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Abstract

In machine learning tasks, it is essential for a data set to be partitioned into a

training set and a test set in a specific ratio. In this context, the training set

is used for learning a model for making predictions on new instances, whereas

the test set is used for evaluating the prediction accuracy of a model on new

instances. In the context of human learning, a training set can be viewed as

learning material that covers knowledge, whereas a test set can be viewed as

an exam paper that provides questions for students to answer. In practice,

data partitioning has typically been done by randomly selecting 70% instances

for training and the rest for testing. In this paper, we argue that random data

partitioning is likely to result in the sample representativeness issue, i.e., training

and test instances show very dissimilar characteristics leading to the case similar

to testing students on material that was not taught. To address the above

issue, we propose a subclass-based semi-random data partitioning approach.

The experimental results show that the proposed data partitioning approach

leads to significant advances in learning performance due to the improvement

of sample representativeness.
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learning, Rule learning, If-then rules

1. Introduction

It has been a very popular strategy to adopt machine learning approaches for

the purposes of knowledge discovery (e.g., [11, 39, 43]) and predictive modelling

(e.g., [1, 32, 33]), which involves the training and testing stages. The former

stage aims at learning a model from data, whereas the latter stage aims at

evaluating the confidence/prediction performance by using new data. In order

to fulfill the above aims, data partitioning is usually needed to obtain a training

set and a test set. For knowledge discovery tasks, the use of a training set aims

for discovering new patterns, whereas the use of a test set aims for evaluating

the degree to which the discovered patterns can be trusted. For predictive

modelling tasks, the use of a training set aims for building a model that can

make predictions on new data, whereas the use of a test set aims for evaluating

the prediction accuracy of the model. In the rest of this paper, we focus on

classification, which is a special type of machine learning tasks.

In practical machine learning [42], it has been the usual practice to partition

a data set by randomly selecting 70% of the instances to form the training set

and 30% of the instances to form the test set. As argued in [21], random data

partitioning is likely to result in the sample representativeness issue, in which

the test data show the characteristics very dissimilar to the ones of the training

data. In a machine learning task, it is essential to make sure that testing is

on something that can be learned from the training data. Otherwise, it would

lead to the case similar to testing students on material that was not taught. In

this case, it could not only fail to get a good prediction performance but also

to make an effective judgment of the learning ability of the chosen algorithm,

while in reality the poor performance is due to the sample representativeness

rather than to the learning ability of the algorithm.

In this paper, in order to address the sample representativeness issue, we

propose a subclass-based semi-random partitioning approach. The contributions
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of this paper include the following:

• A new approach of data partitioning is proposed, which leads to an effec-

tive increase of the similarity between training data and test data, such

that it can be more effective to judge the learning ability of an algorithm.

• We demonstrate a novel application of decision tree learning algorithms

in the setting of data partitioning in a semi-random way, i.e., each rule,

which is extracted from a decision tree trained on a data set, is used to

group instances of a specific class to form a subclass of this class, such that

semi-random partitioning of data can be achieved by randomly selecting

training and test instances from each subclass separately.

• We compare the proposed approach of semi-random data partitioning with

the random data partitioning one as well as another more recent one in

terms of the classification performance on various data sets. Our exper-

imental results show that our proposed approach of semi-random data

partitioning leads to significant advances in the classification performance

due to the improvement of the sample representativeness.

The rest of this paper is organized as follows. A review of existing ap-

proaches of data partitioning is provided in Section 2 and some limitations of

the approaches are identified as well. In Section 3, we illustrate the proposed

approach of semi-random data partitioning and justify its significance in im-

proving the sample representativeness. In Section 4, we make experiments by

using 20 UCI data sets [18] and the results are discussed in depth to show the

effectiveness of the proposed approach of semi-random data partitioning. The

conclusions of this paper are drawn in Section 5 by summarizing the contribu-

tions and suggesting some further directions for this research area.

2. Related work

In machine learning, data partitioning can be done in several ways for exper-

imentation, and the most popular ways include training/test partitioning and
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cross validation [9, 12, 15]. As discussed in [28], cross validation is considered as

a way of measuring the learning ability of an algorithm on a data set, i.e., it can

be adopted to judge if an algorithm qualifies to get employed towards learning

effectively from this data set leading to a good model. The way of training/test

partitioning is usually taken towards learning a highly generalizable model from

the training data set and evaluating the model confidence in a proper way by

using the test data set. In reality, it is more important to measure effectively the

generalizability and the confidence of each model trained on a given data set,

towards proper employment of the models for classifying new instances. There-

fore, this paper focuses on investigating the way of training/test partitioning.

Fig. 1. Three level framework of data partitioning [21]

In terms of training/test partitioning, a three level framework is proposed

in [21], as shown in Fig. 1. The three levels are outlined as follows:

1. Level 1: Data is partitioned through the random sampling of a training

set D1 and a test set D2 separately from the original data set D.

2. Level 2: A number of sub-sets (S1, S2, ..., Sn) are obtained through di-

viding the original data set D, and each subset Si (1 ≤ i ≤ n) contains

instances that belong to class ci. Each subset Si is randomly partitioned

into training and test subsets (Si.1 and Si.2). All the training and test sub-

sets [(S1.1, S1.2, ..., S1.n) and (S2.1, S2.2, ..., S2.n)] are merged, respectively,

for obtaining the final training and test data sets (D1 and D2).
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3. Level 3: Each (Si) of the subsets (S1, S2, ..., Sn), which is obtained in

Level 2, is subdivided into a number of sub-subsets (T1, T2, ..., Tl), where

each of the sub-subsets Ti contains instances that belong to a subclass

of class Ci. Each sub-subset Ti is randomly partitioned into a training

sub-subset and a test sub-subset. All the training and test sub-subsets

[(T1.1, T1.2, ..., T1.m) and (T2.1, T2.2, ..., T2.m)] are merged, respectively, for

obtaining the final training and test data sets (D1 and D2).

