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Abstract 

 

Parenteral Nutrition (PN) provides life sustaining support where gastrointestinal nutrition is inadequate 

due to disease or prematurity. Intravenous lipid emulsions (IVLE’s) form a staple part of PN. Whilst the 

physical stability of IVLE’s is relatively well known and quantified, chemical stability is an area where 

little testing has occurred. We report a new sensitive method for the monitoring of selected triglycerides 

present within two IVLE’s and the detection and quantification of the peroxidation product 4-

hydroxynonenal (HNE) using HPLC with in-line UV and charged aerosol detection (CAD). IVLE’s used 

included the soy-bean oil-based emulsion Intralipid® 20 % and SMOFlipid® 20 % (Fresenius Kabi UK), 

based on soy-bean, olive, fish oil and medium chain triglycerides. Assay validation gave R2 values of ≥ 

0.99 for all selected triglyceride peaks and 4-hydroxynonenal. Inter and intra-day repeatability gave RSD 

values < 7.2 % for CAD detection, achieving a precise and repeatable method. HNE was confirmed 

through internal standardisation of the HPLC method. Selected triglycerides were identified using ESI-

MS with MicroTOF. This novel method permits the chemical stability of IVLE’s to be quantified and 

monitored in respect to lipid peroxidation during storage prior to delivery to the patient, influencing the 

optimal safety conditions of IVLE’s in a clinical setting.  
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 Introduction 

Intravenous lipid emulsions (IVLE’s) form a staple part of parenteral nutrition (PN). PN provides life 

sustaining support where gastrointestinal nutrition is either not possible, or inadequate due to disease or 

prematurity. IVLE’s are provided in PN either in combination all-in-one (AIO) mixtures with all other PN 

components (glucose, amino acids, vitamins, trace elements and electrolytes), or separated, in the case of 

delivery of PN to neonates [1]. Physical stability of PN is well studied and currently governs the 

combinations and concentrations of components permissible within a PN admixture for a patient. Lipid 

globule size, pH, visual inspection for signs of emulsion instability and globule size distribution are 

commonly tested to confirm physical stability [2–4]. Chemical stability of PN during storage after 

manufacturing is currently not extensively studied, but is an area which needs to be addressed due to the 

growing body of knowledge on the harmful effects of breakdown products of lipids due to peroxidation 

[5–9]. 

All unsaturated lipids are susceptible to peroxidation, a cyclical process resulting in the production of 

primary and secondary toxic peroxidation products [7,10]. Primary hydroperoxides are transient making 

their quantification a challenge. Therefore, secondary peroxidation products are more extensively tested. 

These include the tertiary peroxidation product malondialdehyde (MDA)  and the secondary aldehydic 

products 4-hydroxynonenal (HNE), 4-hydroxyhexanal (HHE) and 4-hydroxundecenal (HUE) which are 

by far the most extensively studied with regards to their in vitro toxicity [5,11–16].  

With regards to PN, Intralipid® 20% (Fresenius Kabi) has been the most extensively used IVLE and is 

formulated from soy bean oil rich in omega 6 linoleic acid, omega 9 oleic acid and omega 3 α-linolenic 

acid, proportions of each displayed in table 1 [17]. All contain levels of unsaturation and therefore are 

susceptible to peroxidation into secondary aldehydes HNE, HUE and HHE respectively. SMOFlipid® 

20% (FK), a newer generation IVLE contains a mixture of soy bean, olive and fish oils and saturated 



 
 

medium chain triglycerides as shown in table 1. Whilst the level of saturated fatty acids is higher in 

SMOFlipid® than Intralipid®, both contain linoleic, oleic and α-linolenic acids that can peroxidise to the 

aldehydes mentioned. In an effort to inhibit peroxidation from occurring, SMOFlipid®, which contains the 

longer polyunsaturated EPA and DHA, contains tocopherols which are proposed potent free radical 

scavengers [18]. In a clinical setting PN formulations are prepared often on an individual patient basis, 

manufactured in a hospital pharmacy setting. Formulations may be exposed to air during preparation and 

are stored in either oxygen permeable syringes for neonatal lipid PN or oxygen impermeable PN bags. 

Every effort is made to remove as much air as possible after manufacturing, but a level of oxygen remains 

providing the initial environment for peroxidation to occur.  

