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Abstract

Background: Helicobacter pylori are stomach-dwelling bacteria that are present in about 50% of the global population.
Infection is asymptomatic in most cases, but it has been associated with gastritis, gastric ulcers and gastric cancer.
Epidemiological evidence shows that progression to cancer depends upon the host and pathogen factors, but
questions remain about why cancer phenotypes develop in a minority of infected people. Here, we use comparative
genomics approaches to understand how genetic variation amongst bacterial strains influences disease progression.

Results: We performed a genome-wide association study (GWAS) on 173 H. pylori isolates from the European
population (hpEurope) with known disease aetiology, including 49 from individuals with gastric cancer. We identified
SNPs and genes that differed in frequency between isolates from patients with gastric cancer and those with gastritis.
The gastric cancer phenotype was associated with the presence of babA and genes in the cag pathogenicity island,
one of the major virulence determinants of H. pylori, as well as non-synonymous variations in several less well-studied
genes. We devised a simple risk score based on the risk level of associated elements present, which has the potential
to identify strains that are likely to cause cancer but will require refinement and validation.

Conclusion: There are a number of challenges to applying GWAS to bacterial infections, including the difficulty of
obtaining matched controls, multiple strain colonization and the possibility that causative strains may not be present
when disease is detected. Our results demonstrate that bacterial factors have a sufficiently strong influence on disease
progression that even a small-scale GWAS can identify them. Therefore, H. pylori GWAS can elucidate mechanistic
pathways to disease and guide clinical treatment options, including for asymptomatic carriers.
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Background
The bacterium Helicobacter pylori can colonize the stom-
ach for years without causing any symptoms [1], but its
presence is associated with several serious clinical diseases
including peptic ulcer, gastric cancer and MALT lymph-
oma. Progression to clinical disease depends in part upon
diet, environment and host factors [2, 3] as well as the
genotypes of the bacteria [4].

A detailed understanding of the pathways to disease and
H. pylori’s role at each stage has the potential to inform
treatment options. For example, eradication of H. pylori is
recommended for asymptomatic cases [5] in parts of the
world where gastric cancer risk is high, but eradication
can be difficult and expensive, especially due to increasing
antimicrobial resistance [6]. A better understanding of the
role of H. pylori in causing disease and identification of
virulent strains would allow intervention to be targeted at
patients most at risk of the subsequent disease.
Genome-wide association studies (GWAS) have become

popular in human genetics as a way of investigating the
basis of susceptibility to particular diseases [7]. Individuals
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with the disease and matched controls are genotyped, and
statistical tests are performed to identify variants that are
disease-associated. Functional characterization of the
associated regions provides insight into how disease
develops and allows the identification of “at risk” individ-
uals for prophylactic treatments. GWAS can also be
applied to bacteria [8, 9]. There are several challenges that
are shared with human association studies, such as the
difficulty of accurately delineating phenotypes and obtain-
ing matched controls as well as potential false positives
resulting from population structure and genetic linkage.
There are also challenges specific to H. pylori GWAS.

For example, causative strains may be absent when disease
is detected, particularly because precancerous lesions
change the physiology of the stomach and can destroy the
niche that the bacterium previously occupied. Furthermore,
the pathway from asymptomatic carriage to disease can
vary, as can the outcome. For example, antral-predominant
gastritis is often associated with a higher level of acid pro-
duction and is more likely to evolve into duodenal ulcer or
MALT lymphoma, whereas corpus-predominant atrophic
gastritis is associated with a lower level of acid production
and can lead to gastric ulcer or gastric cancer [10].
Here, we assemble an H. pylori isolate genome collection

from clinically characterized samples, including from indi-
viduals with non-atrophic gastritis, atrophic gastritis, intes-
tinal metaplasia, and gastric cancer. We applied GWAS
techniques that have been developed for other bacteria,
limiting analysis to isolates from the hpEurope population
to avoid confounding by population structure. We show
that signals of association are sufficiently strong to identify
putative cancer-associated elements using a small number
of samples, highlighting the potential of bacterial GWAS to
inform treatment of H. pylori infection.

