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Abstract

This paper proposes a heuristic algorithm for designing real-world school transport schedules. It extends pre-
viously considered problem models by considering some important but hitherto overlooked features including the
splitting and merging of routes, gauging vehicle dwell times, the selection of stopping points, and the minimisation
of walking distances. We show that this formulation contains a number of interacting combinatorial subproblems
including the time-constrained vehicle routing problem, set covering, and bin packing. As a result, a number of new
and necessary algorithmic operators are proposed for this problem which are then used alongside other recognised
heuristics. Primarily, the aim of this algorithm is to minimise the number of vehicles used by each school, though
secondary issues concerning journey lengths and walking distances are also considered through the employment of
suitable multiobjective techniques.

Keywords: School Bus Routing; Vehicle Routing; Set Covering; Bin Packing.

1 Introduction
This paper considers the problem of arranging school bus transport using a generic model that considers both the costs
incurred by the provider and the quality of service experienced by users. The problem was originally provided to us by
decision makers in local government in Wales [21], although very similar problems are also faced in other countries
such as England and Australia [8, 32, 29].

In this problem school transport is organised by local government. In Wales, for instance, county councils have
a legal duty to provide free school transport to any child who attends their nearest suitable school but who also lives
more than 4.8 km (3 miles) away, measured according to the shortest safe walking route. For children under eleven
this distance is reduced to 3.2 km (2 miles). In England and Australia similar rules apply, though these thresholds
can sometimes change slightly for low-income families, people living in remote areas, and for those with mobility
problems.

A few months before the start of the school year, administrators within local government compile a list of addresses
of all children deemed eligible for school transport. Schools are then considered individually, and a list of potential
pick-up points for the relevant addresses are identified. Pick-up points may be municipal bus stops or other areas
deemed appropriate such as a lay-by, a car park, or an actual home address. However, students should not be expected
to walk too far to these pick-up points—in Wales and Victoria, for example, these should be within 1.6 km (1 mile) of
a student’s home.

Once all addresses and potential pick-up points have been chosen, local government administrators then draw up
a set of bus routes for each school. This set of routes can use a subset of pick-up points, but must serve all qualifying
students. Some bus routes may also overlap by visiting the same pick-up points, although mixed loads—that is, students
from different schools travelling on the same bus—are not permitted.

Finally, the constructed bus routes are put out for public tender and local bus companies are invited to bid for the
contracts. In the UK, a yearly contract for a 70-seat bus typically ranges from GBP£25,000 to £35,000, though these
costs can increase further for longer journeys and for routes requiring a chaperone (i.e., routes with young children).
It is therefore critical for local government to try to limit the number of buses used by each school. Note, however,
that guidelines also specify that ride times should not be too long—in Wales, for example, this is stated to be less than
45 minutes for under elevens and less than one hour for older students, though exceptions can sometimes be made for
schools with very large catchment areas.
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2 Literature Review
School bus routing problems belong to a wider family of vehicle routing problems (VRPs), which involve identifying
routes for a fleet of vehicles that are to serve a set of customers. VRPs can be expressed using an edge-weighted
directed graph G = (V,E), where the vertex set V = {v0, v1, . . . , vn} represents a single depot and n customers (v0

and v1, . . . , vn respectively), and the weighting function d(u, v) gives the travel distance (or travel time) between each
pair of vertices u, v ∈ V .

Since the work of Datzig and Ramser in the late 1950s [7], a multitude of VRP formulations have been considered
in the literature. These include using time windows for visiting certain customers, placing limitations on the lengths
of individual routes, the partitioning of customers into pick-up and delivery locations, and the dynamic recalibration
of routes subject to the arrival of new customer requests during the transportation period [17, 25]. Solutions to most
VRP problems can be expressed by a set of routes R = {R1, . . . , Rk} using one vehicle per route. In the classical
VRP, each route should be a simple cycle in G such that:

Ri ∩Rj = {v0} ∀Ri, Rj ∈ R (1)
k⋃
i=1

Ri = V. (2)

These constraints specify that each customer should be assigned to exactly one route, and that all routes should start
and end at the depot v0. A variation on this is the open VRP in which, instead of using cycles, all routes must be simple
paths containing v0 as one terminal vertex, meaning that routes either start or end at the depot, but not both [19]. In the
time constrained VRP, extra realism is added by specifying that the total weight of edges in each route should be less
than a given maximum—e.g., to ensure that driving time regulations are obeyed. In the capacitated VRP, meanwhile,
maximum capacities are specified for each vehicle, and weights are also added to the vertices v1, . . . , vn in G. These
vertex weights represent the size of the items being delivered to each customer, and the total size of items delivered by
each vehicle should not exceed its maximum capacity.

Objective functions for the VRP can depend on many factors. Most commonly we seek to minimise the number of
vehicles used, the total length of the routes, or some combination of the two. In other cases we might also be concerned
with the waiting times of customers, the obeying of time windows, avoiding traffic jams, or meeting individual drivers’
needs. A useful survey presenting a taxonomy of the various types of VRP is due to Eksioglu et al. [11].

The problem of arranging school transport has often been cited as a type of VRP applicable in the real-world,
though historically it has been less studied than other variants. One reason for this is that school transport solutions
often involve visiting only a subset of the available pick-up points (bus stops); hence the issue of choosing which bus
stops to visit adds an extra layer of complexity to the problem. Indeed, in their survey paper, Park and Kim note that
bus stop selection is often omitted in the VRP literature altogether [23]. Of those papers that have considered this
issue, Park and Kim make note of two general decomposition schemes. The first involves first choosing a subset of
stops, assigning students to these stops, and then routing the buses via these stops. An obvious disadvantage of this
approach is that, if the wrong choice of bus stops is made, the resultant solution may be far from optimal. The second
scheme involves first allocating students to clusters such that the number of students per cluster does not exceed the
available vehicle capacities. One bus route for each cluster is then formed using a subset of stops from that cluster, and
finally students are assigned to bus stops within their cluster.

In the past decade or so the interdependence of bus stop selection and routing has led to the proposal of algorithms
that consider these issues simultaneously. Riera-Ledesma and Salazar-González [27] consider these issues in a number
of integer programming (IP) formulations that attempt to minimise a solution’s cost, calculated as the sum of all route
lengths and all walk lengths. Their experiments generally focus on artificial problem instances where the combined
number of bus stops and addresses equals one hundred, although their algorithm is shown to be able to achieve optimal
solutions for slightly larger problems in a small number of cases. A similar formulation is also considered by Schittekat
et al. [28] who use a local search-based method to approximately solve artificially generated problems of up to eighty
potential bus stops and eight hundred students. In their case, the algorithm seeks to minimise the total distance travelled
by all vehicles. In most cases students are assigned to the route that passes closest to their address, but this can be
overridden on occasion to facilitate more efficient in-vehicle seating allocations. This problem formulation was also
used by Kinable et al. [16] who developed an approach based on column generation. This was shown to be capable of
solving problems of up to forty bus stops and eight hundred students, though the authors also note that problems with
larger numbers of bus stops present much more difficulty to the algorithm.

