

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/116272/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Fontúrbel, Francisco E., Bruford, Michael W., Salazar, Daniela A., Cortés-Miranda, Jorge and Vega-Retter, Caren 2019. The hidden costs of living in a transformed habitat: ecological and evolutionary consequences in a tripartite mutualistic system with a keystone mistletoe. Science of the Total Environment 651 (P2), pp. 2740-2748. 10.1016/j.scitotenv.2018.10.125

Publishers page: http://dx.doi.org/10.1016/j.scitotenv.2018.10.125

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	Running head: Habitat transformation alters ecoevolution
2	
3	The hidden costs of living in a transformed habitat: ecological and
4	evolutionary consequences on a tripartite mutualistic system with a
5	keystone mistletoe
6	
7	Francisco E. Fontúrbel ¹ , Michael W. Bruford ² , Daniela A. Salazar ³ , Jorge Cortés-Miranda ³
8	& Caren Vega-Retter ^{3*}
9	
10	¹ Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso.
11	Av. Universidad 330, Curauma 2373223, Valparaíso, Chile.
12	² School of Biosciences and Sustainable Places Research Institute, Cardiff University, 33
13	Park Place, Cardiff, CF10 3BA, United Kingdom
14	³ Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile. Las
15	Palmeras 3425, Ñuñoa 7800024, Santiago, Chile.
16	
17	* Corresponding author: carenvega@ug.uchile.cl

18 ABSTRACT

19 Land use change is one of the most important anthropogenic drivers of biodiversity loss. 20 Nevertheless, the ecological and evolutionary consequences of habitat transformation 21 remain less understood than those from habitat fragmentation. Transformed habitats are 22 structurally simpler, altering species composition and their ecological interactions, 23 potentially compromising gene flow and genetic diversity. We focused on a tripartite 24 mutualistic system composed of a mistletoe (*Tristerix corymbosus*), its pollinator 25 (Sephanoides sephaniodes) and its seed disperser (Dromiciops gliroides) to assess changes 26 on their ecological and evolutionary dynamics as a result of habitat transformation. We 27 used eight microsatellite markers to compare genetic diversity, relatedness and gene flow 28 among five mistletoe groups inhabiting native and transformed habitats (abandoned 29 Eucalyptus globulus plantations). We found that these groups were genetically structured, 30 with greater allelic richness and genetic diversity in their native habitat. Also, we found 31 higher relatedness among mistletoe individuals in transformed habitats, which varied as a 32 function of the geographic distance among plants, probably as a result of larger resource 33 availability, which influenced mutualist visitation rates. We did not find differences in the 34 current migration patterns, which suggests that *Tristerix corymbosus* may be resilient to 35 habitat transformation, yet its highly specialized interactions along with changes in its 36 spatial configuration depict a more complex scenario, which probably impose a cost in 37 terms of lower genetic diversity and increased relatedness that might compromise its long-38 term viability. 39 Keywords: Eucalyptus plantation, microsatellite markers, relatedness, Tristerix

40 *corymbosus*, spatial structure, South American temperate rainforest.

41 INTRODUCTION

42 Humans have altered almost every ecosystem on Earth, leading to habitat loss, 43 fragmentation, degradation and profound transformation (Chapin III et al., 2000; Corlett, 44 2015; Didham et al., 2012; Fahrig, 2003; Ghazoul et al., 2015; Perez-Mendez et al., 2016; 45 Sala *et al.*, 2000). Our understanding of the consequences of land use change as a driver of 46 biodiversity loss has dramatically changed in the past two decades thanks to the 47 development of new techniques including molecular approaches (Epps and Keyghobadi, 48 2015; Sunnucks, 2000). Such advancements have enabled the study of whole communities 49 and their interactions rather than individual species, and the study of processes instead of 50 patterns (Escudero et al., 2003; Valiente-Banuet et al., 2015). Therefore, assessing the 51 effects of anthropogenic disturbance on natural ecosystems, using field methods and 52 molecular markers, will also provide insight into their long-term consequences (Carpenter, 53 2002; Melo et al., 2013).

54 One type of habitat transformation considers the total or partial replacement of the 55 native vegetation by a single or multiple exotic species (Fontúrbel *et al.*, 2015), usually for 56 commercial purposes (e.g., the establishment of *Pinus* spp. or *Eucalyptus* spp. plantations). 57 According to FAO, 264 million ha were covered by exotic forest plantations around the 58 world by 2015 (http://www.fao.org/forestry/fra). Unlike fragmented habitats, transformed 59 habitats usually lack spatial discontinuities, resulting in habitat mosaics of native and 60 transformed stands at the landscape level (Salazar and Fontúrbel, 2016). Although many 61 native animal and plant species are capable of persisting in these mixed landscapes (García 62 et al., 2013; Lancaster et al., 2011), transformed habitats can impose restrictions on ecological connectivity that can compromise gene flow at the landscape scale (Albert et al., 63 64 2013; Lancaster *et al.*, 2011). Such restricted gene flow may result from the combination of

65 many possible changes, for example in pollinator and/or seed disperser behaviour (Lavabre 66 et al., 2014; Sasal and Morales, 2013), plant recruitment (Bravo et al., 2015), habitat 67 structure (Castaño-Villa et al., 2014), microclimatic conditions (Fontúrbel and Medel, 68 2017), plant-animal interactions (Neuschulz et al., 2016), plant-plant interactions (Candia et 69 al., 2014), spatial structure (Fontúrbel et al., 2015) and neighbourhood effects (Lázaro et 70 al., 2014). There are two ecological interactions that determine most of plant gene flow 71 across the landscape: pollination and seed dispersal. Animal pollinators and seed dispersers 72 act as mobile links across the landscape (González-Varo et al., 2017), but habitat 73 transformation can affect both quantitative and qualitative components of pollination and 74 seed dispersal interactions (Fontúrbel et al., 2017a). These changes may alter landscape-75 level gene flow, changing genetic diversity and relatedness among individuals, potentially 76 damaging their evolutionary potential and raising extinction probabilities (Carvalho et al., 77 2016; Lancaster *et al.*, 2011). However, despite being a major driver of biodiversity change 78 (Albert et al., 2013), habitat transformation remains little known, particularly regarding its 79 long-term consequences.

