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Abstract

It is widely known that positive and conditionally negative definite functions
take finite values at the origin. Nevertheless, there exist functions with a
singularity at zero, arising naturally e.g. in potential theory or the study of
(continuous) extremal measures, which still exhibit the general characteris-
tics of positive or conditional negative definiteness.

Taking a framework set up by Lionel Cooper as a motivation, we study
the general properties of functions which are positive definite in an extended
sense. We prove a Bochner-type theorem and, as a consequence, show how
unbounded positive definite functions arise as limits of classical positive
definite functions, as well as that their space is closed under convolution.
Moreover, we provide criteria for a function to be positive definite in the
extended sense, showing in particular that complete monotonicity in con-
junction with local absolute integrability is sufficient.

The celebrated Schoenberg theorem establishes a relation between posi-
tive definite and conditionally negative definite functions. By introducing a
notion of conditional negative definiteness which accounts for the classical,
non-singular conditionally negative definite functions, as well as functions
which are unbounded at the origin, we extend this result to real-valued
functions with a singularity at zero. Moreover, we demonstrate how singu-
lar conditionally negative definite functions arise as limits of classical condi-
tionally negative definite functions and provide several examples of functions
which are unbounded at the origin and conditionally negative definite in an
extended sense.

Finally, we study the convexity and minimisation of the energy associ-
ated with various singular, completely monotone functions, which have not
previously been considered in the field of potential theory or experimental
design and solve the corresponding energy problems by means of numerically
computing approximations to the (optimal) minimising measures.

Keywords: unbounded positive definite function; Bochner’s theorem; com-
pletely monotone function; singular conditionally negative definite function;
Schoenberg’s theorem; convexity; energy problem; optimal measure.
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1 Introduction

The concept of positive definite sequences, arising in the context of a prob-
lem in complex function theory posed by Carathéodory [13], was introduced
in 1911 by Toeplitz [44]. Herglotz [18] established a connection between
positive definite sequences and the trigonometric moment problem. Moti-
vated by the work of Carathéodory and Toeplitz, Mathias [23] and later
Bochner [9] defined and studied the properties of positive definite functions,
specifically their harmonic analysis. Before these developments, however,
Mercer [24] had studied the more general concept of positive definite kernels
in research on integral equations.

According to the classical standard definition, a function f : R¢ — C is
positive definite if

n
Zf(xi—xj)viTjZO (1)
ij=1
for all x1,%2,...,X, € R and vq,v,...,v, € C, with any n € N; in other

words, if the matrix [f(x; — ;)] ._, is non-negative definite for all n € N

ij=1
and X1,X2,...,%, € R% Using (1) with n =2, x; =0, xo = x, vy = 1
and vy such that vy f(x) = —|f(x)], it can be shown that |f(x)| < f(0) for
all x € R?. Hence positive definite functions by the standard definition are
always bounded.

One of the principle results on this subject is Bochner’s theorem [9,
Chapter IV.20], which states that a function f : R? — C is continuous and
positive definite if and only if it is the (inverse) Fourier transform of a finite,
non-negative measure p on R%, i.e.

£00 = jix) = (2m) 7% [ ™ i) (x e RY,

Thus, Bochner’s theorem provides an equivalent characterisation of whether
or not a given continuous function f is positive definite. The concept of
positive definite functions was extended to positive definite distributions by
L. Schwartz [41, Chapter VII, §9], and his analogue of Bochner’s theorem
states that a distribution is positive definite (and tempered) if and only if it
is the Fourier transform of a non-negative measure of slow increase, i.e. such
that the measure of balls is polynomially bounded in terms of the radius.
As shown above, positive definite functions in the sense of the standard
definition (1) are always bounded by their value at zero. However, there



exist functions such as f = |- |7 (0 < a < 1), which have a singularity
at the origin, yet still exhibit properties similar to those of positive definite
functions. Such functions arise in potential theory (see, e.g. [8], [21] and
[33]), and recently appeared in the context of extremal measures ([36], [37]).
Functions defined on R which are unbounded at the origin and positive
definite in the following extended sense were studied by Cooper [14].

Definition. A function f : R — C is called positive definite w.r.t. a set J
of functions if for every ¢ € J, the integral

/ / £ - 1)6(2) () dady (2)
RJR

exists (in the Lebesgue sense) and is non-negative [14, p. 54].

Let P(J) denote the class of all functions which are positive definite w.r.t.
J. Cooper’s definition coincides with the standard definition (1) when f is
continuous and J = Cy(R), see e.g. [14, p.53]. However, for certain spaces
of functions J, the above definition enables us to extend the concept of
positive definiteness to functions which have a singularity at the origin. In
particular, we shall consider the spaces J = LP(R¢) (and their local versions)
for various values of p.

Building on the foundations set by Cooper, we study unbounded positive
definite functions in more detail. One of our main results is Theorem 2.5.1,
which, in analogy to Bochner’s theorem for the classical case, characterises
a larger class of (generally unbounded) positive definite functions. Various
results follow from this theorem. For example, functions which are posi-
tive definite w.r.t. L2(R?) can be approximated, in the L'(R?) sense, by a
sequence of continuous, classically positive definite functions (see Corollary
2.6.1). Functions which arise as ‘convolution squares’ are positive definite
in the new sense (see Corollary 2.6.4), and conversely, a function which is
positive definite w.r.t. L2(R?) can be written, in some sense, as a convolu-
tion square (see Corollary 2.6.5). We also show that the even reflections of
locally integrable, completely monotone functions are positive definite w.r.t.
L3(R), the set of functions in L*(R) with compact essential support (see
Corollary 2.7.6), and, subsequently, provide many examples of unbounded
functions which are positive definite in the extended sense.

A comprehensive study of conditionally negative definite functions, which
appear naturally in both probability and potential theory, can be found in
[3], [4] and [35]. A function f : R? — C is conditionally negative definite in
the standard sense if f is conjugate symmetric, that is f(x) = f(—x) for all




x € R4, and

n
Z f(XZ'—Xj)Ul%TjSO (3)
ij=1
for all x1,Xa,...,%, € R? and vy, vs,...,v, € C satisfying > v; = 0,

with any n € N.

It is clear that if f is a classically positive definite function, then —f
is conditionally negative definite. The converse is not necessarily true (see
Section 3.1 for details). Similarly to positive definite functions, conditionally
negative definite functions take finite values at zero. However, unlike their
positive counterparts, they need not be bounded away from the origin.

Motivated by Cooper’s definition of positive definiteness, we define an
extended notion of conditionally negative definite functions on R? as follows.

Definition. A function f : R¢ — C is said to be conditionally negative
definite w.r.t. a set J of functions if f is conjugate symmetric a.e., that is
f(x) = f(—x) f.a.a. x € R and for every ¢ € J satisfying Jpa &(x) dx =0,

[ [ 1= ypo00) axdy <o.
Rd JRd

Let CN(J) denote the class of all functions which are conditionally negative
definite w.r.t. the set J. For suitably chosen J, CN(J) contains the classical
conditionally negative definite functions, which take finite values at zero, as
well as functions which are singular at the origin (see Section 3.5).

The renowned Schoenberg theorem [39, Th. 2] establishes a relation
between the classical positive definite and conditionally negative definite
functions. In particular, it states that a function f : R* — C is conditionally
negative definite if and only if for all ¢ > 0, ¢ : x — e */(¥) is positive definite.

The central result of Section 3 is Theorem 3.4.1, which is a generalisa-
tion of Schoenberg’s theorem to real-valued (generally unbounded) func-
tions in P(J) and CN(J), for J = LZ(RY). Several subsequent results
concerning the class CN(L2(RY)) are also established. For instance, we
demonstrate that functions in CN(L3(R%)) are locally integrable (see Lemma
3.3.1), that CN(L(R9)) is a closed subset of Ll (R?) (see Lemma 3.3.2) and
that real-valued functions which are conditionally negative definite w.r.t.
L2(RY) can be approximated, in the Llloc(Rd) sense, by a sequence of in-
finitely differentiable, classically conditionally negative definite functions
(see Lemma 3.4.3). Moreover, using Theorem 3.4.1, we indicate how to



construct numerous examples of singular functions f € CN(LZ(RY)), such
that —f ¢ P(LZ(R?)) (see Section 3.5).

The classical energy problem in the field of potential theory is based
on finding the measure(s) p € M(X) which minimise(s)/maximise(s) the
energy integral

Ip() = /X /X £(x — y)u(dx)u(dy) (4)

for a given a function f : R? — R and set M(X) of non-negative unit Borel
measures with support in the compact set X C R%. We define a minimising
measure pu* € M(X) to be optimal if it is the unique minimiser for /.

The case when f = —log| - | has been widely studied, see e.g. [33],
[34]. In fact, the logarithmic energy problem has been solved for various
sets X, see e.g. [33, Chapter I.1], where circles, discs and line segments are
considered. The more general case (for d = 1) when

— |zl Y /(a — if «
f(x):{(—llogylx‘! Mem i oll  @ery

has been studied in [37], where it is shown that for any a € (0,2), I¢(p)
is strictly convex on the set of all probability measures on the set of Borel
subsets of [0, 1], and that the measure with generalised arcsine density,

['(2—a)t=/2(1—t)"/2
pl—a/Q(t) = ( F>2(1 — OE/Q) ) )

is optimal for Iy, see [37, Th. 2]. The energy problem has also been greatly
considered in the literature for the Riesz kernel k4 (x,y) = |x — y|*™¢ (0 <
a < d, x,y € R? and the classical Newtonian kernel, i.e. when f(x) =
1x|274 (d > 2, x € RY), see e.g. [16], [21], [28], [32]. In the non-singular case,
when f =|-|* (a > 0), properties of the maximising measures and their
potentials

Puly) == /X fx—y)pldx) (v € &)

have been explored in [8].

The problem of finding optimal designs in experimental design is very
closely related to the energy problem in potential theory. In particular,
the functional I;(u) arises as an optimality criterion in the optimal design
problem with correlated observations for the location model y; = 6 + ¢, see
e.g. [47, Eq. 5]. The measure p* that minimises I on the set of probability
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measures defined on a compact subset of R, say [0, 1], defines an optimal
design for a suitable correlation function f. Standard correlation functions
are positive definite in the classical sense, however, as in [37, Corollary 1],
we extend the optimal design problem to the case when f is singular at the
origin and positive definite in an extended sense (see Section 4 for details).

We study the energy integral Iy(|.) for several singular, completely mono-
tone functions f, which have not previously been considered in the field of
potential theory, and solve the corresponding energy problems by means
of numerically computing densities of measures which minimise Iy(.). The
main result of Section 4 is an algorithm for constructing continuous probabil-
ity measures which approximate the minimising measures for such energies
If(.)- Firstly, we consider the case when f = ()~ (a € (0,1)), which corre-
sponds to the case of the Riesz kernel (see Section 4.5), and, secondly, when
f is replaced with a variety of alternative completely monotone functions
with a singularity at zero (see Section 4.6).



2 On Unbounded Positive Definite Functions

Positive definite functions are bounded, taking their maximum absolute
value at 0. Nevertheless, there are unbounded functions, arising e.g. in po-
tential theory or the study of (continuous) extremal measures, which still
exhibit the general characteristics of positive definiteness. Taking a frame-
work set up by Lionel Cooper [14] as a motivation, we study the general
properties of such functions which are positive definite in an extended sense.

Our central result is Theorem 2.5.1, which, in analogy to Bochner’s the-
orem for the classical case, characterises a larger class of (generally un-
bounded) positive definite functions. Numerous results follow from this the-
orem. For instance, functions which are positive definite w.r.t. L2(R?) can
be approximated, in the Ll(Rd) sense, by a sequence of continuous, classi-
cally positive definite functions (see Corollary 2.6.1). Functions which arise
as ‘convolution squares’ are positive definite in the new sense (see Corollary
2.6.4), and conversely, a function which is positive definite w.r.t. L2(R%)
can be written, in some sense, as a convolution square (see Corollary 2.6.5).
Using Theorem 2.5.1, we also show that the even reflections of locally in-
tegrable, completely monotone functions are positive definite w.r.t. L%(R),
the set of functions in L2(R) with compact essential support (see Corol-
lary 2.7.6). This result provides many examples of functions which have a
singularity at zero and are positive definite in the extended sense. The find-
ings outlined in this section have been accepted to appear in Mathematica
Pannonica in the form of the paper [26].

