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ABSTRACT: 
 

The issue of Additive Manufacturing (AM) system energy consumption attracts increasing attention 

when many AM systems are applied in digital manufacturing systems. Prediction and reduction of the 

AM energy consumption have been established as one of the most crucial research targets. However, 

the energy consumption is related to many attributes in different components of an AM system, which 

are represented as multiple source data. These multi-source data are difficult to integrate and to model 

for AM energy consumption due to its complexity. The purpose of this study is to establish an energy 

value predictive model through a data-driven approach. Owing to the fact that multi-source data of AM 

system involves nested hierarchy, a hybrid approach is proposed to tackle the issue. This hybrid 

approach incorporates clustering techniques and deep learning to integrate the multi-source data that is 

collected using the Internet of Things (IoT), and then to build the energy consumption prediction model 

for AM systems. This study aims to optimise the AM system by exploiting energy consumption 

information. An experimental study using the energy consumption data of a real AM system shows the 

merits of the proposed approach. Results derived using this hybrid approach reveal that it outperforms 

pre-existing approaches. 
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1. INTRODUCTION 

 
In the last decade, the number of AM systems in the world has increased approximately six times [1]. 

Funded by a number of leading industrial enterprises and governments, many factories and companies 

were constructed to house hundreds of AM machines which work together to generate thousands of 

products simultaneously [2]. Due to the large amount of machines and production yield, the AM process 

is defined as a low energy efficient process [3]. Also, according to the Life Cycle Analysis (LCA), the 

energy consumption of AM systems tends to have a significant effect on the environment [4]. Hence, 

based on the current situation, understanding and reducing the AM system energy consumption has 

become an essential topic in the manufacturing industry.  

 

The AM process is widely known as a complex system including various technologies, such as electron 

beam melting (EBM), selective laser melting (SLM), and selective laser sintering (SLS) [5]. Different 

processing technologies show different energy consumption rates due to various impact factors [6]. 

These factors are identified from the entire AM process. Generally, a typical AM process includes six 

stages (Convert, Locate and orient, Adding support structure, Slice, Build, and Post-process). In this 

standard process, process and environmental attributes, including evident and hidden energy 

consumption related factors, can be digitalised and connected in a virtual world [7] using IoT techniques 

[8]. Depending on the different data sources, this data is defined as the multi-source data [9], which are 

often used to build data mining models for ascertaining the AM system relevant information and 

knowledge [10]. Unfortunately, multi-source data are generally collected by different methods from 

various data sources [11]. This data involves various features and dimensions, which tend to be nested 

as a multiple hierarchical structure. The features of this data structure are rarely independent [12]. This 

data is difficult to integrate using typical data integration methods, such as the extract, transform, and 

load (ETL) technique [13]. Under this comprehensive data environment, it is very challenging to 

integrate the multi-source data which include the multiple hierarchical structure for building the 

prediction model [14]. Integrating and modelling this multi-source data of AM system to predict energy 

consumption becomes a crucial research question for AM development.  
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This paper proposes a hybrid multi-source data analytic approach based on IoT, clustering, and deep 

learning techniques, which addresses the energy consumption prediction problems in the AM system. 

Section 2 reviews the studies of the energy consumption analysis and data generation process in AM 

systems. This section also discusses multi-source data integration methods in the manufacturing. In 

section 3, a hybrid approach is proposed, where the multi-source data is sensed and collected by IoT 

technique. Then, this data is integrated and modelled by a clustering based deep learning approach to 

predict the AM energy consumption. In Section 4, a case study is introduced to predict the energy 

consumption of an AM system. Results are compared and discussed to reveal the performance of the 

proposed approach. In Section 5, the benefits and the limitations of the proposed approach are concluded. 

  

2. RELATED WORKS 

 
2.1. Energy Consumption Analysis of AM Systems 

 
The AM system shows different energy consumption performances due to the various technical 

principles with different material supplies. Table 1 shows a comparison of the energy consumption of 

typical AM technologies including electron beam melting (EBM) [15], selective laser melting (SLM) 

[16], selective laser sintering (SLS) [15, 17], fused deposition modelling (FDM) [18], and 

STereoLithography (SLA) [18]. Based on different working principles, AM techniques have been 

applied to a number of different systems with various material supplies, which are also shown as 

schematics in Table 1. It is interesting that the energy consumption has shown a large difference.  
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Table 1  
Comparison of the energy consumption of different AM techniques. 
AM 
Techniques Schematics of AM process adopted from [19-21] Basic working principles Main material Energy consumption 

rates (W*h/g) 

EBM 

                                                         

Using a concentrated beam of electrons 
to melt metal powder or filament 
material to build products. 

Ti-6Al-4V, 316L stainless 
steel, etc. (Type: Beam or 
powder) 

17.0 to 49.1 

SLM 

 

Using high power-density laser power 
to the melt metal powder material to 
build products. 

Ti-6Al-4V, 316L stainless 
steel, etc. (Type: Powder) 26.9 to 38.75 

SLS 

 

Using laser to sinter powder material 
(typically, non-metallic) to build 
products. 

Polyamide, nylon, etc. 
(Type: Powder) 14.5 to 36.0 

FDM 

 

Fusing thermoplastic filament material 
by heating printer extruder head’s 
nozzle to build products. 

Acrylonitrile butadiene 
styrene (ABS), 
Polycarbonate (PC), etc. 
(Type: Beam) 

23.01 to 346.4 

SLA 

 

Using photopolymerization converts 
liquid materials (Photopolymer) into a 
solid form. 