A notable feature of the three papers mentioned in the previous paragraph is that all routes in a solution are required
to be disjoint—that is, bus stops can only be visited once in a solution. In practice, this requirement can be somewhat
restrictive. In some cases, the number of students assigned to a bus stop might exceed the available bus capacity; in
others, an early and late bus might be offered to students. Often it may be sufficient to schedule two or more buses to
follow the same bus route, one after the other; however, extra flexibility is also available if routes are permitted to split
and merge as required. In our experience, this is often the approach that local government administrators follow when
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Term Description
mw Maximum distance a student is required to walk from their home address to a bus stop.
mt Maximum length (in time) of a school bus route. Typically 45 minutes or one hour.
me Minimum walking distance between a school and student address for the student to be deemed eligible for school transport.
Q Bus seating capacity.
V1 Set of vertices comprising one school, v0, together with n bus stops v1, . . . , vn that can potentially be used in a solution.
V1 − {v0} Set of n bus stops that can potentially be used in a solution.
V2 Set of addresses of students eligible for school transport.
t(u, v) If u, v ∈ V1, denotes the driving time between u and v; if u ∈ V2 and v ∈ V1, denotes the walking time between u and v.
d(u, v) If u, v ∈ V1, denotes the driving distance between u and v; if u ∈ V2 and v ∈ V1, denotes the walking distance between u and v.
E1 Edge set containing directed edges between each u, v ∈ V1 in each direction.
E2 Edge set containing all walking routes between addresses and bus stops that are less than mw distance units in length.
R A set of routesR = {R1, . . . , Rk} in which each route R ∈ R is a simple path among bus stopsserved by a single bus.
V ′1 V ′1 ⊆ (V1 − {v0}): the subset of bus stops used by the solutionR.
V2(v) The subset of addresses assigned to bus stop v ∈ V ′1 .
s(v) If v ∈ V ′1 , denotes the number of students assigned to bus stop v; if v ∈ V2, denotes the number of students at address v.
s(R) Total number of students assigned to the bus serving route R.
s(v,R) Number of students required to board the bus serving route R at bus stop v ∈ V ′1 .
t(R) Total journey time of route R including all dwell times (see Definition 2).
A Archive set of solutions used with the multiobjective optimisation algorithm (Section 5).
δ Discretisation parameter used with the multiobjective optimisation algorithm.
b·cδ Denotes the value between the braces rounded down to the nearest multiple of δ.
f1, f2 Cost functions used with the multiobjective optimisation algorithm.

Table 1: Summary of the notation used for the SBRP considered in this paper.

planning school transport [21].
In the VRP literature, problems that allow routes to split and merge are known as split delivery VRPs. This variant

extends the capacitated VRP by relaxing Constraint (1) to simply: v0 ∈ R, ∀R ∈ R, allowing more than one vehicle to
visit a customer and therefore permitting a delivery to be made in many parts. In contrast to the capacitated VRP, this
relaxation allows the minimum number of routes/vehicles in a solution to meet the lower bound of d(

∑n
i=1 w(vi)) /Qe,

where w(v) gives the weight of a vertex and Q is the maximum capacity of the vehicles. Dror and Trudeau [9], who
originally formulated the problem note that significant savings can be made by allowing split deliveries; indeed, in the
best case they can result in solutions using just half the number of routes compared to the capacitated VRP [2]. Dror
and Trudeau [10] have also shown that for any problem whose distances satisfy the triangle inequality, there exists an
optimal solution where no pair of routes has more than one customer in common. A helpful review of this problem is
due to Archetti et al. [3].

In the next section we specify the particular school bus routing problem faced by local governments in the UK and
Australia. This formulation extends previous work in this problem area by considering a number of additional real-
world features including the splitting and merging of routes, measuring dwell times, the selection of stopping points,
and the minimisation of walking distances. We also analyse this problem by noting relationships with other difficult
combinatorial problems such as bin packing, set covering, and the VRP itself. In Section 4 we then draw on these
relationships to give a specialised heuristic algorithm that attempts to find feasible solutions for this problem using the
minimum number of routes. This algorithm, which involves various new search operators, is designed particularly to
cope with practical-sized problems, which can often contain many hundreds of bus stops and students. Section 5 then
shows how multiobjective techniques can be used for making further adjustments to solutions in order to minimise
their financial costs and maximise convenience to passengers. This latter analysis focusses on real-world problem
instances created for this research, whose interactive solutions can be viewed online [1]. Finally Section 6 concludes
the paper and conducts further discussions. A summary of the notation used in this paper is given in Table 1.

3 Problem Definition and Analysis
The school bus routing problem (SBRP) considered here can be stated using two sets of vertices. The first vertex set
V1 contains one school, v0, together with n bus stops v1, . . . , vn that can potentially be used in a solution. The edge
set E1 then contains directed edges between each u, v ∈ V1 in each direction, making the graph (V1, E1) a complete
digraph. For each edge (u, v) ∈ E1, nonnegative weighting functions t(u, v) and d(u, v) are used to define the shortest
driving time and corresponding driving distance (respectively) from u to v.

The second vertex set V2 defines the set of student addresses, with the weight s(v) ∈ Z+ of each vertex v ∈ V2

giving the number of students at this address requiring school transport. A parameter mw is also defined, stating the
maximum distance that students are expected to walk from their home address to a bus stop. A second set of edges is
then used to signify bus stops within walking distance of each address: E2 = {{u, v} : u ∈ V2 ∧ v ∈ (V1 −{v0}) ∧
d(u, v) ≤ mw}. Here, d(u, v) gives the shortest walking distance between each u ∈ V2 and v ∈ (V1 − {v0}). These
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(a) (b)

Bus Stop
Address Routes

Figure 1: (a) An example problem instance; (b) an example solution using k = 3 routes. Grey bus stops in (b) are not
used (i.e., are not members of V ′1 ).

edges also have a corresponding walking time t(u, v). In some cases, further edges can also be removed from E2 if
they signify a walk that is deemed unsafe by local administrators. In addition, students living within me distance units
of their school are not considered eligible for school transport; consequently, d(u, v0) ≥ me ∀u ∈ V2.

The graph (V1 − {v0}, V2, E2) therefore constitutes an undirected bipartite graph with potentially many compo-
nents, as illustrated in Figure 1(a). Note that if there exists an address u ∈ V2 with just one incident edge {u, v} ∈ E2,
then the bus stop v ∈ (V1 − {v0}) is compulsory, since it must be included in a solution in order to satisfy the needs
of address u. We can also assume that (V1 − {v0}, V2, E2) contains no isolated vertices: such vertices in (V1 − {v0})
would give a bus stop with no address within walking distance and can therefore be removed from the problem; isolated
vertices in V2 define an address with no suitable bus stop, making the problem unsolvable (in practice, an additional
bus stop would need to be added to serve such an address).

Definition 1. A feasible solution to the SBRP is a set of routes R = {R1, . . . , Rk} in which each route R ∈ R is a
simple path served by a single bus of capacityQ, and where each bus travels to the school v0 after visiting the terminal
vertex on its path. The following constraints need to be satisfied:

k⋃
i=1

Ri = V ′1 (3)

∀u ∈ V2 ∃v ∈ V ′1 : {u, v} ∈ E2 (4)
s(R) ≤ Q ∀R ∈ R (5)
t(R) ≤ mt ∀R ∈ R (6)

Here V ′1 ⊆ (V1 − {v0}) is the subset of bus stops used by the solution. V ′1 should satisfy Constraint (4) in that, for
each address u ∈ V2, V ′1 should contain at least one bus stop within walking distance. Constraint (5) then specifies
that the total number of students boarding the bus on a route R, denoted by s(R), does not exceed the maximum bus
capacity Q. Similarly, Constraint (6) states that the total journey time t(R) of each route should not exceed the stated
time limit mt.