The structure of this section is as follows. We begin with an overview
of the positive definite functions as defined in the classical literature, see
Section 2.1. In Section 2.3 we introduce the ideas and discuss the main
results of [14]. The proof of Theorem 2.5.1 is given in Section 2.5, and an
alternative proof can be found in Section 2.8. Sections 2.6 and 2.7 present
corollaries to Theorem 2.5.1 and their corresponding proofs. We conclude
Section 2.7 with several examples of unbounded positive definite functions.

2.1 Classical positive definite functions

Positive definite sequences, arising naturally in the context of a problem in
complex function theory posed by Carathéodory [13], were first introduced in
1911 by Toeplitz [44]. Motivated by the work of Carathéodory and Toeplitz,
Mathias [23] and subsequently, Bochner [9] defined and studied the proper-
ties of positive definite functions, specifically their harmonic analysis. Prior



to these developments, however, Mercer [24] had studied the more general
concept of positive definite kernels in research on integral equations.
The standard definition of a positive definite function is as follows.

Definition 2.1.1 A function f : R¢ — C is positive definite if

Zf X; —X;j)v; U5 > 0 (5)
1,j=1
for all x1,Xa,...,%, € R? and v1,v,...,v, € C, with any n € N.
In other words, f is positive definite if the matrix [ f(xi — Xj)]?,j:l is non-
negative definite for all n € N and x1,Xs, ..., %, € R% We shall denote the
set of classical positive definite functions on R% by Pc,q4. A simple example
of a function in P¢ 1 is f = e® () since for any z1,29,...,2z, € R and
V1,09, ...,0, € C,
2
>~ st = 3
i,j=1
Setting n =2, x; =0, X2 =x, v1 = 1 and v = v in (5) gives
(1+ [0f*) £(0) + vf (%) +Tf(=%) > 0 (6)

for any v € C. Hence, vf(x) + 7f(—x) is real for any v € C, and thus, in
particular, both f(x) + f(—x) and i(f(x) — f(—x)) are real. It therefore
follows that functions in P¢ 4 are conjugate symmetric, that is f(x) = f(—x)
for all x € R%. Choosing v in (6) such that vf(x) = —|f(x)| gives |f(x)| <
f(0) for all x € R?. Hence, positive definite functions by the standard
definition are bounded, taking their maximum absolute value at the origin.
However, a positive definite function in the classical sense need not be
positive or continuous; for example, the function f(x) =1if x =0, f(x) =
0 otherwise (x € R?), is positive definite, but not continuous; the cosine
function, cosz = (e® + e ~™®)/2, is in Pc,1, but not non-negative. The
positive definiteness of the cosine function follows from property ii. below,
which we list amongst two other simple properties of functions in P¢ 4.

i. f € Pc,qif and only if f e Pc,q.

ii. If f1, fo,..., fn € Pogand ¢; > Oforalli =1,...,n,then ) ! ¢ f; €
Pe.a.



ili. If f, € Pg,q for all n € N and the pointwise limit, lim, o fn(x) =
f(x), exists for all x € R?, then f € Pc 4.

These properties follow directly from Definition 2.1.1. A simple consequence
of the first two properties is that if f is positive definite, then so is Re (f) =
(f + D)/2.

Another interesting result of the class Pc 4 is that it is closed under
pointwise products. This property is stated in the following proposition and
proved directly below.

Proposition 2.1.1 If f, g € Pc 4, then fg € Pc 4.

Proof. Let n € N and x1,X9,...,X, € R% The Schur (or Hadamard)
product of two n x n matrices A = (a;;) = [f(xi — Xj)]ijl and B =
(bij) = [g(xi — Xj)]ijl is the n x n matrix C' with entries ¢;; = a;;b;; =
fg (x;—x;). We now show that since A and B are non-negative definite, then
C' is also non-negative definite. This result is often referred to as Schur’s
product theorem [40, Th. VII].

Since f € Pc,q, then A is Hermitian, that is a;; = @;;, and non-negative
definite. Hence, A has a Cholesky decomposition of the form A = L L*,
where L is a lower triangular matrix with non-negative diagonal entries, and

L* denotes the conjugate transpose of L. Thus, for any vy, vs,...,v, € C,
n n n
Y fgxi—x)vimi =) (Zlikljk>b1‘jvivj
ij=1 i,j=1 \k=1
n n
:Z Zbij(vilik)(vjljk) ZO.D
k=1 \i,j=1

Hence, if f is positive definite, then so is |f]? = ff.
For real-valued functions we can use the following alternative definition
of positive definiteness.

Definition 2.1.2 A function f : R? — R is positive definite if f(x) = f(—x)
for all x€R? and the inequality in (5) holds for all x;,Xs,...,x, € R? and
v1,092,...,0, € R, with any n € N.

In particular, the evenness of the function is now stipulated, since it no
longer follows automatically as it does in Definition 2.1.1. This is also true



in the case of positive definite matrices; for example, the real-valued 2 x 2

matrix
1 2
a=( 1)

is non-symmetric yet positive definite, since for any v = (vy,vs) € R2,
vAvT = (v1 + 1)2)2 > 0.

It can easily be shown that the functions defined in Definition 2.1.2 are
immediately positive definite as in Definition 2.1.1. For instance, for n € N,
X1,X2,...,%Xp, € R and vy, v9,...,v, € C,

D Fx = xk) v e = > f(x; —xx)(aj +ibj)(ar +iby)

jk=1 jk=1

= Z f(x; — xx) aj ay, —i—z f(x; —xx)bjbp >0, (7)

jk=1 jk=1

where a; = Re (v;) and b; = Im (vy).

The notion of positive definite functions can be generalised to functions
and kernels defined on arbitrary topological spaces, groups and semigroups,
see e.g. [2, 35, 43]. For example, a real-valued, positive definite kernel on
R?x R? can be defined as follows.

Definition 2.1.3 A kernel k : R?x R — R is said to be positive definite if
k is symmetric, that is k (x, y) = k (y, x) for all x, y € R, and

Z k‘(XZ', Xj)’UZ' Uj Z 0 (8)

ij=1
for all x1,X%a,...,%, € R? and v1,vs,...,v, € R, with any n € N.

We mainly restrict our attention to the positive definite functions de-
fined in Definition 2.1.1. Henceforth, unless clearly stated otherwise, when
referring to classically positive definite functions or functions in P¢ 4, we
mean those defined in Definition 2.1.1.

One of the central results on the subject of positive definite functions is
the following theorem of Bochner.

Theorem 2.1.1 (Bochner, [9, Chapter IV.20]). A function f : R — C
is continuous and positive definite if and only if it is the (inverse) Fourier
transform of a finite, non-negative measure . on R%, i.e.

F00 = i) = (2m)7F [ e ud)  (x e RY. (9)

9



One direction is trivial, for if f has the above form, then for any n € N,

X1,X9,...,X, € R and vy,ve,...,v, € C,
4 n n )
(27r)§ Z f(xj — Xk) VU = Z </ e X% gixp oz N(dz)>vjvk
jik=1 jk=1 \/R?
. 2
:/ Zeixj'z vj| p(dz) > 0.
RY |5

For a proof of the reverse implication see e.g [20, p. 150], [9, Chapter IV.20].

Hence, Bochner’s theorem provides an equivalent characterisation of
whether or not a given continuous function f is positive definite. For exam-
ple, the continuous functions f(z) = v2e™* and fo(z) = V2 (1 + 22)

(x € R) are in Pc j, since they are the (inverse) Fourier transforms of

22

fi=e T and fy = /me 1%l respectively.

For a continuous function f € Pc 4, the finiteness of the measure in
Bochner’s theorem emphasizes the fact that f is non-singular at the origin,
since f(0) = u(R?). However, there exist functions such as f = |- |~
(0 < a < 1), which are unbounded at the origin, yet still exhibit properties
similar to those of positive definite functions. Such functions arise naturally
in potential theory (see, e.g. [8], [21] and [33]), and recently appeared in the
context of extremal measures ([36], [37]). Functions of a real variable which
are unbounded at the origin and positive definite in an extended sense were
studied by Cooper [14], see Section 2.3 for details.

2.2 Completely monotone functions

The concept of complete monotonicity was first introduced by Bernstein [6],
who studied functions on intervals of the real line having positive derivatives
of all orders. In conjunction to presenting the definition and basic proper-
ties of completely monotone functions, we highlight two theorems of note.
In Section 2.7 we look to partially extend the second of these theorems,
Theorem 2.2.2, to functions with a singularity at zero.

Definition 2.2.1 A function f : (0,00) — [0,00) is completely monotone if
f € C>((0,00)) and
(=1)" f™ >0 on (0, )

for all n € Ny [35, Def. 1.3].

10



In particular, any completely monotone function is non-negative and non-
increasing. The family of all completely monotone functions is denoted by
CM. Functions in CM can be bounded or unbounded at zero; for example,
both fi(x) = e and fo(x) = a2 (x € (0,00)) are completely monotone.
If f is a bounded completely monotone function, then it can be extended
continuously to [0, 00) by taking f(0) := f(0+) = lim,_,0 f(z) [35, p. 28].

The following theorem, given without proof, characterises functions in
CM as Laplace transforms of non-negative measures.

Theorem 2.2.1 (Bernstein, [35, Th. 1.4], [7]). Let f : (0,00) — [0,00)
be a completely monotone function. Then it is the Laplace transform of a
unique, non-negative measure p on [0,00), i.e. for all x >0,

) = Luse) = [ e tan) (10)
Conversely, whenever L(p;x) < oo for anyx > 0, x — L(u;x) is completely
monotone.

Theorem 2.2.1 holds for all completely monotone functions, bounded
and unbounded. It follows from (10) that f(0+) = p([0,00)). Hence, the
finiteness of the measure is directly related to whether or not the function is
bounded. In particular, if f € CM is bounded, then pu is finite; conversely,
if f € CM is unbounded, then p([0, 00)) = +o0.

We list some useful properties of completely monotone functions below.

i If fi, fo,...,fneCMand ¢ >0foralli=1,...,n,then Y ' ¢ fi €
CM.

ii. If f,, € CM for all n € N and the pointwise limit, lim,,_,o, fn(z) = f(z),
exists for all x > 0, then f € CM.

iii. If f, g € CM, then fg € CM.

The first property follows directly from Definition 2.2.1, whilst properties ii.
and iii. can be proved using Theorem 2.2.1, see e.g. [35, Corollary 1.6].

The following theorem belongs to Schoenberg, along with a number of
other theorems on classically positive definite functions, e.g. [35, Prop. 4.4],
35, Th. 12.14], [5, Th. 1.6].

Theorem 2.2.2 (Schoenberg, [38, Th. 3|). A function : [0,00) — [0, 00)
1s a bounded completely monotone function if and only if for all d € N, the

function f =] -||?) : RY = [0,00) is continuous and positive definite.

11



In particular, if 1 € CM is bounded, then f = (|| - [|?) : R® = [0, 00) is
continuous and positive definite for any d € N. We generalise this observa-
tion to potentially unbounded completely monotone functions in Corollary
2.7.1.

2.3 Positive definiteness in the extended sense

An extended notion of positive definiteness was introduced by Cooper in the

pioneering paper [14]. The definition of a positive definite function in [14]

is more general than in Definition 2.1.1, and accounts for functions which

are unbounded at the origin. In this section we highlight the main results

of [14], where all of the functions considered are defined on the real line.
For continuous functions in Pc¢ 1, (5) is equivalent to

/ / f(z = 1)6(2)6() dady > 0 (11)
RJR

for all functions ¢ € Cy(R), see e.g. [14, p.53]. Motivated by this observation,
Cooper [14] used the following definition for functions which are positive
definite in an extended sense.

Definition 2.3.1 A function f : R — C is called positive definite w.r.t.
a set J of functions if for every ¢ € J, the integral in (11) exists (in the
Lebesgue sense) and is non-negative [14, p. 54].

Let P(J) denote the class of all functions which are positive definite w.r.t.
the set J. In association with [43, Section 6], such functions may also be
called integrally positive definite for J. For certain spaces of functions J,
Cooper’s definition enables us to extend the concept of positive definiteness
to functions which have a singularity at 0. In particular, we shall consider
the spaces J = LP(R) (and their local versions) for various values of p. In
the following section we will also consider spaces of functions defined on R<.