80 South American temperate rainforests (SATF hereafter) are facing increased habitat 81 loss and degradation due to activities such including the establishment of exotic forestry 82 plantations. The Valdivian Coastal Reserve (VCR), which protects 46 900 ha of native 83 forest remnants, results from a failed private endeavour to establish 3,100 ha Eucalyptus 84 *globulus* plantations (established by clear-cutting native forest 12-20 years ago, but never 85 harvested or managed) on its 50,000-ha property. In this area, native forest stands and 86 transformed habitats (abandoned *Eucalyptus* plantations with regeneration of native 87 understory) form a complex and intertwined landscape mosaic.

88	A key species inhabiting the VCR is the hemiparasitic mistletoe Tristerix
89	corymbosus (Loranthaceae), a winter-flowering plant that parasitises a range of host plants,
90	and it is considered a keystone species of the SATF. In winter, T. corymbosus represents
91	almost the only food source for its sole pollinator, and during summer represents a major
92	food source for the seed disperser species (Aizen, 2003, 2005). This species features highly
93	specialized interactions with its pollinator and seed disperser mutualists, with pollination
94	being almost exclusively provided by one hummingbird species (Sephanoides
95	sephaniodes), while seeds are dispersed by an arboreal marsupial (Dromiciops gliroides)
96	(Aizen, 2005; Amico et al., 2011). Thus, T. corymbosus, with its highly specialized
97	interactions, offers a model to study the ecological and evolutionary effects of habitat
98	transformation, since it is able to persist in both native and transformed habitats (Fontúrbel
99	<i>et al.</i> , 2015).

100 We used the above species to ask whether anthropogenic habitat transformation 101 affect the ecological and evolutionary dynamics of a mutualistic system. To address this 102 aim, we determined the population structure, genetic diversity, relatedness and migration 103 patterns of mistletoes inhabiting native and transformed habitats and changes in visitation 104 rates of its pollinator and seed disperser mutualists due to habitat transformation. We 105 hypothesized that changes in habitat structure and vegetation composition will impair 106 mistletoe gene flow across the landscape and consequently increase its relatedness and 107 reduce its genetic diversity, due to changes in pollination and seed dispersal. We expected 108 mistletoes in transformed habitat to be more related and have less genetic diversity due to 109 lower gene flow among populations.

110

111 MATERIALS AND METHODS

112 Study site and sampling protocol

113 We conducted this study in the Valdivian Coastal Reserve (VCR; 39°57'S, 114 73°34'W), a 50,000-ha private protected area, owned and managed by The Nature 115 Conservancy (Delgado, 2010). This reserve protects an important fraction of the Valdivian 116 rainforest ecosystem, considered a biodiversity hotspot due to its high proportion of 117 endemic species (Mittermier et al., 2005). The VCR features a complex mosaic composed 118 of native and transformed habitats. The native forest habitat comprises of both old- and 119 secondary-growth stands. In old-growth stands the dominant species are *Nothofagus* 120 dombeyi, N. pumilio, Fitzroya cupressoides, Laurelia philippiana, Lomatia ferruginea, and 121 *Mitraria coccinea*; whereas in the secondary forest the dominant species are N. pumilio, N. 122 dombevi, Eucryphia cordifolia, Drimys winteri, Tepualia stipularis, M. coccinea and 123 *Chusquea quila.* The transformed habitat is dominated by the exotic tree *Eucalyptus* 124 *globulus*, coexisting with many shade-intolerant understory native plants, such as 125 Rhaphithamnus spinosus, Aristotelia chilensis, Lapageria rosea and C. quila (Fontúrbel et 126 al., 2015). 127 Between 2013 and 2015, we obtained samples from 123 adult T. corymbosus plants

128 in the study area, representing a large fraction of remaining individuals in the VCR. We 129 collected three to four young leaves from each mistletoe (one individual per host, to prevent 130 sampling clones and resprouts), which were immediately stored in Ziploc bags, dried using 131 silica gel, and kept dry until DNA extraction. We georeferenced sampled mistletoes, which 132 came from five sampling locations harbouring the large majority of VCR plants, two in 133 what could be classified as native habitats: N1 (N = 21; $39^{\circ}59'25.71"$ S, $73^{\circ}40'33.33"$ W; 134 evidence for some disturbance by illegal logging), N2 (N = 20; $39^{\circ}58'16.35''S$, 135 73°36'13.28"W; pristine); and three in what could be classified as transformed habitats: T1

136	(N = 20; 39°57'0.46"S, 73°38'58.28"W), T2 (N = 22; 39°57'26.45"S, 73°39'13.79"W), T3
137	(N = 21; 39°57'57.42"S, 73°39'8.88"W) (Fig. 1). Sampling sites were ascribed <i>a priori</i> ,
138	based on the spatial clusters, obtained by georeferencing each plant. Sampling sites were
139	classified either as native (N) of transformed (T) according to the dominant vegetation type,
140	following Fontúrbel et al. (2015), on aerial photographs and on field surveys. Sampling
141	sites were separated by between 1 and 6 km, as the largest movement distance of the seed
142	disperser (D. gliroides) is recorded as 500 m (Fontúrbel et al., 2012).
143	<figure 1="" about="" here=""></figure>
144	
145	Microsatellite amplification
146	Genomic DNA was isolated from the 123 samples collected in the field (51 and 72
147	from native and transformed habitats, respectively) using a DNEasy plant mini kit
148	(QIAGEN, Valencia CA) using ~10-20 mg of dry plant material, ground using a Mini-
149	Beadbeater-96 device (BioSpec Products, Bartlesville OK; Fontúrbel et al. (2016). We used
150	the 10 species-specific microsatellites and conditions described by Fontúrbel et al. (2016).
151	PCR products were genotyped in the sequencing core at Pontificia Universidad Católica de
152	Chile (PUC), using the internal size standard LIZ 500 (Applied Biosystems, Foster City
153	CA).
154	
155	Descriptive statistics and population structure
156	We used GENEMARKER 1.85 software to build an allelic matrix and MICRO-
157	CHECKER 2.2.3 software (Van Oosterhout et al., 2004) to identify possible genotyping
158	error and null alleles in the data. We estimated linkage disequilibrium for all pairs of loci
159	and deviations from the Hardy-Weinberg Equilibrium (HWE) using GENETIX 4.5.2