Current assays available to quantify peroxidation include the TBARs assay [19,20], FOX assay [21] and 

HPLC assays looking for derivatised aldehydic products of peroxidation [22–24]. Whilst effective in 

certain conditions both the TBARs and FOX assays are unsuitable as are proven to be relatively 

inaccurate in their estimations of lipid peroxidation [21]. HPLC with derivatisation for the detection of 

HNE [25,26] is accurate and quantifiable but the derivatisation is time consuming and unnecessary as free 

HNE should theoretically be formed within IVLE’s. HPLC with UV detection of free HNE has been 

documented and used successfully by Emerit et al. and Esterbauer et al. [27,28]. Here we present a 

method that provides accurate detection and monitoring of the triglycerides present within each IVLE via 

HPLC with charged aerosol detection (CAD) in-line with the UV detection of HNE, aiming to circumvent 

the limitations with current methods and complement the detection of HNE with a secondary method to 

monitor the breakdown of lipids occurring.



 
 

Materials and Methods 

Reagents and Materials: 

LC-MS grade isopropanol (IPA) for HPLC analysis, water with 0.1% formic acid, and methanol (MeOH) 

with 0.1% formic acid for MS analysis were purchased from Fisher Scientific. LC-MS grade acetonitrile 

for HPLC analysis was purchased from VWR chemicals. 4-Hydroxynonenal standard (1 mg 100 µl-1) was 

purchased from Santa-Cruz Biotechnology and used for HPLC method development. Intralipid® 20% 

(Batch numbers: 100 ml bags 10LH3938, 10LH3939, 10LI4439, EXP 07/19, 08/19, 08/19) and 

SMOFlipid® 20% IVLE’s (500 ml bags batch numbers 10MA9062 EXP:12/19 and 250 ml bags batch 

number 10LG3032 EXP: 06/19) were kindly donated by Fresenius Kabi UK.  

HPLC-UV-CAD conditions: 

The analysis of the triglycerides and HNE was performed on a Thermo Scientific Ultimate 3000 HPLC 

system coupled firstly to a Spectra system UV detector and then to an in-line CAD. Gonyon et al. [29] 

provides an initial set of chromatographic conditions employing non-aqueous reversed phase HPLC from 

which the assay was developed. Separations were carried out on an Acclaim C30 column 3.0 mm x 250 

mm, 3 μm particle size at a flow rate of 0.2 ml min-1. The non-aqueous mobile phase consisted of an IPA 

(phase A) and ACN (phase B) gradient. The gradient program started at 60% phase B, decreased to 40% 

B over the first 20 minutes, was held at 40% B for a further 50 minutes then increased to 60% B over 15 

minutes with a 5-minute isocratic hold for re-equilibration at the end of each run. The column temperature 

was held at 5oC after optimisation to maximise resolution and the autosampler was held at 8oC throughout 

to maintain refrigerated conditions of samples and inhibit further peroxidation from occurring during 

analysis. Injection volume was 1 μl of lipid and the sample loop was washed with 60 % MeOH/water 

after each injection. Sample preparation was unnecessary due to the ability of the CAD detector to detect 

triglycerides present within an emulsion without any sample extraction required [29].  The UV detector 

was set and maintained at 222 nm wavelength [30] with a data collection rate at 1.0 Hz for the detection 



 
 

of HNE. CAD detector settings were maintained at 50oC evaporating temperature, data collection rate of 

10 Hz and a filter of 3.6 sec. A 30-minute blank run was performed after each set of three repetitions from 

each sample to ensure optimal column cleaning between samples. This blank ran the same CAD, UV, 

column and autosampler conditions as above. The flow rate was increased to 0.4 ml min-1 and a 2 μl 

injection of blank mobile phase was carried out. During this period, mobile phase gradient followed the 

same pattern as above but was proportionally compressed into 30 minutes. Chromatography control and 

integration of chromatograms was completed using Chromeleon (ver 7.2) software (Thermo Scientific).  

