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Abstract 

PCGF2 encodes the polycomb group ring finger 2 protein, a  transcriptional repressor involved in 

cell proliferation, differentiation and embryogenesis. PCGF2 is a component of the polycomb 

repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through 

histone modification and chromatin remodelling. We report the phenotypic characterization of 13 

patients (eleven unrelated individuals and a pair of monozygotic twins) with missense mutations in 

PCGF2. All mutations affected the same highly conserved proline in PCGF2 and were de novo, 

excepting maternal mosaicism in one. The patients demonstrated a recognisable facial gestalt, 

intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and 

skeletal abnormalities. Computer structural modelling suggests the substitutions alter an N-terminal 

loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant negative effects, 

sequestering PRC1 components into complexes which lack the ability to interact efficiently with 

histones. These findings demonstrate the important role of PCGF2 in human development and 

confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognisable 

syndrome characterized by distinctive craniofacial, neurological, cardiovascular and skeletal 

features. 

 

Keywords: PCGF2, Polycomb Group Ring Finger 2, MEL18, intellectual disability, dysmorphism, 

polymicrogyria.
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Main Text 

PCGF2 [MIM 600346] encodes the polycomb group ring finger 2 protein (PCGF2, aka MEL18).  

The PCGF2 protein contains an N-terminal RING finger motif and is similar in structure to other 

polycomb-group (PcG) proteins.1 PCGF2 has been implicated in cell proliferation,2 X inactivation,3 

regulation of homeobox genes during embryogenesis,4 mesoderm differentiation,5 hemopoiesis,6 

tumor suppression7,8 and angiogenesis.9,10 PCGF2 is widely expressed in human tissues.1,11 It binds 

to a specific DNA sequence (5’-GACTNGACT-3’) in the promoter regions of target genes.7 PCGF2 

is a component of a multiprotein complex called the polycomb repressive complex 1 (PRC1), an 

essential regulator, via histone modification and chromatin remodeling, of transcription in 

embryonic and adult stem cells.12,13 The core of mammalian PRC1 typically contains an E3 

ubiquitin ligase (RING1A/B [MIM 602045/608985]),3,14 that ubiquitinates histone H2A at lysine 

119, along with a PCGF protein (PCGF1-6)15 which regulates the enzyme activity of the complex. 

PRC1 complexes often include other PcG components (e.g. polyhomeotic homologue or 

chromobox homologue proteins), which guide recruitment of PRC1 to the chromatin.12 The variable 

composition of PRC1 allows the complex to modulate function depending on cell type and 

developmental stage. A range of other proteins involved in Histone H2A ubiquitination have been 

linked to neurodevelopmental disorders.16 These include proteins involved in both adding17–19 and 

removing20–22 ubiquitin from H2A. Here, we report that mutations in PCGF2 cause a recognisable 

developmental disorder. 

 

Individuals 1 and 2 underwent exome sequencing as part of the Deciphering Developmental 

Disorders (DDD) study.23 Both individuals had the same de novo missense mutation in PCGF2, 

c.194C>T, p.(Pro65Leu), and strikingly similar facial appearances.  Identification of additional 

subjects with PCGF2 variants was achieved through contact with other institutions and via 

GeneMatcher. Thus,  nine further unrelated individuals and a pair of monozygotic twin sisters with 
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missense mutations in PCGF2 were ascertained. The unrelated individuals all had the same 

mutation, c.194C>T, p.(Pro65Leu). The twin sisters (individuals 3 and 4) had a different mutation 

at the same residue, c.193C>T, p.(Pro65Ser). All mutations were de novo, apart from individual 11 

whose asymptomatic mother was found to be mosaic (21% in blood DNA). Most mutations were 

identified by trio exome sequencing. Individual 6 was ascertained based on clinical features and the 

diagnosis confirmed by targeted Sanger sequencing.  