We begin with an overview of some basic properties of the positive def-
inite functions studied in [14], analogous to those for the classical case, see
[43, p. 412]. In the following, let J be a set of complex-valued measurable
functions on R. This includes functions defined on a non-empty, measurable
subset of R, which we consider to be extended by zero to the whole real line.
Then the following properties follow directly from Definition 2.3.1.

i. feP(J)& f*eP(J), where f*(x) := f(—z) (x € R).

ii. fe€P(J)« feP(J)if Jis closed under complex conjugation.

12



ii. If fi, fo,...,fn € P(J)and ¢; > 0 (: = 1,...,n), then Y ", ¢ifi €
P(J).

iv. If J; C Jo, then P(JQ) - P(Jl)

Before proceeding to present our new results, we highlight the most
relevant results of [14].

For p € [1, 00)U{o0}, let LE(R) denote the subspace of functions in LP(RR)
with compact essential support. The functions in P(L§(R)) are essentially
bounded [14, Th. 5] and almost everywhere equal to a continuous, positive
definite function in the classical sense [15, Sec. 6]. The functions in P(L3(RR))
need only be locally integrable [14, Lemma 1]. Cooper has the following
Bochner-type theorem.

Theorem 2.3.1 (Cooper, [14, Th. 6]). For any function f € P(L3(R)),
there exists a non-negative, non-decreasing function p, such that for almost
all x,

1 ixt :
f(z) = Ner /Re dp(t) in (C, 1) sense, (12)
where p(t) = o(t) as t — +oo.

In particular, the function p need not be bounded, but satisfies a sublinear
growth condition at +o0o. Note also that, unlike Bochner’s theorem, the
implication here is only in one direction. The qualification “in (C, 1) sense”

n (12) means
flx) = \} Jim. % / ' < /_ Z et dp(v)> du,

in analogy to Cesaro summation of divergent series.
The P(L{(R)) spaces have the following additional properties.

Proposition 2.3.1 If f € Pc 1 is continuous, then f € P(L(R)).

Proof. By Bochner’s theorem, there exists a finite, non-negative measure p
on R such that for any ¢ € LZ(R),

//fa:— 2)8(y) dudy = m/// @92 (d2) () B(y) dady

”Z<Z> (z) du u(dZ)fO

27r
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Proposition 2.3.2 If f € P(L(R)) and g € Pc,1 is continuous, then fg €
P(L3(R)) [14, Th. 1].

Proof. By Bochner’s theorem, there exists a finite, non-negative measure u
on R such that for any ¢ € LZ(R),

/R /R f9(x —y)p(z)(y) dady
_ 1 . 7 ) VT
- x/%/R/Rf( y)/R Y% u(dz) ¢(x)9(y) dady
= \/127 /R /R /R Flx —y) (€™ p(x)) (e¥=d(y)) dedy p(dz) >0

Proposition 2.3.3 For any p € [1,2], P(L5(R)) C P(L3(R)).
Proof. This follows directly from the fact that L3(R) C LE(R) (p € [1,2]). O

Proposition 2.3.4 For any q € (2,00] andr € [0, 0], P(L3(R)) =P(L{(R))
= P(Cy(R))-

Proof. Let q € (2,00] and r € [0,00]. Since C5(R) C LI(R) c L3(R), it
follows directly that P(L3(R)) C P(L{(R)) c P(C5(R)). For the reverse
implication, we shall use the density of Cj(R) in LZ(R). Suppose that f €
P(Cy(R)). Then, the integral

//f 5 — y)U(2)b(y )dwdy—/R(f** ) (9) ) dy

exists in the Lebesgue sense and is non-negative for all ¢ € Cj(R), where
f*(y) = f(-y) (y € R). Since f € L. _(R) by [14, Lemma 1], and the
convolution of an element of L} (R) with an element of L3(R) is in L%(R),
the integral also exists for all 1 € L(R). By a change of variables and the
Fubini theorem,

/R/Rf(x_y) () dzdy = //f P(z+y)d(y) dydz (¢ € L§(R)).
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Let ¢ € L(R); then there is a sequence (Vn)pen 10 C(R) such that
| — ¥nll2 — 0 as n — oo. Now,

sup
z€R

[ (0t + 9907~ bz + )5, ) |
R
<sup/|¢>z+yr|<¢ )y |dy+sup/|¢ ) (2 +9) [9n () ldy

< ||dll2 o — Ynll2 + @ — Ynll2 |¥n]l2 — 0 as n — oc.

As f € Ll _(R), it follows that

—0 asn— oo,

’/Kﬂz)/R( (z+ 1)(Y) — Yz +y)tnly )) dydz

Where K denotes an interval that contains all the supports of the functions
= [o(6(z +)0(y) — ¥n(z +y)¥n(y)) dy. Hence the result follows, for

n—oo

//fx_ )é(y) drdy = lim /R/Rf(:v—y)wn(a:)%(y)dxdy > 0.0

The last two propositions demonstrate that as p increases from 1 to 2,
P(LP(R)) increases from a smaller class of positive definite functions to a
larger such class. As p increases beyond 2, P(LE(R)) remains the same.
Moreover, roughly speaking, as p increases from 1 to 2, P(L5(R)) runs from
the class of bounded, continuous positive definite functions (in the standard
sense), to a class of functions which are positive definite in a wider sense
and need not be bounded or continuous.

It proceeds from the following theorem of Cooper [14] that if a function
is bounded and positive definite w.r.t. L3(R), then it is positive definite
w.r.t. L§(R), and hence almost everywhere equal to a continuous function
in Pc 1 [15, Sec. 6]. This observation, in juxtaposition to Proposition 2.3.1,
clearly demonstrates the connection between continuous, classically positive
definite functions and the functions in P(L(R)).

Theorem 2.3.2 (Cooper, [14, Th. 7]). Letp € [1,2], ¢ = p/2(p — 1). If
feLL (R) and f € P(L3(R)), then f € P(LE(R)).

It follows from Theorem 2.3.2 that for any 1 < p < 2, there exist functions
which are both singular at the origin and positive definite w.r.t. L{(R). For
example, consider the functions f, = |-|7¢, for 0 < a < 1. In Section 2.7
we show that f, € P(LZ(R)) for all 0 < o < 1, and, for any 1 < p < 2, there
exists 0 < o < 1 such that f, € L] (R) with ¢ = p/2(p — 1).
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Hence, when considering the classes P(LH(R)) for 1 < p < 2, Theorem
2.3.2 infers that the transition from bounded to unbounded positive definite
functions occurs at p = 1. That is, functions which are positive definite
w.r.t. LE(R), for 1 < p < 2, may have a singularity at zero, whilst functions
in P(L{(R)) are essentially bounded [14, Th. 5] and thus, non-singular at
the origin.

2.4 Extension to functions in higher dimensions

Motivated by the work of Cooper [14], we introduce a notion of positive def-
initeness for functions defined on R?. Using this framework, we demonstrate
that some of the results of Section 2.3 still hold true in higher dimensions.
We begin by introducing an extended definition of positive definite functions
on R?, which is analogous to Definition 2.3.1.

In the following, let J be a set of complex-valued measurable functions
on R¢. This includes functions defined on a non-empty, measurable subset
of R?, which we consider to be extended by zero to the whole of R%.

Definition 2.4.1 A function f : R? — C is called positive definite w.r.t.
J if for every ¢ € J, the integral

/ f(x — y)6(x)0(y) dxdy (13)
Rrd JRd

exists (in the Lebesgue sense) and is non-negative.

Again, P(J) will denote the class of all functions which are positive definite
w.r.t. the set J. It follows directly from Definition 2.4.1 that properties i.- iv.
of Section 2.3 remain valid. Note that in the first property we now define

f*(x) := f(—x) for all x € R%.

The following proposition demonstrates that, as in the classical case,
even, real-valued positive definite functions are automatically positive defi-
nite in a complex sense. When referring to a property holding true almost
everywhere (a.e.), or, alternatively, for almost all (f.a.a.) x € R%, we mean
the property holds everywhere, except on sets of Lebesgue measure zero.

Proposition 2.4.1 Let f : R — R be such that f(x) = f(-x) fa.a.
x € RY. Let J denote a vector space of complex-valued functions on R?, such

thatif ¢ € J, thend € J and || € J. Let Jg := {qb eJ|ois real—valued}.
Then, f € P(Jg) if and only if f € P(J).
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Proof. One direction is clear since Jr C J. For the reverse implication,
consider the following. Let ¢ € J and suppose f € P(Jr). First we prove
the existence of the integral

/ / f(x — y)(x)b(y) dxdy. (14)
Rd Rd

Indeed,

/ £ (x — ) (x) D0y dxdy = / / £ — )] [$0| ()| dxdy
R4 J R4 RdJRA
— / Fx— y) D) Dy) | dxdy (15)
R4 JRd

where ¢ = |1)| € Jg. The integral in (15) exists since f € P(Jg). Hence, it
follows that the integral in (14) exists in the Lebesgue sense. Next, we show
the non-negativity of (14). 1 can be re-written as

¢ = Re(¢) +ilm (¢)

where Re (¢) : R? — R and Im () : R — R. Moreover,

¢‘;‘w€j and Im(w)zw_@ej.

Re () = >

Thus, Re (¢),Im (¢) € Jg. Let a := Re (1), b := Im (¢) and

tlu,v] = /Rd y f(x—y)u(x)v(y) dxdy (u,v € J).
Then,
tla,b] +t[b,a] =t[a+b,a+b] —tla,a] —t[b,b]
and
—i (t]a,b] — t[b,a]) =t [, Y] — t[a,a] — t[b,b] (16)

are finite, since f € P(Jg). Hence, t[a,b] and # [b, a] individually exist since
both the sum ¢ [a, b] + ¢ [b, a], and the difference ¢ [a,b] — t [b, a], exist. This
allows us to use the Fubini theorem, which in conjunction with the evenness
of f gives

/ f(x — y) al(x) bly) dxdy = / £(x — ¥) b(x) aly) dxdy.
R4 JR4 RdJRd
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Hence, t [a,b] =t [b, a], and it follows from (16) that
t[, Y] =tla,a] +t[b,b] > 0.

O

The propositions presented in Section 2.3 extend naturally to the follow-
ing results concerning functions defined on RY.

Proposition 2.4.2 If f € Pc 4 is continuous, then f € P(L3(R?)).

Proposition 2.4.3 If f € P(L3(RY) and g € Pc 4 is continuous, then
fg €P(LF(RY)).

Proposition 2.4.4 For any p € [1,2], P(L5(R?)) C P(L3(RY)).

Proposition 2.4.5 For any q € (2,00] and r € [0, 00|, P(LE(RY) =
P(L§(R) = P(CG(RY)).

The proofs of the above propositions are analogous to those of Propositions
2.3.1, 2.3.2, 2.3.3 and 2.3.4, respectively.

Next, we demonstrate that under certain conditions on our function,
Definitions 2.1.1 and 2.4.1 coincide. In particular, a continuous function is
classically positive definite if and only if it is positive definite w.r.t. Co(R%).

Proposition 2.4.6 Let f : R® — C be continuous. Then, f € Pc.q if and
only if f € P(Co(RY)).

Proof. Let f € Pg 4. By Propositions 2.4.2 and 2.4.5, it follows directly
that f € P(Co(R%)).

For the reverse implication, consider the following. Let v» : R — R
denote the bump function

Y(z) = { coop (=), Jel <1

0, lz| > 1,

where ¢p > 0 is the constant chosen so that [p1(x)dx = 1.
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For any x= (1, 29, ..., 24) €ERY define W(x):=1(x1)y(x2) ... ¥(xq) and
U, (x):=n?¥(nx) (neN). (17)
For any n € N, ¥,, € C3°(R?) is even and has compact support [—1, 1]9.
Moreover, [pqWn(x)dx =1 for all n € N.
For any N € N and any x1,Xs,...,xy € R%, define

Z@“Z (x—x;) (xeRYneN),

where £1,&a,...,&n € C. Then, ®,, € CZ(R?) and since f is continuous,

Zf —X; §Z§J—hm Z/ B /)(-+[—1 l]df(x—y)<I>n(x)<I>n(y)dxdy

1,j=1 1,7=1 vn

=lim f(X_Y)q)n(X)(I)n(Y) dxdy > 0.

n—oo Rd JRE
[

We now show that functions which are positive definite w.r.t. Co(R%)
are locally integrable. We adapt and clarify the proof given by Cooper [14]
n [14, Lemma 1].

