allowing the users of IoT smart systems to control their data 
 
 

3.2. Privacy risks/benefits trade-off model 
 

We present in this subsection our model to trade off the privacy risks with the data sharing benefits. 
Our model builds on previous works on trade-off decision models such as [7]. The model is shown in 
Figure 2. The trade-off decision is taken based on two factors: the privacy risks associated with answering 
the query q of the data consumer d, and the benefits generated by the query answering. The privacy risks 
factor has a negative impact on the trade-off decision, whereas the benefits factor has a positive one. The 
privacy risks are measured based on three factors: (1) the sensitivity of the data items requested in q, (2) 
the trust in the recipient d (i.e., data consumer), and (3)  the information leakage caused by answering q. 
We will define all of these factors, and how they can be computed in subsequent subsections. We define 
below the trade-off privacy decision. 
 

 
Figure 1: Privacy risks/benefit trade-off model 

 
Definition 1: (Trade-off privacy decision) the decision to answer the query q of the data consumer d is 
computed as follows: 



 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑞𝑞,𝑑𝑑) = �𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, 𝐷𝐷𝑖𝑖 𝑈𝑈𝑑𝑑(𝑞𝑞) > 0
𝑫𝑫𝑨𝑨𝑨𝑨𝑫𝑫,              𝐷𝐷𝑜𝑜ℎ𝐷𝐷𝑒𝑒𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷  

 
where Ud(q) is the utility function of answering q, and it is computed as follows: 

𝑈𝑈𝑑𝑑 = (1 −𝑒𝑒)  ∗  𝑏𝑏𝑑𝑑(𝑞𝑞)  +  𝑒𝑒 ∗  𝑒𝑒𝑑𝑑(𝑞𝑞) 

 

where bd(q) and rd(q) are functions quantifying the benefits and the risks that are generated/caused by 
answering q, respectively. The parameter w can be tuned by the user to bias the benefits/risks trade-off 
decision (e.g., if w = 0.5, the benefits should be at least equal to the risks). In the following we detail 
how rd(q) and bd(q) can be computed. 
 

3.2.1. Measuring the privacy risks 
 

The privacy risks can be measured based on three factors: the sensitivity of the queried data items, the 
trust in the data recipient and the information leakage caused by the release of the data items. We discuss 
these factors in the following. 

Data sensitivity: the sensitivity of a data item can be determined based on its direct or indirect relations 
with a privacy sensitive information. For example, the electricity consumption readings that are 
generated by a smart meter are not privacy sensitive in themselves, but the fact that they can be analyzed 
by some data mining algorithms [8] to determine the appliances usage and consequently infer the 
behavior patterns (e.g., waking/sleeping patterns, meal times, etc.) make them sensitive. 
 
The NIST guidelines for smart grid cybersecurity have identified the different privacy-sensitive 
information pieces that could be relevant to a wide range of users in smart home scenarios and that 
correspond to our vision of privacy. These include: user personal information, presence/absence, real- time 
surveillance, habits, and the use of a specific device. We call these information pieces as the privacy 
parameters and exploit them to compute the sensitivity of a data item 𝒊𝒊 (e.g., energy consumption data, 
etc.) as follows. The user is prompted to assign an importance weight to each of the privacy parameters 
𝑖𝑖𝑗𝑗(1 ≤  𝐷𝐷). Then, whenever a data item 𝒊𝒊 is requested by a query, its sensitivity is computed by summing 
up the weights of all the privacy parameters that relate to (i.e., can be inferred from) it by the equation: 

Sensitivity (i)  = �𝑒𝑒𝐷𝐷𝐷𝐷𝑤𝑤ℎ𝑜𝑜 (𝑖𝑖𝑗𝑗)  ∗  𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝐷𝐷𝑐𝑐𝑜𝑜 (𝑖𝑖𝑗𝑗)
𝑛𝑛

𝑗𝑗=1

 

 
where the function context(fj ) ∈ {0, 1}, it takes the value “1” or “0” depending on whether fj is 
relevant or not in the current context. 
 

Trust in recipient: the trust of a user in a data consumer may change depending on the consumer’s 
profile and its history of interaction with users. For example, a law enforcement agency may be 
trusted more than a publicity company, and an electricity provider with which a user has had a long 
and satisfactory history of interaction may be trusted more than an unknown edge service. In our 
model, we can rely on any of the trust models (e.g., [12]) that compute the trust in a consumer by 
aggregating and averaging quantitative feedback ratings of users (e.g., smart house owners). 

 

Information leakage: it measures the knowledge leaked to d about the different privacy 
sensitive parameters fj (1≤ n) when a data item i is disclosed to d. The information leakage 



relative to a particular privacy parameter fj , denoted by  𝐿𝐿𝑓𝑓𝑗𝑗 ,  can be measured by capturing 
the uncertainty of d about fj and is dependent on the accuracy level of the released 𝒊𝒊.   𝐿𝐿𝑓𝑓𝑗𝑗  can be 
measured either  analytically or experimentally. For example, the experimental studies in [8] showed 
that releasing the energy consumption with a good accuracy (i.e., sampling frequency of 15 
seconds) leads to determining the eating habits with a confidence degree of 59% and the 
appliance use with a confidence degree of 72%, but when the sampling frequency drops to 30 
minutes these two confidence degrees drop to near 0. 