Poly1500, 
TuskXC2700T, etc. 
(Type: Liquid) 

20.7 to 41.4 
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For instance, EBM and SLM both use similar materials. But, their energy consumption rates are 

different due to their different working principles. EBM utilises the concentrated beam of electrons to 

melt metal powder or filament material in order to build products, while SLM utilises the high power-

density laser to melt metal powder material to build products. Moreover, SLM and SLS apply a similar 

technique. However, their energy consumption level shows large difference caused by different material 

usages. Comparing SLA and SLM, although the working principles and materials are different entirely 

the energy consumption rates are similar. Furthermore, even using the same technology and the same 

materials to conduct tests, the changes incurred in terms of energy consumption. Thus, it highlights the 

difficulty in analysing and optimising the energy consumption of AM systems [15-18]. Table 2 has 

shown the differences in the rates of AM energy consumption caused by many different components 

and impacted by numerous attributes. Based on the system understanding and manufacturing experience, 

research has found correlations between energy consumption and various processing attributes of AM 

processes, such as processing, product design, and material attributes. 

 

Table 2  
Energy consumption related attributes of AM systems in literature. 

Literature Processing attributes Product design 
attributes 

Material 
attributes 

Sreenivasan and Bourell [15]  Scan speed; Laser power 
rate; Build platform size N/A Material powder 

density 

Gross et al. [16] 
Layer thickness; Laser 
beam radius; Scan speed; 
Laser power 

Part orientation Material powder 
absorption 

Watson and Taminger [17] 
Feedstock and recycling 
transported distance; 
Build platform size 

Volume of deposited 
material N/A 

Telenko and Speeperad [18] N/A Z-height Material powder 
density 

Baumers et al. [19] Processing procedures; 
Build time 

Part geometry; Z-height; 
Capacity utilisation N/A 

 

In Table 2, authors showed various models for examining energy consumption in AM systems. 

However, the impacts are inconsistent because many correlations exist. Thus, it is difficult to identify 

all related attributes of AM process energy consumption from a single study or experiment. Specifically, 

Sreenivasan and Bourell [15] applied a basic energy consumption function, where the voltage and the 

current are the main inputs. In their study, system power is calculated from 1000 watts to 2500 watts, 
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and the heater system is highlighted as the largest energy consumer. Furthermore, this article shows that 

scan speed, laser power rates, build platform size, and material density impact the energy consumption 

in the targeted AM system. However, energy consumption modelling was not established in this paper. 

Watson and Taminger [17] built an energy consumption model by considering the impact of the process 

and product design attributes, such as the feedstock and recycling transported distance, build platform 

size, and the volume of deposited material. But, in this paper, the energy consumption model was 

suggested without any experimental validation. In another paper, Telenko and Speeperad [18] compared 

the differences in energy consumption between SLS and injection moulding (IM). They also revealed 

the correlations between energy consumption and build height and material density, which were 

obtained from the experimental results. A Similar methodology had been also applied by Baumers et al. 

[19]. In this paper, the energy consumptions of two SLS machines was compared. They defined an AM 

process as 3 phases of energy consumption, which are warm-up, building, and cooling down. 

Furthermore, the authors indicate that product geometry could have an essential impact on energy 

consumption in the AM system. From these studies, some researchers consider processing attributes are 

more closely related to energy usage. They contain scan speed, layer thickness and building time. While, 

product design attributes and material attributes, such as part orientation, the products of height, 

material density, and absorption powder, are also defined as critical energy-relevant factors in AM 

systems. However, only with part of attributes consideration, it is hard to model the energy consumption 

of AM systems accurately [22].  

 

The manufacturing industry is currently moving into the next industrial revolution, which allows the 

production equipment to sense and collect more data from AM systems using IoT technology [23]. With 

more data being sensed and collection, the behaviour of energy consumption in AM systems tends to 

be predictive. In the next section, the details of data generation and data analytics in AM systems will 

be reviewed and discussed. 
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2.2. Multi-Source Data Generation and Analytics of the AM Process  

 

AM process is a data generation process starting from the initial order to the product delivery. As 

mentioned in the Introduction, this process includes six stages [24]. In the first stage (Convert), All of 

CAD (Computer-aided design) models, created by any design software, are converted into a particular 

format, such as STL (Standard Tessellation Language) format. Then, these models are sent to system 

operators [25]. In the next stage (Locate and orient), system operators decide orientations and positions 

of each part in every production [26]. The location and layout rotation of each product in the building 

bed depends on the operators’ knowledge and experiences. Furthermore, AM system software helps 

operators to add a supporting structure if it is necessary, which is the Support structure stage. These two 

stages (Locate and orient, and Support structure) generate information about products orientation, 

position and supporting structure. Once these three information is generated, AM aided software creates 

slice files (Slice) for the system to organise the processing paths of each layer [16]. During the 

production process (Build), sensors generate sensing data to represent the working and environment 

information. Before shipping to the customer, the products need to be cleaned and checked. Unfused 

powders and support structures are removed, which is the last stage, Post-process. In this stage, data of 

the material usage and product accuracy is obtained. Consequently, the whole data generation process 

creates a considerable volume of data from multiple data sources, up to one trillion voxels information 

and dozens of attributes [27], which includes four primary data: 

• Process operation data [28, 29], e.g., scan speed, scan power, laser power rate, etc. 

• Working environment data [29-31], e.g., environment temperature, chamber temperature, etc. 

• Product design data [25, 32, 33], e.g., part orientation, part height, part geometry, etc. 

• Material condition data [34, 35], e.g., material density, material humility, material melting point, etc.  