160	(Belkhir et al., 2004). To assess the representativeness of our sampling, we calculated
161	rarefied allelic richness using the package hierfstat (Goudet, 2014) in R 3.4.2 (R
162	Development Core Team, 2017) and estimated allele sampling effectiveness as the ratio
163	between observed and expected allelic richness.
164	We used three approaches to determine population structure. First, we used
165	GENETIX to estimate genetic differences between pairs of sites using F_{ST} (Weir and
166	Cockerham, 1984) with 10,000 permutations to estimate statistical significance. To reduce
167	Type I error, we applied a Bonferroni correction with $\alpha = 0.005$. To test for a geographical
168	association with population differentiation, we conducted a Mantel test with 1,000
169	permutations using the GENETIX. Geographic distances between sites were estimated
170	using ArcGIS 10.2 (ESRI, Redlands CA). Second, we used STRUCTURE 2.3.4 (Pritchard
171	et al., 2000) to estimate the most likely number of Bayesian clusters present in the sample
172	using the admixture and LOCPRIOR models, 400,000 burnin simulations, 1M analysed
173	simulations and tested K=1 to K=8. Finally, we used GENELAND 4.0 (Guillot et al., 2005)
174	to determine the number of spatially explicit population clusters, run 10 times using
175	correlated allele frequency model without spatial uncertainty in the locations (as
176	recommended for plants, given that they are sessile organisms), with 500 000 iterations and
177	thinning set at 500.
178	We estimated the number of alleles (N_A) , allelic richness (AR) and genetic diversity
179	(GD) for each population using GENETIX and FSTAT 2.9.32 (Goudet, 1995),
180	respectively. We tested for differences in these parameters among populations from native
181	and transformed habitats using a Wilcoxon signed rank test in R. We used the random
182	mating model option and a critical allele frequency value of 0.05 (alleles with frequency

183 0.05 were excluded). Then we used the BOTTLENECK 1.2.02 (Cornuet and Luikart,

184 1996) to determine if the assessed populations had undergone a recent bottleneck episode.

185 A two-phase mutation model was applied with a 70 % stepwise mutation, and we assessed

186 the significance using its prescribed Wilcoxon test.

187

188 Relatedness and its relationship with distance

189 To ensure that the sampled individuals represented a random subset of the

190 population, we estimated relatedness according to Queller and Goodnight (1989), using the

191 r_{xy} estimator calculated with IDENTIX 1.1 (Belkhir *et al.*, 2002). Within each population,

the null hypothesis for the random distribution of related individuals was tested by using

193 1,000 permutations of the alleles present. We also estimated pairwise relatedness

194 coefficients among the 104 mistletoes genotyped, and then constructed a relatedness matrix

and performed a permutation ANOVA to compare relatedness values between native and

196 transformed habitats. GPS coordinates for each genotyped sample were used to construct a

197 distance matrix using PASSaGE 2 (Rosenberg and Anderson, 2011) and pairwise distances

198 between habitats were compared using a permutation ANOVA.

199 We used the ade4 (Dray and Dufour, 2007), adegenet (Jombart, 2008) and

200 PopGenReport (Adamack and Gruber, 2014) R packages to obtain genetic and geographic

201 Euclidean distance matrices. Then, we estimated the correlation between relatedness and

202 geographic distance matrices using a Mantel test (9,999 permutations). To estimate a

203 threshold geographic distance of relatedness between plants, we conducted spatial

autocorration (Vekemans and Hardy, 2004), using GenAlEx 6.5 (Peakall and Smouse,

205 2012) and obtained separate correlograms for each habitat type, using 10 distance classes in

each case (distance class size was 1 000 m for the native habitat and 250 m for the

transformed habitat). The significance of each distance class and the correlation wasestimated after 9,999 bootstraps.

209

210 *Gene flow*

211 To estimate contemporary migration (m), we used BAYESASS 3.0 (Wilson and 212 Rannala, 2003) with a burn-in of 3,000,000 iterations, 30,000,000 iterations with sampling 213 at 100 iterations and mixing parameters for allele frequencies, migration rates and 214 inbreeding coefficients were defined as 0.5, 0.3, and 0.5, respectively. We performed five 215 independent runs starting with different random seeds; results are expressed in terms of the 216 average value of these five independent runs. To determine differences between both types 217 of habitat we compared the current immigration rates of the native and transformed 218 populations using a permutation ANOVA with the lmPerm package in R (Wheeler and 219 Torchiano, 2016).

220

221 Resource availability, pollination and seed dispersal

222 To gain insight on the potential effects of the habitat transformation on ecological 223 interactions and relate this to the genetics effects detected, we studied the relationship 224 between resource availability (i.e., flowers and fleshy fruits) and the visitation rates of S. 225 sephaniodes and D. gliroides. We monitored 24 plants (12 from each habitat type) using 226 infrared camera traps (Bushnell Trophy Cam model 2011) following (Fontúrbel et al., 227 2015; Fontúrbel et al., 2017b). Plants were monitored at the beginning (March 2015) and 228 peak (August 2015) of the flowering season, and at the beginning (November 2015) and 229 peak (January 2016) of the fruiting season. Camera-traps (one per plant) were 230 simultaneously operated for 72 continuous hours. We counted the number of flowers and

fruits on the monitored plants and the number of flowers and fruits on other mistletoes in a
250-m radius from the focal plant, as well as the number of flowers and fruits of other coflowering / co-fruiting species within this area.

234 We quantified our visitation results as the number of effective visits (i.e., actual 235 contact with the flower or fruit consumption). As resources could influence pollinators and 236 seed dispersers in many ways, we expressed flower and fruit availability in three 237 dimensions: (1) T. corymbosus flowers / fruits alone, (2) other co-flowering / co-fruiting 238 plants with flowers / fruits, and (3) the total number of flowers / fruits (i.e., resources from 239 both the mistletoe and the accompanying plants), enabling potential interaction triggers to 240 be considered (i.e., the mistletoe resource itself, the resources of the neighbouring plants, or 241 the combination). This kind of count data is better suited for examining concordances than 242 cause-effect relationships in a more traditional way (Li et al., 2012). Therefore, we 243 examined the spatial concordance between the number of visits made by the pollinator / 244 seed disperser animals with the resource availability in each of the three dimensions 245 described above using the SADIE (Spatial Analysis by Distance Indices; (Perry *et al.*, 246 2002; Perry *et al.*, 1999). This approach uses two count variables (in this case, pollinator or 247 disperser visits and number of flowers or fruits of each resource dimension) sharing the 248 same geographic coordinates (i.e., the location of each mistletoe). SADIE works in two 249 phases: first the degree of the clustering of each variable is estimated separately, followed 250 by an association index (X_p) that ranges between 1 (complete association; e.g., where there 251 are more flowers we register more hummingbird visits) and -1 (complete dissociation; e.g., 252 where there are more fruits we register less marsupial visits), values not significantly 253 different from zero indicate spatial independence. SADIE analysis used SADIEShell 2.0 254 (Conrad, 2001). We conducted separate analyses for the March, August, November and

January datasets. As we performed multiple comparisons, P-values were internally adjustedusing a sequential Bonferroni adjustment.