Proposition 2.4.7 If f € P(Co(R%)), then f € LL _(R9).

Proof. Let K C RY be any compact set and I=[ay, b1]x [ag, ba] . . . x[ag, bg] C
R be such that K C I. Let ¢ = max{|a1|,|b1],]az|, ..., |bal} > 0.

Let ¢ € Co(R) be such that 1 is positive on [—2¢, 2¢]. For any x =
(z1,72,...,74) € RY define W(x):=1)(z1)1(x2) ... (xq). Then ¥ € Co(RY)
is positive on [—2¢, 2¢]% and

9(z) =/ " U(z+y)U(y)dy = H 1/1 zi+y)U(y)dy; (2 €RY)
—c,c
is positive and continuous on [—¢, c|?. Thus,

inf X z)|dz z)q(z)| dz
xe[—c,C]dg( )/[—c,c]d|f( ) = /[—Cyc}d’f( )9 (z)|

< [ ] @t y)ue)dyas
= [ [ -y eeouiy)lixdy (19
R JRA
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where (18) follows from the Fubini theorem. Since f € P(Co(R?)), the
integral in (18) exists. Hence,

/!f !dz</!f \dz</cc]y(z)ydz<oo.
O

Remark. By Proposition 2.4.5, we can replace Cq(R?) in Propositions 2.4.6

and 2.4.7 with L{(R?) for any ¢ € [2,00], or C5(R?) for any r € [1,00].

Moreover, in Proposition 2.4.7, we can also replace Co(R?) with a more

general space J of functions defined on R?, provided that for any ¢ > 0, J

contains a function which is positive almost everywhere on [—c¢, ¢|%.

2.5 An extension of Bochner’s theorem to unbounded posi-
tive definite functions

We use Definition 2.4.1 with J = L2(R?). Note that L2(R?) is a smaller
class of functions than those considered by Cooper [14], since P(L?(R%))
P(LZ(R?)). However, for L?(R?) as opposed to the space of compactly sup-
ported functions LZ(RY) of Theorem 2.3.1 (with d = 1), we obtain the fol-
lowing Bochner-type theorem.

Theorem 2.5.1 Let f € L}(R?). Then
fe P(L2(Rd)) if and only if f >0,
where f denotes the Fourier transform of f.

We remark that under the hypothesis of Theorem 2.5.1, f will correspond to
a regular, in particular tempered, distribution, and hence Schwartz’s version
of Bochner’s theorem applies, see Theorem 2.8.1. Nevertheless, with regard
to applications where both f and its Fourier transform are functions, the
above generalised form of Bochner’s theorem in Cooper’s framework seems of
interest, along with its more elementary proof and the further consequences
shown in Sections 2.6 and 2.7 below.

The proof of Theorem 2.5.1 will be based upon the following two lemmas.

Lemma 2.5.1 Let p€[1,2] and g=p/2(p —1). Let f € LYR?) and ¢ €
LP(R?%). Then the integral in (13) exists, and

/ F(x = ¥)o(x)d(y) dxdy = / f@) (656" ) @) dz,  (19)
R4 JRE R4
where ¢*(z) = ¢(—z) (z € RY).
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Proof. Since the convolution of two elements of LP(R?) is in L"(R?) with
r=p/(2—p), and 1/q+1/r =1, it follows that

/Rd/Rdf(x—y)é(x)qb(y)dxdy’

S ¢( )o(x — 2) dxdz

z)(¢p* ¢%)(z) dz

<N Fllq 16 * "l

O

Remark. Lemma 2.5.1 also holds true for f € LL (RY) and ¢ € LE(R?). To
see this, let ¢ € L (Rd) and K C R? denote the compact support of ¢ * ¢*.
Then, in the final line of the above proof, we obtain

s < [ 16 |de) 6% 6. (20)

The following result is proved in a similar fashion to Proposition 2.3.4.

z)(¢ * ¢")

Lemma 2.5.2 Let f € LY(RY). Then f € P(L2(R%)) if and only if f €
P(S(RY)), where S(R?) denotes the Schwartz space of rapidly decreasing
functions on RY.

Proof. Since S(RY) c L2(R?), it follows directly that P(L?(R%)) c P(S(R?)).
For the reverse implication, we shall use the density of S(RY) in L2(R9).
Presume, f € P(S(R?)). Then, the integral

L, roc ity = [ (e o)

exists in the Lebesgue sense and is non-negative for all ¢ € S(R%). Since
f € LY(R?) and the convolution of an element of L'(R%) with an element of
L2(R%) is in L2(R%), the integral also exists for all ¢ € L2(R%).

Let ¢ € L2(R%). Then, similarly to as in the proof of Proposition 2.3.4,
there is a sequence (¢,),,cy in S(RY) such that [|[¢—1y[2—0 as n— oo, and

sup
zER4

/]Rd (¢(Z +¥)0(y) — Un(z + ¥)n(y ))dy‘ —0 asn — oo.
As f € LY(RY), it follows that

—0 asn— oo,

/]R 1) /R (624 ¥)0W) — bz + )i ) dyda
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and hence

/ £(x - ¥)$(x)8(y) dxdy = lim / £ — Y)0n(x)9n(y) dxdy > 0.
R4JRA R4 JRd

n—oo

g

Remark. Similarly, it can be shown that if f € L'(R%), then f € P(L2(R%))

if and only if f € P(Co(R%)). Thus, by Proposition 2.4.5 it follows that for

functions which are integrable over the whole of R4 P(L2(R%)) = P(L3(R%)).
We now use Lemmas 2.5.1 and 2.5.2 to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Since f € L*(R%), the integral in (21) exists for all
1 € S(R). Since the space of Schwartz functions is closed under convolution
[31, Th. IX.3 (a)], ¢ * ¥* € S(R?) for all ¢ € S(RY), where ¥*(z) = ¥(—2)
(z € RY). Hence, for any z € R? and ¢ € S(RY),

[SI[oH

(¢ * ’lﬁ*) (Z) = (27‘(’)7 / (w * w*j(x) efix~z dx = &(X) wv* (X) efix-z dx
R4 R4
N / [D(x)[* e dx,
R4

since

Y(—u)e™* du = / Y(u)ewxdu  (x e RY). (22)
R R

Hence, ¥* = ). By Lemma 2.5.1,
|| 5= 000 dxdy = | f(a)0 50 (2) da
R4 JR4 Rd
_ / / £(2) |9(x)[2 e~ #dxdz = (2m)
Rd JR4

(N8

F(x) [9(x)Pdx. (23)
R4

From (23) it is clear that if f > 0, then f € P(S(R%)). By Lemma 2.5.2 it
follows that f € P(L2(R%)).

Conversely, suppose that f (z) < 0 at some point z € R? (reductio ad
absurdum). f is continuous and bounded because f € LY(R%). It follows
that there exists § > 0 such that f(x) < 0 for all [|x — z|| < 4, where |-
denotes the Euclidean norm on R%. Let

P1(x) = { =P [(HX —l - 52)_1} if flx—zf <o (x € RY).

0 otherwise
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Then ¢; € CP(RY) ¢ S(RY). For ¢y := ¢, € S(RY), it follows by (23) that

AR d
2

0< / £ = y)s () 0oy dxdy = (2m)% [ F() a0 dx
Re JR4 Ré

= ﬂ'% AX X 2 X
=enff  Jemefax <o,

which is a contradiction. g
Remark. Tt follows from Theorem 2.5.1 that if f € L*(R?)NP(L?(R%)), then
f = f* almost everywhere. Indeed, f* = f > 0 by (22), and thus f = f*
almost everywhere by the uniqueness of the Fourier transform on L'(R?)
(11, Th. 34].

An alternative notion of L?-positive definiteness was introduced in [12],
where Definition 2.4.1 is used with J = L?(R) and f replaced with a two-
variable kernel & € L?(R?). Buescu et al. were primarily interested in the
spectral properties of the integral operator

/]R k(@ y)o(x)dr (¢ € LA(R)),

where k is such that [, [z k(z,y)p(2)¢(y) dzdy > 0 for all ¢ € L*(R). In our
case, we define the operator for a given function f € L'(R?) N P(L%(RY)),
associated with the sesquilinear form

do.ili= [ [ rx-y)o(il) dxdy (6.0 € L2(RY),

by
7(0) = [ Fx=y)olxdx=f'+0 (6 LR

By Young’s inequality, T : L2(R%) — L2(R%). The following facts proceed
immediately from the standard theory on forms and operators, see e.g. [19,
46]. Since f € P(L2(R?)), the quadratic form q[¢] := q[¢, ¢] is non-negative
and thus, ¢ is symmetric; that is, ¢[¢,¥] = q[i, @] for all ¢, € L2(R%).
q is bounded below by zero and its upper bound is ||f]|1, since for any
¢ € LA(RY),

0 <qle, ¢l < [[f** ll2lldlla <1118l = [/l 116]15,

by the Cauchy-Schwarz inequality and Young’s inequality, respectively. Our
operator T is non-negative, bounded and self-adjoint. Moreover, for any
¢ € S(RY), f*x ¢ € LI (R?) NL2(RY) by Young’s inequality, and thus

T(¢) = f*xp=F 'F(f'*¢) (¢€SRY),
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where F denotes the Fourier transform on L?(R%). Since F(-) and (f), the
Fourier transform on L'(R?), coincide on L!(R?) N L2(R?), it follows that

T(¢) = F1(20)2 f* F(9)) (6 € S(RY)).

By equation (22), f* = f > 0, and thus T = (277)%]:_1/\/1]@.7:, where M ;
denotes the multiplication operator M 4(-) := Fx0).
M is a bounded linear operator on L2(R9), for [M5(o)]2 < [0l #]l2

for any ¢ € L2(RY), and thus, so is 7. Since S(R?) is dense in L2(R%),
for any ¢ € L?(R?) there exists a sequence of functions (¢, )nen such that
bn € S(RY) and ||¢ — ¢nll2 — 0 as n — co. Thus, for any 1 € L2(R%), there
exists a sequence of functions (¢, )nen such that 1, € S(R?),

1T(¢) = T(pn)ll2 = T () — ¥n)ll2 < (| T]lopllt) — ¥nll2 = 0 asn — oo,

where ||T||op denotes the operator norm of 7', and

[f5 b = [T nlla = [[/7% (& = Pu)ll2 < 1f7 1]l = ¢nlla = 0 asn — oo

Hence,
d *
T(¢) = (2m)2F "M F(¢) = [+ ¢ (¢ € L*(RY)).
Since F is unitary on L2(R%), it follows that the spectrum of T, o(T),

coincides with the spectrum of My, O'(Mf). We know that O'(Mf) =

~ N ~ N

Range(f) = [0, max(f)], where Range(f) denotes the closure of Range(f),
since the operator M P A is invertible if and only if A is not in this range.

Moreover, it is clear that A € (M f) if and only if there exists a set K C RY,
|K| > 0, such that f(x) = X for all x € K, see [46, p. 103] for details.

2.6 Approximation by positive definite functions and convo-
lution squares

In this section we present some corollaries to Theorem 2.5.1. In particular,
we show that functions in P(L?(R?)) can be approximated by continuous,
classically positive definite functions. We also establish connections between
functions which are positive definite for L2(R%) and functions which arise as
convolution squares. We begin by proving the following technical lemma, a
consequence of which is that L!(R?)NP(L?(R%)) is a closed subset of L' (R%).

24



Lemma 2.6.1 Let p € [1,2] and ¢ = p/2(p—1). Let (fn)nen be a se-
quence of functions such that f, € LI(RY) and f, € P(LP(R?)) (n € N).
If limy, o0 || fo — fllg = 0 for some f € L4(R?), then f € P(LP(RY)).