Results
Population structure
The final dataset for analysis comprised 173 strains with
clinical designations of non-atrophic gastritis, progressive
to cancer and gastric cancer. These strains were obtained
from a larger collection of 565 H. pylori genomes after
excluding strains that either did not have an appropriate
clinical designation or were not assigned to the hpEurope
population in a fineSTRUCTURE [11] analysis (Add-
itional file 1: Figure S1). There is substantial population
structure within the 173 isolates. GC, Prog and NAG
isolates were found in multiple places on the tree, and
isolates from Northern Europe clustered at one end of the
tree and those from Southern Europe and South America
at the other (Fig. 1). The first principal component is 2.2%
of the total genetic variance and basically corresponds to
the difference between hspEuropeN and others. Isolates
from patients with gastric cancer are distributed across the
tree, and after decomposing the genetic data into principal

components, none was found to be significantly associated
with the cancer phenotype.

Genome-wide association study
Bugwas [8] was used to identify motifs that were signifi-
cantly associated with the cancer phenotype in two pheno-
type association comparisons: (i) GC vs Prog and NAG and
(ii) NAG vs Prog and GC, and on SNP and k-mer level,
resulting in four separate tests. In the first GWAS, GC vs
Prog and NAG, we identified 9882 SNPs and 49,903
k-mers with a frequency difference > 20% between groups.
In the second GWAS, NAG vs Prog and GC, there were
9273 SNPs and 26,581 k-mers with a frequency difference
> 20%. GWAS hits were filtered by p value, resulting in a
total of 642 hits (432 SNPs and 210 k-mers) with a
frequency difference > 20% and a p value ≤ 10−5 (Fig. 2,
Table 1). A large number of hits are found in a single gene,
so these 642 hits are spread in only 32 genes. Of these, 6
genes recorded hits in two of the four GWAS tests:
HP0102, HP0468, cag11 (HP0531), cag12 (HP0532), cag20
(HP0541), cagE/cag23 (HP0544), hopQ (HP1177) and babA
(HP1243).
Amongst the 32 genes with hits at a p value ≤ 10−5

(Additional file 5: Table S3), 13 were in genes with puta-
tive functions associated with virulence of H. pylori such
as CagPAI and type IV secretion system [12, 13] (11 genes),
buffering of gastric acid [14] (ureG) or adherence [15]
(babA). Further, 8 genes had putative functions that may
also be indirectly linked to virulence, such as colonization
(hpaA), motility (fliK) or more generally membrane and
outer membrane proteins (5 genes). A total of 12 genes
were either hypothetical proteins with unknown functions
(2 genes), or had functions not previously linked to viru-
lence; amongst them were genes associated with enzymes
(6 genes), ribosome maturation factors (2 genes), trans-
porters (1 gene) and a DNA-binding protein (1 gene).
Multiple cancer risk-associated k-mers or SNPs can be

present in a single gene as the GWAS approach targets
variation in the frequency of DNA sequence motifs
within the population rather than the whole genes them-
selves. This is particularly apparent for accessory genes
(present or absent) such as those within CagPAI for
example, as all the elements that map to these genes will
be either present or absent together. However, not all
elements (SNPs or k-mers) will necessarily have the
same association significance. This is because the p value
is dependent upon the degree to which the genetic elem-
ent segregates by the phenotype under study, compared to
expectation based on the clonal frame of the population.
Therefore, other sequence variation that does not meet
these criteria will not have a low p value. The prevalence
and co-occurrence of genes containing a GWAS hit with
p value < 10−5 was investigated in NAG, Prog and GC iso-
lates (Fig. 3). As expected, CagPIA genes were commonly
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found together when present and were also positively cor-
related with the presence of the babA gene.
The most significantly associated 118 GWAS hits were

in 12 genes (64 SNPs and 46 k-mers) and had a frequency
difference > 20% and a p value ≤ 10−6 (Table 1). Only one
gene, babA, was a hit with a p value ≤ 10−6 in two GWAS
experiments (SNP GC vs rest and SNP NAG vs rest). In
order to keep the number of genes for risk score calcula-
tion low, only these 12 genes were investigated further.