The three level framework essentially indicates that the design of the strate-

gies of semi-random data partitioning involved in level 2 and level 3 is aimed at

the control of the consistency between the training and test sets in terms of their

characteristics, since the strategy involved in level 1 (random data partitioning)

has no such control resulting in the class imbalance and sample representative-

ness issues as mentioned in Section 1. In particular, the strategy, which was

proposed in [21] and is involved in level 2, aims at preserving the degree of

class balance (frequency distribution among classes) in both training and test

data sets. Since this strategy involves dividing the original data set D into sev-

eral subsets (S1, S2, ..., Sn) by putting instances of the same class into the same

subset, the strategy is referred to as class-based semi-random data partitioning.

Another strategy of data partitioning, which is referred to as stratified sam-

pling [10, 17, 40], can also achieve preserving the frequency distribution among

classes in both training and test data sets. However, for stratified sampling, it

is needed to calculate the sampling probability (Ptraining or Ptest) for each class

ci according to the selected partitioning ratio (r : 1 − r) and the class weight

Wci as defined in Eqs. (1) and (2).

Ptraining(class = ci) = Wci · r (1)

Ptest(class = ci) = Wci · (1− r) (2)

A comparison between stratified sampling and the class-based semi-random

partitioning approach was made in [21], and the experimental results indicate
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that the latter approach outperformed the former one on the majority of the

data sets. It is also argued in [21] that the latter approach pays more attention

to balancing the training and test data sets in comparison with the former one.

Furthermore, it is very likely that instances of the same class still show high

diversity, especially in the era of big data . In other words, separate data parti-

tioning for each class still cannot make sure that the obtained training and test

data have highly similar characteristics and thus can result in the sample repre-

sentativeness issue mentioned in Section 1. Therefore, it is necessary to propose

a data partitioning approach in a new semi-random strategy, which needs to be

involved in level 3 and deals effectively with the sample representativeness.

3. Subclass-based semi-random data partitioning

In this section, we propose a subclass-based semi-random data partitioning

approach, which is involved in level 3 of the partitioning framework shown in

Fig. 1. In particular, we illustrate how the concept of decision tree learning

can be used for subclass identification. We also justify the significance of our

proposed approach in terms of improving the sample representativeness.

3.1. Procedure

The key feature of our proposed data partitioning approach is the heuristic

identification of sub-classes through a decision tree learning algorithm, such

as ID3 [36] and C4.5 [37]. In particular, a decision tree DT could have more

than one leaf node labelled with the same class ci. In this context, each of

these branches ending with the same leaf node (labelled ci) could be converted

into an if-then rule, which is considered to cover a collection of instances that

form a subclass ci.j of ci. The whole procedure of this partitioning approach is

described as follows:

• Step 1: Train a decision tree DT on the original data set D;

• Step 2: For each class ci, extracts a number (n) of rules ruleci [n];
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• Step 3: For each rule ruleci [j], finds all its covered instances that form a

subclass ci.j and groups these instances in a subset Ti.j of D;

• Step 4: Training and test instances are randomly sampled from Ti.j in a

specific ratio r : 1− r.

Table 1

Weather data set [23].

Outlook Temperature Humidity Windy Play?

1 1 1 0 N

1 1 1 1 N

2 1 1 0 Y

3 2 1 0 Y

3 3 2 0 Y

3 3 2 1 N

2 3 2 1 Y

1 2 1 0 N

1 3 2 0 Y

3 2 2 0 Y

1 2 2 1 Y

2 2 1 1 Y

2 1 2 0 Y

3 2 1 1 N

We use the weather data set 1 as an example for illustrating the above four

steps by using the ID3 algorithm for subclass identification. The data set is

shown in Table 1 and the original attribute values and class labels are replaced

with specific symbols.

1http://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/weather.nominal.

arff
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As described in [27], the aim of decision tree learning is at recursive attribute

selection to obtain the root node and each internal node until the leaf node of

each tree branch is obtained, as shown in Figure 2.

Fig. 2. Decision tree learning algorithm [16]

The ID3 algorithm is designed to use the information entropy defined in

Eq. (3) and Eq. (4) for attribute selection, i.e., the attribute that obtains the

minimum entropy is selected, shown as follows.

CS(Ax = vx.j) = −
c∑

i=0

p(classi|Ax = vx.j) log2 p(classi|Ax = vx.j) (3)

where Ax is an attribute with the index x, vx.j is a value with the index j

of the attribute Ax, and p(classi|Ax = vx.j) is the conditional probability of
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classifying an instance to classi given that Ax = vx.j .

Entropy(Ax) =

k∑
j=1

wx.jCS(Ax = vx.j) (4)

where k is the number of values for attribute Ax and wx.j represents the weight

of attribute value vx.j . A more detailed illustration of the ID3 algorithm can be

found in [26].

In the following, we illustrate the procedure of attribute selection for the

root node of a decision tree using the Weather data set shown in Table 1. In

particular, a frequency table needs to be created for each of the four attributes,

namely, ‘Outlook’, ‘Temperature’, ‘Humidity’ and ‘Windy’. The four frequency

tables are shown in Tables 2-5.

Table 2

Frequency table for the attribute ‘Outlook’

Class label Outlook= 1 Outlook= 2 Outlook= 3

Y 2 4 3

N 3 0 2

Total 5 4 5

According to Table 2, we can calculate the average entropy Entropy(outlook)

of the attribute ‘Outlook’ as follows:

Entropy(Outlook) = 5
14CS(Outlook = 1)+ 4

14CS(Outlook = 2)+ 5
14CS(Outlook =

3)= 5
14 × (− 2

5 log2
2
5 −

3
5 log2

3
5 )+ 2

7 × (− 4
4 log2

4
4 − 0)+

5
14 × (− 3

5 log2
3
5 −

2
5 log2

2
5 )=0.69

Table 3

Frequency table for the attribute ‘Temperature’

Class label Temperature= 1 Temperature= 2 Temperature= 3

Y 2 4 3

N 2 2 1

Total 4 6 4
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According to Table 3, we can calculate the average entropy Entropy(Temperature)

of the attribute ‘Temperature’ as follows:

Entropy(Temperature) = 4
14CS(Temperature = 1) + 6

14CS(Temperature =

2) + 4
14CS(Temperature = 3)= 2

7 × (− 2
4 log2

2
4 −

2
4 log2

2
4 )+ 3

7 × (− 4
6 log2

4
6 −

2
6 log2

2
6 )+ 2

7 × (− 3
4 log2

3
4 −

1
4 log2

1
4 )=1.39

Table 4

Frequency table for the attribute ‘Humidity’

Class label Humidity= 1 Humidity= 2

Y 3 6

N 4 1

Total 7 7

According to Table 4, we can calculate the average entropy Entropy(Humidity)

of the attribute ‘Humidity’ as follows:

Entropy(Humidity) = 7
14CS(Humidity = 1) + 7

14CS(Humidity = 2)= 1
2 ×

(− 3
7 log2

3
7 −

4
7 log2

4
7 )+ 1

2 × (− 6
7 log2

6
7 −

1
7 log2

1
7 )=0.79

Table 5

Frequency table for the attribute ‘Windy’

Class label Windy= 1 Windy= 0

Y 3 6

N 3 2

Total 6 8

According to Table 5, we can calculate the average entropy Entropy(Windy)

of the attribute ‘Windy’ as follows:

Entropy(Windy) = 6
14CS(Windy = 1) + 8

14CS(Windy = 0)= 3
7 × (− 3

6 log2
3
6 −

3
6 log2

3
6 )+ 4

7 × (− 3
4 log2

3
4 −

1
4 log2

1
4 )=0.89

Because the attribute ‘Outlook’ obtains the minimum average entropy (i.e.,

0.69), the attribute ‘Outlook’ is selected for the root node leading to an incom-
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Fig. 3. Incomplete decision tree trained on the weather data set

plete decision tree as illustrated in Fig. 3. The attribute ‘Outlook’ has three

values, namely, ‘1’, ‘2’ and ‘3’, so the root node leads to three branches as judg-

ment criteria. The conditional entropy of the attribute-value pair ‘Outlook=2’

is 0, i.e., all instances that meet this condition belong to the ‘Y’ class, as shown

in Table 1, so this branch ends up with a leaf node labelled ‘Y’. However, the

conditional entropy values for the other two attribute value pairs are not 0,

so each of the corresponding branches needs to be grown further by repeating

the attribute selection procedure on the basis of the other three attributes, i.e.,

attribute selection needs to be done further for each of the two nodes labelled

with the symbol ‘?’, until each branch covers instances of a single class.

On the basis of the above description, following Step 1, a complete decision

tree can be trained on the weather data set, as shown in Fig. 4.

Following Step 2, we can obtain three rules for the class ‘Y’ and two rules

for the class ‘N’, shown as follows:

• Rule 1: Outlook = 2→ class = Y,

• Rule 2: Outlook = 1 ∧Humidity = 2→ class = Y,

• Rule 3: Outlook = 3 ∧Windy = 0→ class = Y,

• Rule 4: Outlook = 1 ∧Humidity = 1→ class = N,

• Rule 5: Outlook = 3 ∧Windy = 1→ class = N.
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Fig. 4. Complete decision tree trained on the weather data set.

Table 6

Subset T1.1 of the weather data set.

Outlook Temperature Humidity Windy Play?

2 1 1 0 Y

2 3 2 1 Y

2 2 1 1 Y

2 1 2 0 Y

Table 7

Subset T1.2 of the weather data set.

Outlook Temperature Humidity Windy Play?

1 3 2 0 Y

1 2 2 1 Y

Following Step 3, Rule 1, Rule 2, Rule 3 cover three subsets of instances

shown in Tables 6, 7 and 8, respectively, which form three sub-classes of the

class ‘Y’. Moreover, Rule 4 and Rule 5 cover two subsets of instances shown in

Tables 9 and 10, which form two sub-classes of the class ‘N’.

Following Step 4, five training subsets and five test subsets are obtained

through random partitioning of the five subsets shown in Tables 6-10. The final
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Table 8

Subset T1.3 of Weather Dataset

Outlook Temperature Humidity Windy Play?

3 2 1 0 Y

3 3 2 0 Y

3 2 2 0 Y

Table 9

Subset T2.1 of the weather data set

Outlook Temperature Humidity Windy Play?

1 1 1 0 N

1 1 1 1 N

1 2 1 0 N

Table 10

Subset T2.2 of the weather data set

Outlook Temperature Humidity Windy Play?

3 3 2 1 N

3 2 1 1 N

training set is obtained by merging all the five training subsets and the final

test set is obtained in the same way.

The above example shows that each of the five subsets is made up of instances

of the same class. Therefore, Step 4 is simply taken for drawing the training and

test data sets. However, in reality, it is not always the case (Case 1) that each

subset consists of instances of a single class, i.e., a subset may contain instances

that belong to different classes, which could happen from the following cases:

• Case 2: In decision tree learning, a branch of the tree has reached its

maximum length, which means that all the attributes have been selected

for growing this branch. Unfortunately, this branch still covers a subset
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of instances of more than one class.

• Case 3: Since attribute selection involved in the procedure of decision

tree learning is essentially the partitioning of a larger training subset into

several smaller subsets, the partitioning may result in a smaller subset

that does not contain any attributes that can lead to reduction of the

average uncertainty in distinguishing instances of different classes, while

the smaller subset still contains instances of different classes.

In both Case 2 and Case 3, the proposed semi-random data partitioning

approach is designed to partition each subset (containing instances of different

classes) into sub-subsets further to Step 4, such that each sub-subset contains

instances that belong to the same class, prior to instances selection for drawing

the training and test data sets.

3.2. Mathematical justification

As proved mathematically and experimentally in [21], when a data set con-

tains n classes with the frequency distribution of p1, p2, ... , pn, the strategy

involved in level 2 of the partitioning framework is able to ensure that the above

distribution is preserved in the training and test sets resulting from partitioning

of the data set. In this sub-section, we prove that the proposed partitioning ap-

proach involved in level 3 of the framework is also able to ensure the preservation

of the above distribution after data partitioning. In particular, we suppose that

the original data set has m instances, such that each class ci has mpi instances.