257

258 RESULTS

259 Descriptive statistics and population structure

260 We were only able to retain 104 of 123 samples for the analysis, due to inconsistent 261 genotype quality for 19 individuals. We used eight out of the ten microsatellite markers 262 available, as the locus TRIS_80 showed evidence of null alleles in the five groups, while 263 the locus TRIS 84 showed consistent deviations from the HWE at all sites. A summary of 264 the characteristics of these loci is shown in Table S1 (available online as Supplementary 265 Information). Overall allele sampling effectiveness was 86.6%, ranging between 81.4 and 266 92.1% among sampling sites. 267 The global F_{ST} in the VCR was 0.108 (P < 0.001), while pairwise analysis suggested 268 that each sampling site comprised a separate genetic group, as F_{ST} values showed 269 significant differences among all pairwise comparisons (P < 0.005) with values ranging

from 0.071 to 0.132 (Table 1). STRUCTURE also showed a maximum likelihood value at

271 K = 5 (Fig. S1), assigning 99% of individuals to their correct sampling site (Table S2).

272 Similarly, GENELAND showed evidence of five populations in 100% of the 10 runs (Fig.

273 2a - 2f), assigning 97.1% of the individuals to their sampling site (Table S3). However, the

274 Mantel test showed no evidence of a relationship between F_{ST} and geographic distance

among populations (r = -0.051, P = 0.649). Thus, the three different methods used

276 consistently inferred five mistletoe populations in the VCR. Thus, the genetic structure

retained for subsequent analyses considered the presence of five populations: T1, T2, T3,

278 N1, N2, which matched our sampling sites.

280 The difference in N_A was marginally significant between native and transformed 281 habitats (Wilcoxon signed rank test, V = 14, P = 0.053). Also, we found significant 282 differences between native and transformed habitats for AR (V = 19, P = 0.047) and GD (V 283 = 35, P = 0.008), in both cases transformed habitats showed lower values than native 284 habitats (Table S4, Fig. S2; Table S5). For the bottleneck analysis, only one population 285 show evidence for a recent bottleneck event (N1; P = 0.004). 286 287 Relatedness and its relationship with distance 288 Individuals at all sampling sites were on average unrelated (global $r_{xy} = -0.014$, P = 289 0.190; Table S6). However, we found a significant difference between habitats 290 (permutation ANOVA F = 37.69, P < 0.001), where mean values of relatedness were higher 291 in transformed habitat (0.18 \pm 0.04 (mean \pm 1SE), N = 63) than in native habitat (0.07 \pm 292 0.04, N = 41). When examining geographic distance among individuals, we found the 293 minimum pairwise distance to be 3.61 m in the native habitat and 1 m in the transformed 294 habitat. There mean pairwise distance among plants in the different habitats was 295 significantly different (permutation ANOVA F = 273.60, P < 0.001), and was larger in 296 native $(1168.00 \pm 247.75 \text{ m}, \text{N} = 41)$ than transformed habitat $(118.82 \pm 15.46 \text{ m}, \text{N} = 63)$, 297 showing that as distances among plants decrease, their relatedness values increase. This 298 relationship was confirmed by correlating genetic and geographic distances, which showed 299 significant RV correlation coefficients at both habitats (native: RVcoef = 0.357, P < 0.001; 300 transformed: RVcoef = 0.225, P < 0.011). Further, we found positive and significant spatial 301 genetic autocorrelation at 1,000, 3,000 and 4,000 m for the native habitat, whereas at the 302 transformed habitat we only found positive significant autocorrelation at 250 m, which 13

303	suggests that gene flow at the transformed habitat is more spatially limited than at the
304	native habitat (Fig. 3).
305	<figure 3="" about="" here=""></figure>
306	Gene flow
307	While gene flow estimates were higher for transformed habitat (Fig. 4), we found
308	that the total immigration rate for native and transformed populations was not significantly
309	different (F = 0.17, P = 0.800). Gene flow among populations ranged between 1.5 and
310	18.5%, being most of the recruitment (73 to 92%) originated in the same population.
311	Populations from the transformed habitat had the greatest contribution to other populations,
312	whereas the native habitat populations had the least contribution (Table S8).
313	<figure 4="" about="" here=""></figure>
314	
315	Resource offer, pollination and seed dispersal
316	At the beginning of the flowering season (March), flowers were more abundant in
317	the transformed than the native habitat (616 \pm 184 vs. 291 \pm 26 flowers per plant), but no
318	significant associations between S. sephaniodes pollination visits and flower availability
319	were detected at any level or habitat. At the peak of the flowering season (August), flower
320	abundance was similar between native and transformed habitats (112 \pm 11 vs. 149 \pm 23
321	flowers per plant, respectively), and both T. corymbosus flower abundance and the total
322	number of flowers were spatially associated with the number of S. sephaniodes visits ($X_p =$
323	0.537, P = 0.039 and X_p = 0.526, P = 0.042, respectively) in native but not transformed
324	habitat during this period.
325	For seed dispersal at the beginning of the fruiting season (November), fruit

326 abundance was similar between native and transformed habitats (241 ± 36 vs. 202 ± 28

327	fruits per plant, respectively) and we found a significant association between D. gliroides
328	visits and the number of <i>T. corymbosus</i> fruits in native habitat ($X_p = 0.714$, P = 0.007). At
329	the peak of the fruiting season (January), fruits were similar between native and
330	transformed habitats (139 \pm 29 vs. 121 \pm 25 fruits per plant, respectively) and here we
331	found a significant association between D. gliroides visits and the number of T. corymbosus
332	fruits in transformed habitat ($X_p = 0.611$, P = 0.011; Table S7).