Proof. Let ¢ € LP(R) and r = p/(2 — p). By Lemma 2.5.1,

L L hxey) = = )y o3t asay| < 15 = Flllo+ 71, 0

(n — o0). Thus,

[ 1= veamaiy=tim [ [ fux-y)oGa0) dxdy 0.
R4 J R4 Rd

n—oo Rd

O
Similarly, P(L3(R%)) is a closed subset of LL (R9) (recall, functions in
P(LZ(R?)) are automatically locally integrable by Proposition 2.4.7). In
fact, we have the following lemma, which will be used during the proof of

Lemma 3.4.4 (see Section 3.4).

Lemma 2.6.2 Let p€[1,2] and g=p/2(p —1). Let (fn)nen be a sequence
of functions such that f, € Li (R?) and f, € P(LE(RY) (n € N). If
My, o0 [ [fn(X) = f(x)|9dx = 0 for some f € LL_(RY) and any compact
set K C R%, then f € P(LH(RY)).

The proof of Lemma 2.6.2 follows the same steps as the proof of Lemma
2.6.1, using Lemma 2.5.1 and its ensuing remark. Lemmas 2.6.1 and 2.6.2
are analogous to the pointwise convergence property for the classical positive
definite functions, see [43, p. 412].

We now present some consequences of Theorem 2.5.1. The first obser-
vation is that L*(R?) N P(L2(R%)) is the closure of L}(R?) N Pc_ 4.

Corollary 2.6.1 Let f € LY(R?). Then, f € P(L%(R?)) if and only if there

is a sequence (gn)nen of continuous functions such that g, € LY(R?) NPq 4
(n € N) and limy, 0 ||gn — f]l1 = 0.

Proof. Suppose f € P(L%(R?%)). As f € LY(R?), its Fourier transform fis
continuous and bounded, and f(x) — 0 as ||x|| — oo (again, ||| denotes the
Euclidean norm on R%). Also, by Theorem 2.5.1, f > 0. Let

pu) = @n)~f 2w e R,
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and, for n € N, n,, := n?n(n-). Then,

Il = [ o= [ (zmt [ estan) 1.
R R : R

=1
Define X
hp(a) = f(u) e~ Ill?/2n%) > (u € RY).

Then, h,, € LY(R%). Let g, = h, be the inverse Fourier transform of h,,.
By Bochner’s theorem [9, Chapter IV.20], g, is continuous and classically
positive definite. In particular, it has the property that |g,(v)| < g,(0) < oo
(v € RY). By the Fubini theorem, for any v € R? and n € N,

<(27T)g » f(z)e ™= dz> o IxI2/(2n?) yivx gy

- / f(2) <<2w>—5 / (2m) % eI/ 2n?) minc(a=) dx) i
R4 R4

- /R () <H ((%)é /R ((277)*% e*x?/W) e~ imi(zimv) da:i>> dz
_ /]R 1) <ﬁ n (zw)ée@@vﬁf“/?) dz

- /Rd f(z) (nd(27r)_% 6_”"("_Z)”2/2>dz =[x (v).

By Young’s inequality, g, € L'(R?) (n € N). Since f € L}(R?) and ne L} (R%)
with [pq7(x) dx = 1, it follows that lim, o ||gn — f|l1 = 0 [42, Th. 1.18].
For the reverse direction, we need only show that g, € P(L2(R%)) (n €
N). Since g,, € L'(R?) (n € N), g,, has a continuous Fourier transform, and it
follows from Bochner’s theorem that g, > 0 (n € N). Thus, g, € P(L*(R%))
(n € N) by Theorem 2.5.1. O

We show next that L'(R%) N P(L2(R%)) is closed under convolution and,
under the further assumption of square integrability, under pointwise mul-
tiplication as well.

Corollary 2.6.2 Let f,gc L' (R?). If f, g€ P(L2(R?)) then fxgcP(L*(R?)).

Proof. Suppose f,g € P(L2(R?)). By Theorem 2.5.1, f, § > 0. By Young’s
inequality, f * g € L'(R?); moreover

Frg=(2m)

d
2

fa>0,
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so f*g € P(L2(R%)) by Theorem 2.5.1. O

Corollary 2.6.3 Let f,g € LY(RY) N L2(RY). If f,g € P(L2(RY)) then
fg € P(L*(RY)).

Proof. Suppose f,g € P(L?(R%)). By Theorem 2.5.1, f, g > 0. By the
Cauchy-Schwarz inequality, fg € L'(R%); furthermore

A~

fg=(2m)% fxg>0,

hence fg € P(L2(R9)) by Theorem 2.5.1. O

The next statement shows that functions which arise as ‘convolution squares’
are positive definite in the new sense, note that p*(z) = p(—z) (z € R%) as
before.

Corollary 2.6.4 If f = px* p* for some p € L1(RY), then f € P(L2(R%)).

Proof. Suppose f = p* p* with p € L'(R?). By Young’s inequality, f €
LY(R9). From (22) it follows that

~ d -
2

—_ R a
f=pxp*=(2n)2 pp* = (2m)2 |p|* > 0.

Thus, f € P(L2(R%)) by Theorem 2.5.1. O

This result is analogous to the classical result that if f = g * ¢* for some
g € L2(R), then f is continuous and positive definite in the original sense
[22, Th. 4.2.4]. Note that in the classical case we have f € L>°(R), since the
convolution of two elements of L2(R) is in L°°(R), whereas in our present
situation we have f = p* p* € L1(R?), again by Young’s inequality.

In Corollary 2.6.5 we show that a version of the converse to Corollary
2.6.4 is also true, viz. that a function which is positive definite w.r.t. L?(R%)
can be written, in some sense, as a convolution square. An analogous state-
ment is known for continuous, classically positive definite functions (Khin-
chine’s criterion, [22, Th. 4.2.5]). In particular, if f : R — C is a characteris-
tic function then there exists a sequence (gn)nen of complex-valued functions,
such that for any n € N, [p |gn(z)?dz = 1, and f(t) = limp—00 gn * g;;(¢)
holds uniformly in every finite t-interval. Note that a function f: R — C is
a characteristic function if and only if f € P 1 is continuous and f(0) = 1.
The final condition can always be achieved via normalisation due to the
bounded nature of classical positive definite functions.
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Corollary 2.6.5 Let f € L'(RY). If f € P(L2(RY)), then there is a se-
quence (pn)nen of functions such that p, € L2(R?), p,xp’ € LY(R?) (n € N),
and limy, o0 ||pn * 0l — fll1 = 0.

Proof. Let g, = hy, (n € N) be the functions constructed in the proof of
Corollary 2.6.1: then, lim,_, ||gn — f|l1 = 0. Let n € N. Since h,, > 0, then
h, = ¢ for g, := v/h, € L2(R?%). The Fourier transformation ¢, = F(q,)
given by

IS

gn(u) = Lim. (27r)_2/ gu(x)e” > dx  (ueRY)
(R, R]?

R—o0

defines a unitary operator F on L2(R?) to L2(RY). By Li.m.p_ o we mean
the limit in the mean as R tends to infinity. In other words, ||¢, —gn.rll2 = 0
as R — oo, where for any R > 0, g, r denotes the integrable function

qn,R(X) = { 4n(X); x € |-FR, R

0, otherwise,

and ¢, g represents its Fourier transform
() = (2) 4 [ gpf e vax (we Y,

The inverse operator F~1(g,) is given by

d

gn(x) = Lim. 2/ e du  (x € RY). (24)
R]d

R—o0

Let y € RY and define 0,,(x) := §,,(x+y) for all x € R?. Then, @, € L?(R%),
and it follows from (24) that

IS

Up(x) = Lim. (27r)2/ Gn(u+y) e du = g,(x) e ¥* (x € R%).
[-R, R4

R—o0
(25)
By the Parseval identity [1, Ex. 4.2.9] and (25), we have

/qun( X)0n (x )dx—/qun(x)vn(x)dx:/wqg(x) X dx.

It follows from a change of variables that

/Rd TtV dx = [ 3 (-x0d0x - y) dx,

Rd
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and thus,

Dl

n(y) = 20) [ Bl Y = o ()
R

where p, = (277)_% Gn(—) € L2(RY). O
Remark. Firstly, the converse to Corollary 2.6.5 is true, since for any n € N,
P * P} is continuous and classically positive definite by [22, Th. 4.2.4], and
thus, f € P(L?(R%)) by Corollary 2.6.1. Secondly, p, ¢ L'(R%) in general.
The proof of Corollary 2.6.5 is a natural extension of the proof of Theorem
4.2.4 (i) [22], to functions defined on R?. Note, however, that unlike in
Theorem 4.2.4 (i) [22], we don’t have [pa [pn(x)]? dx = 1, since we do not
assume that h,, is the density of a probability measure.

2.7 Sufficient criteria for generalised positive definiteness

It proceeds from Theorem 2.5.1 that an integrable function is positive def-
inite for L2(RY) if its Fourier transform is non-negative. In this section we
provide sufficient conditions for this criterion.

For a measurable set K C R? and p € [1, 00), let

V()= {1 K C \ J 10 ax < oo}

Naturally LP(K) C LP(R?), extending functions by zero on R¥\K. We
always use this embedding by extension in the following.

A direct consequence of Theorem 2.2.2 is that if ¢ € CM is bounded,
then f = o (]|-]|?) : R — [0, 00) is continuous and classically positive definite
for any d € N. We now generalise this observation to potentially unbounded
completely monotone functions.

Corollary 2.7.1 Let f € CM and g = f(|| - ||?) : R? = [0,00). If g €
LY(R9), then g € P(L2(RY)).

Proof. By Theorem 2.2.1, f is the Laplace transform of a non-negative
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measure p on [0,00). By the Fubini theorem, for any u € RY,

/ / e IIXIPPtg—ixu dx p(dt)
[0,00) JRRE
d

= / H ((277)_5/ e it dﬂ:i>,u(dt)
[0,00) ;1 R

IT ((2t) et/ ) u(an) = / (2t) 5 eI dt) > o

d
- /[o,oo) P [0,00)

Thus, g € P(L2(R)) by Theorem 2.5.1. O

The next result is an analogue of Pélya’s criterion [22, Th. 4.3.1] for con-
tinuous positive definite functions. Our extension also applies to unbounded
functions with an integrable singularity at 0. The proof is based on a tech-
nique used by Tuck [45], which shows the non-negativity of a certain Fourier
transform, and considers the case d = 1, i.e., functions defined on the real
line.

[SI[sH

g(u) = (2m)~

Corollary 2.7.2 Let f € LY(R) be a function with the following three prop-
erties.

i. f is locally absolutely continuous on (0,00), and f' € Li ((0,0)) has

loc
a non-positive, non-decreasing representative.

ii. f(x)=f(—z) (x € R).
iii. f>0.
Then, f € P(L%(R)).

Proof. By Theorem 2.5.1, we need only show that the Fourier transform
f > 0. Since f is even and real-valued, its Fourier transform f is given by

fo=y2 [Trwesaga  €em),

a real-valued, even, bounded function. It is immediate from property iii that
f£(0) > 0. Hence, it suffices to consider £ > 0 in the following. By property i,
f is non-decreasing on (0, 00). Using this property combined with the facts

that f is non-negative and integrable, it follows that

zli)rglo f(x)=0. (26)
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By the Mean Value Theorem, for any > 0 there is 0 < £, < x such that

/0 ") dy = of ().

Hence, since f is non-increasing on (0, 00), it follows that

0<af(z / fly (x> 0)
and consequently,

lim zf(x) = 0. (27)

z—0

Since f is locally absolutely continuous on (0, 00), we can use integration by
parts to obtain

/ f(z) cos(z €) da é[f()sin(xﬁ)]ii—l f'(z) sin(z €) dx

é- 1
(0 < 21 < z9 < 00), where
£ @) s )17 = L) sin(ea§) — a1/ o) UL
Since |sin(z)|, |Sln 2) | <1 (z €R), it follows from (26) and (27) that

Jim £ [F(@) sin(e )% = 0.