Due to the high costs of yearly bus contracts noted in Section 1, the overriding aim of the SBRP is to produce a
feasible solution that minimises the number of routes k. Once this has been achieved, other secondary objectives such
as minimising journey times and walking distances can then also be considered (see Section 5). An example feasible
solution for this problem is shown in Figure 1(b), where we see that each address is adjacent to a used bus stop as
required. Note that the constraints in Definition 1 also allow bus stops to be included in more than one route, as is the
case with one bus stop in the diagram. We call these bus stops multistops.

3.1 Additional Problem Features
In defining this SBRP, four additional real-world features also need to be considered.

• First, in contrast to the model used in [28], students are always assigned to the bus stop in V ′1 closest to their
home. This encourages equity of service, and avoids situations where a student might be forced to walk to a
more distant bus stop (perhaps past classmates who are waiting at a closer bus stop), in order to access school
transport.
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• Second, all students are given a bus pass that only allows them to travel on one particular route. This avoids
situations where too many students might board a bus at a multistop, making it too full to serve another bus stop
later in its route.

• Third, solutions for this problem only concern buses travelling to school. After-school routes are assumed to
follow the same paths in reverse, with any discrepancies in travel time due to one-way streets, etc. not being
considered. This means that students on a route who have the longest journey times in the morning also have the
longest journey times in the evening.

Finally, dwell times of buses also need to be accounted for within a route. These measure the time spent servicing each
bus stop, including decelerating, opening doors, loading passengers, and rejoining the traffic stream. Dwell times are
influenced by many factors including the number of boarding passengers, the size and position of the doors, the age of
the passengers, the type of bus stop, and the density of traffic. Commonly, simple linear models y = a + bx are used
to estimate a dwell time y, where x gives the number of boarding passengers, b gives the boarding time per passenger,
and a captures all remaining delays. We follow this approach here, giving the following:

Definition 2. Let s(ui, R) denote the number of students boarding the bus on route R at bus stop ui. The journey time
t(R) of route R = (u1, u2, . . . , ul) ∈ R is calculated as:

t(R) =

(
l−1∑
i=1

t(ui, ui+1)

)
+ t(ul, v0) +

(
l∑
i=1

a+ b · s(ui, R)

)
. (7)

In our case we use the values a = 15 and b = 5 (seconds), which are consistent with those recommended
in [5, 31, 33].

3.2 Problem Generation
For this research we consider both artificially generated and real-world problem instances. A set of artificial instances
was previously made available in [28], though we cannot use this here for a number of reasons: (a) the largest instances
in this set are too small for our purposes, containing just 80 bus stops; (b) travel times between locations are not
specified; (c) values for me are not considered; and (d) in many cases, allowable walking distances from homes to bus
stops are far larger than the driving distances from bus stops to the school, which is not a realistic feature of the SBRP.

In our case, artificial problem instances were generated by placing a school at the centre of a circle with radius
r > me km. Bus stops were then randomly placed within this circle, followed by a set of addresses, ensuring that each
address was at least me km from the school, but within mw km of at least one bus stop. In all cases, we assume that
distances are Euclidean, vehicles travel at a constant speed of 50 km/h, and students walk at 5 km/h. The number of
students at each address was generated randomly according to the following distribution: 1 (45%), 2 (40%), 3 (14%),
and 4 (1%), which approximates the relevant statistics in the UK and Australia.

We also used our own software to generate a number of real-world problem instances. Privacy requirements prevent
us from being able to use real students’ addresses; instead, each instance was constructed using the following process.
First, the location of a school and its catchment area was identified using public records. Random residential addresses
were then generated within the local area, but at least me km from the school, and a number of students were assigned
to these addresses according the distribution above. Next, all bus stops in the local vicinity were added while ensuring
that (a) each address had at least one stop within walking distance, and (b) each stop had at least one address within
walking distance. The locations of these bus stops were also determined using public records. Finally, the shortest
driving times and distances between each pair of bus stops, and shortest walking times and distances between all
bus stops and addresses were determined using web mapping services (either Google Maps or Bing Maps). Where
possible, the direction of travel from each bus stop was also taken into account to ensure that buses are not required to
make illegal driving manoeuvres, such as U-turns on inappropriate roads.

A summary of these ten problem instances is given in Table 2. These locations were chosen to reflect a wide range
of problem features including problem size (in terms of school enrolment figures and the number of bus stops in their
catchment areas), urban or rural settings, coastal and inland, and organic or grid city layouts. Note in particular that
central urban environments feature large numbers of bus stops per address and addresses per stop, reflecting higher
population and bus stop densities. Visualisations of two instances are given in Figure 2. All instances can be viewed
and downloaded at [1].

3.3 Problem Analysis
In this section we now make some observations about the complexity of the SBRP and its underlying subproblems,
which will help to inform our algorithm design in later sections.

Theorem 1. The task of finding a feasible solution with a minimum number of routes is NP-hard.
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Location Country/State |V1| − 1 |V2| Students me mw Stops per address Addresses per stop
Brisbane Queensland 1817 438 757 3.2 1.6 79.2 19.1
Adelaide South Australia 1118 342 565 1.6 1.6 100.0 28.8
Edinburgh-1 Scotland 959 409 680 1.6 1.6 84.6 36.1
Edinburgh-2 Scotland 917 190 320 1.6 1.6 256.1 53.1
Bridgend Wales 633 221 381 4.8 1.6 45.3 15.9
Milton Keynes England 579 149 274 4.8 1.6 64.5 16.6
Cardiff Wales 552 90 156 4.8 1.6 63.9 10.4
Canberra ACT 331 296 499 4.8 1.0 13.3 11.9
Suffolk England 174 123 209 4.8 1.6 10.4 7.4
Porthcawl Wales 153 42 66 3.2 1.6 53.5 14.8

Table 2: Summary of the ten real-world problem instances, listed in order of the number of available bus stops (|V1|−1).
Recall that V2 is the set of student addresses, me is the minimum distance from the school for which students are
deemed eligible for school transport, and mw is the maximum walking distance to a bus stop. All distances are given
in km.

Figure 2: Problem instances for Porthcawl, Wales (left) and Canberra, Australia (right). Red icons show bus stops,
yellow icons show addresses, and the school is shown in green.

Proof. Let (V1, V2, E2) be a graph such that deg(u) = 1 ∀u ∈ V2. This means that, for all bus stops v ∈ (V1 −
{v0}), (a) v is compulsory and must appear in at least one route, and (b) the number of boarding students is fixed
at
∑
∀u∈Γ(v) s(u). This also implies the dwell times at each bus stop are fixed. This special case is equivalent to

the NP-hard time-constrained capacitated split-delivery VRP, itself a generalisation of the NP-hard time-constrained
VRP [7].

A similar proof of NP-hardness considers a generalisation of the above in which each component in (V1 −
{v0}, V2, E2) is a complete bipartite graph. In this case, all students can be assigned to a bus by including in V ′1
exactly one bus stop from each component, making the problem a multi-vehicle version of the NP-hard generalised
travelling salesman problem [18].

