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Abstract 29 

 30 

The white rhinoceros (Ceratotherium simum) has a discontinuous African distribution, which is limited by 31 

the extent of sub-Saharan grasslands. The southern population (SWR) declined to its lowest number 32 

around the turn of the 19th century, but recovered to become the world’s most numerous rhinoceros. In 33 

contrast, the northern population (NWR) was common during much of the 20th century, declining rapidly 34 

since the 1970s, and now only two post-reproductive individuals remain. Despite this species’ conservation 35 

status, it lacks a genetic assessment of its demographic history. We therefore sampled 232 individuals from 36 

extant and museum sources and analysed ten microsatellite loci and the mtDNA control region. Both marker 37 

types reliably partitioned the species into SWR and NWR, with moderate nuclear genetic diversity and only 38 

three mtDNA haplotypes for the species, including historic samples. We detected ancient interglacial 39 

demographic declines in both populations. Both populations may also have been affected by recent 40 

declines associated with the colonial expansion for the SWR, and with the much earlier Bantu migrations 41 

for the NWR. Finally, we detected post-divergence secondary contact between NWR and SWR, possibly 42 

occurring as recently as the last glacial maximum. These results suggest the species was subjected to 43 

regular periods of fragmentation and low genetic diversity, which may have been replenished upon 44 

secondary contact during glacial periods. The species’ current situation thus reflects prehistoric declines 45 

that were exacerbated by anthropogenic decline beginning with the rise of late Holocene technological 46 

advancement in Africa. Importantly, secondary contact suggests a potentially positive outcome for a hybrid 47 

rescue conservation strategy, although further genome wide data are desirable to corroborate these results. 48 

 49 

Keywords: white rhinoceros, anthropogenic declines, demographic history, secondary contact, 50 

conservation  51 
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Introduction 53 

 54 

The white rhinoceros (Ceratotherium simum) is the most common of the world’s five remaining rhinoceros 55 

species. It has borne the brunt of rhinoceros losses during the global acceleration in illegal hunting, which 56 

began in 2008 because of increasing demand for horn products in South-East and East Asia. The species 57 

is an obligate grazer, thriving historically in two geographically separated grassland areas in sub-Saharan 58 

Africa, and has consequently been divided by taxonomists. The southern white rhinoceros (SWR) is 59 

endemic to southern Africa, historically occurring in much of the sub-region, south of the Zambezi river, 60 

including Namibia, Botswana, Zimbabwe and South Africa (Figure 1A & B, after Rookmaaker & Antoine 61 

2012). The northern white rhinoceros (NWR) was endemic to a narrow belt of grassland from west of the 62 

Nile River and Albertine Rift, comprising parts of Uganda, South Sudan, the Democratic Republic of the 63 

Congo (DRC), Chad and the Central African Republic (Figure 1A & B). The recent histories of both 64 

populations are well known, independent, and contrastingly reflect events occurring in Africa and the Middle 65 

East since the colonial period from the 18th century (Figure 1C). 66 

 67 

In southern Africa, the northwards spread of colonialism from the Cape of Good Hope resulted in the 68 

extermination of the SWR across most of the sub-region (Player and Feely 1960). Even before the turn of 69 

the 19th century, the SWR had undergone a population decline so severe that only 100 – 200 individuals 70 

remained, restricted to around the confluence of the Black and White Umfolozi Rivers in Zululand (Vaughan-71 

Kirby 1920). However, in 1895 colonial authorities declared the white rhinoceros royal game and proclaimed 72 

the area the Umfolozi Junction Reserve (Brooks 2006). With the dedicated conservation action of wildlife 73 

authorities in South Africa, this small population increased steadily throughout the 20th century (Figure 1C) 74 

to become a conservation success story. The current severe poaching epidemic is threatening to undo 75 

these gains, and it is predicted that if present trends continue, the SWR population will start to decline again 76 

in 2018 (Ferreira et al. 2015). Efforts to curb recent losses are ineffective with only marginal decreases in 77 

poaching rates in 2015 and 2016, with more than 1,000 African rhinoceros killed every year since 2013. 78 

Such a population contraction, in the absence of gene flow from other sources, could negatively affect the 79 

genetic diversity and evolutionary potential of the SWR through genetic drift. 80 

 81 

The demographic recovery of the SWR is all the more remarkable because the 20th century also brought 82 

the near eradication of all other rhinoceros populations across the world. The NWR was still common 83 

throughout most of its range at the turn of the 20th century (Roosevelt and Heller 1914, Pitman 1931) and 84 

numbers were still relatively high until the 1960s (Emslie and Brooks 1999), when demand for rhino horn, 85 

mainly on the Arabian peninsula, precipitated the penultimate poaching epidemic. Political instability and 86 

ineffective conservation measures during the ensuing period saw the rapid decline of NWR numbers in the 87 

wild (Figure 1C), with the last wild individuals extirpated in Uganda by 1980 (Edroma 1982), in Sudan by 88 