  

The four primary data has mainly constituted a multi-source database of the AM system. Using this 

database, data analytics becomes one of the most powerful solution to solve many problems in the 

current AM context. Unfortunately, current related research only uses a part of the data in this multi-

source database, which is mostly collected from the process operation and the working environment. 
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Steed et al. [28] pointed out that it was essential to analyse process data to understand AM process. 

Thus, a software, called Falcon, was developed for a better exploratory visual analysis of the large, 

irregular and multivariate time-series data that are generated from AM process. Falcon software 

displayed data from system monitoring files with a clear visualisation. It allows users to check the data 

across multiple views and provides users with basic data analysis results, including the mean, quartile, 

and variance. Falcon software also showed product imagery to users helping people to understand the 

building condition of every single layer. However, their research focused on a single AM process which 

failed to reveal general knowledge of AM systems. O’Regan et al. [30] proved some correlations 

between building environment and product voids and residual stress after summarising critical process 

parameters and data in an SLM system. They found that most attributes that impacted the product voids 

and residual stress were represented and displayed as different types of data in system monitoring files 

by the target system. However, they did not establish any data analytical model in this paper, which 

was indicated as a future work. Uhlmann et al. [29] introduced a data analytical method for assessing 

SLM process. They collected data generated by monitoring sensors, which included 16 different 

features, such as platform temperature, chamber temperature, layering time and process pressure. In 

their paper, the working and environmental data was used to build a data mining model to predict the 

idle time of the system. They also believed that more system behaviour knowledge could be discovered 

when more related data was collected and used, and data analytical methods could be optimised by 

expanding input data.  

 

Current data analytics research of AM system is rare to integrate the multi-source data of an entire AM 

process. It is challenging due to complexity of multi-source data. It is evident that the data collected 

from these four data sources varies in types and formats. This data is also categorised into different 

levels depending on the collection methods and forms. For example, usually the product design data are 

collected once for each build, and working environment data are collected once for each layer or every 

second [24]. This issue makes problems more complicated. In the next section, data integration methods 

in manufacturing are reviewed and discussed for helping to clear the issue of data integration. 
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2.3. Data Integration in Manufacturing   

 
Data integration is defined as combining multi-source data to discover hidden information and 

knowledge [36]. Commonly, data collected from different sources needs a three-stages process to 

integrate, which is Extracting, Transforming, and Loading (ETL). Firstly, data is extracted from 

different resources, which may use different format files, like XML files, JSON files or standard flat 

format files. Then, a number of rules and functions are applied to this data for specific purposes, such 

as selecting the necessary features, translating the coded values, and joining data from different sources. 

The last stage is loading this transferred data into a database, so-called data warehouse [37]. Presently, 

many researchers are looking for many other data integration approaches to improve data analytics 

models or obtain better results. Zhan et al. [38] introduced a hybrid approach which not only integrates 

different types of data (image data and sensor data) but also integrates different recognition models to 

identify items in smart refrigerators. In their paper, data was collected from two data sources, the camera, 

and the weight sensor. Firstly, three pre-trained single shot multi-box detectors (SSD), ResNet, VGG16, 

VGG19, were used to identify the images that were taken by the camera. By using a neural network, 

three outputs were combined to obtain another output. This output was integrated to the data collected 

from weight sensors to receive the final output. In their case study, 20,000 images were used for training 

the model, and 5000 images were to test the model. The recognition accuracy was 0.97 which was about 

5 % higher than any separated model. 

 

Moreover, in the context of digital manufacturing, the IoT is considered as one of the best techniques 

to collect and integrate data. Typically, data is collected in real time through a wire or wireless 

communication by sensors, Auto-ID integration, and other electronic or mechatronic devices [39-41]. 

By integrating the data collected by IoT application, industrial production can be improved by 

decreasing unscheduled machine downtime and energy costs with other significant benefits [42]. Lee 

and Bagheri proposed [43] a method of industrial robot health monitoring. In their project, a health 

monitoring prediction model was generated by using the IoT technique for 30 industrial robots. A multi-

regime prognostic clustering approach was used in this case within an IoT framework. Two main 
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parameters: torque, and speed of these robots were detected and integrated as a condition dataset. The 

condition data was then uploaded to a local database. Moreover, the database also obtained other types 

of data from other systems and data sources to predict the production processing, pressure calibrations, 

or gear and load ratio. Meanwhile, all this multi-source data was uploaded to a cloud database. In the 

cloud database, clustering data mining methods were used to analyse the health condition of robots. 

This information was presented to the user and supported to other systems through the network. In this 

project, the multi-source data were integrated twice in the local and in the cloud database. Contrastively, 

the integration in the cloud database is much more difficult than the integration in the local due to the 

complex of data, while it was rarely introduced in this paper.    

 

Besides, the multi-source data tends to become more irregular, massive, and hard to combine directly. 