Given that the percentage of the training data set is q, i.e., the percentage of

the test data set is 1−q, following the proposed partitioning approach, the proof

of the preservation of the original distribution of the class frequency involves

the four steps, shown as follows:

• Step 1: After a decision tree is trained, each class ci is decomposed into

r sub-classes; each subclass ci.j of ci obtains mpipi.j instances, i.e., the

resulting frequency distribution among the sub-classes of ci is pi.1, pi.2, ...

, pi.r (their summation is 1).
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• Step 2: For each subclass ci.j , the instances that belong to it are randomly

selected into either a training subset or a test subset. The numbers of

instances in the training subset and in the test subset are mpipi.jq and

mpipi.j(1− q), respectively.

• Step 3: The final training subset is obtained by merging the training

subsets resulting from Step 2. The frequency distribution among the sub-

classes is mp1p1.1q : mp1p1.2q : ... : mp1p1.rq : mp2p2.1q : mp2p2.2q :

... : mp2p2.rq : ... : mpnpn.1q : mpnpn.2q : ... : mpnpn.rq, which is

equivalent to p1p1.1 : p1p1.2 : ... : p1p1.r: p2p2.1 : p2p2.2 : ... : p2p2.r : ...

: pnpn.1 : pnpn.2 : ... : pnpn.r. Furthermore, the above distribution can

be rearranged to p1(p1.1 + p1.2 + ...+ p1.r) : p2(p2.1 + p2.2 + ...+ p2.r) : ...

: pn(pn.1 + pn.2 + ... + pn.r). Because the summation of pi.1, pi.2, ... , pi.r

is 1, the above distribution can be simplified to p1 : p2 : ... : pn, i.e., the

original distribution.

• Step 4: The final test subset is obtained by merging the test subsets

resulting from Step 2. The frequency distribution among the sub-classes

is mp1p1.1(1− q) : mp1p1.2(1− q) : ... : mp1p1.r(1− q) : mp2p2.1(1− q) :

mp2p2.2(1−q) : ... : mp2p2.r(1−q) : ... : mpnpn.1(1−q) : mpnpn.2(1−q)

: ... : mpnpn.r(1 − q), which is equivalent to p1p1.1 : p1p1.2 : ... : p1p1.r

: p2p2.1 : p2p2.2 : ... : p2p2.r : ... : pnpn.1 : pnpn.2 : ... : pnpn.r.

Furthermore, the above distribution can be rearranged to p1(p1.1 + p1.2 +

... + p1.r) : p2(p2.1 + p2.2 + ... + p2.r) : ... : pn(pn.1 + pn.2 + ... + pn.r).

Because the summation of pi.1, pi.2, ... , pi.r is 1, the above distribution

can be simplified to p1 : p2 : ... : pn, i.e., the original distribution.

According to the above proof, we can also see that the proposed partitioning

approach not only preserves in both the training and test data sets the frequency

distribution (p1 : p2 : ... : pn) among the classes (c1, c2, ..., cn) but also the

frequency distribution (p1p1.1 : p1p1.2 : ... : p1p1.r : p2p2.1 : p2p2.2 : ... : p2p2.r

: ... : pnpn.1 : pnpn.2 : ... : pnpn.r) among the sub-classes of each class ci.
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Fig. 5. Visualization of the weather data set.

In practice, preserving in both the training and test data sets the frequency

distribution among sub-classes of each class is an effective way of managing the

sample representativeness. As mentioned in Section 1, instances of the same

class could still be highly diverse, which indicates that only the preservation of

the frequency distribution among classes is not sufficient to address the sample

representativeness issue, since it is still possible that the instances of class ci

in the training data set are very dissimilar to the ones of the same class in the

test data set. For example, as shown in Fig. 5, the visualization result of the

Weather data set indicates that the instances of the ‘Y’ class (in the “+” sign)

are distributed in three different areas. Also, the instances of the ‘N’ class (in

the “−” sign) are distributed in two different areas.

In the above context, if the instances belong to the same class but their

distribution is sparse, it would be likely to result in the sample representativeness

issue if the strategies involved in level 1 and level 2 of the partitioning framework

are adopted. For example, according to Fig. 5, the patterns learned from the

four instances of the class ‘Y’ (four “+” points located in the central area) can

not be used effectively to classify other instances of the same class (the “+”

points located in the top right or bottom left corner). Therefore, it is necessary

to identify sub-classes for each class towards addressing the above issue of sample

representativeness.
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From the perspective of decision tree learning, the instances (of class ci)

covered by the same rule have common characteristics. Thus, learning from

these instances is more likely to lead to patterns that are representative of

all these instances, in comparison with learning from instances (of the same

class) covered by other rules. Furthermore, the nature of decision tree learning

guarantees that different branches of a tree do not cover common instances,

i.e., these rules cover disjoint subsets of instances, which indicates that the

sub-classes identified through the rules resulting from decision tree learning are

not overlapping. The above argumentation indicates that decision tree learning

would be considered as an effective way of subclass identification leading to the

improvement of the sample representativeness.

On the other hand, it is possible that decision tree learning leads to the

generation of only one rule for each class. For example, as reported in [23],

the ‘contact lenses’ data set [2] contains three classes, namely, ‘hard lenses’,

‘soft lenses’ and ‘no lenses’, and three rules are learned from this data set (one

rule for each class). In this case, the proposed approach and the class-based

semi-random partitioning approach would make no difference in terms of the

partitioning strategy, i.e., both approaches lead to random data sampling from

each class of instances for forming the training and test sets. If the above case

occurs in practice, the proposed approach of data partitioning would not really

lead to considerable advances in the classification performance, in comparison

with the class-based semi-random partitioning approach.

4. Experimental results

In this section, we make experiments for evaluation of the proposed approach

of subclass-based semi-random partitioning by comparing it with the random

partitioning one and the class-based semi-random partitioning one in terms of

their impacts on classification accuracy and standard deviation.

In terms of classification accuracy, each data set is partitioned into a training

set and a test set in the ratio of 70:30 for conduct of the experiments. The data
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partitioning is repeated 10 times for each data set and the average accuracy is

taken for comparative evaluation. We also report the standard deviation of the

classification accuracy obtained on each data set over the 10 runs.