1984 (Emslie and Brooks 1999) and finally the population in Garamba National Park, Democratic Republic 89 



of the Congo (Hillman-Smith et al. 1986), declared extinct in 2008. The NWR now survives only in captivity, 90 

and with two post-reproductive individuals (two females) remaining, its chances of survival look bleak. The 91 

imminent extinction of the NWR has sparked several conservation efforts to prevent the loss of what little 92 

remains of the population’s genetic diversity.  93 

 94 

The plight of the NWR has also precipitated a debate on whether the evolutionary relationship between the 95 

two populations could allow for interbreeding and genetic rescue as a conservation strategy (Saragusty et 96 

al. 2016), enabling the retention of at least some of the NWR’s genetic diversity. The only known NWR-97 

SWR hybrid was a female (Nasi), born in captivity in 1977. Although she survived 30 years in captivity, she 98 

never bred, and this has raised questions about the level of reproductive isolation between the two white 99 

rhinoceros populations. Although studies have revealed both morphological, behavioural and genetic 100 

differences between the SWR and NWR (Groves et al. 2010, Cinková and Policht 2014, Harley et al. 2016), 101 

the evolutionary processes giving rise to this differentiation have not been discussed. Several authors have 102 

attempted to compare these fossils with extant SWR and/or NWR (Groves 1975, Geraads 2005, 2010), but 103 

with limited success due to the scarcity of well-preserved fossil material and difficulty in delimiting 104 

species/populations from fossil remains. 105 

 106 

However the fossil record demonstrates clearly that the prehistoric distribution of the white rhinoceros was 107 

wider than its recognised historical range. The presence of anatomically modern white rhinoceros in 108 

Pleistocene Tanzania, Ethiopia, Libya, Eritrea, and Kenya (Geraads 2011) suggests a demographic history 109 

of population contraction and expansion. Fluctuation between cold and arid glacial periods with wet and 110 

warm interglacials would have respectively expanded and contracted the grassland biomes on which the 111 

white rhinoceros is dependent (Figure 1D). The evolutionary consequences of such climatic fluctuations, 112 

especially with regard to demographic isolation, depends on whether climatically driven range expansions 113 

allowed NWR and SWR populations to come into demographic secondary contact. The deep divergence 114 

between NWR and SWR implied by analysis of mtDNA (0.46 – 0.97 Mya, Harley et al. 2016) is indicative 115 

of a prolonged period of demographic isolation between NWR and SWR maternal lineages. However, due 116 

to the maternal inheritance of mtDNA, it has a lower effective population size (Ne) than nuclear DNA and 117 

its lineages assort more quickly into monophyletic clades. Nuclear markers, especially those that evolve 118 

rapidly (such as microsatellites) would be expected to perform reliably in an analysis of demography and 119 

isolation by quantifying prehistoric levels of differentiation and gene-flow between populations (Kuhner et 120 

al. 1998).  121 

 122 

Here we analysed genetic variation in the white rhinoceros with the aim of more appropriately informing 123 

conservation management. We use both nuclear microsatellites and mtDNA to determine levels of genetic 124 

variation across a sample of both NWR and SWR populations, and from both wild and captive populations. 125 

To estimate the losses in genetic diversity resulting from 20th century population declines, we also measured 126 



the genetic diversity of historic (pre-bottleneck) museum material for comparison. Additionally, we also 127 

tested the hypothesis that both populations underwent prehistoric demographic size changes, and 128 

determined whether the NWR and SWR came into secondary genetic contact after their initial divergence.  129 

  130 



Methods  131 

Samples and loci 132 

Samples were collected from wild (ESM1, Table S1) and captive (ESM1, Table S2) animals for both SWR 133 

and NWR. A total of 217 SWR samples (174 wild, 42 captive) and 15 NWR samples (8 wild, 7 captive) were 134 

obtained from extant and historic (museum) material representing the entire species range (full details are 135 

provided in ESM1, and permit information in ESM1, Table S3). The 5’ end of the control region using primers 136 

mt15996L (5’-TCCACCATCAGCACCCAAAGC-3’) and mt16502H (5’-137 

TTTGATGGCCCTGAAGTAAGAACCA-3’) were used to amplify a 477 bp fragment of the control region. 138 

Samples were also amplified for 10 microsatellite loci (ESM1, Table S4). The number of markers used in 139 

this study is comparable both with the number and identity of markers used in other publication on 140 

rhinoceros (Harley et al. 2005; Kotze et al. 2014; Moodley et al. 2017). Markers were selected at random 141 

and were developed from a variety of target species (black rhinoceros, SWR and pig). For detailed 142 

molecular and quality control methods, see ESM2. 143 

 144 

Genetic diversity 145 

We included four previously published mtDNA control region sequences (Genbank accessions AF187836, 146 