Risk genotypes
Sequence variation amongst the 12 bacterial genes contain-
ing k-mers or SNPs with the most significant association
(p value ≤ 1 × 10−6, Fig. 2) was further investigated amongst
isolates associated with different disease outcomes. For one
of these genes, HP0555, specific nucleotides were enriched
amongst the Prog isolates compared to both NAG and GC
isolates. This highlights the potential that different
nucleotide variations may be important at different stages
in the complex disease progression but may occur by
chance. For two of the other genes with k-mer hits,
HP1004 and HP0906, distinct coding sequences from
ELS37 aligned against a single gene resulting in false posi-
tive hits observed in HP1004 and HP0906. The remaining 9

genes revealed a total of 11 risk genotypes that were highly
enriched among gastric cancer strains (Table 2). Amongst
them, 4 corresponded to accessory elements that were
more commonly present in isolates from patients with
gastric cancer. Hits in these genes were spread across the
whole genes (Additional file 2: Figure S2). The remaining 7
risk genotypes corresponded to variation in homologous
sequence. Hits in these genes were limited to small areas of
the genes, and strong hits were surrounded by weaker hits
(Additional file 3: Figure S3). The ratio of synonymous to
non-synonymous SNPs (dN/dS) was calculated for these
genes and compared to the dN/dS for 7 multilocus
sequence typing (MLST) genes not thought to be under
strong diversifying selection. This showed evidence of sig-
nificant enrichment (p value ≤ 0.03) for non-synonymous
SNPs amongst cancer-associated sequence variation (dN/
dS = 0.588) compared to MLST genes (dN/dS = 0.364).
Ratio for randomly selected genes in the core genome was
consistent with the MLST genes (data not shown). Regard-
less of this, not all of the cancer-associated SNPs repre-
sented non-synonymous variation in homologous sequence
(4 of 7).
Three of the associated cancer risk genotypes in the

CagPAI genes (cag11, cag12 and cag20) were correlated

Fig. 1 Neighbour-joining tree based on whole genome sequence alignment of all 173 strains from hpEurope-derived populations. Branches are
shaded according to the population determined by fineSTRUCTURE analysis [17]. Labels reveal the patient disease background grouped into three
categories: non-atrophic gastritis, progressive towards gastric cancer and gastric cancer. The scale bar represents a genetic distance of 0.02
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and therefore not independent, based upon Pearson’s
correlation (Fig. 3). To limit the weight of these corre-
lated genes, an average of the 3 was used in the calcula-
tion of the risk score. As expected, the distribution of
risk scores in our dataset was significantly associated
with disease progression (ANOVA, p value < 0.0001)
(Fig. 4). Specifically, patients from which H. pylori iso-
lates presented a risk score below − 25 may be unlikely
to develop gastric cancer, as no isolate from such pa-
tients had a risk score below − 24.37. Seventeen patients
have a risk score under this limit and on this basis might
be considered lower priority for H. pylori eradication,
depending on other factors. However, it should be em-
phasized that we have calculated the risk score for the
same isolates used to perform the GWAS rather than
with an independent validation panel. Therefore, while
our results highlight the potential utility of risk scores in

evaluating treatment options, our current implementa-
tion should not be used in clinical management.

Discussion
It has been known for some time that the presence of
certain genes in H. pylori strains increases the risk that
the host will develop gastric cancer [16], and for genes
such as those in the Cag pathogenicity island, the mech-
anism is well-characterized [13]. Technical advances in
high-throughput DNA sequencing and the increasing
availability of whole genome data for diverse H. pylori
isolate collections provide opportunities for quantitative
genomic analysis of population structure [17] and the
genetic determinants of important disease phenotypes.
Host and environmental factors and different pathways

to disease impose additional complexity when identifying
cancer-associated genes in H. pylori, compared to standard

Fig. 2 Location of genetic elements associated with gastric cancer on ELS37 genome (GCA_000255955.1). GWAS comparing isolates from patients
with (a) non-atrophic gastritis to those with gastric cancer and precancerous progression and (b) gastric cancer to those with non-atrophic gastritis
and precancerous progression. Two GWAS were performed with bugwas software for each panel, one based on SNPs (upper panels) and the other
based on k-mers (lower panels). Positions of the genomic elements are represented on the horizontal axis expressed. Log 10 of p value for each hit
is recorded on the vertical axis. The blue line indicates a p value ≤ 10−5

Table 1 Summary of the hits obtained in the genome-wide association studies based on 173 strains from hpEurope-derived sub-
populations based upon patient disease phenotype