MS conditions for triglyceride identification: 

Identification of selected triglycerides from each IVLE was performed by collection of fragments from 

the HPLC effluent at point of entry to the CAD at time points corresponding to the 5 main peaks in 

Intralipid® and the 9 main peaks in SMOFlipid®.  These main peaks were selected due to the objective of 

monitoring the changes in triglyceride levels that occur during storage before delivery to the patient, 

providing an overview of the lipid changes occurring during storage. Therefore, not all peaks in each 

chromatogram were identified, just the main primary peaks (5 in Intralipid® and 9 in SMOFlipid®).  These 

collected fragments were then analysed by MS, performed on an Agilent 1100 series autosampler and a 

Bruker MicroTOF ESI-MS. The mass spectrometer was operated in positive ionisation mode with a full 

scan mode from 0 to 2000 Da. An isocratic mobile phase consisted of MeOH (0.1 % formic acid): water 

90:10 at a flow rate of 1ml min-1. Source parameters were as follows: capillary voltage 4.5 kV, end plate 

offset -500 V, nebuliser pressure (N2) 0.4 Bar, dry gas (N2) 4 L min-1, dry heater 200oC. Sample injection 

size was 30 μl to 60 μl dependant on response. Analysis of MS data was carried on Hystar post 

acquisition (Bruker Daltonics) software with base peak chromatograms for each sample created from 0 to 

1000 Da.  

 

 



 
 

HPLC-UV-CAD method validation: 

HNE was quantified by creation of standard curves prepared from a stock solution of HNE standard (10 

mg ml-1) in ethanol. This stock solution was further diluted with ethanol to create a 1 mg ml-1 solution. 

Aliquots of 64, 48, 32, 16 and 8 μl of this stock solution were made up to 2 ml with Intralipid 20 % 

creating a set of standards for calibration at 204.83, 153.62, 102.51, 51.21 and 25.60 μM HNE 

respectively. These standard solutions were then subjected to HPLC and calibration curves created to 

assess linearity. Calibration of selected triglycerides was carried out using Intralipid® 20 % and 

SMOFlipid® 20 % as internal standards of specific triglycerides are unsuitable due to the emulsion nature 

of the IVLE’s. Using individual standards of each triglyceride to create calibration curves was not 

employed as elution times of triglycerides not formulated within emulsions will be different to those as 

seen when analysing the selected IVLE’s when using the above assay conditions. Therefore, standard 

solutions of each lipid emulsion were created by adding volumes of each IVLE to water to obtain 12.5, 

25, 50, 75 and 100 % concentrations for each emulsion. Again, these were then subjected to the HPLC 

conditions detailed above and calibration curves for each triglyceride peak were created. Selectivity, 

intra-day and inter-day variability and precision was determined for triglycerides through separate 

sampling of 1 ml of each IVLE and using the stock solution of HNE in Intralipid® and SMOFlipid® as 

detailed above. Precision was expressed as a percentage of relative SD (RSD) and tested both inter and 

intra-day by testing standard samples over separate runs on the same day separated by blank runs and on 

two separate days on different weeks. All samples were freshly prepared on each required day and stored 

at 2-8oC before analysis.  

 

 

 

  



 
 

Results 

Optimisation of HPLC-UV-CAD method: 

We have presented what is to our knowledge a novel method for the simultaneous analysis of 

triglycerides within IVLE’s and the detection of HNE. Example chromatograms for both Intralipid® 20% 

and SMOFlipid® 20% show sufficient resolution for quantification (Figs 1 and 2). Intralipid® spiked with 

16 µg HNE standard (Fig 3) shows the importance of the initial gradient elution in producing effective 

separation of HNE from triglyceride peaks. Figures 4 and 5 show Intralipid® 20% and SMOFlipid® 20 % 

in varying states of degradation, clearly showing the production of HNE in comparison with new fresh 

samples and samples spiked with HNE standard. Method development and optimisation was carried out 

initially separately for HNE and triglycerides before placing the UV and CAD detectors in-line with each 

other creating the final assay conditions. Temperature optimisation of the column was found to be a key 

governing factor on creating sufficient resolution. Flow rate, CAD conditions and UV data collection rate 

were all optimised to achieve maximal resolution.  