The features and observations of this data is rarely independent, which is nested as a multiple 

hierarchical structure, called multi-level data [12]. Rajeswaran et al. [12] believed that the traditional 

analysis methods assumed measurements (attributes or features) are independent. However, in many 

real situations, features were nested, which tends to be correlated at various levels. There was much 

more valuable information hiding in these levels. In their articles, the patient data collected from surgery 

were levelled as several structures with different levels. With these multi-level structures, it was much 

easier to discover the information and knowledge hidden using this massive data. Furthermore, Frazzon 

et al. [44] proposed a comprehensive data-driven production control platform that includes most parts 

of the entire manufacturing process, such as a terminal, workers, material, customer, and suppliers. In 

their platform, there was many data collected from the process, such as machine status data, job 

processing data, personal data, customer order data, and procurement order data. The platform tended 

to combine all this multi-source data to improve the production control. This paper rarely introduced 

specific multi-level data integration methods although they were necessary. The reason why this data is 

hard to combine them directly in reality because the data were on different levels. It is necessary to 

consider the multi-level data structure for this multi-source data platform.  
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According to the previous research and paper of multi-source data integration, there are many methods 

to deal with this issue, and IoT techniques are designed to solve it mainly. Generally, the IoT collected 

data includes different data sources with various dimensions. This advanced technique is considered to 

solve the problem of combining the entire objects among thousands of items and used in many fields in 

manufacturing. However, due to the complicated data structure, it is hard to integrate the multi-source 

and multi-level data only applying the IoT and other common data integration techniques.   

 

Consequently, AM process is a complicated data generation process. In the current AM process data 

environment, the number and types of impact features have become increasingly significant. Thus, to 

address specific problems, more and more impact factors must be considered together to obtain accurate 

results. To build an accurate energy consumption prediction model, data from the entire process needs 

to be collected and integrated. In the next section, a multi-source data analytics approach is revealed, 

which focuses on integrating various levelled multi-source data in an AM system. This cutting-edge 

approach incorporates the techniques of IoT, clustering, and deep learning.  

 

3. RESEARCH METHODOLOGY 

 
In order to integrate the multi-source data and predict energy consumption for AM systems, a hybrid 

approach is proposed in this study. Firstly, an IoT application is utilised to sense and collect the multi-

source data from several relevant data sources of an AM system, such as production process operation, 

product design, working environment and materials condition. Secondly, the collected data is 

categorised into two levelled datasets (layer-level dataset and build-level dataset) as mentioned in 

section 2.3. Then, this multi-source and multi-level data is integrated and modelled to predict the energy 

consumption by fusing clustering and deep learning techniques. 
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3.1. Multi-source Data Sensing and Collecting  

 

The first task to analyse the energy consumption of an AM process is to sense and collect the data from 

four primary sources: production operation, working environment, product design and materials. In the 

context of IoT, there are three main data collection methods, such as system monitoring files, design 

CAD models, and IoT application, to collect data from these four data sources in an AM process.  

 

 

Fig. 1. Multi-source data sensing and collection using IoT for an AM process.  

 

In Fig. 1, system operation data and working environment data are collected from the machine 

embedded sensors, which are represented as a series of numbers in the system monitoring files. These 

numbers can be temperature, voltage, current, and gas concentration, etc., where data pre-processing is 

necessary before model building. Furthermore, the data collected from system monitoring files is not 

enough to present the comprehensive aspects of a working environment [45]. In this research, extra 

working environment data is sensed and collected using an IoT data collecting platform. This IoT 

platform is structured on single-board computers, such as Raspberry Pi and MBed devices, to connect 

sensors [46-48], and the target AM system. This connection builds a wireless data sensing and collection 
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network [49, 50]. Besides, product design CAD models can be shown as various formats depending on 

CAD design software and saving templates [32, 33]. By converting process, these design CAD models 

are converted to STL format, which has mentioned in section 2.2. To obtain design feature information, 

such as geometric information, spatial location information, spatial proportion information, these design 

CAD models need to be analysed by software, such as SolidWorks, Autodesk CAD, or AM software 

[51, 52].  

 

3.2. Multi-Source Data Integrating and Modelling Approach  

 
After the data is collected from the monitoring files, product design models, and the IoT data collecting 

system. Four main types of data, process operation data, working environment data, product design data, 

and material condition data, are created. In an AM process, it is obvious to realise that these four multi-

source data are presented as two levelled datasets, build-level and layer-level data. Specifically, during 

each build, process parameter settings are constant. The relevant data is collected once at each build. 

This data is classified into the build-level dataset.  Also, work environment, and material condition may 

keep changing all the time during a working process. This type of relevant data is collected many times 

during a build, specifically several times or once per layer, which is categorised into the build-level 

dataset. To integrate the multi-source data and build an energy consumption prediction model, this paper 

proposes a hybrid approach shown in Fig. 2.   

 

 

Fig. 2. Multi-source data integrating and modelling process. 
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It is evident that each build contains layers in different number, which depends on the height of the 

products. Therefore, the size of each layer-level dataset is various. Hence, keeping the same format for 

every dataset is necessary. In this paper, the clustering method is introduced to unify layer-level 

database format. 

 

The 𝑳𝑳𝒏𝒏𝒏𝒏
𝒋𝒋  is a raw layer-level dataset for each build, where 𝒋𝒋 is the 𝒋𝒋𝒕𝒕𝒕𝒕 build (𝒋𝒋 is between 0 to 𝑱𝑱, which 𝑱𝑱 

is the total number of builds). 𝒏𝒏 is the number of layers for each build, 𝒊𝒊 is the number of features 

collected for layer data. Because every build includes various layer number depending on the height of 

build, 𝑛𝑛 is different between different 𝒋𝒋. For every 𝑳𝑳𝒏𝒏𝒏𝒏
𝒋𝒋  :  

 

𝑪𝑪𝑪𝑪𝒄𝒄𝒄𝒄
𝒋𝒋 = 𝒇𝒇𝑪𝑪(𝑳𝑳𝒏𝒏𝒏𝒏

𝒋𝒋 )                                                                                 (1).             