Number of hits with p value Number of genes with hits of p value

GWAS experiment ≤ 10−5 ≤ 10− 6 ≤ 10− 5 ≤ 10− 6

Gastric cancer vs others (k-mer) 166 39 20 6

Non-atrophic gastritis vs others (k-mer) 44 15 10 2

Gastric cancer vs others (SNP) 237 33 4 3

Non-atrophic gastritis vs others (SNP) 195 31 4 2
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binary bacterial GWAS [9]. However, even in the relatively
small isolate collection in this study, variation in known
cancer-associated genes, including CagPAI, was identified,
as well as in genes that have not previously been associated
with virulence.
Cancer-associated nucleotide variation was largely the

result of the presence of accessory genes and enrichment
for non-synonymous SNPs in homologous sequence.
While interpretation of sequence or whole gene insertion
and variation that causes changes in protein sequences is
easier to interpret in relation to functional variation, 3 of
the 12 most significant GWAS hits were synonymous
SNPs associated with gastric cancer isolates. There are
several potential explanations for these hits. First,
synonymous sequence variation associated with isolates
from gastric cancer patients can be in linkage disequilib-
rium with non-synonymous SNPs, which may give lower
p values despite being the functional drivers of the

association. Second, synonymous mutations can have
functional effects [18], and there is evidence of selection
acting across the H. pylori genome [19]. Third, frameshifts
or uncharacterized start codons lead to misinterpretation
of non-synonymous SNPs as synonymous. Finally, some
may represent false positives.
Investigating the putative function of genes containing

sequence elements associated with cancer can provide
clues about the bacterial phenotypes that promote the
development of disease in infected individuals, as well as
providing novel targets for diagnosis and intervention.
As expected from previous studies [16], our GWAS
identified elements in CagPAI genes (cag11, cag12 and
cag20) and babA that were associated with isolates from
patients with gastric cancer. CagPAI-positive strains are
known to predominate in gastric cancer patients [13]
and are associated with enhanced immune response
through diverse pathways starting with the injection of
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CagA through a type IV secretion system into host
epithelial cells [20].
The blood group antigen-binding adhesin BabA is an

outer membrane protein linked to the activity of the
CagPAI island through adhesion to the host cells [21].
The binding characteristics of babA in different strains
are known to vary in relation to the blood types in host
populations [22], showing an important and specific
evolutionary pressure on H. pylori isolates [23]. BabA
expression is regulated by phase variation and recombin-
ation between babA and highly homologous genes babB
and babC with important consequences for binding
characteristics and affinities [22]. The homology between
bab genes, which can all be absent or present as dupli-
cates, imposes challenges for the de novo assemblies of
Illumina short reads in this study. Specifically, of 173
sequences annotated, 48 contained full babA sequence,
while for other genomes, only partial bab gene se-
quence(s) were annotated, often at the end of a contig,
reflecting challenges associated with genome assembly
and the interchangeability of these loci.

Table 2 Cancer risk genotypes identified in genome-wide association studies of 173 hpEurope isolates

Gene name1 p value (min) Risk genotype Position2 Safe
genotype

Frequency3 Effect on amino acid sequence4 Function

HP1055 [981621–
982,565] (−)

1.4.10−9 A 798 C 0.469/0.125 S, associated with G to A substitution
at position 797: non-synonymous with
T in safe, A in risk

Outer membrane
protein

HP0797 [506543–
507,325] (+)

2.24.10−8 C + T 325 and
334

T + G 0.592/0.181 NS: L/S in safe, F/A in risk Neuraminyllactose-
binding
hemagglutinin
(HpaA) [29]

HP1243,babA1
[1314192–
1,316,405] (−)

3.99.10−8 Presence All genes Absence 0.94/0.51 BabA (outer
membrane
protein) [16]

HP0747 [317158–
317,757] (+)

1.69.10− 7 GGAA 934 to
937

AAAA/
GGAG

0.531/0.264 NS: KA in safe, GT in risk tRNA (guanine-N(7)-
)-methyltransferase

HP0709 [598549–
599,451] (−)

2.13.10− 7 A 145 G 0.327/0.153 NS: D in safe, N in risk Adenosyl-chloride
synthase

A 159 G 0.959/0.792 S

HP0532,cag12
[817677–
818,519] (+)

3.62.10− 7 Presence All genes Absence 0.92/0.61 CagT protein
(Censini, 1996)

HP0468 [925539–
927,026] (+)

4.59.10− 7 CGCC 705
to 708

CACG/
TGCG

0.694/0.514 NS: T in safe, A in risk Unknown

A 729 G 0.796/0.5 S

HP0531,cag11
[816985–
817,641] (+)

5.4.10−7 Presence All genes Absence 0.92/0.61 CagU protein
(Censini, 1996)

HP0541,cag20
[825334–
826,446] (−)

6.6.10−7 Presence All genes Absence 0.92/0.61 CagH protein
(Censini, 1996)