Mass spectrometry for triglyceride analysis: 

MS was employed to identify the selected peaks in Intralipid® (Fig 1) and SMOFlipid® (Fig 2). Due to the 

emulsion formulations being analysed, internal addition of standards for each triglyceride could not be 

employed for assay validation and peak identification. Therefore, to circumvent this issue fragments of 

HPLC effluent were collected corresponding to each selected peak for identification. The CAD detector is 

destructive in its analysis therefore fragments were collected at the entry point to the detector using time 

points corresponding to each selected peak of interest and subjected to analysis by MS. Data collected 

from MS is presented in tables 2 and 3 for Intralipid® 20% and SMOFlipid® 20% and analysed using 

RCM’s lipid data [31] and Hystar (Bruker) post processing software. Putative peak identification with the 

likely fatty acid composition of each triglyceride was carried out. Whilst the sensitivity of the MS used 

didn’t allow runs to distinguish between triglycerides with the same m/z ratio, we can predict the TAG 



 
 

responsible for each peak analysed. Li et al. [32]  shows the analysis of TAGs present within soy bean oil 

by percentage occurrence. This combined with the prevalence of the individual fatty acids as recorded in 

each IVLE’s Summary of Product Characteristics (SPC) shown in table 1 was used to assign specific 

TAGs to each selected peak in Intralipid® 20% and peaks 5 to 9 of SMOFlipid® 20%. Peaks 1 to 4 of 

SMOFlipid® 20% were identified as medium chain saturated fatty acids of C8 to C10 in length.  

Method validation for HNE detection: 

HNE calibration was performed as described with linear regression analysis giving a R2 of 0.998 in a 

concentration range from 25 to 204 µM. The LLOD and LLOQ detailed as the concentration producing 

signal to noise ratio of 3 and 10 respectively was 3.523 µM and 11.743 µM obtained from injection of 

standard solutions. Precision was determined as detailed in table 4 and show high levels of precision for 

HNE over both low (25 µM) and high (204 µM) both intra and inter-day. At all concentrations accuracy 

fell within acceptable ranges (80 to 120%)[33]. Considered collectively the above data show a sensitive, 

accurate and precise method for the detection of HNE within IVLE’s.  

Method validation for IVLE’s Intralipid® 20% and SMOFlipid® 20%: 

SPC data for both IVLE’s provides ranges of concentrations for each fatty acid present. This prevents the 

individual concentrations of specific triglycerides from being calculated due to the variability of fatty acid 

concentrations in each IVLE. Individual triglyceride standards cannot be used as internal standards due to 

the formulation properties of the emulsion. Therefore, to overcome these issues concentrations of 12.5, 

25, 50, 75 and 100% of each IVLE diluted with water were created to enable calibration curves to be 

formed. Triglyceride detection was performed using a CAD detector which typically gives a non-linear 

response when used over a wide concentration range[34,35], therefore calibration curves for each selected 

peak were plotted using a second order polynomial function with results for all peaks both in SMOFlipid® 

and Intralipid® showing good correlation (R2 > 0.99). Precision was calculated for Intralipid® and 

SMOFlipid® peaks both inter (n = 3) and intra-day (n = 6) with results yielding a maximum of 4.5 % RSD 



 
 

(intra-day) and 5.2 % RSD (inter-day) for Intralipid® and 5.0 % RSD (intra-day) and 4.7 % RSD (inter-

day) for SMOFlipid®. In combination as detailed in table 5, this data demonstrates a precise and 

repeatable assay to quantify the selected triglycerides within these IVLE’s.   



 
 

Discussion 

This study presents a novel HPLC method utilising in line UV and CAD detectors to monitor 

triglycerides within Intralipid® and SMOFlipid® IVLE’s whilst simultaneously quantifying HNE 

produced as a result of lipid peroxidation. This aims to address the lack of chemical testing that occurs in 

such IVLE’s during storage, prior to delivery to the patient, by enabling TAG levels to be monitored and 

HNE levels to be quantified. The method developed has a total chromatographic time of 90 minutes. 