 

𝒇𝒇𝑪𝑪 is the clustering function to discover the number of 𝑪𝑪 centre points (𝑪𝑪𝑪𝑪𝒄𝒄𝒄𝒄
𝒋𝒋 ). In each build, the layer-

level raw dataset (𝑳𝑳𝒏𝒏𝒏𝒏
𝒋𝒋 ) represents a dataset with the number of 𝒏𝒏 indexes and the number of 𝒊𝒊 features. 

With the algorithm, each 𝑳𝑳𝒏𝒏𝒏𝒏
𝒋𝒋  will be clustered into 𝑪𝑪  clusters, and, minimize the total Euclidean 

distance, between cluster centre and each point. So, in each build, a centre points dataset (𝑪𝑪𝑪𝑪𝒄𝒄𝒄𝒄
𝒋𝒋  ) can 

represent an original layer-level dataset. Then, combining all the 𝑪𝑪𝑪𝑪𝒄𝒄𝒄𝒄
𝒋𝒋  into a resided dataset, 

representing as 𝑳𝑳𝒊𝒊𝒊𝒊
𝑱𝑱 . The 𝑳𝑳𝒊𝒊𝒊𝒊

𝑱𝑱  is one input part of the merged neural network that is structured as Fig. 3. 

The 𝑩𝑩𝒌𝒌
𝑱𝑱  is a build-level database which is the other input part of the merged neural network, which 𝒌𝒌 is 

the number of features in the build-level database. 
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Fig. 3. Merged neural network structure. 

 

This merged neural network (MNN) includes three sections, layer-level section, build-level section and 

full-connected section. The 𝑳𝑳𝒊𝒊𝒊𝒊
𝑱𝑱  is the input of the layer-level section and the 𝑩𝑩𝒌𝒌

𝑱𝑱  is the input of the build-

level section. The full-connected section is connected to the layer-level and build-level sections. 

 

Specifically, the neurons of a layer-level section are described using the following equations:  

 

𝒖𝒖𝑳𝑳 = ∑ 𝒘𝒘𝑳𝑳𝑳𝑳𝑳𝑳𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊𝒍𝒍
𝟏𝟏  , 𝒚𝒚𝑳𝑳 = 𝒇𝒇𝒍𝒍(𝒖𝒖𝑳𝑳 + ∆𝒃𝒃𝒍𝒍)                                                           (2),          
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𝒘𝒘𝑳𝑳𝑳𝑳𝑳𝑳 is the weight of each neuron on each layer-level section, l is the number of neurons on each layer-

level section, 𝒚𝒚𝑳𝑳 is the output of each neuron, which is the input of next layer, 𝒇𝒇𝒍𝒍 is the activation 

function of a layer-level section, and ∆𝒃𝒃𝒍𝒍 is the bias.  

 

The neurons of a build-level section are denoted as a set of following equations: 

 

𝒖𝒖𝑩𝑩 = ∑ 𝒘𝒘𝑩𝑩𝑩𝑩𝒌𝒌
𝒃𝒃
𝟏𝟏  , 𝒚𝒚𝑩𝑩 = 𝒇𝒇𝒃𝒃(𝒖𝒖𝑩𝑩 + ∆𝒃𝒃𝒃𝒃)                                                         (3), 

 

𝒘𝒘𝑩𝑩 is the weight of each neuron on each build-level section, b is the number of neurons on each build-

level section, 𝒚𝒚𝑩𝑩 is the output of each neuron, which is the input of next layer, 𝒇𝒇𝒃𝒃 is the activation 

function, and ∆𝒃𝒃𝒃𝒃 is the bias.  

 

With the full connection layer, neurons are represented as:  

 

𝒖𝒖𝒇𝒇 = ∑ (𝒘𝒘𝒇𝒇𝒇𝒇𝒚𝒚𝒍𝒍 +𝒘𝒘𝒇𝒇𝒇𝒇𝒚𝒚𝒃𝒃)𝑭𝑭
𝟏𝟏 , 𝒚𝒚𝒇𝒇 = 𝒇𝒇𝒇𝒇�𝒖𝒖𝒇𝒇 + ∆𝒃𝒃�                                             (4), 

 

𝒘𝒘𝒇𝒇𝒇𝒇 is the weight of each neuron on each full connection section, F is the number of neurons, which 

𝑭𝑭 = ∑𝒇𝒇𝒇𝒇 , 𝒚𝒚𝒇𝒇 is the output of each neurons, which is the input of next layer, 𝒇𝒇𝒇𝒇 is the activation function 

of, and ∆𝒃𝒃 is the bias of full connection section.  

 

This hybrid approach fuses clustering and deep learning techniques, the levelled multi-source data is 

integrated and modelling to predict target values. In next section, the target values, which is the energy 

consumption of AM systems, are introduced. Additionally, the validation methods are presented. 

 

3.3. Model Validation 
 

The total energy consumption of each AM process is measured. However, the AM process is a time-

consuming process which means with the longer production time the energy consumption is increasing 
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obviously. The total energy consumption strongly depends on the process time. Therefore, the unit 

energy consumption of each build is considered as the target values that is denoted as following [15]:   

 

𝑬𝑬𝑼𝑼 = 𝑬𝑬𝑻𝑻
𝑴𝑴𝑻𝑻

                                                                                  (5), 

 

𝑴𝑴𝑻𝑻 is the product weight of a total build. 𝑬𝑬𝑻𝑻 represents the total energy consumption, which is denoted 

as following, where 𝒆𝒆 is the number of energy consumers, such as heating system, layer system, and 

feed and recycle system [6], in the system, 𝒕𝒕 is the total time of each process.  