 

To delineate the phenotypic spectrum associated with PCGF2 mutations we collected detailed 

clinical information. Consent for publication of photographs was sought from the individuals’ 

parents or legal guardians (not granted for individual 13). Individuals who had evaluation or 

analysis beyond routine clinical care were part of research studies approved by either the 

Cambridge South Research Ethics Committee (10/H0305/83) or the Research Ethics Committee for 

Wales ((09/MRE09/51)). Detailed case reports for all the subjects are given in the Supplemental 

Note. Detailed molecular and clinical features for each individual are included in Table S1. Coding 

and protein positions for PCGF2 are based on GenBank accession codes NM_007144.2 

(ENST00000360797.2) and NP_009075.1 respectively. 

 

The 13 subjects (7 females and 6 males) ranged in age from 2 to 21 years. The individuals all had 

similar distinctive facial features, intellectual disability, and impaired growth (Table S1). Clinical 

images from 12 of the subjects are shown in Figures 1, S1 and S2. Consistent facial features 

included a broad forehead with frontal bossing (13/13); sparse, slow growing hair, particularly in 

the frontal and temporal regions (12/12); peri-orbital fullness (12/12); and malar hypoplasia (12/12). 

The subjects’ ears were dysplastic (12/12), typically with a satyr configuration, and often small and 

low set. Mild facial hypotonia was common. This impaired articulation of speech and led to an open 

mouth posture and drooling (3/13). Patients often had short palpebral fissures (11/12) and/or oral 
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aperture (7/12). A prominent nasal tip (10/13) and mandibular progrnathism (7/13) were common in 

older individuals.  The combination of large forehead, prominent jaw and open mouth results in the 

face often appearing long (7/12). The InterFace software package24 was used to generate a 

composite average face (Figure S2). 

 

The intellectual disability/developmental delay in the subjects ranged from mild to severe. Most 

individuals had difficulties with verbal communication. Three had absent speech at the time of 

assessment (at 21 years, 9 years and 30 months of age). Muscular hypotonia (9/13) and conductive 

hearing impairment (7/13) were common. Only two subjects had a history of confirmed seizures. 

MRI brain scans for eight individuals were available for review (Figure 2). Mild enlargement of the 

lateral ventricles was common. Polymicrogyria, a malformation of cortical development, was noted 

in four individuals (bilateral extensive polymicrogyria in the twins, and bilateral perisylvian 

polymicrogyria in individuals 6 and 12). An irregular gyral pattern was reported in individual 9 but 

the MRI was not available for review. Patchy to confluent white matter changes were present in all 

reviewed scans, most prominently around the atria of the lateral ventricles.  The white matter 

changes varied in severity and were most marked in the individuals with polymicrogyria. In some 

areas the abnormal white matter had the appearance of prominent perivascular spaces. Individual 1 

reportedly had a thin corpus callosum.  Individual 9 was reported to have mild cerebellar vermis 

hypoplasia. MR angiography was performed in three individuals. This showed a variable degree of 

tortuosity and ectasia of the intra- and extracranial blood vessels.  Tortuous retinal vessels were 

reported in individual 7. 

 

Intrauterine growth restriction was noted during three pregnancies (borderline in one more). All the 

subjects had a birth weight below the mean for gestational age. Weight during childhood remained 

low, compounded by feeding difficulties (9/13) and/or gastroesophageal reflux (6/13). The feeding 
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problems and reflux improved slowly with age. Constipation was also common (8/12), sometimes 

severe. Height during childhood was generally low for age although three subjects had heights just 

above the mean. The effects on head size were variable. Individual 1, the oldest and most 

intellectually impaired individual in the group, had a relatively large head size from early 

childhood, originally attributed to arrested hydrocephalus (occipitofrontal circumference [OFC] 

+1.8 SD, height and weight 1-2 SD below the mean). Relative macrocephaly was noted in two other 

individuals. In contrast, four individuals had small heads (OFC <-2 SD). Eleven subjects had 

cardiac abnormalities.  Findings included patent ductus arteriosus (PDA) (5/13), atrial septal defect 