The above procedures are followed by using C4.5 [37], Naive Bayes (NB) [38]

and K Nearest Neighbours (KNN) [45] (k=5), respectively, for training classi-

fiers on 20 UCI data sets [18], towards testing the performance of the proposed

approach of data partitioning. We choose the above three learning algorithms

for classifiers training, since these algorithms are all very popular in real applica-

tions and are sensitive to the changes in the training sample leading to negative

impacts on their performance. In other words, the use of C4.5, NB and KNN

for classifiers training would lead to the effective evaluation of the impact of

each data partitioning approach on classification accuracy and standard devi-

ation. The proposed approach of subclass-based semi-random partitioning is

implemented by using C4.5 for subclass identification as part of the procedure,

due to the presence of continuous attributes in some of the 20 data sets. The

20 data sets are described in Table 11 in terms of the data characteristics.

For the 20 data sets used in our experiments, some of them contain missing

values. All the missing values are replaced with the majority value (the most

frequently occurring one) for each discrete attribute, or with the average of

the values in the entire domain for each continuous attribute. Also, for the

‘Hypothyroid’ and ‘Sick’ data sets, the last second (28th) attribute ‘TBG’ is

deleted since the entire domain of this attribute is full of missing values.

In Tables 12 and 14, C4.5 I, NB I and KNN I represent that the three algo-

rithms are used to learn classifiers from training data obtained through random

data partitioning; C4.5 II, NB II and KNN II represent that the class-based ap-

proach of semi-random data partitioning is adopted to obtain the training data

for the three algorithms to learn classifiers; C4.5 III, NB III and KNN III repre-

sent that the three algorithms are used to learn classifiers when subclass-based

approach of semi-random data partitioning is adopted to obtain the training

and test data. The results on the average accuracy of classification are shown

in Table 12, whereas the results on the standard deviation of the classification
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Table 11

Data sets

Data sets Attribute types Number of

attributes

Number of

instances

Number of

classes

Audiology discrete 69 226 24

Autos discrete, continuous 25 205 7

Breast-w continuous 9 699 2

Colic discrete, continuous 22 368 2

Diabetes discrete, continuous 20 768 2

Dermatology discrete, continuous 34 366 6

Ecoli continuous 7 336 8

Haberman continuous 3 306 2

Heart-c discrete, continuous 13 303 5

Heart-h discrete, continuous 13 294 5

Heart-stalog continuous 13 270 2

Hypothyroid discrete, continuous 29 3772 4

Iris continuous 4 150 3

Kr-vs-kp discrete 36 3196 2

Lymph discrete, continuous 18 148 4

Sick discrete, continuous 29 3772 2

Soybean discrete 35 683 19

Spambase continuous 57 4601 2

Vowel discrete, continuous 13 990 11

Vote discrete 16 435 2

accuracy are shown in Table 14.

From Table 12, we can see that the results indicate that in most cases, the

proposed subclass-based semi-random (SSR) data partitioning approach leads

to considerable advances in the average accuracy of classification, in comparison

with the random (R) data partitioning approach and class-based semi-random
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Table 12

Average accuracy of classification

Data sets C4.5 I C4.5 II C4.5 III NB I NB II NB III KNN I KNN II KNN III

Audiology 0.62 0.76 0.83 0.44 0.67 0.73 0.39 0.56 0.64

Autos 0.54 0.75 0.88 0.46 0.56 0.67 0.45 0.58 0.68

Breast-w 0.93 0.95 0.95 0.94 0.96 0.96 0.96 0.97 0.97

Colic 0.73 0.83 0.87 0.72 0.77 0.79 0.67 0.79 0.82

Dermatology 0.76 0.93 0.94 0.79 0.98 0.99 0.82 0.96 0.97

Diabetes 0.70 0.73 0.75 0.71 0.76 0.76 0.71 0.73 0.75

Ecoli 0.66 0.80 0.84 0.72 0.83 0.87 0.72 0.84 0.89

Haberman 0.75 0.72 0.71 0.77 0.74 0.75 0.71 0.71 0.73

Heart-c 0.78 0.76 0.77 0.81 0.81 0.84 0.79 0.82 0.82

Heart-h 0.74 0.78 0.81 0.82 0.84 0.84 0.84 0.82 0.84

Heart-stalog 0.71 0.78 0.81 0.81 0.84 0.87 0.76 0.79 0.82

Hypothyroid 0.99 0.99 0.99 0.95 0.95 0.95 0.93 0.93 0.93

Iris 0.83 0.95 0.94 0.85 0.94 0.95 0.84 0.95 0.96

Kr-vs-kp 0.98 0.99 0.99 0.87 0.87 0.88 0.90 0.96 0.96

Lymph 0.71 0.77 0.83 0.76 0.80 0.81 0.74 0.80 0.86

Sick 0.97 0.99 0.99 0.92 0.92 0.93 0.95 0.96 0.96

Soybean 0.69 0.92 0.93 0.74 0.92 0.93 0.61 0.91 0.92

Spambase 0.89 0.92 0.93 0.79 0.80 0.80 0.86 0.89 0.90

Vowel 0.50 0.75 0.80 0.48 0.61 0.67 0.31 0.82 0.89

Vote 0.95 0.95 0.96 0.89 0.90 0.91 0.90 0.92 0.94

(CSR) data partitioning approach.

In particular, when C4.5 is used for training classifiers (see columns 2-4 in

Table 12), the SSR approach outperforms the other two approaches in 13 out of

20 cases. For the other 7 cases, SSR still performs the best but the same as one or

both of the others in 4 cases. In the remaining 3 cases, SSR performs marginally

worse than R or CSR. When NB is used for training classifiers (see columns 5-7

20



in Table 12), the SSR approach outperforms the other two approaches in 14 out

of 20 cases. For the other 6 cases, SSR still performs the best but the same

as one or both of the others in 5 cases. For the remaining case, SSR performs

marginally worse than R. When KNN is used for training classifiers (see columns

8-10 in Table 12), the SSR approach outperforms the other two approaches in

14 out of 20 cases. For the other 6 cases, SSR still performs the best but the

same as one or both of the others.