AF187837, AF187838 and AF187839; Brown and Houlden 2000), as well as seven mitochondrial genomes 147 

from wild individuals, three of which were from wild SWR and four from wild NWR prior to that population’s 148 

extirpation (Harley et al. 2016). Diversity was estimated for all populations separately. Since captive animals 149 

were from a variety of zoos and animal parks, we pooled all captive individuals into SWR and NWR groups. 150 

For microsatellites, we calculated the mean number of alleles, observed (HO) and unbiased expected 151 

heterozygosity (HE) using GENETIX (Belkhir et al. 2004). Allelic richness (AR) was computed by resampling 152 

to correct for sample size differences among populations. Both AR and and inbreeding coefficients (FIS) 153 

were calculated in FSTAT (Goudet 1995). Mitochondrial DNA diversity for both control region and whole 154 

genomes was assessed for levels of polymorphism and haplotype diversity, as well as nucleotide diversity 155 

(π), in Arlequin v3.5 (Excoffier and Lischer 2010). Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) statistics 156 

were also calculated in Arlequin to determine whether sequences showed evidence for population size 157 

changes. 158 

 159 

Genetic structure 160 

Population structure using microsatellite variation was assessed using Bayesian k-means clustering in 161 

STRUCTURE (Pritchard et al. 2000). We assumed an admixture model and analysis was run ten times for 162 

k = 1-7 with each randomly started run consisting of 500,000 Markov Chain Monte Carlo (MCMC) iterations, 163 

assuming correlated allele frequencies, discarding the first 100,000 iterations. The optimal k for the 164 

microsatellite data was determined as the highest value that was biologically interpretable. MtDNA structure 165 

was deduced by constructing a phylogenetic network of control region sequences. We used the median-166 



joining method in Network v5.0.0.1 (Bandelt et al. 1999) with equal weighting on all nodes and using a 167 

correction cost algorithm.  168 

 169 

Evolutionary timeframe 170 

In order to obtain a time frame for the evolutionary history of the species, we reconstructed a species level 171 

maternal phylogeny from the seven mitochondrial genomes sequenced by Harley et al. (2016). We 172 

conducted Bayesian phylogenetic dating using BEAST v2.4.3 (Drummond and Rambaut 2007) as this 173 

allowed us to parameterise splits in the tree with soft-bounded priors based on known fossil information, 174 

using the same mammalian mtDNA genomes and priors described by Harley et al. (2016), except that all 175 

five calibration times were used simultaneously in a single analysis. We used the Tamura-Nei model for 176 

nucleotide substitution with gamma correction, as deduced by jModelTest v2 (Darriba et al. 2012), placing 177 

a relaxed, lognormal prior on the clock rate to account for potential differences in the molecular clock. The 178 

analysis was facilitated by a heuristic 100 million-step exploration of the likelihood surface using a Markov 179 

chain Monte Carlo simulation, sampling the chain every 100,000 steps and discarding the first 10%.  180 

 181 

Ancient and recent changes in effective population size  182 

Ancient demographic change in both SWR (n = 20, excluding zoo individuals) and NWR (n = 15) populations 183 

was inferred using MSVar v.1.3 (Beaumont 1999; Storz & Beaumont 2002), with Ne being the size of a 184 

model population that has the same rate of genetic drift as the rhinoceros population of interest. Wide priors 185 

were set for all parameter estimates to allow for uncertainties in the data. Three potential scenarios were 186 

performed separately for SWR and NWR, assuming different ancestral (N1) and current (N0) effective 187 

population sizes. These were (i) a stable population (N1=N0), (ii) a population decline (N1>N0) and (iii) a 188 

population expansion (N1<N0). Further details of priors and MCMC runs are given in ESM1, Table S5. 189 

 190 

The more recent demographic history of the white rhinoceros, during which humans may have driven 191 

population size changes, was investigated through Approximate Bayesian Computation (ABC) simulations 192 

(Beaumont et al. 2002). This approach is unlike the likelihood calculations of the data performed by MSVar, 193 

but instead simulates a finite set of potential demographic scenarios, which are then compared to the 194 

observed data using sets of summary statistics. Demographic histories for SWR and NWR were thus tested 195 

independently by exploratory simulations of six scenarios in ABCTOOLBOX v1.1 (Wegmann et al. 2010): 196 

a null model, two expansion models, two bottleneck models and a model with two bottlenecks (ESM, Figure 197 