(3/13), and dilatation of the ascending aorta (5/13). Individual 5 had a PDA and prolapse of both 

mitral and tricuspid valves with some regurgitation. Individual 10 had aortic dilatation and an 

episode of supraventricular tachycardia. Individual 1 was found to have a severely dilated aortic 

root at the age of 21 years (diameter 4.7cm at the sinus of valsalva, Z score >7). No arterial 

aneurysms or dissections were reported in the subjects. Skeletal anomalies were observed in several 

individuals.  These included hypoplasia of the L1 vertebra  (individual 1), small T3 vertebral body 

(individual 5) and a truncated sacrum (individual 6). Kyphosis and/or scoliosis (6/13), pectus 

deformities (3/13) and minor digital anomalies (3/13) were also found. Individual 1 had a skeletal 

survey at age 2.5 years, which revealed delayed epiphyseal ossification, particularly of the carpal 

bones, and pseudo-epiphyses of many metacarpal bones. Two cases (individuals 2 and 4) had a 

small diaphragmatic hernia of the Morgagni type.  

 

The identified mutations all affected the Pro65 residue of PCGF2. This residue is located just after 

the N-terminal RING finger motif and is highly conserved across species and other human PCGF 

proteins (Figure 3A,B). No variants have been reported at this position in the gnomAD database in 

PCGF2, or at the equivalent proline in other human PCGF proteins. Both mutations were predicted 

to be deleterious by a majority of in silico prediction programs (Table S1). To explore the effects of 
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Pro65 mutations, we modelled the structure of the N-terminal of PCGF2 (amino acids 5-101) based 

on solved crystal structures for its homolog, BMI1 (PCGF4) [MIM 164831]. Two templates were 

used, PDB 2h0d (BMI1 bound to RING1B)25 and 4r8p (BMI1-PRC1 complex bound to 

nucleosome),26 with essentially identical results. Pro65 is situated at the junction between an 

extended loop region and a short α-helix (Figure 3C). The presence of proline at this position is 

likely to maintain the transition from loop to helix. Furthermore, given the rotational constraint 

imposed by proline’s ring structure, this residue is likely to provide the loop region with a degree of 

structural rigidity.27 Thermodynamic analysis of the 2h0d-based PCGF2 model using FoldX 

showed the Pro65 variants resulted in changes to thermodynamic stability ( G) of +8.6 kcal/mol 

and +3.9 kcal/mol for p.Pro65Leu and p.Pro65Ser respectively; G values values >3 kcal/mol are 

generally regarded as destabilizing.28 Intriguingly, the loop region next to Pro65 contains two basic 

residues, Lys62 and Arg64, which form a basic patch on BMI1 and the predicted surface of PCGF2 

(Figure 3D,E). PRC1 complexes containing PCGF2 (or BMI1) have low intrinsic ubiquitin ligase 

activity compared to complexes containing other PCGF proteins.29 This is compensated for by an 

increased affinity for the nucleosomal substrate, leading to efficient histone ubiquitylation. The 

increased affinity is dependent on residues Lys62 and Arg64, which interact with an acidic patch on 

the surface of histones 3 and 4 (Figure 3F). This raises the possibility that the interaction between 

PCGF2 and histones is disrupted by the structural perturbations caused by Pro65 substitutions. 

 

The extreme clustering of disease-causing de novo missense mutations in PCGF2 is highly 

statistically significant and similar to other genes with non-haploinsufficient disease mechanisms.30 

No truncating mutations were observed in our cohort. In contrast, several truncating PCGF2 

variants are listed by the gnomAD database. This argues against a simple haploinsufficiency 

mechanism. The probability of PCGF2 being loss-of-function intolerant (pLI)31 in the Exome 

Aggregation Consortium (ExAC) is only 0.55. Furthermore, no interstitial deletions involving 



10 
 

PCGF2 are listed on the DECIPHER database. Loss of PSc (the homolog of PCGF) in Drosophila 

melanogaster leads to mis-expression of homeotic genes and defects in segmental determination.32 

Similarly, homzoygote Pcgf2-deficient mice exhibit disturbed Hox gene expression with posterior 

transformations of the axial skeleton and growth retardation.4 However, heterozygous Pcgf2-

deficient mice were normal, and no abnormalities of craniofacial structure or neurology were 

identified in the homozygotes. Our in silico structural modelling suggests substitution of Pro65 

disrupts the interaction of PCGF2 with histones. This provides a plausible molecular mechanism for 

a dominant negative effect. Mutant PCGF2 may retain the ability to sequester other PcG 

components into PRC1 complexes but, due to disruption of the loop structure around Lys62 and 

Arg64, mutant PRC1 complexes may lack the ability to interact efficiently with histones. Detailed 

functional experiments will be required to distinguish between these and other possible 

pathogenesic mechanisms at a molecular level.  