/f )cos(z§)d /f ) sin(z §) d

Using the same technique as in [45, Eq. 4] we find

Hence

00 27T(J+1)

/ F' () sin(x€) d Z / 2) sin(e €) da

=0

S0 (S5 o

Since sin(f) > 0 on [0, 7] and f’ is non-decreasing, it follows that

/ f(x)cos(z&)d / f'(z)sin(z &) dw > 0.
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0

Up to this point, we stipulated that the (generalised) positive definite func-
tions must be in L'(R?). This assumption ensures both the existence of
the integral (21) for ¢ € L2(R%) and the pointwise existence of f. In the
following we show that the generalised definition of positive definiteness can
be localised, extending it from L!(R?) to functions in LL (R?) or in L!(K)
for some closed, bounded set K C R

Let I= [a1, bl] X [GQ, bg] X. .. X [ad, bd] C R and define 1] := [—|Ily, \Ily]x
[—| 12, |I2]] % .. x[~|14],|14]] € R? where |I;| = b; — a; denotes the length of
the interval I;. Let f € LY(||I]|). Then, similarly to Lemma 2.5.1, for any
¢ € L*(I),

L [ o= yeatiixay = [ faoro@dn(23)

1l

since ¢ * ¢* has support in ||I]|. The existence of the integral is guaranteed
by the fact that f € L(||I]|). By Theorem 2.5.1, if the Fourier transform of
fXx|r is non-negative, then fx € P(L2(R%)) c P(L3(I)), which in turn
shows the non-negativity of the integral in (28).

The next result is a local variant of Corollary 2.7.2, based on the natural
embedding of LP(K) into LP(R). We need a further technical condition at
the end-point of the interval.

Corollary 2.7.3 Let I = [a,b] C R be any closed, bounded interval, and
|I| = b—a its length. Let f € LY([~|I|,|I]]) be a function with the following
properties.

i. f is locally absolutely continuous on (0, |I[], and f' € LL _((0,|I]]) has
a non-positive, non-decreasing representative.

i. f(x) = f(=z) (x € [=[I][1]])-

iii. f(z) >0 (z € [-|I],]1]).

. f(I]) =04 f'(|1]) = 0.
Then, f € P(L3(I)).

Proof. Define

f(l‘) = f/(m)(|m|7|1‘)

. f(z) if |z < |1
F(H)e ramy

otherwise
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if f(|I])# 0;if f(]I]) =0, we set f(z) = 0 for |z| > |1].

Then, the function f satisfies the hypotheses of Corollary 2.7.2, and
hence, is an element of P(L2(R)) C P(L3(I)). Moreover, f(z) = f(x) (z €
(=], 111]), so f € P(L*(1)). 0
Remark. If f'(|I]) = 0 and f(|I|) # 0, then it is not possible to find an
extension of the function f from [—|I|,|I|] to the whole real line which is
continuous, integrable and has a derivative with a non-decreasing represen-
tative.

It follows immediately from Corollary 2.7.1 that if f € CM and g =
f(-2) € LY(R), then g is positive definite for L?(R). We remark that the
result of squaring, or taking the square root of, the argument in a completely
monotone function will, in general, not be a completely monotone function.

If we do not square the argument, but just extend the completely mono-
tone function to an even function on the line, then the resulting function
will satisfy the hypotheses of Corollary 2.7.2, yielding the following corollary,
which is similar to Corollary 2.7.1 for functions defined on R. However, the
function g of Corollary 2.7.1 (again, with d = 1), with a squared argument,
does not satisfy property i. in Corollary 2.7.2, since ¢'(z) = 2xf'(2?) is
not non-decreasing on (0, 00); hence, for functions defined on the real line,
Corollary 2.7.1 cannot be obtained in this simple way.

Corollary 2.7.4 Let f € CM. If g = f(|-|) € LY(R), then g € P(L%(R)).
Moreover, we have the following localised versions.

Corollary 2.7.5 Let I C R be any closed, bounded interval. Let f € CM
be non-constant. If g = f(| -|) € LY([—|I|,|1]]), then g € P(L*(I)).

Proof. If f € CM, then by [35, Remark 1.5], f(x) # 0 for all n > 1 and
all x > 0 unless f is identically constant. Thus g satisfies the hypotheses of
Corollary 2.7.3. 0

Corollary 2.7.6 Let f € CM be non-constant. If g = f(|-|) € LL.(R),
then g € P(LE(R)).

Proof. For any ¢ € L3(R),

/R /R 9z — y)d()B(y) dady = /I /I o(z —1)6(@)o(y) dudy,  (29)

33



where I denotes a closed, bounded interval which includes the compact sup-
port of ¢. Since g € L (R), it follows that g € L'([~|I|,|I]]), and by

loc

Corollary 2.7.5 the integral in (29) is non-negative. g
Completely monotone functions can be obtained as derivatives of Bernstein
functions [35, p.18]. Taking functions f; from the list of Bernstein functions
in [35, Chapter 15], the following derived functions g; = f/(| - |) (up to
multiplication by a positive normalising constant) are elements of P(L3(RR))\
Pc,1 by Corollary 2.7.6.
gi() = o], 0<a<1;
gs(a) = 2 /(1 + J2)*, 0 < < 1
_ a—1 B B—1 o a2
gn(@) = (af2*7 (1= |of?) = Bz (1 = Jal*)) /(1 = J2])?,
O0<a<p<l;
- oy — _ a2
gi6(x) = (e[ o aga 70T /(T [

Ogal,...,angl;
g9(w) = (1 — (M2 - 1e™ m) [Vl A > 0;
g23(x) = |z (1 + 1/|z) T log (1 + 1/|z) (z € R\ {0}).

Remark. Tt is not the case that all functions in P(L3(R)) are of the form de-
scribed in Corollary 2.7.6. In other words, there exist functions in P(L3(R))
which are not the even reflection of a non-constant, completely monotone
function. For example, by Proposition 2.3.1, the cosine function is positive
definite with respect to L3(R). The same is true for functions in P(L?(R)).
The inverse hyperbolic cosine function has a non-negative Fourier transform,
and thus is positive definite for L2(R) by Theorem 2.5.1, yet, its second
derivative changes sign at x ~ 0.8815.

The following result is a direct consequence of Corollary 2.7.1, and pro-
vides a basis for finding examples of functions in P(LZ(R?)) with d > 2,
which are unbounded at zero.

Corollary 2.7.7 Let f € CMNLL ((0, 00)). For any s > 0, define

loc

g(x) = f(Ix[*)e X" (x € BT, (30)
Then, g € P(L3(RY)) for any d > 2.

Proof. Let s > 0 and d > 2. Since the product of completely monotone
functions is completely monotone, see Section 2.2, it follows that fe™* |(0,Oo) €
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CM, where e™%|(g o) denotes the restriction of e™* to the domain (0, c0).
Moreover, g € L'(R?); for a change of variables to polar co-ordinates gives,

1 oo
/ 9(x) dx = wi—y / f(r2)€_sr27"d_1 dr + wi—1 / f(?"g)e_s’"2rd_l dr
Rd 0 1

1 ]
wdil / f(x)m% dr + wgq_1 f(l)/ e gy < oo,
0 1

<

where wg_1 denotes the volume of the unit (d—1)-dimensional ball and r the
radius. Thus, g € P(LZ(R?)) by Proposition 2.7.1. O

The derivatives of the functions listed in [35, Chapter 15] are completely
monotone and locally integrable on (0,00). For those with a singularity
at the origin, the corresponding functions in P(LZ(R%)) (d > 2) can be
constructed using (30).

2.8 Positive definite distributions and an alternative proof
of Theorem 2.5.1

The concept of positive definite functions was extended to positive definite
distributions by L. Schwartz [41, Chapter VII, §9]. We introduce the no-
tion of a positive definite distribution and present Schwartz’s analogue of
Bochner’s theorem, which states that a distribution is positive definite (and
tempered) if and only if it is the Fourier transform of a non-negative measure
of slow growth, i.e. such that the measure of balls is polynomially bounded
in terms of the radius. Using this result, we then provide an alternative
proof of Theorem 2.5.1.

Firstly, we introduce the following notation. Let N¢ denote the set of all

d-tuples of natural numbers and for f : R? - C and u = (uy,ug,...,uq) €
N¢, define
u 5‘U| d
D*(f(x)) := Wf($17$2,-~-7$d) (x € RY),

where |u| = Zle u;.

Let D(RY) denote the set C3°(R?) with the topology usual for the theory
of distributions: a sequence of functions f, € D(RY) converges to f if and
only if the supports of f and all the f,,’s lie inside a common compact set
K c R%, and D" f, converges uniformly to D" f for each multi-index u € N¢,
as n — oo. A distribution (or generalised function) is a continuous linear
functional on D(R?). The space of all continuous linear functionals on D(R?)
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is denoted by D’(R?). Positive definiteness is now defined in the following
sense.

Definition 2.8.1 A distribution T € D/(R?) is said to be positive definite
if T(¢*¢*) >0 for all ¢ € D(R?), where ¢*(x) = ¢(—x) for any x € R%.

In order to see why this definition can be considered an extension of
Definition 2.1.1, observe the distribution T; associated with any locally
integrable function f;

Ty(o) = Rdf(x)d)(x) dx (¢ € D(RY)). (31)

In this particular case, for any ¢ € D(R?),

Ty 0 = [ 1)@ ax= [ [ o= y)ooly) dxdy,

by Lemma 2.5.1. Hence, for f € LL (R?), Ty is a positive definite distribu-
tion if and only if f € P(C3(R?)). Moreover, by Proposition 2.4.6, if f is
continuous, then T is positive definite if and only if f is classically positive
definite as in Definition 2.1.1.

Next, we define what it means for a distribution to be tempered. Recall
that S(RY) denotes the Schwartz space of rapidly decreasing functions on

R?. That is,

s%ﬂz{feCW®%

|| flluv < oo for any u,v € Nd}7

where

[ fllay = sup X"DY(f(x))| (u,veN, feSRY)
x€R4

d ) . .. .
and x" = [[_, ;", as in standard multi-index notation.

Definition 2.8.2 The dual space of S(R?), denoted by S'(R%), is called the
space of tempered distributions.

For m,n € N and f € S(RY), let

1 W, = > 1IF]

lu|<m
lvl<n

u,v-

This defines a family of norms on S(RY). For if f € S(R?) and W flll e, =0
for some m,n € N, then for each x # 0, we have DV(f(x)) = 0 for all
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v € N? such that |v| < n. Moreover, since DV (f) is continuous, it follows
that DV(f(x)) = 0 for any x € R%. Hence, f € S(R?) is a polynomial which
vanishes at infinity and therefore, f = 0.

For a linear functional T on S(RY) to be in S’'(R%) it must be continuous.
By Theorem [30, Th. V.2], this is equivalent to requiring C' > 0 and m,n €
N, such that |T(¢)| < C|oll,,,, for all ¢ € S(R%). Using this observation,
we now present some examples of tempered distributions.

1. Let f € LY(R?) and consider the functional

Ty(#)= [ Jx)o(x)dx (6 € SRT). (32)

Ty is clearly linear and [Tf(¢)| < C|¢llq o with C=||f||1, for any ¢ € S(RY).
Thus, the distribution associated with an integrable function is tempered.
2. Let f € L] .(R?) be such that there exists n € N with [5, |f(x)]/(1+
1x||*)"* dx < 0o, where ||-|| denotes the Euclidean norm. Consider the func-
tional defined in (31) with test functions in S(R?).
Ty is linear and for any ¢ € S(RY),

500 < [ o P (1 I 009

Let 1) € S(RY). Then, for any x € R?,

n

1+ 1] = 3 () Il o)

=0
< K (j0(0)] + %P 001+ . + ]2 o))
<K S W) <K Y sup [a(z)] < o,

d
lu|<2n lu|<2n Z€R

where K is chosen so that K > (%) for any i=0,...,n, and (}) =n!/i!(n—1)!
denotes the standard binomial coefficient. Thus, [Tf(y)[ < C|[|¢|l,, o With
C =K [pa f(x)]/(1 + [[x]*)"dx and m = 2n.

Definition 2.8.3 ([41, p.97]). A measure p on R? is said to be of slow
growth, or polynomially bounded, if there exists n € N such that

du)l
/Rd 1+ <2 =
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3. Let v denote a non-negative, slow-growing measure on R?. Similarly
to example 2 above, the distribution associated with v,

T.(0) = [ oG)avi) (o€ SRY),

is tempered [41, Th. VII].

The following result proceeds directly from Lemmas 2.5.1 and 2.5.2, and
demonstrates that the tempered distribution associated with an integrable
function in P(L2(R?)) is positive definite.

Proposition 2.8.1 Let f € LY(R?). Then, T, as defined in (32), is posi-
tive definite if and only if f € P(L2(R%)).