 

𝑬𝑬𝑻𝑻 =  ∑ (∫ 𝑬𝑬𝒆𝒆
𝒕𝒕
𝟎𝟎 )𝒆𝒆                                                                         (6). 

 

In this article, two evaluation methods, Model Correlation Coefficient (MCC) and Root Mean Square 

Error (RMSE), are used to verify the accuracy of the energy consumption prediction. MCC is doneted 

as: 

 

𝑴𝑴𝑴𝑴𝑴𝑴 = 𝑺𝑺𝑷𝑷𝑷𝑷
�𝑺𝑺𝑷𝑷𝑺𝑺𝑨𝑨

                                                                         (7), 

 

𝑺𝑺𝑷𝑷𝑷𝑷 = ∑ (𝒑𝒑𝒊𝒊−𝒑𝒑�)(𝒂𝒂𝒊𝒊−𝒂𝒂�)𝒊𝒊
𝒏𝒏−𝟏𝟏

;  𝑺𝑺𝑷𝑷 = ∑ (𝒑𝒑𝒊𝒊−𝒑𝒑�)𝟐𝟐𝒊𝒊
𝒏𝒏−𝟏𝟏

; 𝑺𝑺𝑨𝑨 = ∑ (𝒂𝒂𝒊𝒊−𝒂𝒂�)𝟐𝟐𝒊𝒊
𝒏𝒏−𝟏𝟏

                                                 (8). 

 

In the above equations, 𝒑𝒑𝒊𝒊 is the prediction data, 𝒑𝒑� is the average value of the prediction data, 𝒂𝒂𝒊𝒊 is the 

actual data and the 𝒂𝒂� is the average value of the entire data. Also, the RMSE (𝐞𝐞𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹) is shown as: 

 

𝒆𝒆𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  �∑ �𝒑𝒑𝟏𝟏,𝒊𝒊−𝒂𝒂𝟏𝟏,𝒊𝒊�
𝟐𝟐𝒏𝒏

𝒊𝒊=𝟏𝟏
𝒏𝒏

                                                              (9), 

 

where 𝒑𝒑𝒊𝒊 is the prediction data, 𝒑𝒑� is the average value of the prediction data, 𝒂𝒂𝒊𝒊 is the actual data, and 

𝒂𝒂� is the average value of the entire actual data [53]. 
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This proposed prediction approach has integrated levelled multi-source data that is collected from an 

entire AM process and then, predicts AM process energy consumption. A case study using a real AM 

system has been designed to reveal the performance of the proposed approach in the next section. 

 

4. CASE STUDY  

 
In the last decade, SLS has become a mainstream AM system. This system sinters powdered material 

to build products using lasers. In this case study, a SLS machine (EOS P700) is focused as the target 

system. The EOS P700 has a build envelope, maximum size is 740* 400* 590mm (𝑥𝑥, y, and 𝑧𝑧), with 

two 50W CO2 lasers which can sinter nylon materials (PA2200 and PA3200GF). PA2200 is the original 

polyamide-12 without any fillers, and PA 3200GF contains 40% glass beads for enhancing stiffness.  

 

4.1. Data Collection and Description   

 

In this case study, data was collected from four data sources (production operation, working 

environment, product design, and material condition) of each build in the target system. This data is 

collected through three collection methods (system monitoring files, IoT data collecting system, and 

product design CAD models), which was categorised into two levels (layer-level and build-level). The 

data description is shown in Table 3.  
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Table 3 
Data description including data sources, categories, and collecting methods. 

Data Attributes Data Description Data Sources Data Categories  Collection Methods 
DispenserMax The maximum value of dispenser measured in ‘%’. 

Process 
operation 

Build-levelled data 

Machine log 

DispenserMin The minimum value of dispenser measured in ‘%’. 
RecoaterSpeed The recoater speed measured in ‘mm/m’. 
HatchPower The power of laser for sintering measured in ‘%’. 
HatchSpeed The scan speed of laser for sintering measured in ‘mm/s’. 
HatchWidth The scan space of laser for sintering measured in ‘mm’. 
HatchAngle The scan angle between each layer measured in ‘°’. 
AverFillingDegSingle The average filling degree of single part measured in ‘%’ 

Product design  Product design model 

FillingDegWhole The filling degree of the whole build measured in ‘%’. 
AverRateLWSingle The average rate between length and width of single part measured in ‘%’. 
AverRateLHSingle The average rate between length and height of single part measured in ‘%’. 
AverRateHWSingle The average rate between height and width of single part measured in ‘%’. 
AverRateLWWhole The rate between length and width of the whole build measured in ‘%’. 
AverRateLHWhole The rate between length and height of the whole build measured in ‘%’. 
AverRateHWWhole The rate between height and width of the whole build measured in ‘%’. 
BottomArea The bottom area measured in ‘mm2’. 
HeightBuild The entire height measured in ‘mm’. 
NoPart The number of printing products. 
HightLayer The absolute height of current layer. 
AreaLayer The print area of current layer measured in ‘%’. 
RateNewRecy The rate between new and recycle powder, measured in ‘%’. 

Material 
condition 

Wireless IoT platform 

TypeMaterial The type of material. 
TempNewPowder The new powder temperature measured in ‘°C’. 

Layer-levelled data 

HumNewPowder The new powder humidity measured in ‘%’. 
TempRecyPowder The recycle powder temperature measured in ‘°C’. 
HumRecyPowder The recycle powder humidity measured in ‘%’. 
LabTemperature The lab temperature measured in ‘°C’. 