As stated, the primary aim in the SBRP is to minimise the number of routes (buses) being used in a solution. It
is therefore desirable to efficiently fill buses where possible, bringing parallels with the NP-hard bin packing prob-
lem [12]. Indeed, if multistops were not permitted in a solution, then the identification of a solution using k routes
while obeying Constraints (3)–(5) would result in a one-dimensional bin packing problem with bin capacity Q and
item sizes equal to the number of students boarding at each bus stop. As noted, multistops are permitted in this SBRP
meaning that students boarding at a particular bus stop can be assigned to different routes if needed (or, equivalently,
items in the corresponding bin packing problem can be split across different bins). This allows us to always produce a
solution R = {R1, . . . , Rk} satisfying Constraints (3)–(5) and meeting the lower bound of k = d(

∑n
i=1 s(vi)) /Qe,

though of course these routes could be rather long, perhaps causing Constraint (6) to be violated.
A second bin packing problem also arises once a final feasible solution R has been produced. Let V2(v) ⊆ V2 be

the set of addresses assigned to a particular bus stop v ∈ V ′1 . If v appears in just one route R ∈ R, then all students
from addresses in V2(v) will be assigned to R; hence, s(v,R) =

∑
u∈V2(v) s(u). On the other hand, if v is a multistop

serving routes R1, . . . , Rl, then a decision also needs to be made about which addresses in V2(v) to assign to which
routes. In general it is desirable to assign students from the same address to the same route (e.g., to keep siblings
together); however, ensuring this happens is equivalent to solving an instance of the NP-complete variable sized bin
packing problem [13] using items sizes {s(u) : u ∈ V2(v)} and bin sizes s(v,R1), . . . , s(v,Rl). In practice it might
therefore be necessary to sometimes assign students from the same address to different routes, although this should
generally be avoided if possible.
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From a different perspective, the issue of choosing which subset V ′1 of bus stops to include in a solution is closely
related to the set covering problem. Set covering involves taking a set of integers U = {1, 2, ..., n} known as the
“universe” and a set S whose elements are subsets of the universe. We then wish to identify the smallest subset
S′ ⊆ S whose union equals the universe—i.e., S′ needs to “cover” U . For example, given U = {1, 2, 3, 4} and
S = {{1}, {1, 2}, {1, 3}, {3, 4}, {4}} the optimal covering is S′ = {{1, 2}, {3, 4}}, which contains just two elements.
The following definitions are now helpful.

Definition 3. Given U and S, S′ ⊆ S is a complete covering if and only if
⋃
s∈S′ = U . A minimal covering is a

complete covering in which the removal of any element in S′ results in an incomplete covering. An optimal covering
is a minimum cardinality solution among all minimal coverings.

In general, identifying an optimal covering in the set covering problem is NP-hard [14]; however, approximate
solutions can be found using the greedy algorithm of Chvatal [6], which operates by selecting the element of S
containing the largest number of uncovered elements, adding this to S′, and repeating until a complete covering is
achieved. The task of constructing minimal coverings is also easily carried out in polynomial time. For example,
starting with an arbitrary complete covering S′, at each step we might simply remove any element s ∈ S′ for which
(S′ − {s}) is still a complete covering, repeating until S′ is minimal.

With regards to the SBRP, using the bipartite graph (V1−{v0}, V2, E2), let S be the set whose elements correspond
to the addresses within walking distance of each bus stop, S = {Γ(v) : v ∈ (V1 − {v0})}, where Γ(v) is the set of
vertices adjacent to v. According to Constraint (4), all addresses in a feasible solution must be served by a bus stop;
hence, the task of identifying a subset V ′1 ⊆ (V1 − {v0}) meeting this criterion is equivalent to the problem of finding
a complete covering of the universe V2 using the set S.

We are now able to make the following statement concerning minimal coverings.

Theorem 2. Consider the SBRP in which multistops are not permitted (i.e., Ri ∩ Rj = ∅ ∀Ri, Rj ∈ R), and let
(V1, E1) be a graph whose pairwise distances satisfy the triangle inequality. Now letR = {R1, . . . , Rk} be a solution
satisfying Constraints (3)–(5) that has the minimum total journey time

∑k
i=1 t(Ri). Then the subset of bus stops V ′1

used inR corresponds to a minimal covering S′.

Proof. The removal of any bus stop v ∈ V ′1 corresponds to the removal of the element Γ(v) in S′ which, by definition,
results in an incomplete covering and violation of Constraint (4). Conversely, the addition of an extra element Γ(v) to
S′ will result in a complete but non-minimal covering; however, this corresponds to the addition of an extra bus stop
v in at least one route in R which, due to the triangle inequality, will maintain or increase the total journey time of
R.

Note that this theorem does not hold when multistops are permitted in a solution. This is because the addition
of an extra bus stop may allow a route to be shortened by redirecting it from a multistop and through this new stop.
The triangle inequality is also necessary for this theorem, though this requirement is acceptable here because it is
satisfied by both real-world road maps (in which minimum distances/times between each pair of locations are used)
and Euclidean graphs. Indeed, because of the extra delays incurred by dwell times in this SBRP, this inequality can
actually be strengthened to ∀u1, u2, u3 ∈ V1, t(u1, u2) + t(u2, u3) > t(u1, u3).

4 Finding a Feasible Solution
In this section we describe a heuristic algorithm that attempts to find a feasible solution for the SBRP using a minimal
number of routes (Sections 4.1 to 4.3). In Section 4.4 we then test this algorithm on a large number of artificially
generated instances. Our strategy here is to use a fixed number of routes k and allow the violation of Constraint (6)
while ensuring that the remaining constraints, (3) to (5), are always satisfied. Specialised operators are then used to
try to shorten the routes in a solution such that Constraint (6) also becomes satisfied, giving a feasible solution. If this
cannot be achieved at a certain computation limit, k is increased by one, and the algorithm is repeated. Initially, k is
set to the lower bound d(

∑n
i=1 s(vi)) /Qe. An alternative approach would be to allow the search operators themselves

to alter k and then use its value as part of the cost function. However, evidence from the literature for similar partition-
based problems suggests the former to usually be a more suitable approach [20, 26].

Our method for this task is similar to iterated local search in that it combines local search (Section 4.2) with a more
disruptive “kick” operator (4.3). Our local search routine operates with a fixed subset of bus stops V ′1 ⊆ (V1 − {v0})
using neighbourhood operators that make small changes to the solution that can be evaluated quickly. In contrast,
changes to V ′1 tend to be much more disruptive, with potentially many passengers having to be reassigned to different
bus stops and multiple routes having to be repaired. As a result, these changes are best carried out by an operator that
is periodically applied between applications of local search.

In our algorithm two options are also available for defining the solution space of bus stop subsets. The first option
is to allow V ′1 to be any subset of (V1 − {v0}) that satisfies Constraints (3) and (4) (that is, any subset of stops
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(a) R1 = (u1, u2, u3, u4, u5, u6, u7)
R2 = (v1, v2, v3, v4, v5, v6)

R1 = (u1, u2, v2, v3, u6, u7)
R2 = (v1, u5, u4, u3, v4, v5, v6)

R = (u1, u2, u3, u4, u5, u6, u7) R = (u1, u5, u6, u2, u3, u4, u7)(b)

j

Figure 3: Example application of (a) the Section Swap operator (here, the section u3, u4, u5 has been inverted before
insertion into R2); and (b) the Extended Or-opt operator.

corresponding to a complete covering of V2). The second, more restricted, option is to only allow V ′1 to correspond to
minimal coverings in an attempt to eliminate solutions with overly long routes from being considered. Both of these
options are explored in more detail below.