Next, we define the Fourier transform on S'(R9).

Definition 2.8.4 Let T € S'(R?). Then, the Fourier transform of T, de-
noted by T, is the tempered distribution defined by T(¢) =T(¢) (¢ € S(R?)).

Remark. For f € L1(R?) and T as defined in (32), it follows directly from
the Fubini theorem that Tf = T}. For, for any ¢ € S(RY),

16 = [ 160 (@0 L[ owyexda) ax= [ flajota)da=1500)

The central result on the theory of positive definite distributions is the
Bochner-Schwartz theorem, which characterises positive definite, tempered
distributions as Fourier transforms of non-negative, slow-growing measures.

Theorem 2.8.1 (Schwartz, [41, Th. XVIII)). A distribution T € D'(R?) is
positive definite if and only if T € S'(RY) and T is the Fourier transform
of a non-negative, slow-growing measure.

Theorem 2.8.1 infers that certain distributions in D’(R%), namely those
which are positive definite, are necessarily tempered. Moreover, the result
can be used to prove Theorem 2.5.1 as follows.

Proof of Theorem 2.5.1. Since f € L'(R?), then T;(¢) = [paf(x)d(x)dx
(¢ € S(RY)) is a tempered distribution, see example 1 above.

Suppose, f € P(L?(R%)). Then, Ty is positive definite by Proposition
2.8.1 and thus, by Theorem 2.8.1,

T/(0) = T5(0) = [ Jot0dx= [ sGodutx) =Tule) (63
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for any ¢ € S (Rd), where /1 is a non-negative, slow-growing measure on R,
It follows that f > 0 by proof by contradiction; for if f(z) < 0 at some point
z € R, then there exists § > 0 such that f(x) < 0 for all ||x — z|| < J, since

~

f is continuous. Let

w(xF{eXp[(”x‘z”Q‘ﬁ)_l} o=l <0y e o),

0 otherwise

Then 1 € C°(RY) C S(RY) and it follows by (33) that
0 du(x) = f dx < 0,
< [ w60 dutx) /” LICEE

which is a contradiction.
Conversely, suppose f > 0. Since f € L'(R?), then f is bounded on RY.

Take v to be the measure whose density is f. Then, v is non-negative and
slow-growing on R?, and

Tr(@)=Ti9) = | $)dr(x) =Tu(9) (¢ € SEY).

Thus, T is positive definite by Theorem 2.8.1 and hence, f € P(L%(R?)) by
Proposition 2.8.1. 0
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3 On Conditionally Negative Definite Functions
With A Singularity At Zero

The renowned Schoenberg theorem [39, Th. 2] establishes a connection be-
tween positive definite and conditionally negative definite functions. Using
the framework outlined in Sections 2.3 and 2.4 as motivation, we consider
the class of functions CN(J), which are conditionally negative definite with
respect to a given set of test functions J. For suitably chosen J, CN(J)
contains the classical conditionally negative definite functions, which take
finite values at zero, as well as functions which are singular at the origin.

Our main result is Theorem 3.4.1, which is a generalisation of Schoen-
berg’s theorem to functions in P(J) and CN(J), for J = LZ(R9). Several
other results concerning the class CN(LZ(RY)) are also established. For ex-
ample, we demonstrate that functions in CN(L3(R?)) are locally integrable
(see Lemma 3.3.1) and that CN(LZ(R?)) is a closed subset of LL (R?) (see
Lemma 3.3.2). Furthermore, we show that real-valued functions which are
conditionally negative definite w.r.t. L%(Rd) can be approximated, in the
Llloc(]Rd) sense, by a sequence of infinitely differentiable, classically condi-
tionally negative definite functions (see Lemma 3.4.3). Finally, using The-
orem 3.4.1, we indicate how to construct numerous examples of singular
functions f € CN(LZ(RY)), such that —f ¢ P(LZ(R9Y)) (see Section 3.5).
The results described in this section have appeared in the Journal of Math-
ematical Analysis and Applications in the form of the paper [27].

The structure of this section is as follows. We start with an overview of
the conditionally negative definite functions as defined in the classical liter-
ature, see Section 3.1. In Section 3.3 we extend the definition of conditional
negative definiteness to incorporate functions with a singularity at zero, and
subsequently, develop the theory of these newly defined functions. Section
3.4 contains the proof of Theorem 3.4.1, split into a series of lemmas. In
Section 3.5 we prove two corollaries to Theorem 3.4.1 and provide several
algorithmic schemes for constructing functions in CN(L3(R?)).

3.1 Classical conditionally negative definite functions

Conditionally negative definite functions arise naturally in the theories of
probability and potentials. The standard references for these functions are
the monographs [3] and [4], where the term conditionally is dropped and the
functions are called simply, negative definite. In other areas of the litera-
ture, however, see e.g. [35, Def. 4.3], negative definite functions are defined
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differently to those which are conditionally negative definite. We quash
this confusion and solely focus our attention on the following definition of
conditional negative definiteness.

Definition 3.1.1 A function f : R¢ — C is conditionally negative definite
if fis conjugate symmetric, that is f(x) = f(—x) for all x € R?, and

Z f(xi —x5)v;7; <0 (34)
,j=1
for all x1,X2,...,%, € R? and vy, vs,...,v, € C satisfying Y., v; = 0,

with any n € N.

We shall denote the set of functions defined in Definition 3.1.1 by CN¢ 4.
The conjugate symmetry of functions in CN¢ 4 is stipulated since unlike
functions in P¢ 4, which are automatically conjugate symmetric by (5), the
property no longer follows from the sum in (34) due to the extra constraint
on the v;s. For example, the function f(x) = x (¢ € R) is non-conjugate
symmetric, yet, for any n € N, x1,x9,...,2z, € Rand vy,vo,...,v, € Csuch
that 1", v; =0,

n
E fla; —zj) v 05 = E T v; U — E xjv;v; =0

1,j=1 4,j=1 4,j=1

The same is true for g(z) = (a + x)?, for any a € R\{0}.

A simple example of a function in CN¢ 4 is f = || - ||%, since for any
n €N, x1,Xa,...,%X, € R? with component form x; = (Tiy s Tigs - - -5 Tiy),s
and v, v, ...,v, € C such that Y ;" ; v; =0,

ZHXZ—X]H V0 = Z Z Qxlkﬂ:]k%—xjk VU = —ZZ

1,7=1 k=11,7=1 k=1

I

2

E T Vg

=1

It is clear that if f is a classically positive definite function, then —f
is conditionally negative definite. The converse is not true. For example,
f(x) = —|x|? (x € R?) is not positive definite since |f(x)| > f(0) for any
x € RN\{0}. Both classically positive definite and conditionally negative
definite functions take finite values at zero. However, unlike positive defi-
nite functions, functions in CN¢ 4 can be unbounded away from the origin.
Again, the example f = | - |> demonstrates this. Conditionally negative def-
inite functions need not be negative or continuous; the function f(x) = —1
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if x =0, f(x) =0 otherwise (x € R?) is in CN¢_4, but not continuous; the
negative cosine function is in CN¢, 1, but not non-positive.
The following are simple properties of functions in CNc¢ 4.

i. f € CNg,q if and only if f € CN¢ g4.

ii. If f1,fo,...,fn € CNg,gand ¢; >0 foralli =1,...,n, then
i cifi € CNe,q.

iii. If f € CNg g4, then f 4+ a € CN¢ 4 for any o € C.

iv. If f,, € CN¢ 4 for all n € N and the pointwise limit, lim, o fn(x) =
f(x), exists for all x € R, then f € CNc 4.

These properties follow immediately from Definition 3.1.1. A direct con-
sequence of the first two properties is that if f is conditionally negative
definite, then so is Re (f) = (f + f)/2.

For real-valued functions we can use the following alternative definition
of conditional negative definiteness.

Definition 3.1.2 A function f : R? — R is conditionally negative definite
if f(x) = f(—x) for all x € R% and the inequality in (34) holds for all
X1,X2,...,%Xp, € R and v1,v,...,v, € R satisfying Yo, v =0, with any
n € N.

The functions defined in Definition 3.1.2 are automatically conditionally
negative definite as in Definition 3.1.1. This can be seen by using (7) with
V1,02, ..,0, € Csuch that Y1 ;v;=0, giving > . ja; =Y i 1b;=0.

As with positive definite functions, the definition of a conditionally neg-
ative definite function can be extended to functions and two-variable kernels
on general topological spaces, groups and semigroups, see e.g. [2, 4, 5, 35].
However, we restrict our attention to the conditionally negative definite
functions defined in Definition 3.1.1. In later sections we will mainly be
interested in real-valued functions, in which case, Definitions 3.1.1 and 3.1.2
are interchangeable. Henceforth, when referring to classically conditionally
negative definite functions or functions in CN¢ 4, we mean those defined in
Definition 3.1.1.

The celebrated Schoenberg theorem establishes a relation between posi-
tive definite and conditionally negative definite functions.

Theorem 3.1.1 (Schoenberg, [35, Prop. 4.4]). A function f : R — C
s conditionally negative definite if and only if for all t > 0, the function
g: x — e ™) 45 positive definite.
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Theorem 3.1.1 stems from [39, Th. 2] where it is stipulated that f is con-
tinuous and non-negative, and vanishes at the origin. Proofs of the result
can be found in [2, Th. C.3.2] and [4, p.74], as well as [35, Prop. 4.4] and
[39, Th. 2]. In Section 3.4 we generalise Theorem 3.1.1 to the case when
the functions f and g can be singular at the origin.

3.2 Bernstein functions

The notion of a Bernstein function is thought to have originated in the poten-
tial theory school of A. Beurling and J. Deny. The name Bernstein function
is not universally accepted in the literature, for example, Bochner [10] re-
ferred to Bernstein functions as completely monotone mappings, and many
probabilists still choose to call them Laplace exponents. Bernstein functions
are closely related to completely monotone functions, in fact, Schoenberg
[38] defined them as primitives of functions in CM. We introduce the defi-
nition of the Bernstein functions presented in [35, Chapter 3] and provide a
short introduction into their theory.

Definition 3.2.1 A function f : (0,00) — [0,00) is a Bernstein function
if f € C*((0,00)) and

(=1)"=" 7 =0 on (0, 00)
for all n € N [35, Def. 3.1].

In particular, any Bernstein function is non-negative and non-decreasing.
Unlike completely monotone functions, Bernstein functions are always boun-
ded at zero, however, they may or may not be bounded away from the origin.
For example, both fi(x) = x and fa(z) = z/(x + 1) (x € (0, 00)) are
Bernstein functions. The family of all Bernstein functions is denoted by BF.
Similarly to bounded completely monotone functions, functions in BF can
be extended continuously to [0, c0). Due to the monotonicity of f € BF,
this can be achieved by taking f(0) := f(0+) = lim,_,o f(z) [35, p. 28].

The derivative of a Bernstein function is completely monotone. The
converse is only true if the primitive of a completely monotone function is
non-negative. This condition fails, for example, for the completely mono-
tone function f(z) = 27 (0 < a < 1,z > 0). However, a non-negative
C>((0, 00))-function f, is a Bernstein function if and only if f’ is completely
monotone. The following theorem of Bochner highlights further connections
between Bernstein and completely monotone functions.
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Theorem 3.2.1 (Bochner, [10, p. 83]) Let f be a positive function on
(0,00). Then, the following assertions are equivalent.

i. f e BF.
ii. go f € CM for every g € CM.
iwi. e~tf € CM for every t > 0.

For a recent proof see e.g. [35, Th. 3.6]. Many corollaries to Theorem 3.2.1
may be found in [35, Chapters 3, 4].

The next theorem, given without proof, provides a useful characterisa-
tion of Bernstein functions.

Theorem 3.2.2 ([35, Th. 3.2]). A function f : (0,00) — [0,00) is a
Bernstein function if, and only if, it admits the representation

f@) = arbot [ (=) pla), (35)
(0,00)

where a,b > 0 and p is a non-negative measure on (0,00) satisfying

f(o 00) min(1,¢) u(dt) < oo. In particular, the triplet (a,b, u) determines f

uniquely and vice versa.