 

3.2.2. Measuring the benefits 
 

Different types of benefits require different kinds of measurements. For example, the usage 
optimization advices that would lead to less energy consumption, bonuses and bill reductions that 
one could receive from her electricity provider can be quantified by their introduced financial gain. 
The benefits of sharing fine-grained data with law enforcement agencies to contribute to securing 
the living environment could be quantified by the one’s feeling of self-satisfaction and patriotism. 
The benefits of sharing her carbon emission on a social network can be quantified by the social 
recognition she receives. 

 

 

4. REAL-LIFE CASE-STUDY: MONITORING ELDERLY AND CHRONIC PATIENTS 

 
We implemented our reference architecture within a smart environment for monitoring chronic 

patients. The environment involves wearable sensors for monitoring several vital signs such as heart 
rates, blood pressure, ECG as well as smart objects and sensors installed in fixed positions of the 
monitored environment. The study involved 20 real patients with ages from 20 to 67 years.   

Figure 3 shows the implementation architecture. Collected raw data are stored within a personal data 
vault (PDV) that provides a simple implementation of the different component of our architecture. 
Healthcare providers provide patients, through a dedicated mobile application, with personalized 
healthcare services by consuming collected data. Data flows between users (i.e., patients) and data 
consumers (healthcare providers) go through the PDV.  

 

 

Figure 3: Implementation of the proposed architecture within an IoT 
environment for monitoring chronic patients 

 



We implemented the privacy risk inference component as a knowledgebase. Collected data, context 
elements and associated risks are modelled by a domain ontology. The knowledgebase models the 
implicit relationship between raw data and risks by a set of inference rules (expressed in the Semantic 
Web Rule Language SWRL).  We present in Figure 4 simplified examples of inference rules. Rule-1 
states that the use of a device can be inferred from the readings of an energy smart meter (EMR). The 
terms “Person”, “EMR”, “Device” are ontological concepts, whereas “hasEMR”, “isShared”, 
“useDevice”, “isInferrable” are properties. Rule-2 states that the use of a medical device reveals the 
health conditions for which the device is used. Rule-1 and Rule-2 can be combined together to infer the 
fact that the health conditions could be inferred from the readings of an energy smart meter. Rule-3 
simply states that “location” and  “heart-rate” metadata could be combined to infer if  data owner has 
an extramarital affair (i.e. heart-rate can be used to infer if  data owner is engaged in a sexual activity, 
and  location can be exploited to infer whether  data owner is in a suspicious location (e.g., outside 
home)). The rule uses contextual information such as whether the data owner is married. 

 

 

Figure 4: Sample of inference rules for inferring privacy risks. 

 

 

Figure 5 (Window-1) shows the user interface of the PDV. Upon the reception of a new data request, 
the PDV takes into account the user's context and her shared data (Window-2) to provide her with a 
description of associated privacy risks (Window-3) as well as a set of recommended actions (Window-
4).  

 



 

Figure 5: Interaction with end-users to control the release of data 

 
 

 

5. CHALLENGES AND OPEN ISSUES 

We conclude the paper by identifying some of the key challenges that should be addressed to achieve 
effective privacy protection in cyber-physical systems. 

 
Meaningful data degradation strategies. Smart environments produce a rich set of data elements that 
are different in nature and require different forms of degradation (to implement chosen trade-off 
decisions). For example, data elements such as the address or the age of a person can be degraded by 
applying well known data anonymization techniques, whereas the electricity consumption readings can 
be degraded by reducing the sampling frequency. Research efforts are needed to define for each type 
of data elements suitable degradation strategies, and data degradation levels that map directly to their 
different possible uses (i.e. risks), and to data leakage levels. 
 
Rich pricing models for privacy sensitive data.  Data consumers may offer different forms of bene- 
fits including financial, social, societal benefits, etc. Research efforts are needed to devise rich and 
flexible pricing models (for privacy sensitive data) that would fit for various forms of benefits. Efforts 
are also needed to help users assess the sensitivity of their private data. Crowdsourcing techniques can 
be explored for that purpose. 
 
Context modeling and monitoring for triggering the adaptation. The sensitivity of a data piece may 
depend on the context. For example, the energy consumption data may become sensitive when Alice 
turns on her hemodialysis machine. Models and techniques are needed to represent and monitor the 
context elements that relate to user’s privacy and detect context changes that require adapting privacy 
decisions. Complex Event Processing CEP techniques can be explored for that purpose. In fact, the 
interaction of users with their surrounding environment generates various events that can be 



monitored. The contexts that require adaptation are represented by a set of events combinations that 
can be tracked by the CEP system. 
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