334 DISCUSSION

335 We found striking population structure for Tristerix corymbosus inhabiting the VCR 336 and mistletoe populations in transformed habitats showed lower genetic diversity and 337 higher relatedness than the mistletoe populations in native habitats. However, we did not 338 find differences in the immigration rates of transformed and native habitat populations. It is 339 possible that recent changes in gene flow can result in an overestimation of migration rates 340 (Samarasin et al., 2017), and here this implies that current gene flow among mistletoe 341 populations could be even lower than our estimates infer, which were below 5% in most 342 cases.

343 Furthermore, habitat transformation was also found to alter resource availability and 344 diversity, influencing pollinator and seed disperser visitation rates and at critical points of 345 T. corymbosus reproductive cycle (Fontúrbel et al., 2017b). This may contribute to reduced 346 gene flow across the landscape by concentrating S. sephaniodes and D. gliroides activity in 347 areas with large flower / fruit aggregations, a result partially confirmed by our association 348 tests, where we found a positive association between the number of T. corymbosus fruits 349 and D. gliroides visits at the transformed habitat during January, when most of the ripe fruit 350 offer is concentrated (Fontúrbel et al., 2017b).

351 *Tristerix corymbosus* and its mutualists have proven to be highly resilient to habitat 352 transformation (Fontúrbel et al., 2015; Fontúrbel et al., 2017b), contrary to habitat 353 fragmentation (Magrach et al., 2013; Rodríguez-Cabal et al., 2007). Increased resource 354 availability seems to be the main factor influencing the persistence of *Tristerix corymbosus* 355 and its pollination and seed dispersal interactions in disturbed habitats (Fontúrbel *et al.*, 356 2017b). Although pollination and seed dispersal interactions are able to persist in spite of 357 the structural and microclimate changes, habitat transformation modifies the effectiveness 358 of both interactions (Fontúrbel et al., 2017a) as well as the spatial arrangement of mistletoe, 359 resulting in the occurrence of dense plant aggregations in transformed habitats (Fontúrbel et 360 al., 2017c). Such evidence suggests that habitat transformation has a neutral -if not 361 positive- effect on T. corymbosus. However, the molecular evidence presented here depicts 362 a more complex scenario behind this apparent resilience. Gene flow at the landscape level 363 is mostly below 5% (with the exception of T3 to T2 with a rate of 18.5% and T1 to N2 with 364 a rate of 8.8%), which is likely to be the main cause of the high level of population 365 structure found along the study area. We consistently found five highly differentiated 366 groups, matching our sampling sites – with very few individuals left unsampled in the VCR 367 (not shown).

Resource availability is known to affect interaction rates with pollinators and seed dispersers (Fontúrbel *et al.*, 2017b; Lázaro *et al.*, 2014; Morales *et al.*, 2012). Here we found that the availability of *T. corymbosus* flowers and fruits were spatially associated with *S. sephaniodes* and *D. gliroides* visits in some cases, particularly in native habitat, but highly variable between the beginning and the peak of the flowering and fruiting seasons. The observed genetic structure among populations could be influenced by the behaviour of the pollinator and the seed disperser vectors. *S. sephaniodes* is able to move several

375	kilometres across the landscape, but consistently returns to the same foraging locations
376	(González-Gómez and Vásquez, 2006), which may drastically reduce pollen movement
377	distances. Dromiciops gliroides has a limited movement range of < 500 m (Fontúrbel et al.,
378	2012) and is limited to forested areas (Fontúrbel et al., 2010) constraining seed dispersal.
379	Perhaps more important than distance travelled by the pollinator or the seed disperser, is the
380	amount of time spent feeding at the same location, which has been shown to increase up to
381	three times as resource offer increase for the seed disperser (15 vs 45 min at native and
382	transformed habitats, respectively; Fontúrbel et al., 2017c). D. gliroides was detected more
383	frequently in transformed habitats at the beginning of the austral summer (January-
384	February), but was more frequently detected in native habitats during late summer (March),
385	probably as a response to fruit availability (Fontúrbel et al., 2014; Fontúrbel et al., 2017b;
386	Salazar and Fontúrbel, 2016). Consequently, the reproductive biology of T. corymbosus
387	(depending on one pollinator and one seed disperser species) may also contribute to the
388	high genetic structure found, especially considering that the disturbance event is relatively
389	recent (~20 years), over approximately 10 mistletoe generations.
390	We also found that mistletoes in the transformed habitat were more clustered than in
391	native habitat (Fontúrbel et al., 2017c) and more related to each other. As relatedness and

392 geographic distance were negatively correlated, we expect that densely aggregated

393 mistletoes are more closely related than sparse plants, as spatial aggregation can alter

demographic patterns (Fedriani and Wiegand, 2014). Given that mistletoes thriving in

395 transformed habitats tend to have large crop sizes (Fontúrbel et al., 2015), relatedness

among plants may increase as a result of increased *D. gliroides* feeding time at the same

397 plant, consuming more fruits of the same plant or neighbouring plants and then defecating

398 them together nearby the feeding site (di Virgilio *et al.*, 2014; Fontúrbel *et al.*, 2017c).

399	Also, the presence of an abundant and diverse flowering and fruiting neighbourhood in
400	transformed habitats (Fontúrbel et al., 2017b) could influence S. sephaniodes and D.
401	gliroides foraging decisions (Morales et al., 2012; Sasal and Morales, 2013). Therefore, the
402	relatedness-distance relationship suggests a positive feedback between the ecological
403	constraints imposed by the transformed habitat and its evolutionary consequences: as
404	mistletoes become more aggregated, they also become more related to each other, resulting
405	in less genetic diversity and more relatedness among plants (Fig. 5). Furthermore, since
406	both habitats currently have immigration rates below 5%, it is possible that this scenario
407	will worsen over time for populations in transformed habitats.