S2). Under expansion and bottleneck scenarios we tested whether the timing of the demographic event 198 

coincided with sub-Saharan Africa’s two most important anthropogenic events - the migration of iron-age, 199 

agriculturalist Niger-Congo language speakers (Bantu) into eastern and southern Africa 400-2,000 years 200 

ago (ya; Grollemund et al. 2015) and the expansion of colonial-era European influence into the region 201 

(present to 400 ya). 202 

 203 



Secondary contact between northern and southern white rhinoceros 204 

We also tested for the possibility that NWR and SWR could have come into secondary genetic contact 205 

since they diverged from each other. This may have occurred during the late Pleistocene during which the 206 

grassland biome would have periodically been continuous between eastern and southern Africa. We 207 

therefore built a two-population model that included uni-and bi-directional migration. First, we tested for 208 

migration (uni- and bidirectional) at any time during the last glacial period (LGP) of the late Pleistocene 209 

(14,000 – 106,000 ya, scenarios 2-4) which followed the end of the Eemian interglacial. We then subdivided 210 

the LGP to attempt to differentiate between recent migration during the last glacial maximum (LGM, 14,000 211 

– 26,000 ya, scenarios 5-7) and earlier migration during the LGP (26,000 – 106,000 ya, scenarios 8-10). 212 

Last, we tested the null hypothesis against a model of ancient (pre-Eemian) migration (130,000 – 500,000 213 

ya, scenarios 11-13). For details of model parameterisation see ESM2. 214 

 215 

We were concerned that individuals in our data set could be closely related and we therefore removed all 216 

individuals with a relatedness values (r) of 0.3 or higher and reran all single- and two-population ABC 217 

simulations. 218 

 219 

  220 



Results 221 

A total of 232 white rhinoceros were genotyped at 10 microsatellite loci (ESM3) and 419 bp of the 222 

mitochondrial control region (ESM4) was sequenced in 63 individuals. The level of missing data is given as 223 

the number and percentage (%) of failed genotypes for the historical and modern data (ESM1, Table S6). 224 

Three loci (RHI32A, RH17B and RH17C) for the historic NWR sample showed a high proportion of missing 225 

data (> 50%). To determine if missing data at these loci affected the overall observed structure between 226 

populations, we reran the Structure analyses for k = 1-7 without these loci, and found that there was no 227 

change in the overall result. 228 

 229 

Genetic diversity 230 

The effect of ascertainment bias was limited in this study as our results were consistent with previous studies 231 

using different types of markers in rhinoceros (Merenlender et al. 1989). All populations were found to be 232 

in Hardy-Weinberg equilibrium and individual loci were randomly associated (in linkage equilibrium). 233 

Nuclear microsatellite genetic diversity was moderate to low, with an average of eight alleles per locus and 234 

heterozygosity ranging from 0.48-0.56 (ESM, Table S7). SWR (HO = 0.48) were more diverse than NWR 235 

(HO = 0.46), but both populations had lower observed than expected heterozygosity and positive, but not 236 

significant, inbreeding coefficients (FIS SWR = 0.09, FIS NWR = 0.33). The extant wild SWR population (six 237 

subpopulations) had slightly lower diversity (HO = 0.47) than captive SWR individuals ((HO = 0.51). Within 238 

the captive SWR there was no difference in genetic diversity between founders and their offspring (zoo-239 

born). In contrast, the wild (museum sampled) NWR population was more diverse than our sample of 240 

captive NWR animals, returning a higher mean number of alleles (3.4 vs 2.4) and heterozygosity (0.48 vs 241 

0.43). Yet, despite comprising only seven individuals, the captive NWR sample had similar allelic diversity 242 

to all sampled wild SWR subpopulations from reserves in South Africa today.  243 

 244 

Mitochondrial genetic diversity was low for both SWR and NWR (ESM2, Table S8), comprising three 245 

haplotypes in total, with SWR comprising two haplotypes and NWR just one. Captive SWR contained both 246 

haplotypes but had lower nucleotide diversity than wild SWR (0.003 vs 0.005). In both populations, genetic 247 

diversity of 19 and 20th century haplotypes were the same as extant levels. We amplified the control region 248 

for one ancient SWR individual (shot in South Africa in 1869) which possessed one of the two haplotypes 249 

detected in extant SWR populations. Surprisingly, our entire historic NWR sample, containing early 20th 250 

century individuals from the three range states in which the NWR was most common, all harboured the 251 

same haplotype as NWR population in captivity.  252 

 253 

Genetic structure 254 

Both nuclear and mitochondrial markers structured the species into two distinct populations/clades (ESM2, 255 

Figure S1), corresponding to SWR and NWR. For microsatellite data, k = 2 returned the highest likelihood, 256 

with no recent admixture detected between populations (ESM2, Figure S1A). When the data were analysed 257 



at higher, less likely, k models, substructure within SWR was revealed with the separation of mainly captive 258 

individuals (K4), Mthethomusha Game Reserve (K5) and Origstad and Nkomazi Game Reserves (K6, 259 