Working 
environment  

ControlTemperature The control system temperature measured in ‘°C’. 
ControlHumidity The control system humidity measured in ‘%’. 
t_at_BNLA The time of each production layer measured in ‘s’. 

Machine log 

ChamberTemperature The building chamber temperature measured in ‘°C’. 
FrameTemperature front The front-frame temperature measured in ‘°C’. 
FrameTemperature back The back-frame temperature measured in ‘°C’. 
FrameTemperature left The left-frame temperature measured in ‘°C’. 
FrameTemperature right The right-frame temperature measured in ‘°C’. 
PlatformTemperature The working platform temperature measured in ‘°C’. 
ScannerTemperature The scanner temperature measured in ‘°C’. 
PyrometerTemperature The Pyrometer temperature measured in ‘°C’. 
O2Level  The oxygen percentage in the working chamber measured in ‘%’. 
EnergyDeviation The energy deviation percentage of the system. 
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The target system generated two monitoring files in each build automatically. One file, called Job File, 

recorded parameter settings of each process. These 7 settings were given by system technicians before 

starting production process, which were not changed during process. However, technicians would 

change some parameters between builds depending on working condition. This data was categorised 

into a build-level dataset. Also, during each production process, the system automatically generated 

another monitoring file, called Report File, which included 13 production process data attributes. This 

data was collected for every production layer by various sensors that are embedded within the system, 

such as working time of each layer, laser sintering time and cumulative recoating time, frame 

temperature, chamber temperature, platform temperature, scanner temperature, and oxygen level. The 

data size of each Report File was different depending on heights of building products, which meant 

more layers that were produced, more significant of the data was generated. This data was classified 

into a layer-level dataset. These monitoring files were formatted as RPT files by the system, which were 

typical machine report files. In this case study, these RPT format files were converted to standard 

comma-separated values (CSV) data format which was popular in many data analytics areas. Benefit 

from completed monitoring system in EOSP700, there was no any missed or abnormal data in the 

monitoring files. 

 

A part of data cannot be collected from working environment and material condition only via system 

monitoring files. In this case study, an IoT platform was introduced to sense and collect more data from 

working environment and material condition. This IoT platform was designed using RPIs, and it 

connected multiple RPIs and the AM system via a wireless communication by an Ad-Hoc network. The 

network allowed nodes to be dynamically added and removed from the system. This system is entirely 

self-sufficient with no external infrastructure required. Notably, three RPIs were connected, and one of 

them was linked to the EOS P700 controlling system. Several sensors and RFID system were set up on 

this wireless IoT platform to collect external data and identify the type of used material. With this RPI 

based IoT platform more working environment and material condition data were sensed and collected, 

like lab temperature, humidity, controlling system temperature and humidity, material powder 



J. Qin et al.  
 

21 
 

temperature and humidity, and proportion between new powder and recycled powder. The categories 

of this data are explained in Table 3. 

 

Another build-level data was collected from product CAD models, which include product design 

information. This information highly relies on human’s knowledge and experience. The number of parts 

made in every production was different from one to hundreds. System operators decided products 

location and rotation in each build without following any specific rules. These decisions only depended 

on the size of the building platform and their knowledge and experience. Using these CAD model, 13 

product design features was recognised from product design CAD models. To recognise these features, 

an AM analysis software was applied in this case study, called Autodesk Netfabb. These features 

included average filling degree of a single part, filling degree of a whole build, average rates between 

three dimensions of a single part, rates between three dimensions of a whole build, and bottom area, 

and so on. 

 

4.2. Results and Discussion  

 

In this case study, results focused on validation of the proposed method. Several comparisons were 

raised for verifying performances of the proposed approach. Firstly, this case study introduced three 

ML methods as benchmarks. In this section, results yielded from three machine learning methods were 

presented using results from single level datasets and multi-level datasets.  

 

4.2.1. Results of ML algorithms 

 

These three ML algorithms are linear regression (LR), k-nearest neighbours (k-NN), decision tree (DT), 

which are popular in academia, industry, and business [53]. LR was the first ML algorithm to predict 

the energy consumption in this case study. Using this algorithm, outputs were expected to be a linear 

combination of inputs. The Scikit-learn package, used for applying LR model, chooses and sets 

parameters automatically. In this project, results from the ordinary least squares regression were taken 
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as the LR results shown in Fig. 4. k-NN is one of the most straightforward supervised machine learning, 

which is applied to both classification and regression [54]. DT is a first classifier structure like a 

flowchart. Every internal node, branch and leaf node of a DT represents an attribute, a result, or a class 

label, respectively, and the topmost node is called the root. Depending on attribute values, unknown 

tuple is classified within each leaf node storing the class information, which contains the classification 

rules of a DT models[55].  

 

 

Fig. 4a. MCC of three ML methods. 

 

The Fig. 4a shows the MCCs of three ML methods. When only using the layer-level dataset, the best 

results appear when the number of clusters is set as one. So, Fig 4 shows results from the layer-level 

dataset when the number of clusters is set as one. Generally, when both datasets are used as the input 

dataset MCCs appear the highest number (0.691) by applying all three ML methods. Specifically, DT 

obtains the best MCC when using the entire dataset, but, this method yields the lowest MCC (0.316) 

when only using the layer-level dataset. The MCCs of LR and k-NN rarely change much when using 

different input datasets.    
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Fig. 4b. RMSE of three ML methods. 