<Figure 5 about here>

409 Despite most of the original mistletoe population being lost at the time of the 410 establishment of the E. globulus plantation the current migration rates are similar between 411 the transformed and the native habitat, which suggests that this is a highly resilient system 412 with stabilized gene flow. Yet, transformed populations may be facing important costs in 413 terms of diminished genetic diversity and increased relatedness. However, we observed that 414 native populations have low gene-flow to other populations, despite having been an 415 important gene source in past colonization. This suggests that habitat transformation has 416 modified *T. corymbosus* gene flow in time and space, leading to more isolated populations. 417 The migration analyses showed that between 73-92% of the individuals result from self-418 recruitment within the populations. Gene flow among populations is variable and 419 asymmetric. 420

420 These results could be explained by one or more of the following three scenarios
421 (which are non-mutually exclusive): (1) A founder effect resulting from mistletoe recovery

422 after clearing the native forest and the subsequent establishment of the *E. globulus*

423 plantation. However, we detected alleles exclusive to transformed habitats, which could 424 come from small native remnants left among the planted areas (mostly corresponding to 425 areas difficult to clear-cut and riparian vegetation) acting as propagule sources. (2) Despite 426 no evidence for a bottleneck in transformed habitat populations, the native remnants (which 427 survived clear-cutting) could still have experienced bottlenecks but recruitment from distant 428 native populations may be masking them. We only found evidence for a bottleneck in 429 population N1, which could be the result of selective logging in the past decade due to 430 wood theft (which also may be the cause to be more aggregated than population N2). (3)431 Habitat transformation is known to alter pollination and seed dispersal (Fontúrbel *et al.*, 432 2017a), and host quality may play an important selective force on native habitat mistletoes, 433 influencing the survival probabilities of individuals hosted by particular species (Fontúrbel 434 *et al.*, 2017c).

Tristerix corymbosus, as with many other mistletoes around the world, seems to 435 436 benefit from habitat modification (Bowen et al., 2009). However, in the absence of a 437 forest/non-forest habitat dichotomy, the effects of habitat modification are more difficult to 438 assess along a gradient of heterogeneous landscapes (Herrera et al., 2011). Sephanoides 439 sephaniodes and D. gliroides apparently benefit from the increased landscape heterogeneity 440 (Tscharntke et al., 2012), taking advantage of native remnants to nest and transformed 441 stands to feed (Salazar and Fontúrbel, 2016). However, when we examine the demographic 442 and genetic processes behind these patterns this apparent resilience to habitat 443 transformation is may be costly in terms of relatedness and genetic diversity, therefore in 444 their evolutionary potential and extinction probabilities. The observed gene flow patterns 445 among mistletoe populations might result from a combination of changes in plant spatial 446 aggregation (plants densely clumped at the transformed habitat), plant-animal interactions

447	(pollinators / seed dispersers spending more time on areas with large resource offer) and a
448	neighbourhood effect (offering alternative flower / fruit resources). These three biotic
449	factors together and microclimate changes can create a novel ecological scenario that is
450	apparently beneficial for pollination and seed dispersal interactions in the short term, but it
451	also has less obvious effects, such as the change in the selective forces influencing plant
452	recruitment (Fontúrbel et al., 2015; Fontúrbel and Medel, 2017), as well as the reduction of
453	the genetic diversity and the increase of inter-individual relatedness.
454	
455	DATA ARCHIVING
456	Data associated to this article is available from the figshare digital repository
457	https://doi.org/10.6084/m9.figshare.4728721
458	
459	CONFLICT OF INTEREST
460	The authors declare no conflict of interest.
461	
462	ACKNOWLEDGEMENTS
463	A. Candia, J. Malebrán, H. González, C. Valenzuela and V. Riffo assisted in field. M.
464	Murúa assisted in the laboratory. The Nature Conservancy and the Valdivian Coastal
465	Reserve granted access to the field site and provided lodging facilities. C. Botto, R. Medel,
466	D. Véliz, and P. Beerli. Rufford Foundation (grant 14669-2) and FONDECYT (projects
467	3140528 and 11160152 to FEF) provided funding. CVR thanks FONDECYT project
468	11150213.
469	

470 REFERENCES

- 471 Adamack AT, Gruber B (2014). PopGenReport: simplifying basic population genetic
- 472 analyses in R. *Methods Ecol Evol* **5**:384-387.
- 473 Aizen MA (2003). Influences of animal pollination and seed dispersal on winter flowering
 474 in a temperate mistletoe. *Ecology* 84:2613-2627.
- 475 Aizen MA (2005). Breeding system of Tristerix corymbosus (Loranthaceae), a winter-
- 476 flowering mistletoe from the southern Andes. *Aust J Bot* **53**:357-361.
- Albert EM, Fortuna MA, Godoy JA, Bascompte J (2013). Assessing the robustness of the
 networks of spatial genetic variation. *Ecol Lett* 16:86-93.
- 479 Amico GC, Rodríguez-Cabal MA, Aizen MA (2011). Geographic variation in fruit colour
- 480 is associated with contrasting seed disperser assemblages in a south-Andean
- 481 mistletoe. *Ecography* **34**:318-326.
- 482 Belkhir K, Borsa P, Chikki L, Goudet J, Bonhomme F (2004). *GENETIX 4.05, logiciel sous*
- 483 Windows TM pour la génétique des populations. Laboratoire Génome, Populations,
- 484 Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France).
- 485 Belkhir K, Castric V, Bonhomme F (2002). IDENTIX, a software to test for relatedness in

486 a population using permutation methods. *Mol Ecol Notes* **2**:611-614.

487 Bowen ME, McAlpine CA, House APN, Smith GC (2009). Agricultural landscape

488 modification increases the abundance of an important food resource: mistletoes,
489 birds and brigalow. *Biol Conserv* 142:122-133.

- 490 Bravo SP, Cueto VR, Amico GC (2015). Do animal–plant interactions influence the spatial
- 491 distribution of *Aristotelia chilensis* shrubs in temperate forests of southern South

492 America? *Plant Ecol* **216**:383-394.

493 Candia AB, Medel R, Fonturbel FE (2014). Indirect positive effects of a parasitic plant on
494 host pollination and seed dispersal. *Oikos* 123:1371-1376.

495	Carpenter SR (2002). Ecological futures: building an ecology for the long now. Ecology
496	83 :2069-2083.
497	Carvalho CS, Galetti M, Colevatti RG, Jordano P (2016). Defaunation leads to
498	microevolutionary changes in a tropical palm. Sci Rep-UK 6:31957.
499	Castaño-Villa GJ, Ramos-Valencia SA, Fontúrbel FE (2014). Fine-scale habitat structure
500	complexity determines insectivorous bird diversity in a tropical forest. Acta Oecol
501	61 :19-23.
502	Chapin III FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al.
503	(2000). Consequences of changing biodiversity. <i>Nature</i> 405 :234-242.
504	Conrad K (2001). SADIEShell version 1.22. Persistent URL
505	< <u>www.ecologicalresearch.co.uk/kfconrad/download.htm</u> >.
506	Corlett RT (2015). The Anthropocene concept in ecology and conservation. Trends Ecol
507	<i>Evol</i> 30 :36-41.
508	Cornuet JM, Luikart G (1996). Description and power analysis of two tests for detecting
509	recent population bottlenecks from allele frequency data. <i>Genetics</i> 144 :2001-2014.
510	Delgado C (2010). Plan de manejo Reserva Costera Valdiviana [Management plan of the
511	Valdivian Coastal Reserve]. The Nature Conservancy, Arlington VA.
512	di Virgilio A, Amico GC, Morales JM (2014). Behavioral traits of the arboreal marsupial
513	Dromiciops gliroides during Tristerix corymbosus fruiting season. J Mammal
514	95 :1189-1198.