ESM2, Fig. S4,). However, since we could not assume that our captive sample was taken from a naturally 260 

breeding population, only wild SWR were used for subsequent ABC analyses. However, the multilocus 261 

profile of the only known SWR-NWR hybrid individual Nasi clearly shows an admixed profile. The 262 

mitochondrial control region showed two monophyletic clades, separated by 30 mutational steps (ESM2, 263 

Figure S3B). Haplotypes within the SWR were separated by four mutations. 264 

 265 

Evolutionary timeframe 266 

Using complete mitochondrial genomes (ESM5), which contained greater levels of within-population 267 

polymorphism relative the control region, BEAST analysis inferred a divergence time between the two white 268 

rhino lineages at approximately 0.97 million years (Myr), but with a large 95% highest posterior density 269 

(HPD) of 0.5-1.5 Myr (ESM2, Figure S1C), with African rhinoceros species (black and white) identified as 270 

sister taxa with a most recent common ancestor (MRCA) of 11 Myr (HPD95: 6.4 – 16.0 Myr). Low 271 

mitochondrial DNA diversity within each white rhinoceros population resulted in very shallow but similar 272 

MRCA times. SWR lineages coalesce to 38,000 years ago (ya, HPD95: 7,400 – 77,400 ya) and NWR 273 

mitochondrial genomes shared a common ancestor 34,000 ya (HPD95: 8,800 – 67,000 ya). 274 

 275 

Ancient changes in effective population size 276 

While analyses of mtDNA neutrality indicated a history of population contraction for the species, with the 277 

majority yielding positive Fu’s Fs values, these were not significant for the control region or for mitochondrial 278 

genomes (ESM2 Table S8). However, microsatellite data analyses using MSVar revealed that both SWR 279 

and NWR have undergone an ancient reduction in effective population size (EMS1, Table S9; ESM2, Figure 280 

S5). Independent runs invoking stable, expansion and contraction models all converged to the same 281 

posterior values placing current population size (N0) consistently lower than ancestral population size (N1, 282 

EMS1, Table S9; ESM2, Figure S5A & C). The timing of these population contraction events could be dated 283 

to the mid-Holocene, between 3,400 – 5,800 ya for SWR and the early Holocene-late Pleistocene (7,000 – 284 

29,000 ya) for NWR (EMS2, EMS1, Table S9; ESM2, Figure S5B & D). 285 

 286 

Recent demographic change 287 

The null ABC model (Scenario 1; ESM2, Figure S2) of no recent change in population size could be rejected 288 

for both SWR and NWR. Instead, highest model support for both populations was for a single decline or 289 

bottleneck (Table 1; BF > 3). For SWR, the best model selected was that of a population bottleneck during 290 

the colonial period (scenario 4 SWR; Table 1) with a modal time for the beginning of the decline of 264 291 

years (HPD90 138 – 394 years). In contrast, the best model for NWR was a demographic bottleneck during 292 

the time of the Bantu expansion into East Africa (scenario 5 NWR; Table 1), occurring about 1,370 ya 293 

(HPD90 518 – 1,869 years).  294 



 295 

Secondary contact and gene flow 296 

Combining both SWR and NWR data, parameterised according to the two best single-population scenarios 297 

above, we found the marginal densities for all migration models to be higher than the null model of no post-298 

divergence migration (Table 1). Among migration scenarios, bidirectional migration was more likely than 299 

any equivalent unidirectional scenario). The highest marginal densities and Bayes factors among 300 

bidirectional models were for scenarios set within the LGP (Table 1). Within the LGP, recent LGM 301 

secondary contact was the most likely of all tested scenarios, but could not be significantly differentiated 302 

from later LGP migration. 303 

 304 

All ABC simulations were also run without closely related individuals (r > 0.3). This reduced the sample size 305 

of SWR and NWR to 11 and 10 respectively. Nevertheless, all runs returned similar results to those above, 306 

with the exception that colonial and Bantu period population bottleneck scenarios could no longer be 307 

distinguished from each other for NWR. The results of these additional simulations are provided in ESM1, 308 

Tables S10 & S11.  309 

 310 

 311 

  312 



Discussion 313 

We generated molecular data from a sample that included the recent recorded white rhinoceros range, with 314 

samples from extant and historic specimens back to the 19th century. We observed much higher allelic 315 

variation at microsatellites than for mtDNA, likely reflecting the differences in effective population size 316 

between the two markers (approximately 4:1). Levels of microsatellite heterozygosity in white rhinoceros 317 

are lower than East, West and southern African black rhinoceros populations (HE: 0.71 – 0.74, Moodley et 318 

al. 2017) but higher than the relatively unmanaged south-western black rhinoceros of Namibia or Angola 319 