To further investigate the performance of SSR, statistical analysis through

the Wilcoxon sign rank test is conducted to investigate if SSR leads to higher

average classification accuracy in comparison with R and CSR, respectively.

It has been shown in [8] that the use of the Wilcoxon sign rank test is more

appropriate than the use of the paired t-test.

In general, the comparison between 2 methods across several data sets is

allowed through using the Wilcoxon sign rank test [8]. If the performance of

the two classifiers is not significantly different, it will generally indicate the case

of null hypothesis. The differences in performance between different methods

need to be calculated and ranked, such that two sums of ranks can be calcu-

lated, respectively, for the positive differences and the negative differences. The

distribution of the signs (positive and negative) over the ranks is compared and

the significance level is calculated.

The details of the Wilcoxon’s test are displayed in Table 13 to show the

comparison between each pair of classifiers trained on the 20 data sets in our

experiments, e.g. ‘C4.5: R vs SSR’ indicates that C4.5 is used to learn two

classifiers from two training samples obtained, respectively, by adopting the R

and SSR data partitioning approaches, and the performance of the two learned

classifiers is compared.

The number (N) of positive ranks indicates the number of cases that one

approach outperforms the other one in terms of the average accuracy of clas-

sification, whereas the number of negative ranks indicates the number of the

opposite cases. The sums of ranks (i.e., mean ranks × N) indicate the relative

ranking of the compared classifiers. When the sums of ranks for the positive

21



Table 13

Wilcoxon sign rank tests for average accuracy.

Compared classifiers Ranks N Mean ranks Sum of ranks z-score p-value

C4.5: R vs SSR Negative ranks 17 10.68 181.50 -3.48 p=0%

Positive ranks 2 4.25 8.50

Ties 1

Total 20

C4.5: CSR vs SSR Negative ranks 14 9.07 127.00 -3.05 p=0.10%

Positive ranks 2 4.50 9.00

Ties 4

Total 20

NB: R vs SSR Negative ranks 18 10.25 184.50 -3.60 p=0%

Positive ranks 1 5.50 5.50

Ties 1

Total 20

NB: CSR vs SSR Negative ranks 15 8.00 120.00 -3.41 p=0%

Positive ranks 0 0 0

Ties 5

Total 20

KNN: R vs SSR Negative ranks 18 9.50 171.00 -3.70 p=0%

Positive ranks 0 0 0

Ties 2

Total 20

KNN: CSR vs SSR Negative ranks 15 8.00 120.00 -3.41 p=0%

Positive ranks 0 0 0

Ties 5

Total 20

and negative ranks are very close in value, the difference between the compared

classifiers is negligible, i.e., they have the similar performance. When one of
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the sums of ranks (either positive or negative) is considerably higher than the

other, it is an indicator of a considerable difference; the level of significance of

the difference is calculated using the z-score, based on the results on positive

and negative ranks; The difference is significant if the p-value is less than 0.05.

For example, when comparing C4.5 using random partitioning (C4.5 R) with

C4.5 using subclass-based semi-random partitioning (C4.5 SSR), the sum of

negative ranks, i.e., 181.5, (indicating that the performance of C4.5 R is worse

than the performance of C4.5 SSR) is much higher than the sum of positive

ranks, i.e., 8.5, (indicating that the performance of C4.5 R is better than the

performance of C4.5 SSR). The z-score (-3.48) and it’s corresponding p-value

(0%) indicate that the C4.5 SSR performs significantly better than C4.5 R.

The results obtained through Wilcoxon rank test indicate the adequate con-

dition of rejecting the null hypothesis is met, which means that the average

accuracy obtained by adopting the SSR data partitioning approach is higher

than the accuracy obtained by adopting each of the other approaches and that

it is unlikely to get this difference by chance. In other words, the SSR data par-

titioning approach performs significantly better than the R and CSR approaches

in terms of average accuracy.

From Table 14, we can see that in most cases, the proposed SSR data parti-

tioning approach leads to smaller values of the standard deviation, in comparison

with the R and CSR data partitioning approaches. As the partitioning process

is repeated for each run, the standard deviation is an indicator of the influence

of the partitioning process on the performance; a low standard deviation is an

indicator of the consistency for the performance of the used learning algorithms

(C4.5, NB and KNN) across the 10 runs.

In particular, when C4.5 is used for training classifiers (see columns 2-4 in

Table 14), the SSR approach outperforms the other two approaches in 17 out

of 20 cases. For the remaining 3 cases, the SSR approach performs marginally

worse than the CSR approach. When NB is used for training classifiers (see

columns 5-7 in Table 14), the SSR approach outperforms the other two ap-

proaches in 18 out of 20 cases. For the remaining 2 cases, the SSR approach
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Table 14