- 515 Didham RK, Kapos V, Ewers RM (2012). Rethinking the conceptual foundations of habitat
 516 fragmentation research. *Oikos* 121:161-170.
- 517 Dray S, Dufour AB (2007). The ade4 package: Implementing the duality diagram for
- 518 ecologists. J Stat Softw 22:1-20.

519	Epps CW, Keyghobadi N (2015). Landscape genetics in a changing world: disentangling
520	historical and contemporary influences and inferring change. Mol Ecol 24:6021-
521	6040.
522	Escudero A, Iriondo JM, Torres ME (2003). Spatial analysis of genetic diversity as a tool
523	for plant conservation. Biol Conserv 113:351-365.
524	Fahrig L (2003). Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst
525	34 :487-515.
526	Fedriani JM, Wiegand T (2014). Hierarchical mechanisms of spatially contagious seed
527	dispersal in complex seed-disperser networks. <i>Ecology</i> 95 :514-526.
528	Fontúrbel FE, Candia AB, Botto-Mahan C (2014). Nocturnal activity patterns of the monito
529	del monte (Dromiciops gliroides) in native and exotic habitats. J Mammal 95:1199-
530	1206.
531	Fontúrbel FE, Franco M, Rodríguez-Cabal MA, Rivarola MD, Amico GC (2012).
532	Ecological consistency across space: a synthesis of the ecological aspects of
533	Dromiciops gliroides in Argentina and Chile. Naturwissenschaften 99:873-881.
534	Fontúrbel FE, Jordano P, Medel R (2015). Scale-dependent responses of pollination and
535	seed dispersal mutualisms in a habitat transformation scenario. J Ecol 103:1334-
536	1343.
537	Fontúrbel FE, Jordano P, Medel R (2017a). Plant-animal mutualism effectiveness in native
538	and transformed habitats: Assessing the coupled outcomes of pollination and seed
539	dispersal. Perspect Plant Ecol Evol Syst 28:87-95.
540	Fontúrbel FE, Medel R (2017). Frugivore-mediated selection in a habitat transformation
541	scenario. Sci Rep-UK 7:45371.

542	Fontúrbel FE, Murúa MM, Vega-Retter C (2016). Development of ten microsatellite
543	markers from the keystone mistletoe Tristerix corymbosus (Loranthaceae) using 454
544	next generation sequencing and their applicability to population genetic structure
545	studies. <i>Mol Biol Rep</i> 43 :339-343.
546	Fontúrbel FE, Salazar DA, Medel R (2017b). Increased resource availability prevents the
547	disruption of key ecological interactions in disturbed habitats. <i>Ecosphere</i> 8:e01768.
548	Fontúrbel FE, Salazar DA, Medel R (2017c). Why mistletoes are more aggregated in
549	disturbed forests? The role of differential host mortality. Forest Ecol Manag
550	394 :13-19.
551	Fontúrbel FE, Silva-Rodriguez EA, Cardenas NH, Jimenez JE (2010). Spatial ecology of
552	monito del monte (Dromiciops gliroides) in a fragmented landscape of southern
553	Chile. <i>Mamm Biol</i> 75 :1-9.
554	García D, Martínez D, Herrera JM, Morales JM (2013). Functional heterogeneity in a plant-
555	frugivore assemblage enhances seed dispersal resilience to habitat loss. Ecography
556	36 :197-208.
557	Ghazoul J, Burivalova Z, Garcia-Ulloa J, King LA (2015). Conceptualizing Forest
558	Degradation. Trends Ecol Evol 30:622-632.
559	González-Gómez PL, Vásquez RA (2006). A field study of spatial memory in Green-
560	Backed Firecrown hummingbirds (Sephanoides sephaniodes). Ethology 112:790-
561	795.
562	González-Varo JP, Carvalho CS, Arroyo J, Jordano P (2017). Unravelling seed dispersal
563	through fragmented landscapes: Frugivore species operate unevenly as mobile links.
564	<i>Mol Ecol</i> 26 :4309-4321.

- Goudet J (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. J *Hered* 86:485-486.
- Goudet J (2014). *hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.04-14.* http://CRAN.R-project.org/package=hierfstat.
- 569 Guillot G, Mortier F, Estoup A (2005). GENELAND: a computer package for landscape
 570 genetics. *Mol Ecol Notes* 5:712-715.
- Herrera JM, Garcia D, Morales JM (2011). Matrix effects on plant-frugivore and plantpredator interactions in forest fragments. *Landscape Ecol* 26:125-135.
- 573 Jombart T (2008). adegenet: a R package for the multivariate analysis of genetic markers.
- 574 *Bioinformatics* **24**:1403-1405.
- 575 Lancaster ML, Taylor AC, Cooper SJB, Carthew SM (2011). Limited ecological
- 576 connectivity of an arboreal marsupial across a forest/plantation landscape despite
 577 apparent resilience to fragmentation. *Mol Ecol* 20:2258-2271.
- 578 Lavabre JE, Stouffer DB, Sanz R, Bascompte J (2014). Seed dispersal in heterogeneous
- 579 landscapes: linking field observations with spatially explicit models. *Oikos*
- **123**:1355-1364.
- 581 Lázaro A, Lundgren R, Totland Ø (2014). Experimental reduction of pollinator visitation
 582 modifies plant–plant interactions for pollination. *Oikos* 123:1037-1048.
- 583 Li BH, Madden LV, Xu XM (2012). Spatial analysis by distance indices: an alternative
- 584 local clustering index for studying spatial patterns. *Methods Ecol Evol* **3**:368-377.
- 585 Magrach A, Santamaría L, Larrinaga AR (2013). Forest edges show contrasting effects on
- an austral mistletoe due to differences in pollination and seed dispersal. *J Ecol*
- **101**:713-721.