Whilst this is relatively long in comparison to the time required to employ less accurate assays (FOX) 

[36], the assay is designed to be used as a stability indicating method, not as a day to day testing method, 

therefore run time isn’t of vital importance and the extended time allows for higher concentrations of IPA 

to be employed during mobile phase gradient. As IPA is relatively viscous at the low temperatures that 

the column is held at, the long run time and low flow rate counterbalance this. When employing non-

aqueous reversed phase (NARP) chromatography, the difference in polarities of each phase and 

subsequently the strength assigned to each phase is the governing factor over the phases’ ability to elute 

hydrophobic TAGs from the C30 column [37–39]. In the mobile phase mixture used, IPA constitutes the 

‘strong’ eluting solvent. Initially the gradient employs a high concentration (60 %) of ACN, optimised to 

effectively separate HNE from both early eluting TAGS of low carbon number and other short chain 

aldehydic products (fig 3). The isocratic hold of 60 % IPA/40 % ACN forms the main body of the assay 

from 20 to 70 minutes, creating optimal conditions for TAG elution and effective separations and 

resolutions. With regards to the order of elution of the TAGs in both Intralipid® and SMOFlipid® all 

identified TAGs, except the medium chain saturated TAGs in SMOFlipid®, followed the general formula 

PN = CN – 2DB (PN partition number, CN Carbon number, DB double bonds) [37]. As NARP is 

employed in the assay with a C30 column the level of unsaturation will govern the level of interaction 

each fatty acid on each TAG will have with the stationary phase. Due to the significant difference in chain 

length of the saturated fatty acids (C8 to C10) found in SMOFlipid® these TAGs elute early in the run 

following the elution order of increasing carbon chain length.  



 
 

The use of the CAD allows accurate quantification of TAGs without the need for derivatisation or 

argentation, reducing the sample preparation required and ensuring optimal sample recovery. The CAD 

has a non-linear response over wide concentration ranges, following a second order polynomial function 

[40]. Throughout calibration RSD’s were monitored for both lipid emulsions the maximum being 5.1%, 

proving an acceptable level of precision and repeatability.  

When considering the validation of the CAD section of the assay for the quantification of TAGs, LLOD 

and LLOQ cannot be calculated due to the limited information given in each of the IVLE’s SPC: amounts 

are given as a range of concentrations of individual fatty acids. Due to this, exact concentrations of each 

triglyceride attributed to each selected peak cannot be calculated, preventing LLOD and LLOQ from 

being calculated as a molarity. It is envisioned that the method presented within the paper would be 

employed by a researcher to develop their own testing protocol for their required data. Whilst the same 

batch of lipid would be advantageous due to the variabilities mentioned, in practise the use of a control 

sample used as a comparison of the same batch for each subject tested allows the method to be used as 

discussed for multiple different batches under any required conditions.  We can however express LLOD 

and LLOQ as a percentage concentration from a neat standard (100 %) of IVLE. For Intralipid® 20 %, the 

LLOD and LLOQ for the smallest measured peak was 0.64 % and 2.32 % respectively. SMOFlipid® 20 % 

produced LLOD and LLOQs of 1.57 % and 5.57 %. For the purposes of the use of the assay, such 

LLOD’s and LLOQ’s are sufficient validation as, during storage before delivery to the patient, the 

amount of TAGs lost will be no more than 50 %. The calculation of peak area for each selected peak 

cannot be translated into a concentration for TAG peaks within these lipid emulsions, therefore data from 

the assay can be presented as a percentage loss of TAG from an initial day 0 run.  

In conclusion, a novel non-aqueous reversed phase HPLC assay has been established that employs in line 

UV and CAD detection for the accurate quantification of both triglycerides and the peroxidation product 

4-hydroxynonenal within lipid emulsions. The combination of two detectors in line permits the detection 

of both short chain volatile aldehydic molecules and non-volatile complex triglycerides without the need 



 
 

for complex sample preparation or derivatisation. The method is precise and reliable and can be employed 

in the chemical stability testing of a variety of lipid emulsions. 
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Tables 

Table 1. Fatty acid composition of Intralipid® 20 % and SMOFlipid® 20 % as shown in summary of 

product characteristics (Fresenius Kabi).  All are subsequently formulated into triglycerides forming 

stable intravenous lipid emulsions.  

Fatty acid Carbon number: double 

bond 

SMOFlipid® 20 % Intralipid® 20 % 

Oleic acid C18:1 23-35% 19-30% 

Linoleic acid C18:2 14-25% 44-62% 

Caprylic acid C8:0 13-24% - 

Palmitic acid C16:0 7-12% 7-14% 

Capric acid C10:0 5-15% - 

Stearic acid C18:0 1.5-4% 1.4-5.5% 

α-linolenic acid C18:3 1.5-3.5% 4-11% 

EPA C20:5 1-3.5% - 

DHA C22:6 1-3.5% - 

 



 
 

Table 2. Mass spectrometry data for selected Intralipid® 20 % peaks and subsequent triglycerides 

attributed to each peak.  