4.1 Initial Solution and Cost Function
An initial solution R = {R1, . . . , Rk} is constructed by first generating a subset of bus stops V ′1 corresponding to a
complete covering. In our case, this is achieved using Chvatal’s greedy heuristic (Section 3.3). If the more restricted
solution space is being used, appropriate bus stops can then also be randomly selected and removed from V ′1 until the
covering is seen to be minimal.

Having generated V ′1 , each student is assigned to their closest bus stop in V ′1 , determining s(v) ∀v ∈ V ′1 . We then
need to assign each of these bus stops to an appropriate route (vehicle) such that no route is overfilled: that is, we have
a bin packing problem with a set of “item weights” {s(v) : v ∈ V ′1} and k “bins” of capacity Q. To do this, we use
a variant of the first-fit descending heuristic for bin packing. Specifically, at each step, the bus stop v with the largest
number of boarding students is chosen. A suitable route R is then chosen, and v is added to the end of the route.
A route is selected for v according to two criteria: (a) R already contains v, and (b) R has adequate spare capacity
for v (because Q − s(R) ≥ s(v)). If more than one route satisfies both criteria, ties are broken by selecting the one
containing the fewest students; similarly, if no routes are seen to satisfy (a), then ties between those satisfying (b) are
broken in the same way.1 If criterion (b) is not satisfied, then it is evident that no single route has sufficient capacity to
serve all students boarding at stop v. In this case the route R with the largest spare capacity x = Q − s(R) is chosen
and v is assigned to this route along with x of its students. This has the effect of creating a multistop, since a copy of
bus stop v, along with its remaining students will also need to be assigned to a different route in a subsequent iteration.

On completion, this bin packing-based heuristic will have produced a solutionR obeying Constraints (3)–(5). It is
then evaluated according to the cost function f(R) =

∑k
i=1 t

′(R), where

t′(R) =

{
t(R) if t(R) ≤ mt

mt +W (1 + t(R)−mt) otherwise.
(8)

Here, W introduces a penalty cost for routes whose journey times exceed mt. In our case we set W to mt and include
the addition of one in the formula to ensure that a route with t(R) > mt is always penalised more heavily than two
routes with individual journey times of less than mt.

4.2 Local Search
As mentioned, our local search routine makes a series of changes to a solution to reduce its cost while ensuring that
Constraints (3)–(5) are never violated. As with many other VRP variants, our local search routine uses a combination of
both inter- and intra-route neighbourhood operators. The following inter-route operators act on two routesR1, R2 ∈ R.
Without loss of generality, assume that R1 = (u1, u2, . . . , ul1) and R2 = (v1, v2, . . . , vl2).

Section Swap: Take two vertices in each route, ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l1) and vj1 , vj2 (1 ≤ j1 ≤ j2 ≤ l2), and
use these to define the sections ui1 , . . . , ui2 and vj1 , . . . , vj2 within R1 and R2 respectively. Now swap the two
sections, inverting either if this leads to a superior cost. (The inversion of a section involves simply reversing its
ordering—see Figure 3(a) for an example.)

Section Insert: Take a section in R1, defined by ui1 and ui2 as above, together with an insertion point j (1 ≤ j ≤
l2 + 1) in R2. Now remove the section from R1 and insert it before vertex vj in R2, inverting the section if this
leads to a better cost. If j = l2 + 1, add the section to the end of R2.

Create Multistop: Let u ∈ R1 for which s(u,R1) ≥ 2, and let s(R2) < Q. If u /∈ R2, add a copy of u to R2. Now,
transfer some of the students that board bus stop u in R1 to the occurrence of u in R2.

1Note that when building an initial solution, criterion (a) will never be met; however, we include it in our description here because it is also used
when rebuilding a solution from a partial solution during the kick operator, described in Section 4.3.
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Note that the first two inter-route operators can result in too many students being assigned to R1 or R2, leading to
a violation of Constraint (5). In our case, such moves are disallowed. Since multistops are permitted, it is also possible
that applications of these operators will result in a route that contains a vertex v ∈ V ′1 more than once. Since each route
must be a simple path, these repetitions need to be deleted. Assuming without loss of generality that a new route is to
be produced by inserting the section ui1 , . . . , ui2 (possibly inverted) into a route R = (v1, v2, . . . , vl2), and that some
vertex in the section is already present in R, this is done by simply removing the relevant vertex from the section and
reassigning its students to the other occurrence of the vertex in R.

Under the triangle inequality and using our method of calculating dwell times, the addition of an extra stop due to
the Create Multistop operator means thatR2 will always be lengthened more thanR1 is shortened. However, due to the
weighting coefficient used in Equation (8), it will still reduce a solution’s cost if t(R1) > mt and t(R2) < mt before
its application, but both t(R1) ≤ mt and t(R2) ≤ mt after its application. In our case, if u is not already present in
R2, then it is inserted into the route at the position that causes the smallest increase in t(R2). If t(R1) ≤ mt, then just
one passenger is transferred to R2—the intention being to lengthen R2 by as small an amount as possible. Otherwise
t(R1) > mt, in which case we shorten R1 as much as possible by transferring min(s(u,R1)− 1, Q− s(R2)) students
to R2. This ensures that bus stop u has at least one student boarding in both R1 and R2, but that neither route is
overfilled.

Our three intra-route neighbourhood operators act on a single route R = (u1, u2, . . . , ul) ∈ R. Note that their
application does not affect the satisfaction of Constraints (3)–(5), nor do they introduce duplicate vertices into a route.

Swap: Take two vertices ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l) in R and swap their positions.
2-opt: Take two vertices ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l) and invert the section ui1 , . . . , ui2 within R.
Extended Or-opt: Take a section defined by ui1 and ui2 as above, together with an insertion point j outside of this

section (i.e., 1 ≤ j < i1 or i2 + 1 < j ≤ l + 1). Now remove the section and insert it before vertex uj . If
j = l + 1, then add the section to the end of the route. Also, invert the section if this leads to a better cost (see
Figure 3(b)).

Together, our six operators generalise a number of neighbourhood operators commonly featured in the literature.
For example, our first two inter-route operators include and extend the six outlined for the capacitated VRP in [30].
They also extend the three neighbourhood operators used for school bus routing in [28]. Our Extended Or-opt operator
also generalises the more basic Or-opt, which only involves sections of up to three vertices [4].

Here, our local search procedure follows the steepest descent methodology: in each cycle all moves in all neigh-
bourhoods are evaluated, and the move offering the largest reduction in cost is performed, breaking ties randomly.
The procedure terminates when no improving moves are identified. Note that the number of moves considered in each
cycle is O(m4), where m =

∑k
i=1 |Ri| is the size of the incumbent solution. Of course, it would also possible to

use more sophisticated search methodologies here, such as simulated annealing or tabu search. However, the intention
here is to quickly identify a local optimum, which is then passed on to the other complementary parts of the overall
algorithm.

4.3 Generating New Coverings via a Kick Operator
While our local search routine is able to alter and improve the cost of a solution, note that it does not alter the subset
V ′1 of bus stops being used. One way of doing this, as suggested in [28], is to either swap a bus stop in a route with
a currently unused bus stop, or simply remove a bus stop from a route altogether. However, besides not allowing the
number of bus stops in V ′1 to increase, this is unsuitable for this problem because it fails to ensure the satisfaction of
Constraint (4).