Risk and safe genotypes are overrepresented amongst isolates from patients with gastric cancer and non-atrophic gastritis respectively, with p value
corresponding to the minimum in each gene (p value ≤ 1 × 10−6)
1Position in ELS37 genome [ ], + and – strand is denoted in ( )
2Position in gene
3Frequency GC strains/NAG strains
4The effect on the amino acid sequence is indicated as synonymous (S) and non-synonymous (NS)

Fig. 4 Repartition of risk scores on 173 strains from hpEurope-derived
sub-populations, according to patient disease background. Each point
corresponds to the risk score associated with a single strain. This risk
score was calculated based on the presence of risk or safe genotype
for each of the 9 genes considered (Table 2)

Berthenet et al. BMC Biology  (2018) 16:84 Page 6 of 11



In addition to quantifying the effect of known H. pylori
virulence genes, the GWAS approach employed here
also provided evidence for a role for genes that have not
previously been linked to gastric cancer. In addition to
BabA, a second outer membrane protein, encoded by
HP1055, was strongly associated with cancer. While little
is known about the specific function of this gene, other
than its essentiality demonstrated in transposon muta-
genesis experiments [24], outer membrane proteins can
influence host-bacteria interactions mediating virulence
by modulating colonization and adherence to the host
cells and facilitating secretion of virulence factors. A
possible link to enhanced cancer risk is that HP1055
contains sequence enriched for African ancestry [17]
and conflicts between the host and bacterial genetic
population are a risk factor for gastric cancer [25, 26].
The function of the gene harbouring the second stron-

gest cancer-associated GWAS hit in this study, HpaA
(HP0797), is the subject of some debate. Originally
described as a sialic acid-binding protein involved in adhe-
sion [27], it is now thought to have a role as a lipoprotein
[28] and is essential for stomach colonization in an in vivo
mouse model [29]. A speculative role in disease progres-
sion could be related to the strong immunogenic proper-
ties of the HpaA protein [30], and the substitutions
described in our study alter the orientation of one of the
helix formations (Additional file 4: Figure S4) which may
be related to changes in protein function. This protein is
considered as a target for vaccine development [31, 32].
Other H. pylori genes, in which a highly significant

association was found with gastric cancer included trmB
(HP0747), and the less well-annotated HP0709 and
HP0468. trmB, homologous to E. coli Yggh, encodes a pre-
dicted S-adenosylmethionine-dependent methyltransferase
regulated by the H. pylori orphan response regulator
HP1021 [33], presumably involved in the regulation of
acetone metabolism. It has also been identified as a gene
with overrepresented radical substitutions in fast-evolving
regions [34]. HP0709 encodes an enzyme that is involved in
either methylation of DNA and proteins or in the synthesis
of branched amino acids valine, leucine and isoleucine.
However, the exact function is not certain and conflicting
annotations [35] make protein structure prediction
problematic, making it difficult to compare alleles in our
dataset beyond the identification of cancer-associated SNPs.
HP0468 encodes a hypothetical protein, poorly conserved
outside the Helicobacter genus. It is upregulated by molecu-
lar hydrogen in chemolithoautotrophically enhanced
growth of H. pylori, but its exact function is yet to be deter-
mined [36].
The GWAS approach used in this study supports known

genotype-phenotype associations as well as providing infor-
mation about specific genetic variations and highlighting a
potential role for candidate genes that have not previously

been related to gastric cancer. Quantitative GWAS using
natural H. pylori populations is complicated by numerous
host and pathogen changes in the progression from
asymptomatic carriage to gastric cancer. This involves
changes to stomach cells, pH, the extracellular mucus layer
and changes in the selective landscape for the pathogen,
promoting strains with functions related to adherence,
motility and immune evasion that can survive in the harsh
changing acidic environment. These changes make the
phenotype complex, especially since the strains that are
most responsible for disease progression need not be those
that are isolated from gastric cancer patients. Nevertheless,
our results are encouraging since they suggest that the most
important factors may have large effect on progression and
therefore be detectable in GWAS cohorts despite inevitable
imperfections in the sampling design due to the difficulty of
finding well-matched cases and controls.

Conclusions
In addition to providing information on the biology of
disease progression, GWAS may be of direct relevance
in the clinic. By sequencing the strains before eradicating
them, we could assess the risk of gastric cancer, enabling
closer surveillance of those with increased risk while
avoiding unnecessary treatment for the others, therefore
reducing the proportion of highly pathogenic strains in
the overall H. pylori population and mitigate the spread
of antimicrobial resistance.