 

PCGF2 regulates differentiation of the cardiac mesoderm, which may contribute to the cardiac 

anomalies seen.5 Aortic dilation was found in five of the subjects (severe in individual 1, the young 

adult). We would therefore recommend that all PCGF2 patients have periodic echocardiographic 

surveillance. The brain and vascular abnormalities seen in patients may be due to disturbed PI3K-

AKT signaling, a critical pathway regulating growth, angiogenesis and neural development. Loss of 

PCGF2 function leads to downregulation of PTEN [MIM 601728], promoting activation of AKT 

[MIM 164730], increased HIF-1α [MIM 603348] levels, and expression of vascular endothelial 

growth factor [MIM 192240].10 In addition, PCGF2 binds directly to CCND2 [MIM 123833], a 

downstream effector of the PI3K-AKT pathway in developing neuroblasts.33 Gain-of-function 

mutations in CCND2 and other components of the PI3K-AKT pathway have been found to cause 

polymicrogyria, macrocephaly and ventricular dilation.34,35 Knockdown of PCGF2 has been shown 

to increase proliferative activity in cells over-expressing CCND2.33 If Pro65 mutations reduce 
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PCGF2’s ability to inhibit CCND2, the increased CCND2 activity may predispose to 

polymicrogyria. The CCND2 binding site has been mapped to the C-terminal proline/serine-rich 

domain of PCGF2.33 Therefore, mutation of the N-terminal Pro65 residue is unlikely to directly 

block binding of CCND2. The presence of vascular abnormalities (and the twin placental 

circulation of individuals 3 and 4) may be additional risk factors for the polymicrogyria.36 The 

variable head size observed in subjects may reflect the conflicting effects of abnormal vasculature 

(impairing brain growth and causing the deep cerebral white matter changes) and altered signaling 

through the PI3K-AKT-CCND2 pathway (promoting brain growth and ventricular dilation). PCGF2 

has tumor suppression activity and has been implicated in a range of tumor types.7,37–39 To date, 

none of the subjects with  PCGF2 Pro65 mutations has been diagnosed with malignancy. 

 

In summary, we have reported 13 individuals with missense substitutions of the Pro65 residue of 

PCGF2. These individuals have a recognisable phenotype of developmental delay, intellectual 

disability, impaired growth, and characteristic facial features that include frontal bossing, sparse 

hair, malar hypoplasia, small palpebral fissures and oral stoma, and dysplastic ‘satyr’ ears. Other 

common findings in the subjects included feeding problems, constipation, and a range of brain, 

cardiac, vascular and skeletal malformations. Further work is required to define the precise 

pathogenic mechanism of PCGF2 mutations; however, our modelling and the available genetic data 

suggests that PCGF2 Pro65 mutations have dominant-negative effects on PRC1 function, altering 

multiple signaling pathways and therefore resulting in the complex human phenotype. 
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Figure Legends 

 

 

Figure 1. Facial features of individuals with PCGF2 mutations. 

Each individual is noted with the corresponding number used throughout the manuscript. Included 

on the top left of each cluster is the sex. Ages are: individual 1, 12 years; individual 2, 8.5 years; 

individual 3, 8 years; individual 4, 8 years; individual 5, 7 years (left), 4 years (right); individual 6, 

9 years; individual 7, 7 years;  individual 8, 6 years; individual 9, 2 years (left), 3 years (right); 

individual 10, 9 years; individual 11, 8 years; individual 12, 3 months. Consistent facial features 

include a broad forehead, long face, malar hypoplasia, small mouth, small palpebral fissures, 

periorbital fullness, prominent nose (particularly in older indiduals), and dysplastic, low-set ears.  
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Figure 2. MRI brain abnormalities in individuals with PCGF2 mutations. 