(HE: 0.42 – 0.49). We also found that historic levels of NWR diversity were greater than extant levels, 320 

demonstrating the negative genetic consequences of the NWR’s colonial-era history of hunting and habitat 321 

destruction during the latter part of the 20th century. However, for mtDNA, we found that even in colonial 322 

times maternal genetic diversity was already as low as it is in extant populations. Therefore, the evolutionary 323 

process which reduced maternal variation in both white rhinoceros populations is very likely to have 324 

occurred prior the time of sampling in the late 1800’s. 325 

 326 

The lower diversity of SWR individuals born in captivity relative to wild-born founders may also indicate a 327 

loss of diversity, even in the space of one or two generations. Owing to the increased erosive power of 328 

genetic drift in small populations, this effect may increase as time progresses. We therefore suggest an 329 

active management plan for captive bred individuals, where multilocus genetic profiles can be used to 330 

maintain genetic diversity. Similarly, genetic drift in isolation has differentiated some SWR populations, and 331 

more active management between reserves is encouraged to help ameliorate these effects. 332 

 333 

Structure and evolutionary timeframe 334 

Microsatellite clustering clearly differentiated the white rhinoceros into two distinct populations (ESM2, 335 

Figure S1), an observation already made using mtDNA (Groves et al. 2010, Harley et al. 2016) and for the 336 

nuclear amelogenin gene (Groves et al. 2010). Both these studies, however, made use of more limited 337 

datasets comprising two and seven individuals, respectively. The present study therefore is the first to use 338 

large sample sizes and microsatellite markers, and in the case of the NWR the historic sample covered 339 

much of the population’s range. For maternally inherited mtDNA, dated using five mammalian calibration 340 

points, we estimated the divergence of mtDNA lineages at just under a million years, but with wide 341 

confidence limits (± 500,000 years). ABC simulations were not able to narrow this estimate. These wide 342 

limits underscore model uncertainty and the wide prior distributions on fossil calibration points. 343 

Nevertheless, these divergence estimates provide a general time frame for the initial split between NWR 344 

and SWR populations. Genomic analysis will likely be needed to date the divergence of the two white 345 

rhinoceros populations more precisely.  346 

 347 

Ancient population size changes  348 



A coalescent analysis of prehistoric effective population size changes using our microsatellite data allowed 349 

us to infer late Pleistocene to mid-Holocene population contractions for both SWR and NWR (ESM2, Figure 350 

S4). Since the effective population size inferred through coalescent simulation is a measure of the effect of 351 

genetic drift on the genealogical process, reported numbers reflect the minimum number of effective 352 

breeders required by the studied population to ameliorate the loss of further diversity through drift. The 353 

inferred timeframe largely overlaps with the confidence limits for the coalescence of intra-population mtDNA 354 

lineages (ESM2, Figure S1C), which could potentially have occurred as recently as 6,000 – 7,000 ya and 355 

as early as 77,000 ya. Although confidence limits on the posterior distribution of these times were large, for 356 

SWR, the inferred decline suggests that this population was adversely affected by the grassland contraction 357 

that occurred after the LGM. In the NWR, we obtained a signal both a post-LGM (7,000 ya) and a pre-LGM 358 

(26,000 – 29,000 ya) population decline, also possibly in response to grassland contraction, highlighting 359 

the white rhinoceros’ dependence on suitable grassland habitats. These prehistoric population contractions 360 

may have been partly responsible for low mtDNA genetic variation detected among colonial-era NWR and 361 

SWR samples.  362 

 363 

Recent human-associated population declines  364 

Microsatellite analysis also allowed us to infer very recent population declines associated with human 365 

movements in Africa. We stress that although the timeframes for the recent NWR and SWR bottlenecks 366 

were defined to test for an association with known human historical events, our ABC simulations do not 367 

provide a causal link between the human activity and white rhinoceros demography. NWR precolonial 368 

population decline, may be coincident with the arrival of Bantu speakers from West Africa. Recent 369 

reconstructions have inferred that the Bantu expansion proceeded first in a south-easterly direction from 370 

Cameroon, avoiding rainforest and taking advantage of a savannah corridor that started to open ~4,000 ya 371 

(e.g. Vincens et al. 1998), accelerating ~2,500 ya (Bayon et al. 2012) and leading to colonisation of east 372 