Standard deviation

Data sets C4.5 I C4.5 II C4.5 III NB I NB II NB III KNN I KNN II KNN III

Audiology 13.90% 2.32% 1.09% 13.63% 4.25% 1.61% 18.03% 3.91% 2.25%

Autos 24.55% 8.80% 3.68% 21.80% 6.07% 2.97% 19.92% 5.40% 2.01%

Breast-w 4.49% 1.21% 1.29% 4.40% 0.85% 1.96% 5.17% 1.37% 0.75%

Colic 18.49% 3.27% 2.29% 19.20% 4.38% 3.10% 8.31% 2.40% 2.22%

Dermatology 18.23% 2.52% 1.63% 22.63% 1.27% 0.80% 13.19% 1.62% 1.12%

Diabetes 11.71% 2.44% 2.59% 8.82% 2.81% 1.43% 8.21% 2.49% 1.84%

Ecoli 23.73% 3.87% 3.91% 21.16% 2.65% 2.07% 18.62% 2.68% 1.96%

Haberman 11.31% 4.34% 1.85% 7.30% 2.80% 0.98% 10.15% 4.04% 2.80%

Heart-c 12.00% 5.09% 2.76% 7.72% 4.06% 2.53% 9.76% 3.34% 2.47%

Heart-h 12.75% 4.11% 2.34% 8.78% 4.45% 1.69% 9.95% 3.24% 2.02%

Heart-stalog 6.33% 4.35% 2.98% 12.54% 5.63% 2.82% 10.74% 4.64% 2.66%

Hypothyroid 0.91% 0.20% 0.15% 2.19% 0.22% 0.31% 1.39% 0.29% 0.34%

Iris 18.33% 3.45% 2.78% 16.62% 2.85% 1.63% 18.83% 2.95% 1.52%

Kr-vs-kp 1.97% 0.27% 0.19% 4.04% 1.25% 1.04% 5.10% 0.75% 0.58%

Lymph 21.07% 5.28% 2.61% 12.83% 4.48% 2.38% 14.53% 6.33% 2.33%

Sick 1.38% 0.56% 0.24% 2.85% 1.42% 0.65% 1.58% 0.54% 0.23%

Soybean 22.64% 1.92% 0.62% 15.35% 1.55% 0.63% 21.19% 1.18% 0.99%

Spambase 4.98% 0.82% 0.37% 3.04% 1.09% 0.58% 2.30% 0.59% 0.49%

Vowel 14.31% 3.40% 2.62% 13.32% 3.34% 1.86% 22.05% 3.62% 2.07%

Vote 5.27% 2.01% 1.21% 5.40% 2.09% 1.54% 5.83% 1.59% 1.35%

performs marginally worse than the CSR approach. When KNN is used for

training classifiers (see columns 8-10 in Table 14), the SSR approach outper-

forms the other two approaches in 19 out of the 20 cases. For the remaining

case, the SSR approach performs marginally worse than the CSR approach.

In order to investigate in more depth the performance of the SSR approach,

statistical analysis is conducted again through the Wilcoxon sign rank test to
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investigate if SSR leads to a lower standard deviation in comparison with R and

CSR, respectively. The results are shown in Table 15. In this table, the number

(N) of positive ranks indicates the number of cases that one approach shows a

higher standard deviation than the other one, whereas the number of negative

ranks indicates the number of the opposite cases. For example, when comparing

the R and SSR data partitioning approaches in terms of their impacts on the

standard deviation of the classification performance of C4.5, i.e., C4.5: R vs

SSR, the results show that the number of negative ranks is 0 and the number

of positive ranks is 20, which indicate that the standard deviation obtained by

using the R approach is higher than the one obtained by using the proposed

SSR approach in all the 20 cases.

The Wilcoxon rank test results shown in Table 15 indicate the adequate con-

dition of rejecting the null hypothesis is fulfilled, which means that the standard

deviation obtained by adopting the proposed SSR data partitioning approach

is lower than the standard deviation obtained by adopting each of the other

two approaches and that it is unlikely to get this difference by chance. In other

words, the SSR data partitioning approach performs significantly better than

the R and CSR data partitioning approaches in terms of standard deviation.

Through looking at the results shown in Tables 12-15, we can see that the

proposed SSR approach leads to significant improvements of the average accu-

racy and considerable reduction of the standard deviation in comparison with

the R and CSR approaches. The results also show that in some cases SSR

and CSR perform very similarly or even the same, e.g., on the ‘Dermatology’

and ‘Diabetes’ data sets. The above phenomenon could be partially explained

by the argumentation made in Section 3.2 that if decision tree learning leads

to only one rule for each class then SSR and CSR would make no difference in

terms of the partitioning strategy and thus lead to very similar or even the same

accuracy of classification. Furthermore, there are also some cases that the three

data partitioning approaches (R, CSR and SSR) all perform very similarly or

even the same, e.g., on the ‘Breast-w’, ‘Hypothyroid’ and ‘Sick’ data sets. The

above phenomenon is very likely due to the case that the original data set is
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Table 15

Wilcoxon sign rank tests for standard deviation

Compared classifiers Ranks N Mean ranks Sum of ranks z-score p-value

C4.5: R vs SSR Negative ranks 0 0 0 3.92 p=0%

Positive ranks 20 10.50 210.00

Ties 0

Total 20

C4.5: CSR vs SSR Negative ranks 3 3.33 10.00 3.55 p=0%

Positive ranks 17 11.77 200.00

Ties 0

Total 20

NB: R vs SSR Negative ranks 0 0 0 3.92 p=0%

Positive ranks 20 10.50 210.00

Ties 0

Total 20

NB: CSR vs SSR Negative ranks 2 5.00 10.00 3.55 p=0%

Positive ranks 18 11.11 200.00

Ties 0

Total 20

KNN: R vs SSR Negative ranks 0 0 0 3.92 p=0%

Positive ranks 20 10.50 210.00

Ties 0

Total 20

KNN: CSR vs SSR Negative ranks 1 1.00 1.00 3.88 p=0%

Positive ranks 19 11.00 209.00

Ties 0

Total 20

already nicely cleaned and sufficiently representative, i.e., for each class in the

data set, the instances are located closely and random partitioning is not likely
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to lead to negative impacts from breaking the balance level of the training data.

In addition, the results show that the impact of adopting the SSR data

partitioning approach in several cases is different when different learning algo-

rithms are used to train classifiers. For example, for the ‘Lympth’ data set, the

SSR approach leads to considerable advances in the classification accuracy when

C4.5 and KNN are used for training classifiers, whereas the SSR approach leads

to a much smaller improvement of the classification accuracy when NB is used

for training classifiers. The above phenomenon is likely due to the case that

different learning algorithms have different suitability for training classifiers on

the same data set.

In order to analyze in more depth the impact of the proposed semi-random

data partitioning approach, we present additional results shown in Table 16.

As emphasized in Section 3.1, decision tree learning may lead to three different

cases, where Case 1 represents the ideal outcome that a training subset covered

by a branch of the trained decision tree contains instances that all belong to

the same class; both Case 2 and Case 3 represent unexpected outcomes, which

indicate that a training subset covered by a tree branch contains instances that

belong to different classes.

From Table 16, we can see that the percentage of Case 1 is higher than

80% on eight data sets, i.e., ‘Audiology’, ‘Colic’, ‘Dermatology’, ‘Hypothyroid’,

‘Iris’, ‘Lymph’, ‘Sick’ and ‘Vote’, which indicates that the eight trained decision

trees well fit the eight data sets, respectively. According to the results shown in

Table 12 on some of the above data sets, e.g., the ‘Audiology’ and ‘Colic’ data

sets, we can see that the use of the proposed partitioning approach generally

results in a considerable improvement of the average classification accuracy, in

comparison with the other two partitioning approaches.