Methods
Isolates and genome sequencing
A total of 565 H. pylori isolate genomes were analysed
in this study (Additional file 5: Table S1). This dataset
comprised 122 strains isolated from clinical samples
including strains isolated in France (from patients from
different areas of France enrolled in studies carried out
by the GEFH, the GELD and FFCG, and the GELA),
Belgium (from patients attending the endoscopy clinic of
CHIREC—sites de la Basilique and E. Cavell, Brussels),
the UK (biopsies from patients attending for upper GI
endoscopy at Nottingham University Hospitals NHS
Trust), Sweden (eight hospitals) and Dublin (the Meath
Foundation Research Laboratory, Tallaght Hospital,
Dublin), and 444 publically available genomes from
published papers [17] and the NCBI database. Swedish
isolates were a subset of the collection assembled by
Enroth and colleagues in a previously published study
[37]. For isolates sequenced for this study, bacteria were
sampled from patients presenting with gastric cancer,
gastritis, gastrointestinal stromal tumour (GIST) or no
symptoms, from 1995 to present by gastric biopsy and
grown on H. pylori-selective medium (Dent plates) at
37 °C in a microaerophilic environment (CampyGen or
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microaerophilic cabinet) for 5 to 10 days. Isolates from
gastric MALT lymphoma or other non-adenocarcinoma
forms of cancer (apart from 1 GIST isolate) were
excluded from analysis. Colonies were isolated as single
colonies and subcultured on fresh blood agar plates to
obtain sufficient growth, and for genomic DNA
extraction, DNA was quantified using a NanoDrop spec-
trophotometer, as well as the Quant-iT DNA Assay Kit
(Life Technologies, Paisley, UK) before sequencing.
High-throughput genome sequencing was performed
using a HiSeq 2500 machine (Illumina, San Diego, CA,
USA), and the 100-bp short read paired-end data was
assembled using the de novo assembly algorithm, Velvet
[38] (version 1.2.08). The VelvetOptimiser script (version
2.2.4) was run for all odd k-mer values from 21 to 99.
The minimum output contig size was set to 200 bp
with default settings, and the scaffolding option was
disabled. The average number of contiguous sequences
(contigs) for genomes sequenced in this study was 111
with an average total assembled genome size of
1,630,194 bp and an average N50 length of 55.98 kbp.
Short reads for the 107 genomes sequenced and
assembled in Swansea are available from the NCBI
short read archive (SRA) associated with BioProject:
PRJNA395900. All 565 contiguous assemblies of whole
genome sequences were individually archived on the
web-based database platform BIGSdb [39] and are
available at the public data repository figshare (https://
figshare.com/articles/Helicobacter_pylori_from_clini-
cal_gastric_infection/5245837).

Comparative genomics
Individual genes from the 26,695 H. pylori reference
genome were locally aligned to the 776 Helicobacter pylori
genomes available at the time of analysis using default
BLAST parameters implemented in BIGSdb. A gene was
recorded as present when the local alignment had at least
70% sequence identity on at least 50% of the sequence
length. This allowed gene discovery, sequence export and
local gene-by-gene alignments using MAFFT [40], as
previously described [41, 42]. Sixty strains that were not
from a human clinical source and 5 strains with a number
of genes below 1000 were removed and a tree was
constructed from an alignment of the remaining strains
using FastTree v2.0 [43]. One hundred forty-six clones
were removed from the analysis based on the clustering
observed on the tree. The remaining 565 strains
constituted our working dataset, and the population
structure amongst these strains was inferred from
genome-wide haplotype data using chromosome painting
and fineSTRUCTURE [11], as in previously published
H. pylori genome analysis [44]. Briefly, donor and recipi-
ent DNA chunks were inferred for each recipient haplo-
type using ChromoPainter (version 0.04). The number of

recombination-derived chunks from each donor to each
recipient was summarized in a co-ancestry matrix.
fineSTRUCTURE (version 0.02) was run with 100,000 iter-
ation burn-in and 100,000 MCMC iterations to cluster
isolates based on the co-ancestry matrix. Principal compo-
nent analysis was carried out on our data using the standard
PCA implemented in Eigensoft. Specifically, on all biallelic
data after pruning of SNPs with r2 > 0.7, Popstats (“GitHub
- pontussk/popstats: Population genetic summary statistics,”
n.d.) were used to calculate D-statistics and specify previ-
ously described H. pylori populations [17].
Isolate genomes were partitioned into groups based