Africa and the Great Lakes region around 2,000 ya (Grollemund et al. 2015). While the Bantu were 373 

predominantly agriculturalists, utilising grassland habitats on which to grow newly domesticated strains of 374 

millet and sorghum, they were also in possession of iron age smelting technology, and thus capable of 375 

hunting larger game animals, either directly, or through interactions with and spread of iron-age technology 376 

through local hunter-gatherers (e.g. Patin et al. 2014). It is also possible that Bantu speakers associated 377 

with people from further afield, either with Arab and South Asian traders via the eastern coast of Africa or 378 

with Romans via the Nile Valley. In either case, demand for rhinoceros products, and potentially even live 379 

animals, may have helped intensify the decline in effective population size in the NWR observed during this 380 

period. 381 

 382 

In comparison, we recovered a clear signal for a more recent human-induced population decline in the 383 

SWR, during the occupation of southern Africa by Europeans. This population decline is historically well 384 

documented, with the SWR reaching its lowest number of approximately 100 animals over a hundred years 385 



after the median time of decline (Figure 2), although the actual time at which the SWR was at its lowest 386 

number falls well within the confidence limits of our posterior distribution. Interestingly, although both 387 

populations were reduced to low numbers by humans, current effective population size confidence limits 388 

did not overlap, showing that the SWR was reduced to significantly lower effective numbers. Although the 389 

effective numbers of NWR destroyed by humans was greater, significantly lower effective size for SWR 390 

could reflect the more efficient destruction of white rhinoceros by mechanised hunting during the colonial 391 

times. 392 

 393 

Post-divergence gene flow between SWR and NWR   394 

We used two-population ABC analyses to demonstrate that although the NWR may have diverged from the 395 

SWR over a million years ago, both populations came into post-divergence secondary contact more 396 

recently during the LGP, and potentially even as recently as the LGM. The implications of this finding may 397 

prove central in ongoing debates about the specific status of the two white rhinoceros populations, and how 398 

best to manage their remaining genetic diversity in the future. The inferred post-divergence gene-flow was 399 

likely facilitated by savanna grassland expansions after the Eemian interglacial (115,000 – 130,000 ya), but 400 

has ceased completely since the Holocene when NWR and SWR populations declined as their grassland 401 

habitat diminished. A potentially continuous distribution of the white rhinoceros is also supported by 402 

evidence of its occurrence east of the Nile river from the middle Pleistocene (Clark and Brown 2001), the 403 

LGP (Hillman-Smith et al. 1986) and as recently as the Holocene (Gifford et al. 1980). Therefore, the 404 

present-day absence of the white rhinoceros east of the Nile River can only be explained by the local 405 

extirpation of an East African population during the Holocene contraction, and with repopulation of Uganda, 406 

Kenya and Tanzania subsequently attenuated by the flow of the Nile. Taken together, these results suggest 407 

that the white rhinoceros has been resilient to population size contractions, which would have subjected 408 

local populations to periods of low genetic diversity during interglacial periods, but with diversity being 409 

potentially replenished during glacial periods by secondary contact. 410 

 411 

Conservation implications 412 

The contrasting histories of the northern and southern white rhinoceros have substantial implications for 413 

their conservation. Low diversity at both mtDNA and microsatellite loci implies that maintenance of genetic 414 

diversity should be a core conservation action for the species. Although the African Rhino Specialist Group 415 

advocates a lower limit of 20 founding individuals (Emslie et al. 2009) for new populations, some wild SWR 416 

populations like Mthethomusha, Origstad and Nkomazi have already differentiated from the original SWR 417 

stock due to management in isolation. Our results suggest not only a minimum number of founders for new 418 

populations, but also that microsatellite profiles should be used to select founding individuals from more 419 

than one source population. Additionally, low diversity of some populations should be ameliorated by 420 

regular and targeted translocations.  421 



With most endangered species intensive genetic management of populations would be prohibitively 422 

expensive and/or logistically challenging. However, population genetic analysis carried out in forensic 423 

context is increasingly being applied in large African mammals, for example in both the forest and savannah 424 

elephant to identify the origins of seized animal products (Wasser et al. 2015) and to identify demographic 425 

units for conservation management (e.g. Ishida et al. 2018). Forensic studies require large genetic 426 

reference databases, thus a large and growing number of white rhinoceros have been routinely genotyped 427 

for forensic purposes (Harper et al. 2018), and we advocate making use of this unique genetic resource to 428 

aid the management of genetic diversity. With this database, it should be possible to monitor population 429 

diversity levels in real time, and select the profiles of immigrant individuals that would maximise population 430 

genetic diversity. Since landowners in South Africa are legally obliged to genotype their rhinoceros, it would 431 

also be possible, to monitor the breeding success of immigrant individuals as the calves of the next 432 

generation are added to the expanding database.  433 

 434 

The situation for the NWR is very different, and here we show that this population is the end-point of a long 435 

period of both prehistoric and anthropogenic decline. With only two female individuals remaining, the role 436 

of genetics is presently confined to an evaluation of the potential outcomes of hybrid rescue involving the 437 

use of SWR genomes. The recent LGP secondary contact is a key result in this context, as it increases the 438 

likelihood that hybrid rescue could be positive and that the recently reported NWR/SWR hybrid embryos 439 

may provide a viable strategy for conservation of the NWR (Hildebrandt et al. 2018). However drawing such 440 

inference could be premature using a handful of genetic markers alone, and for this reason whole 441 

resequencing genomic data could be extremely useful in documenting locally adapted regions of the white 442 

rhinoceros genome that may be a priority for genetic management in white rhinoceros occupying the 443 

northern edge of the species’ historic distribution, regardless of the origin of the animals.  444 