In order to make use of alternative bus stops not currently in V ′1 , we introduce a kick operator. Given a feasible
solutionR using a subset of bus stops V ′1 , this works by forming a new subset of bus stops V ′′1 6= V ′1 that also satisfies
Constraint (4). Repairs are then made to R so that it only uses the bus stops in V ′′1 . To form V ′′1 , a randomly chosen
non-compulsory bus stop v ∈ V ′1 is first removed from V ′1 , followed by x additional non-compulsory bus stops.2 If
the result is a partial covering, then some new bus stops need to be added. This is done by selecting bus stops from
the set (V1 −{v0, v}) using a randomised version of Chvatal’s heuristic that, at each stage, arbitrarily selects and adds
any bus stop that will serve some currently unserved students, and repeats until all students are served. This provides a
new complete covering V ′′1 , as required. If the option of only allowing minimal coverings has been chosen, appropriate
randomly selected bus stops can then also be removed until the covering is seen to be minimal.

Having produced a new subset of bus stops V ′′1 6= V ′1 , each address in V2 is then reassigned to its closest bus stop
in V ′′1 . Bus stops with no addresses assigned to them are then removed fromR and V ′′1 . Next, the UPDATE-SOLUTION
procedure in Figure 4 is invoked. As shown, this removes any bus stops fromR that are not included in V ′′1 (Step (10)).
If fewer students are assigned to the bus stop v ∈ V ′′1 than in V ′1 , changes to R are also made in Step (8). Primarily
though, UPDATE-SOLUTION is used for constructing a list of bus stops and associated students that need to be added

2In our case a value for x is selected randomly according to a binomial distribution X ∼ B(|V ′
1 |, 3/|V ′

1 |).
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UPDATE-SOLUTION (R, V ′1 , V ′′1 )

(1) for each bus stop v ∈ (V1 − {v0})
(2) if v ∈ V ′′1 then
(3) Let s(v)′ be the number of students assigned to v in V ′1
(4) Let s(v)′′ be the number of students assigned to v in V ′′1
(5) if s(v)′ < s(v)′′ then
(6) Add v, together with s(v)′′ − s(v)′ students, to the list of stops that

need to be added toR
(7) else if s(v)′ > s(v)′′ then
(8) Remove s(v)′ − s(v)′′ students from occurrences of v inR. If this results

in an occurrence of v with no assigned students, then remove it fromR
(9) else if v ∈ V ′1 then

(10) Remove all occurrences of v inR

Figure 4: Procedure for updating a solutionR according to an old and new subset of bus stops, V ′1 and V ′′1 .
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Figure 5: Number of extra routes (buses) required by solutions for various journey time limits mt (in minutes) and
walking distance limits mw (in km), for problem instances involving |V1 − {v0}| = 25, 50, 100 and 250 bus stops
respectively. Each point is averaged across twenty randomly generated problem instances.

to the solution, as shown in Step (6). On termination of this procedure, the bus stops in this list are added to R using
the same bin packing heuristic as used in Section 4.1.

4.4 Experimentation
In this section we use our algorithm to examine the issues that affect the number of extra routes (buses) required in a
solution compared to the lower bound of d(

∑n
i=1 s(vi)) /Qe. To do this, artificial problem instances were generated

with 25, 50, 100 and 250 bus stops using maximum walking distancesmw ranging from of 0.2 to 8.0 km, incrementing
in steps of 0.2 km. Twenty instances were produced in each case, giving 3,200 in total. In all cases we used a radius
r of 25 km and set the number of addresses at 585, giving approximately 1,000 students per instance. Finally, the
maximum bus capacity Q and minimum eligibility distance me were set to 70 and 5 km respectively, with thirty
seconds of execution time permitted for each value of k.3

Figure 5 shows the effect of altering the maximum journey time mt with these different problem instances. We
see that an increased number of routes are needed when both the maximum journey times mt and the maximum
walking distances mw are low, and that these increases are more drastic for instances with many bus stops. For low
values for mt this is quite natural: stricter journey limits imply the need for additional routes in feasible solutions.
For low values of mw on the other hand, our method of instance generation means that addresses will be clustered
tightly around bus stops; consequently, nearly all bus stops will be compulsory, making the problem very similar to

3All algorithms were written in C++ and executed on 3.2 GHtz Windows 7 machines with 8 GB RAM [1].
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Figure 7: Effects that the maximum walking distance mw has on the number of kicks performed by our algorithm
within a thirty second time limit for instances with |V1 − {v0}| = 25 and 250 potential bus stops (respectively),
for three values of maximum journey time mt. All points are averaged across twenty randomly generated problem
instances. Note also that the second graph’s vertical axis has a much smaller range.

that described in Theorem 1. This means that any savings that can be achieved by only using a subset of the bus stops
are not available, creating a need for additional routes in a solution. These effects also increase for larger numbers of
bus stops because, for low values of mw in particular, more bus stops need to be visited, resulting in a need for more
routes. The relationship between mw and the number of bus stops used in the final solutions is shown in Figure 6.

Considering multistops, we find that these occur more frequently with instances where it is advantageous or nec-
essary to assign larger numbers of students to individual bus stops. This occurs for high values of mw, where students
are able to walk larger distances to bus stops (implying that fewer bus stops are needed in V ′1 ), or when the number of
bus stops in the problem instance is small. From a bin packing perspective, more students per stop equates to larger
items to pack into the bins, meaning that more of these items will need to be “split”, resulting in a multistop.

Note that the results in Figure 5 were generated using the restricted solution space in which only bus stop subsets
V ′1 corresponding to minimal coverings are permitted. We also carried out this same set of experiments using the more
expansive solution space in which V ′1 can be any complete covering. In most cases, we saw no difference between
the two approaches in terms of the average number of extra routes needed. However, solutions with marginally fewer
routes were sometimes returned using the latter space for instances with 25 or 50 bus stops, large values of mw, and
short journey times. As explained above, solutions to these instances tend to feature larger numbers of multistops,
meaning that Theorem 2 does not apply; hence, the additional coverings contained in this space allow the algorithm
to identify better subsets of bus stops and therefore achieve better solutions. On the other hand, superior solutions
were consistently achieved using the more restricted space when tackling instances with 100 or 250 bus stops, where
multistops occur less frequently.

Moving on, Figure 7 demonstrates the number of kicks—and therefore applications of local search—performed
by our algorithm within the thirty second time limit used for each value of k. For instances with 25 potential bus stops,
this number is highest for instances where addresses are tightly clustered around the bus stops (low values for mw). In
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these cases most, if not all bus stops are compulsory and so the kick operator can only make very small changes to a
solution, if any. As a result, kicked solutions will already be close to a local optimum meaning that the subsequent local
search routine will complete very quickly. On the other hand, for instances with 250 bus stops the sizes of solutions∑k
i=1 |Ri| are much larger, meaning that applications of local search will be more expensive, allowing fewer kicks

within the time limit. This is particularly the case for clustered instances, where a high proportion of the stops are
used in solutions: indeed, in the most extreme case, only 170 kicks were performed within the 30 second time limit,
suggesting that longer run times may be beneficial in some cases.

On the whole, the results of this section demonstrate that, at least for these artificial instances, our algorithm is
often able to find solutions using the lower bound of d(

∑n
i=1 s(vi)) /Qe routes. This is particularly so for instances

where only a small proportion of bus stops need to be used, such as when the maximum walking distance of students
is set quite high. Note, however, that in cases where all bus stops need to be used, our proposed kick operator has no
effect, and it would probably be better to focus on extending the local search operator by, for example, including a
tabu element.