Furthermore, the results show again different impacts of the proposed semi-

random data partitioning approach on the classification performance of C4.5,

NB and KNN on different data sets. For example, on the ‘Audiology’, ‘Colic’,

‘Lymph’ and ‘Vowel’ data sets, the proposed data partitioning approach leads

to a considerable improvement of the average accuracy for at least two of the
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Table 16

Distribution among different cases of decision tree learning

Data sets
Percentage of

Case 1

Percentage of

Case 2

Percentage of

Case 3

Audiology 86.15% 0% 13.85%

Autos 65.22% 15.22% 19.56%

Breast-w 70.00% 30.00% 0%

Colic 87.50% 10.00% 2.50%

Dermatology 96.15% 0% 3.85%

Diabetes 44.44% 55.56% 0%

Ecoli 25.00% 12.50% 62.50%

Haberman 21.43% 78.57% 0%

Heart-c 64.71% 35.29% 0%

Heart-h 64.71% 0% 35.29%

Heart-statlog 71.43% 21.43% 7.14%

Hypothyroid 82.14% 0% 17.86%

Iris 80.00% 20.00% 0%

Kr-vs-kp 76.32% 2.63% 21.05%

Lymph 89.29% 3.57% 7.14%

Sick 80.00% 0% 20.00%

Soybean 78.43% 1.96% 19.61%

Spambase 87.93% 3.45% 8.62%

Vowel 29.63% 14.81% 55.56%

Vote 88.24% 11.76% 0%

above three learning algorithms. On the ‘Dermatology’ data set, a larger im-

provement of the average accuracy is achieved for C4.5, NB and KNN through

using the proposed data partitioning approach, in comparison with the random

data partitioning approach, but the improvement of the average accuracy is very
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small (only 1%), in comparison with the class-based random data partitioning

approach. On the ‘Hypothyroid’, ‘Iris’, ‘Sick’ and ‘Vote’ data sets, the proposed

data partitioning approach results in a very small or even no improvement of

the average accuracy for C4.5, NB and KNN, in comparison with the better

performing one of the other two approaches of data partitioning. The results

on the above four data sets indicate that there is no much space for achiev-

ing significant advances in the average accuracy through adopting the proposed

data partitioning approach, when the average accuracy is already high enough

(above 90%) through adopting the other two approaches of data partitioning.

There are several cases that the percentage of Case 1 is not so high (about

65%) but the adoption of the proposed data partitioning approach still leads

to considerable advances in the classification performance. For example, on the

‘Autos’ data set, the proposed data partitioning approach leads to a significant

improvement of the average accuracy for C4.5, NB and KNN, comparing with

the other two approaches of data partitioning. As mentioned in [25, 29], Case 2

and Case 3 may result from the two situations of decision tree learning as follows:

(1) The training set contains noise; (2) The set of attributes is not enough to fully

distinguish instances of different classes and additional attributes are needed to

grow the decision tree. The second situation may not necessarily result in a

negative impact on decision tree learning but may also be helpful for avoiding

the case of overfitting. From the above viewpoint, the increase of the percentage

of Case 2 and Case 3 may not be a negative point against the effectiveness of

the proposed data partitioning approach. In other words, the phenomenon on

the ‘Autos’ data set is likely due to the possibility that Case 2 and Case 3 result

from the above mentioned second situation of decision tree learning and lead to

positive impacts on the effectiveness of the proposed approach.

Moreover, on the ‘Diabetes’, ‘Ecoli’, ‘Haberman’ and ‘Vowel’ data sets, the

percentage of Case 1 is very low (no greater than 50%). On the ‘Ecoli’ and

‘Vowel’ data sets, the proposed data partitioning approach leads to a consider-

able improvement of the average accuracy for C4.5, NB and KNN in comparison

with the other two approaches of data partitioning, while the percentage of Case
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3 is higher (above 55%). In contrast, the proposed data partitioning approach

leads to a small improvement of the average accuracy for the above three learn-

ing algorithms on the ‘Diabetes’ set and even leads to a small drop in the average

accuracy for two of the three learning algorithms on the ‘Haberman’ data set,

while the percentage of Case 2 is much higher (above 55%) on the two data sets.

The above description indicates the point that Case 3 seems to be more likely

to result in a positive impact than Case 2 on the effectiveness of the proposed

data partitioning approach, which is worthy of future research in more depth.

5. Conclusions

In this paper, we have proposed a subclass-based approach of semi-random

data partitioning, which outperforms the random data partitioning approach

and the class-based approach of semi-random partitioning in most cases accord-

ing to the experimental results shown in Section 4. We have also identified that

the random data partitioning approach can result in two issues: class imbal-

ance and sample representativeness. Although the class imbalance issue can

be addressed by using the class-based approach of semi-random partitioning,

the sample representativeness issue still needed to be addressed leading to the

subclass-based approach of semi-random data partitioning proposed in this pa-

per. We have also proved through the experiments that the proposed approach

of semi-random data partitioning not only keeps the class balance of both the

training data and the test data but also improves the sample representativeness,

leading to a more effective judgment of the learning ability of an algorithm and

a significant improvement of the classification performance.

On the other hand, we have identified that the random data partitioning

approach is likely to result in a high variance of classification performance when

the same learning algorithm is used on the same data set with different train-

ing/test partitions. We have also proved through the experiments that the use

of the two semi-random data partitioning approaches result in significant reduc-

tion of the variance in comparison with the use of the random data partitioning
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approach. The experimental results show that the proposed subclass-based

approach of semi-random data partitioning leads to further reduction of the

variance in comparison with the class-based approach in most cases.

In the future, we will investigate clustering techniques [3, 4, 5, 6, 13, 19, 34]

towards decomposing big data into multiple contexts, such that the training data

obtained within each cluster can be more representative in the corresponding

context. It is also worth to investigate granular computing techniques [7, 14,

31, 35, 41, 44] for the decomposition of each class in more depth [20, 22, 24, 30],

towards further improvements of sample representativeness.
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