 445 

An additional conservation implication of this work is that managed translocation of SWR into some portion 446 

of the NWR’s historic range might be a viable approach to restore the ecological functionality that this large 447 

grazing mammal previously contributed to the northern savannah ecosystem it once occupied (Griffiths et 448 

al. 2011), although any such introductions would need to be closely monitored for evidence of a lack of 449 

local adaptation, genetic drift and inbreeding. 450 

  451 
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Figure and table captions 611 

 612 

Figure 1. Distribution, phenotype and population trends in the white rhinoceros. A. Historic distribution of 613 

northern (NWR) and southern (SWR) white rhinoceros in sub-Saharan Africa (after Rookmaaker & Antoine, 614 

2012). B. Northern (left) and southern (right) white rhinoceros females at Ol Pejeta, Kenya. Copyright C. 615 

Melzer 2017. C. Population trends of NWR (red) and SWR (blue) through the 20th century. D. Extent of the 616 

grassland biome (in red) in Africa during the last glacial maximum (left) when it was continuous from north 617 

to south, and at present (right) where it is fragmented. 618 
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Tables 20 

 21 

Table 1. Posterior estimates for demographic scenarios within and between Northern and Southern white rhinoceros based on approximate 22 

Bayesian computation. The best model among single and two-population scenarios are indicated in bold. 23 

 24 

 Scenario Scenario Description 
Migration 

prior (kyr) 
Posterior

Mode (kyr) 
Posterior

NeM 
Marginal 
Density 

P-value 
Bayes Factor 

(BF)  

Southern 
White 

1 Null model (stable population size) - - - 0.01 0.00 - 

Rhinoceros 2 Expansion during the colonial period - - - 7.49E-05 0.00 0.007 

 3 Expansion during the Bantu migrations - - - 2.59E-37 0.00 2.59E-35 

 4 Bottleneck during the colonial period - - - 1.68 0.99 168.00 

 5 Bottleneck during the Bantu migrations - - - 0.12 0.18 1.2 

 6 Two bottlenecks colonial period/Bantu migrations - - - 3.61E-50 0.00 3.61E-48 

Northern 
White 

1 Null model (stable population size) - - - 0.003 0.00 - 

Rhinoceros 2 Expansion during the colonial period - - - 1.28E-07 0.00 4.27E-05 

 3 Expansion during the Bantu migrations - - - 6.45E-35 0.00 2.15E-32 

 4 Bottleneck during the colonial period - - - 2.68E-68 0.00 8.93E-66 

 5 Bottleneck during the Bantu migrations - - - 0.68 1.00 226.67 

 6 Two bottlenecks colonial period/Bantu migrations - - - 1.72E-18 0.00 5.73E-16 

Two 
population 
models 

1 Null model; No migration - - - 739.66 0.56 - 

2 Unidirectional migration (S-N) Last glacial 
maximum 
(14-26) 

21.0 5 7,211.49 0.76 9.75 

3 Unidirectional migration (N-S) 18.1 72 2,432.03 0.80 3.29 

4 Bidirectional migration S-N: 18.1 S-N: 7 19,241.30 0.92 26.01 

 5 Unidirectional migration (S-N) Last glacial 
period 
(LGP) 

(14-106) 

N-S: 21.8 N-S: 112 4,937.74 0.70 6.68 

 6 Unidirectional migration (N-S) 43.7 7 1,929.91 0.77 2.61 

 7 Bidirectional migration 40.0 87 10,643.00 0.86 14.39 

 8 Unidirectional migration (S-N) 
Early LGP 
(26-106) 

S-N: 43.7 S-N: 7 4,819.14 0.65 6.52 

 9 Unidirectional migration (N-S) N-S: 40.9 N-S: 95 2,099.64 0.83 2.84 

 10 Bidirectional migration 72.9 7 9,950.02 0.79 13.45 

 11 Unidirectional migration (S-N) Pre-Eamian 
interglacial 
(130-540) 

49.4 85 2,377.90 0.65 3.21 

 12 Unidirectional migration (N-S) S-N: 73.7 S-N: 9 1,691.94 0.69 2.29 

 13 Bidirectional migration N-S: 47.0 N-S: 98 5,124.45 0.91 6.93 

 25 
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