One notable feature of this approach is that, in attempting to find the solutions with short routes, the set of students
is often assigned to a relatively small number of bus stops, rather than using more convenient bus stops that are closer
to student homes. In the next section, we will investigate how we might improve these solutions so their effects on
users are also taken into account.

5 Improving Financial Costs and Quality of Service
Once a feasible solution using as few routes as possible has been achieved, it is in our interest to make further ad-
justments to allow the service to be both cost efficient for the local government and convenient for the users. From
the financial point of view, administrators are interested in keeping the lengths of each route as short as possible be-
cause this will attract lower quotes from the bidding bus companies. On the other hand, users want to be assigned to
bus stops close to their homes, keeping walks short and discouraging parents from driving to the bus stop. Clearly
these objectives are in conflict, because a bus route that visits many stops (allowing shorter walks) will also tend to
be longer and therefore more expensive to run. Decision makers are therefore interested in looking at a set of non-
dominating solutions that, for a fixed number of vehicles k, shows how these objectives influence one another, allowing
them to choose a solution seen to be an appropriate compromise of the two. This naturally points to the suitability of
multiobjective-based optimisation methods.

The two cost functions that we seek to optimise at this stage are the average time spent walking by each student:

f1(R) =

∑
u∈V2

s(u) · t(u, v∗)∑
u∈V2

s(u)
(9)

(where v∗ ∈ V ′1 is the closest used bus stop within walking distance of address u), and the average driving time of the
routes:

f2(R) =

∑k
i=1 t(R)

k
. (10)

Note, therefore, that f2 does not measure the travel times of individual students as such. Instead, it acts as a proxy for
the eventual financial cost of the routes, which will be unknown at this point.

5.1 A Multiobjective Local Search Approach
Our strategy here is to make incremental adjustments to the subset of used bus stops V ′1 , thereby changing the as-
signments of students to bus stops and causing an alteration to f1. Solutions are then repaired and optimised using
our local search procedure from Section 4.2, hopefully reducing f2. A suitable framework for this is the Pareto local
search algorithm of Paquete et al. [22]. This generalises a single-objective local search algorithm in that it returns an
archive solution set that approximates the actual Pareto set of a problem instance. It is also quite intuitive in that it uses
no parameters and requires no aggregation of the different cost functions.

A pseudocode description of this approach is given in Figure 8. The algorithm starts with an archive set A of
solutions, each that are marked as “unvisited”. In each iteration an unvisited solution R is then selected from the
archive set. New solutionsR′ are then generated fromR by adding or deleting bus stops, repairing, and then employing
local search. These solutions are added toA if they are not dominated by a solution already in the archive. In addition,
if a new solution is seen to dominate any solutions currently in the archive, then these are deleted fromA. This repeats
until all solutions in A have been visited, resulting in an archive of mutually nondominating solutions.

In Line (6) of this procedure a bus stop v is added to the solution R′ in the following way. First, all students for
whom v is now their closest bus stop are assigned to v.4 Bus stops that, as a result, have no assigned students are then

4We assume here that v has at least one student for whom this would now be their closest bus stop. If this is not the case, then the resultant
solution need not be considered further, as v will not be used by any passengers.
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MULTIOBJECTIVE-LOCAL-SEARCH (A)

(1) while ∃R ∈ A that has not yet been visited
(2) MarkR as having been visited
(3) for each v ∈ (V1 − {v0})
(4) R′ ← R
(5) if v /∈ V ′1
(6) Insert v intoR′ and run local search
(7) else if v ∈ V ′1 and v is not compulsory
(8) Remove v fromR′ and run local search
(9) UPDATE-ARCHIVE(A,R′)

UPDATE-ARCHIVE (A,R′)
(1) for eachR ∈ A
(2) ifR′ dominatesR
(3) RemoveR from A
(4) else if bf1(R′)cδ ≥ bf1(R)cδ and bf2(R′)cδ ≥ bf2(R)cδ
(5) exit
(6) MarkR as not visited, and add it to A

Figure 8: Our multiobjective procedure. Here, V ′1 corresponds to the set of bus stops being used in solution R. The
notation b·cδ denotes the value within the braces rounded down to the nearest multiple of δ.
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Figure 9: (a) Illustrating the discretization of the cost space for settings of δ = 1 (left) and δ = 2 (right). Archives
feature a maximum of one solution per square. If δ = 0 then archive sizes are not limited. (b) Demonstration of the
S-metric using an archive set of mutually nondominating solutions and an appropriate reference point. The value of
the S-metric corresponds to the hypervolume indicated by the shaded part.

removed from R′. Finally, v is inserted into one or more route using the bin packing procedure from Section 4.1, and
local search is used to improve the solution.

In a similar fashion, in Line (8) a non-compulsory bus stop v is removed from R′. Each address u ∈ V2 is then
considered in turn and reassigned to the closest bus stop within walking distance that is still being used in R′. If no
such bus stop exists for u, then the bus stop v′ 6= v nearest to their house is added to the end of a randomly selected
route in R′ and all relevant passengers are reassigned to u. Once all addresses have been considered, this gives a
solution obeying Constraints (3) and (4), but perhaps not Constraint (5). In this case, randomly chosen bus stops are
removed from any overfilled routes until Constraint (5) has been satisfied. The solution is then repaired using our bin
packing heuristic before executing local search.

In their original paper, Paquete et al. [22] note that run times of this multiobjective framework can be very high for
problems featuring large archive sets. This is because each solution in the archive needs to be visited, which may then
result in further unvisited solutions being added to the archive, and so on. This was also seen to be the case with our
algorithm, with larger problem instances such as Brisbane and Edinburgh-1 sometimes taking days to complete. To
alleviate this, our UPDATE-ARCHIVE procedure of Figure 8 contains an additional mechanism for limiting the archive
size. This appears in Lines (4) and (5), where the costs of the solutions R′ and R are rounded down to the nearest
multiple of δ before being compared (where δ ≥ 0 is a parameter specified by the user). This means that when R′ is
mutually nondominating to all solutions in A, it is still only added to A if it is seen to have costs sufficiently different
to solutions already in A. From a different perspective, we can consider this mechanism as a way of discretizing the
cost space into a grid of squares whose boundaries correspond to multiples of δ, as demonstrated in Figure 9(a). Since
only one solution per square is permitted, larger values for δ result in smaller archive sets. This brings shorter run
times but also, by reducing the number of solutions considered during a run, potentially less accurate approximations
of the Pareto set. These issues are considered in the next subsection.
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δ = 1 δ = 10 δ = 30
Location k Time (s) |A| S ± CV Time (s) |A| S ± CV Time (s) |A| S ± CV
Brisbane 11 31444.0 399.3 256.2 ± 1.0% 2329.1 20.2 217.4 ± 3.4% 539.3 2.9 150.6 ± 7.3%
Adelaide 9 9326.8 350.5 341.3 ± 0.5% 1191.5 22.5 315.8 ± 1.3% 125.1 3.5 250.7 ± 4.2%
Edinburgh-1 10 16155.9 314.9 337.5 ± 0.5% 906.5 19.9 308.8 ± 1.4% 159.1 3.2 257.0 ± 3.2%
Edinburgh-2 5 582.5 313.0 431.6 ± 0.4% 135.7 38.1 421.3 ± 0.3% 17.7 11.1 394.5 ± 1.7%
Bridgend 6 2743.7 296.2 140.5 ± 2.5% 518.3 24.1 128.2 ± 3.2% 332.9 4.8 103.0 ± 7.3%
Milton Keynes 5 491.6 318.9 303.9 ± 0.6% 108.8 34.9 293.0 ± 1.0% 36.2 10.2 257.0 ± 2.3%
Cardiff 3 7.1 172.4 308.1 ± 0.4% 2.4 38.1 305.8 ± 0.6% 1.2 13.4 299.8 ± 0.9%
Canberra 8 356.0 150.8 233.4 ± 0.6% 32.8 8.8 224.3 ± 0.9% 11.6 3.3 215.5 ± 1.2%
Suffolk 4 28.6 127.5 185.4 ± 2.7% 8.8 17.6 180.0 ± 2.7% 5.9 5.6 171.4 ± 3.0%
Porthcawl 1 4.4 127.5 152.6 ± 1.7% 0.9 43.4 149.1 ± 2.9% 0.5 18.1 141.7 ± 3.3%