upon metadata from patient information collected as part
of this study or taken from existing publications. To be
able to identify risk factors of the carcinogenic progres-
sion, three groups were applied: (i) isolates from patients
with gastric cancer (GC), (ii) isolates from individuals with
intestinal metaplasia or atrophic gastritis, which we
termed “progressive to cancer” (Prog) and (iii) isolates
from individuals with non-atrophic gastritis (NAG). To
reduce the impact of the phylogeographic structure [17]
on identification of disease-associated genetic elements,
the remaining analyses focussed on the largest dataset for
which patient data and geographic origin were available
within one unique fineSTRUCTURE population. This
included 173 hpEurope isolates (Additional file 5: Table
S2). Subpopulations included in hpEurope were based on
previous study and included hspEuropeColombia, hspEur-
opeN and hspEuropeS [17]. A phylogeny for 173 isolates
was constructed for visualization of the population using
the simple and efficient tree building software FastTree
v2.0 [43] and annotated using iTOL v3ic [45] (Fig. 1).
Input data included 1573 concatenated genes, identified in
the 26,695 reference strains, aligned for all isolate
genomes.

Genome-wide association studies
The genome-wide association study (GWAS) was con-
ducted with a pipeline based on the bugwas package [8],
as in a recent study [46]. Briefly, in this k-mer-based ap-
proach [9], the genome sequence of each isolate was frag-
mented into unique, overlapping, 31-bp DNA motifs or
k-mers. This allowed the identification of nucleotide vari-
ation including single nucleotide polymorphisms (SNPs),
indels and the presence or absence of a whole gene or
gene region associated with different phenotype groups.
DNA motifs significantly associated with gastric cancer
were explored after accounting for the inter-dependence
of the strains and population structure. An n × n related-
ness matrix summarized all genetic covariance amongst
the isolate genomes, employing statistical tests for each
k-mer by the linear mixed regression model, which uses
the relatedness matrix to model the background random
effect. Unlike related methods [9, 47], this method does
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not depend on a single clonal tree that is impossible to
construct reliably because of the high rate of recombin-
ation in H. pylori. A second GWAS, also implemented in
the bugwas package [8], was carried out based upon SNPs
rather than k-mers. Only the SNPs contained in coding
sequences were considered. The k-mer and SNP GWAS
approaches were applied to bacterial datasets in two
binary phenotype association experiments: (i) GC vs Prog
and NAG isolates and (ii) NAG vs GC and Prog isolates.
This gave a total of four GWAS experiments.

Analysis of associated elements
The odds ratio and p value was calculated for associated
elements in the GWAS experiments and the position of
hits in a reference genome. Specifically, a reference pan
genome was produced using Roary software [48] with
default parameters, and annotation was carried out using
Prokka [49]. GWAS hits, representing both core and
accessory nucleotide variation, were then analysed indi-
vidually to investigate the putative function of the asso-
ciated genes and the effect of the variations identified in
the amino acid sequence. Positions of hits in all analyses
were considered using the reference strain ELS37
(GCA_000255955.1). This reference strain was chosen
as being part of the GC isolates used in our study with a
closed genome sequence.
A limitation of k-mer-based GWAS approaches is that

they reveal significantly associated sequence within genes
and not the entire gene presence and absence. For this
reason, the prevalence of genes (presence/absence)
containing at least one significant k-mer (p value ≤ 10− 5)
was determined for genomes in our dataset (n = 143)
using BLAST. A gene was considered present when the
sequence from the genome shared more than 70% se-
quence homology with the corresponding gene sequence
from H. pylori reference strain ELS37. We examined the
correlation of prevalence patterns across our dataset for
these genes, by using the rcorr function in the Hmisc R
package to compute correlation coefficients and the
p value of the correlation for all possible pairs of gene
presence/absence patterns. The input was a binary matrix
of presence/absence of the genes in 143 genomes.
All the genes that contained a GWAS hit at p value <

1 × 10−6 were individually investigated using BioEdit
[50], based on a global alignment obtained from the
GWAS. Synonymous and non-synonymous variation
was identified by comparison to amino acid sequence
alignments, and non-synonymous hits were further stud-
ied using figures showing repartition of amino acids in
each position according to the GWAS group of each
strain, using WebLogo [51]. Genes identified showed
there was clear enrichment for particular alleles in GC
strains. Genes with GWAS hits (p value < 1 × 10−6) were
mapped to the corresponding genome position on the

reference genome ELS37 (GCA_000255955.1) using Cir-
cos V0.69 [52], and the context of individual genes was
characterized with BioCyc [53].