 

In Fig. 4b, RMSEs of three ML methods are illustrated. Different to MCCs, when extending input 

dataset (from single to multiple), the RMSEs do not always decrease. When LR is used to build the 

model, with more significant dataset, the RMSE is increased, and the difference between the highest 

and lowest RMSE is 50.798 W*h/g. Conversely, using DT algorithm, the lower RMSE (59.585 W*h/g) 

is yielded when both datasets are applied comparing to using the single input dataset. When k-NN is 

applied, the lowest RMSE (42.215 W*h/g) appears at using build-level database. Combining both 

validations, when collecting and using more data to predict energy consumption the effects of ML 

methods tends to be fluctuating.  

 

Now, it is interesting to realise results yielded by the proposed approach. To be clear that the data was 

collected from over a hundred builds including thousands of product design models, and each build 

contained the different number of layers from 20 to 3500 approximately. It is necessary to find an 

applicable number of clusters for representing the layer-level dataset of each build for each predictive 

model.   
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4.2.2. Results of the proposed approach 

 

Results using the layer-level dataset and considering the number of clusters from 1 to 20 is shown in 

the Fig. 5. An artificial neural network was applied as the prediction model. Parameter settings of the 

neural network are highly depended on different training and testing dataset. With a different dataset, 

neural network structures tended to be different for obtaining the best performance. All neural networks 

used two types of activation: (1) for the output layer, scaled exponential linear activation was applied, 

and (2) for the remaining layers, the ReLU activation was used. The mean squared error was used to 

represent the loss. Supported by a popular Python package, Keras, the Adam optimiser was used [56]. 

 

 

Fig. 5. Results comparison between a different number of the cluster representing layer-level dataset.   
 

With the different number of clusters represents the layer-level dataset, MCCs and RMSEs show an 

irregular change. The best result appears when choosing 4 clusters with the highest MCC (0.694) and 

lowest RMSE (32.306 W*h/g). Also, the results of 3 and 5 clusters take the second and third best place. 

Specifically, with 3 clusters, the MCC is 0.687 and RMSE is 32.353 W*h/g, and, with 5 clusters, the 

MCC is 0.602 and RMSE is 32.414 W*h/g. It is also needed to be highlighted that the highest RMSE 

is 44.965 W*h/g with only one cluster. When the number of clusters is increased more than 5, RMSEs 

start to increase. MCCs is reduced when the number of clusters is more than 4, and the lowest is 0.454 

when 20 clusters are chosen. Moreover, when only using build-levelled datasets as input dataset the 
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MCC is 0.753, and the RMSE is 62.955 W*h/g. It is interesting to know the prediction performance 

when integrated these two datasets by using the proposed method. 

 

Table 4 
Results comparison applying MNN using the build-level dataset and layer-level dataset with different 
the number of clusters (3 to 5). 

Validation 3 Clusters 4 Clusters 5 Clusters 

MCC 0.786 0.803 0.685 

RMSE (W*h/g) 25.906 25.460 28.406 
 

From Table 4, when to apply 4 clusters representing the layer-level dataset prediction performance is 

the best. This case study uses 3 to 5 clusters as the layer-level input dataset separately. The results 

comparison is displayed in Table 4. From this table, when 4 clusters represent the layer-level data and 

integrating with build-level data is used, the best result is obtained with the highest MCC (0.803), and 

lowest RMSE (25.460 W*h/g). Comparing with all other results from any above input datasets and 

prediction models, this result is the best.   

 

4.2.3. Discussion 

 

According to the results from the last section, the energy consumption of the AM process is predicted 

accurately by using the proposed method. A few of interesting points are necessary to discuss from the 

results. Firstly, the prediction accuracy varies with a different number of clusters. When layer-level data 

are clustered as 3 to 5 clusters, the best results are obtained. It is interesting to note that the AM 

production process can also be divided as 3, 4 or 5 energy phases regarding Baumers et al.’s [22] 

research. This finding indicate the clustering centre points are able to represent the entire production 

process. It also proves the correctness of Baumers et al.’s suggestion. Secondly, by using the ML 

algorithms, it is difficult to show that expanding input datasets can yield better results. With the results 

obtained by either datasets (layer-level dataset, build-level dataset or both datasets), the deep learning 

based algorithms, including typical neural networks and proposed clustering based MNN, show merits 

compared to the results of benchmark algorithms in this case study. The deep learning methods have 
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presented a good performance for building the relationship between the target and high dimension data 

input. However, with the integrated input datasets, typical ANNs cannot easily be applied to model the 

target values, while the proposed clustering based MNN structure is able to integrate different levelled 

datasets and predict AM energy consumption precisely.   

 

5. CONCLUSIONS 

 

In this paper, the focus is on the modelling and prediction of energy consumption given an example of 

SLS process in the AM system. This approach is based on a review of related research indicating the 

significant meaning of data-driven methods in industrial sustainability domain. Different from existing 

effort, a hybrid approach has been proposed fusing IoT, clustering and deep learning techniques. In this 

paper, the multi-source data generated from an AM process are sensed and collected by IoT techniques. 

This data includes process operation data, working environment data, material condition data and 

product design data, which is categorised into two level datasets, layer-level dataset and build-level 

dataset. By applying a clustering based MNN to integrate this multi-level multi-source data, the AM 

energy consumption is predicted accurately. A case study is carried out based on real-word SLS process 

data collected which has shown the merits of the proposed approach. Experimental results have 

indicated that the proposed approach tends to yield better performance when integrating the multi-level 

multi-source data. Especially, comparing with other AM energy consumption analysis, this method can 

predict the energy consumption of each production rather than measure a range of energy usage, which 

provides an accurate value of energy consumption. In the actual industrial scenario, this can be very 

helpful to implement data analytics when the multi-source data is collected. 
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