Table 3: Results produced for the ten real-world problem instances using our multiobjective approach for three values
of δ. S-values were calculated using the reference point (15.0, 45.0) in all cases. All figures in the table are averages
taken from twenty runs per instance. CV is the coefficient of variation.

5.2 Experiments
In this section we investigate the quality of solutions produced by our multiobjective algorithm using the ten real-world
problem instances listed in Table 2, bus capacities Q = 70, and maximum journey times mt = 45. For nine of these
instances, all versions of our algorithm from Section 4 were able to achieve feasible solutions using the lower bound
of k = d(

∑n
i=1 s(vi)) /Qe routes in less than three seconds. The one exception, Suffolk, which represents a wide

sparsely populated rural area, seems to require one additional vehicle. (Although, interestingly, if we use mt = 50
with this instance, this extra bus is not needed.)

For our trials, the archive setsAwere seeded with two initial solutions. The first was the feasible solution produced
by the algorithm from Section 4. The second was produced by identifying the closest bus stop to each address and
then executing the steps described in Sections 4.1 and 4.2. These two solutions can be considered as representing
the extremes of our Pareto front approximation—the first comprises short routes, few bus stops, and potentially long
walks; the second, features minimal-length walks but potentially many bus stops and long routes. Note also that the
second solution obeys Constraints (3) to (5), but not necessarily Constraint (6). Such solutions are therefore permitted
in the archive set during a run, though these are deleted from A on completion and are not considered in the statistics
presented below.

The results of our trials are summarised in Table 3. Three values of δ are used here, measured in seconds (e.g.,
a value of δ = 1 means that f1 and f2 are rounded down to the nearest second during execution). Three features of
the algorithm’s output are considered: execution time, the number of solutions in the final archive set |A|, and the
archive’s S-metric. The S-metric gives the hypervolume between the archive set and a single reference point [34].
An illustration is provided in Figure 9(b). To be valid, the reference point must be dominated by all solutions in the
archive. Larger hypervolumes indicate an archive that better approximates the (optimal) Pareto set.

Table 3 clearly shows that run times fall as δ is increased, but that this also brings smaller, less accurate Pareto
front approximations.5 It also shows the large range of run times required across the different problem instances. Using
δ = 1, for example, runs with the Porthcawl instance were seen to complete in less than 5 seconds, while runs with the
Brisbane instance took nearly nine hours. Unfortunately, these run times seem difficult to predict, with contributing
factors including the number of bus stops and addresses, the sizes of the various solutions considered, the number of
routes, the number of iterations required in each application of local search, and the number of solutions entering the
archive during the entire run.

Figure 10 compares the archive sets returned from runs on a large and small problem instance using the three
different δ-values. An interesting feature in the large Adelaide instance is the gap occurring near the centre of the
δ = 10 archive. These gaps often occur when we have a bus stop that is relatively far from other bus stops but close
to a large number of addresses. Adding or removing this bus stop then causes average walking distances and average
route lengths to change quite considerably in a solution. Note also that the Porthcawl instance only uses one route,
allowing solutions with an average route length of close to 45 minutes to be achieved. Archives for all ten instances,
together with interactive visualisations of the actual solutions produced by this algorithm can be found online at [1].

6 Conclusions and Discussion
In this paper we analysed a real-world school bus routing problem that builds on previous models proposed in the
literature by including bus stop selection, multistops, and dwell times. In doing so, relationships have been drawn with

5For all ten instances, the S-metrics for δ = 1 were seen to be significantly different to the other values of δ at the 0.001 level (according to a
Wilcoxon signed rank test).
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Figure 10: Archive sets returned for the Adelaide (left) and Porthcawl (right) problem instances, using δ = 1, 10 and
30 seconds.

three well known combinatorial optimisation problems, which have helped inform the design of a heuristic method
that can cope with large realistic-sized problem instances. The multiobjective nature of this problem has also been
noted, and an appropriate algorithm has been proposed that is able to supply the user with a range of non-dominating
solutions. As this is a new problem, we are unable to provide comparisons to other methods as this stage. We have,
however, made our problem instances and algorithm source code publicly available to allow others to follow on from
this research in the future [1].

One of the advantages of an automated bus routing system is that it can be used to explore various what-if scenarios,
helping to make informed policy decisions. For example, what are the financial consequences of allowing longer
maximum journey times? Are more vehicles needed if students are only expected to walk 1 km to a bus stop? How
much money will be saved if eligibility distances are increased?

One issue that has not been considered in this paper is “multi-tripping”. This is when a single vehicle performs
multiple journeys, perhaps for different schools, one after the other. In general, we found that this issue is not con-
sidered by local government administrators. Instead, once the proposed routes have been put out for public tender, it
is the bus companies’ responsibility to spot opportunities for multi-trips, allowing them to give lower quotations. A
simple way of encouraging multi-tripping is to design routes that start near another school. For example, if School A
is known to start at 8am and School B at 8:45am, we might want to a encourage a route for School B to start near to
School A, increasing the chances that both can be served by the same vehicle. Relevant work in this area can be found
in [15, 24], where methods are proposed that can take solutions to multiple schools and then merge them so that buses
are able to serve multiple routes.

Another real-world issue is that people often become accustomed to commuting to their bus stop at the same time
every day. This is also important for parents, who may use their children’s schedules to arrange an appropriate starting
time at work. From their perspective, it is therefore important that solutions do not change drastically year on year. A
simple way to ensure this is to use the previous year’s solutions as the starting solution to the current year, which must
then be repaired to cope with any changes. It would also be possible to use the difference between the old and new
solution as some sort of cost function that needs to be minimised.

In real-world problems, we also need to consider the fact that some schools serve very wide geographical areas
and might, therefore, only feature solutions with journey lengths that exceed the stated journey time limit mt. In our
problem model, this feature can be formalised using the concept of outlier bus stops.

Definition 4. Let v ∈ (V1−{v0}) be a compulsory bus stop, V2(v) ⊆ V2 be the subset of addresses for which v is the
closest bus stop, and x =

∑
u∈V2(v) s(u). Then bus stop v is an outlier if t(v, v0) + a + bx > mt (where a and b are

defined in Definition 2).

In other words, a bus stop is an outlier if it must be included in a solution, but its minimum dwell time plus its
journey time to the school exceeds the stated journey time limit. One way to cope with outlier bus stops would be to
simply increase mt; another would involve considering any route containing an outlier as feasible, regardless of its
actual length. Other methods may also be forthcoming, however. This, as with the other issues mentioned above, are
each worthy of further research.
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