Prediction of protein structure
For the genes where the risk alleles were associated with
non-synonymous changes to the amino acid sequence of
the encoded proteins, we tried to predict what impact
these changes would impose on the tertiary structure of
the proteins. For this purpose, we used hhpred [54] as it is
implemented in the MPI Bioinformatics Toolkit [55] as of
4 June 2017 to identify the most suitable structure to
model from. This structure was then used to model both
the safe and risk sequence using default parameters, and
the models were annotated and visualized in Swiss-PDB
viewer [56].

Risk score
The most significant GWAS hits (p value < 1 × 10−6) were
used to calculate a rudimentary risk score. First, the
correlation between the presence of a risk or non-risk
genotype and the presence of another risk or non-risk
genotype was verified for each isolate pair, using a test
based on Pearson’s correlation. This correlation was used
to balance the weight associated with genotypes that were
not independent, such as CagPAI genes that are
co-located on the genome and in strong linkage disequi-
librium. A Pearson’s correlation of more than 0.9 with a
p value < 0.05 was used to define correlated genes. For
each genotype, a genotype score (gs) was determined using
the following parameters. For accessory genes, 1 if the
gene is present, − 1 if the gene is absent. For a nucleotide
change, 1 if the risk genotype is present, − 1 if the safe
genotype is present, 0 if neither is present. Then, the risk
score was determined using this formula, with an average
of the sum for the three genes correlated:

Risk score ¼
X

for each genotype

gs � − log p valueð Þ

Additional files

Additional file 1: Figure S1. Co-ancestry matrix with population
structure of 565 global H. pylori isolates. The colour of each cell of the matrix
indicates the expected number of DNA chunks imported from a donor
genome
(column) to a recipient genome (row). The boundaries between named
populations are marked with dotted lines. The colour ranges from low
(yellow) to a large amount of DNA from the donor strain (red). Diagonal
clusters with more red squares indicate chunks of DNA that are shared
between the pairs of isolates. (PDF 193 kb)

Additional file 2: Figure S2. Distribution of the GWAS hits in the 4
accessory genes used in calculation of a risk score. All the hits with a
p value < 0.05 are represented in the figure. Positions are based on the
ELS37 genome (GCA_000255955.1). (PDF 93 kb)
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Additional file 3: Figure S3. Representation of the GWAS hits in the 5
non-accessory genes used in calculation of a risk score. All the hits with a
p value < 0.05 are represented in the figure. The direction of the arrow
representing the gene indicates on which strand the gene was found in
ELS37 genome, and the length of each arrow is proportional to the length
of the ELS37 version of the gene. Hits are positioned on the genes according
to their position in ELS37 version of the genes. In each gene, the top half
represents hits in the GC vs rest GWAS, and the bottom half represents hits
in the NAG vs rest GWAS. K-mer hits are represented as lines, and SNP hits
are represented as dots. Zoomed areas correspond to the areas where the
genomic variations used in the risk score were found. (PDF 1523 kb)

Additional file 4: Figure S4. 3D renderings of the safe and risk allele of
HpaA. The 3D structure of 26,695 amino acid sequence of HpaA (HP0797)
containing the safe allele (A) and the risk allele (B) respectively was modelled
using 2I9I as template. Note that the helix formations in the area changes due
to the mutations. Safe allele on the right with Leu 109 and Ser 112 (first 36 aa
not included in model) and risk allele to the left with Phe 109 and Ala 112.
(PDF 103 kb)

Additional file 5: Table S1. Isolate details for the global 565 strains
dataset. Summary of geographic provenance, fineSTRUCTURE population
and source for the global dataset of 565 strains. Table S2. Isolate details
for the hpEurope GWAS dataset. Summary of metadata for the 173
strains used in the GWAS study. Host pathology, GWAS group, isolation
country, isolation city or region and H. pylori population are given when
available. Table S3. List of the 32 genes highlighted in at least one of
the GWAS experiments. The minimum p value and an annotation
(obtained by Prokka) is mentioned for each gene. (DOCX 89 kb)
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