Axial (FLAIR, T2 and T1), sagittal (T1), and MRA images from individual 3 at age 21 months (A-

E). Axial (FLAIR and T1) and sagittal (T1) images from individual 4 at age 21 months (F-H). 

Axial FLAIR and MRA images from individual 5 at age 3 years and 3 months (I-J). Axial (FLAIR, 

T2 and T1) images from individual 6 at age 5 years (K-M). Axial (T2 and T1) images from 

individual 7 at age 10 months (N, O). Axial (FLAIR and T2) and MRA images from individual 8 at 

age 37 months (P-R). Axial T2 images from individual 10 at age 13 months (S, T). The images 

show patchy white matter hyperintensity in the T2 and FLAIR images (black arrows). The patches 

are scattered throughout the white matter but are consistently seen in the peri-atrial region. Other 
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findings included enlargement of the lateral ventricles; increased anterior extra-axial fluid spaces 

(e.g. B, G, N and S); bilateral polymicrogyria (yellow arrows, subtle in M); prominence of the 

perivascular spaces, including in the corpus callosum (red arrow, Q); coarctation of the frontal 

horns (blue arrow, S). MRA showed tortuosity (white arrows) of the internal carotid (E, J) and 

vertebral (R) arteries. 
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Figure 3. Localization of the PCGF2 mutations 

(A) Schematic domains of PCGF2. The domains and motifs of PCGF2 (UniprotKB: P35227) are 

illustrated. These include a RING-type Zinc finger (residues 18-57), nuclear localization 

signal (81-95) and Proline/Serine-rich domain (242-344). The location of the Pro65 residue 

is marked by the red asterisk. Residue number is indicated in the scale below the illustration. 

(B) The PCGF2 mutations are located at the highly conserved Pro65 residue. ClustalW 

homology alignments for Human PCGF2 (residues 51-80) and a range of orthologues and 

paralogues. Orthologues include Human (NP_009075.1), Rhesus monkey 

(XP_001083817.1), Cow (NP_001137578.1), Mouse (NP_001156779.1), Rat 

(NP_001099306.1), Chicken (XP_003642857.1), Frog (NP_001025573.1), Lamprey 

(ENSPMAP00000007297.1) and Fruit fly (NP_523725.2). Paralogues include 
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BMI1/PCGF4 (NP_005171.4), PCGF1 (NP_116062.2), PCGF3 (NP_006306.2), PCGF5 

(NP_001243478.1) and PCGF6 (NP_001011663.1). Identical residues are indicated by dots. 

The blue bar highlights the position of the Pro65 residue. 

(C) Structural model of human PCGF2 (residues 5-101, modelled on template 2h0d). Two views 

of the model are shown in ribbon format, coloured from blue, N-terminal, to red, C- 

terminal, with side-chains shown for Pro65, Arg64 and Lys62. Grey spheres represent 

bound zinc ions; interaction with RING1B/RING2 is primarily mediated via residues in 

helices 1 and 3 (blue and orange respectively). 

(D) The interaction between PCGF2 and Histone H3/4 (modelled on template 4r8p). The 

predicted molecular surface of PCGF2 (left) is coloured by electrostatic charge (blue, basic; 

red, acidic); histone chains from 4r8p are shown as green (H3.2) and grey (H4) ribbons 

respectively; other chains of the complex have been omitted for clarity; note the basic patch 

of PCGF2 in contact with H3.2. 

(E) As D, but showing surface charge for H3.2, with PCGF2 shown as a ribbon coloured from 

N-terminal, blue to C-terminal, red; note the acidic patch of H3.2 lying opposite the basic 

patch of PCGF2. 

(F) As E, but showing detail around the PCGF2/H3.2 interface; the regions shown are outlined 

by grey broken lines in part E; sidechains of PCGF2 Pro65, Arg64 and Lys62 (partially 

obscured) are shown in stick format. 

 

 