5 00	
389	hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462-468.
590	Mittermier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermier CG, et al. (2005).
591	Hotspots revisited: Earth's biologically richest and most threatened terrestrial
592	regions. CEMEX, Monterrey, Mexico.
593	Morales JM, Rivarola MD, Amico GC, Carlo TA (2012). Neighborhood effects on seed
594	dispersal by frugivores: testing theory with a mistletoe-marsupial system in
595	Patagonia. <i>Ecology</i> 93 :741-748.
596	Neuschulz EL, Mueller T, Schleuning M, Böhning-Gaese K (2016). Pollination and seed
597	dispersal are the most threatened processes of plant regeneration. Sci Rep-UK
598	6 :29839.
599	Peakall R, Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic
600	software for teaching and research-an update. <i>Bioinformatics</i> 28:2537-2539.
601	Perez-Mendez N, Jordano P, Garcia C, Valido A (2016). The signatures of Anthropocene
602	defaunation: cascading effects of the seed dispersal collapse. Sci Rep-UK 6:24820.
603	Perry JN, Liebhold AM, Rosenberg MS, Dungan J, Miriti M, Jakomulska A, et al. (2002).
604	Illustrations and guidelines for selecting statistical methods for quantifying spatial
605	pattern in ecological data. <i>Ecography</i> 25 :578-600.
606	Perry JN, Winder L, Holland JM, Alston RD (1999). Red-blue plots for detecting clusters
607	in count data. <i>Ecol Lett</i> 2 :106-113.
608	Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using
609	multilocus genotype data. Genetics 155:945-959.
610	Queller DC, Goodnight KF (1989). Estimating relatedness using genetic markers. Evolution

612	R Development Core Team (2017). R: A language and environment for statistical		
613	computing, reference index version 3.4.2. Foundation for Statistical Computing,		
614	Vienna, Austria.		
615	Rodríguez-Cabal MA, Aizen MA, Novaro AJ (2007). Habitat fragmentation disrupts a		
616	plant-disperser mutualism in the temperate forest of South America. Biol Conserv		
617	139 :195-202.		
618	Rosenberg MS, Anderson CD (2011). PASSaGE: Pattern Analysis, Spatial Statistics and		
619	Geographic Exegesis. Version 2. Methods Ecol Evol 2:229-232.		
620	Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, et al. (2000).		
621	Biodiversity - Global biodiversity scenarios for the year 2100. Science 287:1770-		
622	1774.		
623	Salazar DA, Fontúrbel FE (2016). Beyond habitat structure: Landscape heterogeneity		
624	explains the monito del monte (Dromiciops gliroides) occurrence and behavior at		
625	habitats dominated by exotic trees. Integr Zool 11:413-421.		
626	Samarasin P, Shuter BJ, Wright SI, Rodd FH (2017). The problem of estimating recent		
627	genetic connectivity in a changing world. Conserv Biol 31:126-135.		
628	Sasal Y, Morales JM (2013). Linking frugivore behavior to plant population dynamics.		
629	<i>Oikos</i> 122 :95-103.		
630	Sunnucks P (2000). Efficient genetic markers for population biology. Trends Ecol Evol		
631	15 :199-203.		
632	Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, et al. (2012).		
633	Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol		
634	<i>Rev</i> 87 :661-685.		

635	Valiente-Banuet A, Aizen MA, Alcantara JM, Arroyo J, Cocucci A, Galetti M, et al.
636	(2015). Beyond species loss: the extinction of ecological interactions in a changing
637	world. Funct Ecol 29 :299-307.
638	Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004). MICRO-CHECKER:
639	software for identifying and correcting genotyping errors in microsatellite data. Mol
640	<i>Ecol Notes</i> 4 :535-538.
641	Vekemans X, Hardy OJ (2004). New insights from fine-scale spatial genetic structure
642	analyses in plant populations. Mol Ecol 13:921-935.
643	Weir BS, Cockerham CC (1984). Estimating F-statistics for the analysis of population
644	structure. Evolution 38 :1358-1370.
645	Wheeler B, Torchiano M (2016). ImPerm: Permutation tests for linear models. R package
646	version 2.1.0. http://CRAN.R-project.org/package=lmPerm.
647	Wilson GA, Rannala B (2003). Bayesian inference of recent migration rates using
648	multilocus genotypes. Genetics 163:1177-1191.

650 TABLES

651

Table 1. Pairwise F_{ST} and associated P-values obtained after 10000 permutations. * denote

Site	T1	T2	T3	N1	N2
T1	_	0.132*	0.124*	0.131*	0.077*
T2		_	0.071*	0.121*	0.104*
T3			_	0.111*	0.108*
N1				_	0.099*
N2					_

- 653 significant P-values (P < 0.001).
- 654

656 FIGURE CAPTIONS

657

658	Figure 1. Map of the study area: (a) location in South America, (b) detailed location in			
659	southern Chile, (c) detailed map of the sampling area showing native and transformed			
660	habitats. Mistletoe locations within each sampling site are shown in different colours (N =			
661	native forest habitat and $T =$ transformed habitat).			
662				
663	Figure 2. (a) Plot of the number of populations simulated from the posterior distribution			
664	obtained with GENELAND; (b) to (f) GENELAND maps of individual assignments to			
665	clusters ($K = 5$). Cluster correspondence: (b) T1; (c) T2; (d) T3; (e) N1 and (f) N2. The			
666	probability of belonging to a given cluster ranges from 0.0 (red areas) to 1.0 (white areas);			
667	these probability values are also indicated by isolines. Black dots represent sampled			
668	mistletoes. The plot is based on the highest-probability run at that value of K .			
669				
670	Figure 3. Spatial genetic autocorrelograms for: (a) native habitat and (b) transformed			
671	habitats. Solid lines represented the observed autocorrelation, dashed lines represent the			
672	95% confidence intervals. Black circles represent significant autocorrelations whereas			
673	white circles represent non-significant autocorrelations.			
674				
675	Figure 4. Migration rates (proportion of migrants from population x in population y , per			
676	generation) among <i>Tristerix corymbosus</i> populations at native and transformed habitats.			

677 Red arrows represent the largest inter-population migration.

678

- 679 Figure 5. Determinants of ecological and evolutionary changes of *T. corymbosus* at
- 680 transformed habitats.

681 FIGURES

Figure 1

Figure 3