Intralipid® Peak 

number 

Mass spectrometry m/z data Triglyceride attributed 

1 879.74 [M+H]+ TG (18:2/18:2/18:2)  

 

2 881.76 [M+H]+ TG (18:2/18:2/18:1) 

3 855.74 [M+H]+ TG (18:2/18:2/16:0) 

4 885.78 [M+H]+ TG (18:1/18:1/18:1) 

5 857.75 [M+H]+ TG (18:2/18:1/16:0) 

 

  



 
 

Table 3. Mass spectrometry data for selected SMOFlipid® 20 % peaks and subsequent triglycerides 

attributed to each peak. 

SMOFlipid® Peak number Mass spectrometry m/z data Triglyceride attributed 

1 493.35 [M+Na]+ TG (8:0/8:0/8:0) 

2 521.37 [M+Na]+ TG (8:0/8:0/10:0) 

3 549.40 [M+Na]+ TG (8:0/10:0/10:0) 

4 577.43 [M+Na]+ TG (10:0/10:0/10:0) 

5 879.75 [M+H]+ 

901.73 [M+Na]+ 

TG (18:2/18:2/18:2)  

 

6 881.76 [M+H]+ 

903.75 [M+Na]+ 

TG (18:2/18:2/18:1) 

7 855.74 [M+H]+ TG (18:2/18:2/16:0) 

8 855.78 [M+H]+ 

907.76 [M+Na]+ 

TG (18:1/18:1/18:1) 

9 857.75 [M+H]+ 

879.75 [M+Na]+ 

TG (18:2/18:1/16:0) 

 

  



 
 

Table 4.  Assay validation of precision and accuracy for HNE.  

 
Precision Accuracy  

HNE concentration 

(µM) 

RSD1 (%) RSD2 (%) (%) 

25.6 7.33 1.05 117.50 

51.21 3.07 1.70 84.35 

102.51 7.19 3.76 96.90 

153.62 5.40 4.37 90.14 

204.83 5.53 3.75 97.39 

 

RSD1, intra-day precision (n = 3), RSD2, inter-day precision (n = 6)



 
 

Table 5.  Assay validation data for Intralipid® 20 % and SMOFlipid® 20 % selected peaks.  

 

Peak number R2 

Precision 

RSD1 RSD2 

Intralipid® 20 % 

1 0.996 1.931 1.689 

2 0.992 1.567 3.679 

3 0.997 4.534 2.079 

4 0.995 4.225 5.209 

5 0.998 3.812 0.566 

SMOFlipid® 20 % 

1 0.997 3.264 3.740 

2 0.997 3.090 2.597 

3 0.996 2.719 2.258 

4 0.996 3.750 1.614 

5 0.997 3.520 2.048 

6 0.996 3.463 2.384 

7 0.999 2.598 3.544 

8 0.991 5.081 2.607 

9 0.993 4.757 4.745 

 

RSD1, inter-day repeatability (n =6), RSD2, intra-day repeatability (n = 3)  

  

 

 

 



 
 

 

 

Figures.  

 

Figure 1. HPLC-CAD chromatogram of Intralipid® 20 % showing selected peaks collected for mass 

spectrometry and identification.  

 

 

 

Figure 2. HPLC-CAD chromatogram of SMOFlipid® 20 % showing selected peaks subsequently 

collected for mass spectrometry identification.  



 
 

 

Figure 3. HPLC-UV chromatogram of degraded (84 days at room temperature in a 50ml oxygen 

permeable syringe) Intralipid® 20 % with additional 16 µg of HNE standard. HNE peak shows clear 

separation from triglycerides and other peroxidation products that elute early due to their short chain 

length. 

 

 

Figure 4: HPLC-UV chromatograms of fresh Intralipid® 20%, degraded Intralipid® 20% and Intralipid 

with added HNE standard. 

 



 
 

 

Figure 5: HPLC-UV chromatogram of new SMOFlipid® 20%, degraded SMOFlipid® 20% and 

SMOFlipid® with added HNE standard.  

 

 

 

 