Theorem 3.2.2 appears elsewhere in the literature, see e.g. [10, Chapter 4],
[3, p.114]. Equation (35) is often called the Lévy-Khintchine representation
of f. The measure p and the triplet (a,b, ) are referred to as the Lévy
measure and the Lévy triplet of the Bernstein function f, respectively, see
e.g. [35, Rem. 3.3 (i)], [3, Chapter 4].

We note that the integrability condition f(O,oo) min(1,¢) pu(dt) < oo en-
sures that the integral in (35) exists for all z > 0 [35, Rem. 3.3 (iii)]. It
follows from (35) that a = f(0+), and using the dominated convergence
theorem it can be shown that b = lim,_,o f(z)/x, [35, Rem. 3.3 (iv)].

Some properties of Bernstein functions are listed below.

L If fi,fo,...,fneBFand ¢ >0forali=1,...,n, then Y /' ¢ fi €
BF.

ii. If f, € BF for all n € N and the pointwise limit, lim,,_,o, fn(z) = f(z),
exists for all x > 0, then f € BF.

ii. If fl, fg € BF, then f1 o f2 € BF.
iv. If f € BF, then z — f(z)/z is in CM.
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v. f € BF is bounded if, and only if, in (35) b =0 and u(0,00) < co.

vi. Let f1, fo € BF and a, 8 € (0,1) be such that « + 8 < 1. Then,
x> f1(z) fo(2?) is in BF.

The first property follows directly from Definition 3.2.1 or, alternatively,
from the representation in (35). The remaining properties can be proved
using Theorems 3.2.1 and 3.2.2, see e.g. [35, Cor. 3.7].

Another theorem belonging to Schoenberg, which links Bernstein func-
tions and conditionally negative definite functions in a similar fashion to the
bounded completely monotone functions and positive definite functions in
Theorem 2.2.2, is as follows.

Theorem 3.2.3 (Schoenberg, [38, Eq. 5.14]). A function ¢ : [0,00) —
[0,00) is a Bernstein function if and only if for all d € N, the function
f=u(-I?) : R? = [0, 00) is continuous and conditionally negative definite.

In particular, if 1 € BF, then f = o(||-||?) : R = [0, 00) is continuous and
conditionally negative definite for any d € N. In Corollary 3.5.1 we show
that such functions are also conditionally negative definite in an extended
sense. For a recent proof of Theorem 3.2.3 see e.g. [35, Th. 12.14], [10, p.
99].

3.3 Conditional negative definiteness in the extended sense

We now introduce a definition of conditional negative definiteness which al-
lows for functions with a singularity at the origin. As in Section 2.4, let
J be a set of complex-valued measurable functions on R%. Again, this in-
cludes functions defined on a non-empty, measurable subset of R? which
we consider to be extended by zero to the whole of R?. Motivated by Defi-
nition 2.4.1 we define an extended notion of conditionally negative definite
functions as follows.

Definition 3.3.1 A function f : R¢ — C is called conditionally negative
definite w.r.t. J if f is conjugate symmetric a.e., that is f(x) = f(—x) f.a.a.
x € R4, and for every ¢ € J satisfying Ja @(x) dx = 0, the integral

/ fx — y)6(x)0(y) dxdy (36)
Rd JRA

exists (in the Lebesgue sense) and is non-positive.
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Let CN(J) denote the class of all functions which are conditionally negative
definite w.r.t. the set J. Similarly to as in Sections 2.3 and 2.4, for certain
spaces of functions J, Definition 3.3.1 enables us to extend the concept of
conditional negative definiteness to functions which have a singularity at
zero. Again, we shall mainly consider the spaces J = LP(RY) (and their
local versions) for various values of p.

The following properties proceed directly from Definition 3.3.1.

i. f€CON(J)« fe CN(J) if J is closed under complex conjugation.

—e

i If f1, fo,. .., fn € CN(J) and ¢; > 0 (Z = 1,...7n), then Z?:l cfi €
CN(.J).

i

—

i. If f € P(J), then —f € CN(J).
iv. If f € CN(J), then f 4+ a € CN(J) for any a € C.
v. If J; C Jo, then CN(JQ) - CN(Jl).

In Corollary 3.5.1 we show that under certain conditions on our function,
Definitions 3.1.1 and 3.3.1 coincide. In particular, a real-valued, continuous
function is classically conditionally negative definite if and only if it is con-
ditionally negative definite w.r.t. Co(RY).

Recall that for p € [1, 00)U{oc}, LE(IRY) denotes the subspace of functions

LP

loc

in LP(R?) with compact essential support, and by f, —< f as n — 0o, we

mean that f, converges to f in the L{’O C(R”l) sense as n — 00; that is,

lim /K fu(x) = F)Pdx = 0

n—0o0

for any compact set K C R?. Next, we demonstrate that as p increases from
1 to 2, CN(LH(R?)) increases from a smaller class of functions to a larger
such class; but for all p > 2, CN(L5(R?)) remains the same.

Proposition 3.3.1 For any p € [1,2], CN(LE(R?)) C CN(L3(R%)).
Proof. This follows directly from property v. above. O

Proposition 3.3.2 For any p € (2,00] and v € [0,00], CN(L3(R%)) =
CN(L§(R?)) = CN(C(RY)).
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Proof. Let p € (2,00], r € [0,00]. Since Cj(RY) C LH(RY) c L(RY), it
follows immediately that CN(L3(R%)) ¢ CN(LH(R?)) € CN(Ch(R?)).

For the reverse implication, consider the following. Let ¢ € L3(R?) be
such that [pq¢(x)dx = 0. For n € N, let ¥,, denote the functions defined
in (17), and set

Y i=¢ x ¥, (neN).

Then, v, € C5(R?) C LE(R?) for all r € [0,00], p € [2,00], n € N, and by
the Fubini theorem,

y P (x) dx = /Rd(qﬁ x U,)(x)dx = /]Rd » d(x —y) ¥, (y)dydx
= ¢(z) dz/ U,(y)dy =0.
R4 Rd

2
Lloc

Moreover, ¢, —= ¢ as n — oo, by [42, Th. 1.18].
Let r € [0,00] and suppose f € CN(C5(R?)). Provided f € L} (RY),
which it is by Lemma 3.3.1 below, the integral

/ £(x — y)o(x)8(y) dxdy = / (f* 6)(y)80) dy
Rd JRE Rd

exists as a Lebesgue integral. Similarly to as in the proof of Proposition
2.3.4, it can be shown that

/ f(x — ¥)6(x)8(y) dxdy = lim / £(x = ¥)n (X)Pn(y) dxdy < O,
R2JRA RdJRd

n—oo

and the result follows, for CN(Cj(R?)) ¢ CN(L3(R?)). O

As Propositions 3.3.1 and 3.3.2 suggest, CN(L2(R%)) is a wide and in-
teresting class of functions. In particular, functions in CN(L2(R?)) need not
be bounded at the origin, which will be demonstrated in later examples (see
Section 3.5), they need only be locally integrable. This fact is proved in the
following lemma.

Lemma 3.3.1 If f € CN(L3(RY)), then f € L (R?).
Proof. Let K C RY be any compact set and I=[ay, b1]x [ag, ba] . . . x[ag, bg] C
R be such that K C I. Let ¢ = max{|a1|,|b1],]az|, .., |ba|} > 0.

Let ¢ € L3(R) be such that 1 is positive and continuous on [—2c, 2c],
and [p¥(z)dr = 0. For any x = (z1,22,...,24) € R% define ¥(x) :=
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Y(z1)Y(22) ... ¢(zg). Then, ¥ € L3(RY), [oa¥(x)dx = 0 and, using the
same steps as in the proof of Proposmon 2 4.7, it can be shown that

[ v@ldz< [ 1)< /[ s < o0

)

O

Remark. By Proposition 3.3.2, we can replace L3(R?) in Lemma 3.3.1 with
LA(R?) for any p € (2,00], or C5(R?) for any r € [0, 00]. We can also replace
L2(R%) with a more general space J of functions defined on RY, provided that
for any ¢ > 0, J contains a function h, which is positive almost everywhere
on [—c, ] and [pq h(x)dx = 0.

The following result is analogous to Lemma 2.6.2 and demonstrates, as
a particular case, that CN(L3(R?)) is a closed subset of LL (R?) (recall,
functions in CN(L3(R%)) are necessarily locally integrable by Lemma 3.3.1).

Lemma 3.3.2 Let p€[1,2] and g=p/2(p —1). Let (fn)nen be a sequence
of functzons such that f, € L{ (RY) and f, € CN(LE(RY)) (n € N). If
loc

loc
fa =% f asn — oo, for some f € L{_(R?), then f € CN(LH(R?)).

Proof. Let ¢ € L} (RY), K c R? denote the compact support of ¢ * ¢*, and
r =p/(2 —p). By equations (19) and (20),

[ ey = s - y>>¢<x>¢<y>dxdy'
R4 JRA

< (/ e |qdz)q||¢*¢*”r—>0

/R 6= )6(x)3) dxdy = fim fo (% — ¥)6(x)8(y) dxdy > 0.

n—oo Rd JRd

(n — o00). Thus,

0

In the next section, for reasons which will be discussed, we will mainly
be interested in real-valued functions f. For any set of functions J, let
Jr := {1y € J | ¢ is real-valued}. Consider the following definition for real-
valued, conditionally negative definite functions.

Definition 3.3.2 A real-valued function f : R¢ — R is called conditionally
negative definite w.r.t. .J if f is even a.e., that is f(x) = f(—x) f.a.a. x € R?,
and for every function ¢ € Jp satisfying [p4 ¢(x) dx = 0, the integral in (36)
exists (in the Lebesgue sense) and is non-positive.
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Note that in general, J is an arbitrary set of test functions containing both
real and complex-valued elements.

Let CN(Jg) denote the class of all real-valued functions which are con-
ditionally negative definite with respect to J by Definition 3.3.2. The next
proposition demonstrates the connection between real-valued functions which
are conditionally negative definite as in Definitions 3.3.1 and 3.3.2.

Proposition 3.3.3 Let f : R? — R and J denote a vector space of complez-
valued functions on RY, such that if ¢ € J, then ¢ € J. Then, f € CN(Jg)
if f € CN(J). Moreover, if (36) exists for all ¢ € J such that Jra d(x) dx =
0, then f € CN(J) if f € CN(Jg).

Proof. The first statement is clegur since j]R C J. For the second statement,
consider the following. Let 1 € J be such that fRd ¥(x) dx = 0, and suppose
fe CN(jR). As in the proof of Proposition 2.4.1, we write ¢ as

¥ =Re (¢) +1Im (¢)
where Re (¢), Im (¢)) € Jr and [pu Re (¥)(x)dx = [paIm (¥)(x)dx = 0.
Again, we define a := Re (¢), b :=Im (¢)) and

tlu,v] = /]Rd y f(x —y) u(x)v(y) dxdy (u,v € J).
Then,
tla,b] +t[b,a] =t[a+b,a+b] —tla,a] —t[b,b]
and
—i(t[a,b] —t[b,a]) = t[Y,y] —ta,a] — £ [b,b] (37)

are finite, since f € CN(Jr) and we know that ¢ [, 1] exists. Hence, both
tla,b] and t[b, a] exist, and ¢ [a,b] =t [b,a]. Thus, it follows from (37) that

t[ih, 9] = ta, a] + t[b,b] < 0.

O

Remark. The above proof is almost identical to that of Proposition 2.4.1.
The difference between the two lies in proving the existence of the integral
in (36) for the appropriate set of test functions. In Proposition 3.3.3 we
simply stipulate that (36) exists for all ¢ € J such that Jga #(x) dx = 0,
whereas in Proposition 2.4.1, the existence of the integral follows under the
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assumption that f € P(Jg), and since J is closed under the operation |- |, see
(15). A similar approach will not work in the case of Proposition 3.3.3, since
for ¢ € J such that Jra (%) dx = 0, although we have Y = || € Jg, as
in (15), it doesn’t necessarily follow that [p, ¥(x) dx = 0. Hence, assuming
f€CN(Jg) does not guarantee the existence of the integral in (36) for 1 .J.

It follows from Proposition 3.3.3 that under certain conditions, real-
valued functions are conditionally negative definite as in both Definitions
3.3.2 and 3.3.1. This is the case when J is a vector space of complex-
valued functions which is closed under complex conjugation and (36) exists
for all ¢ € J such that [p,¢(x)dx = 0. In most of our examples this
will be the case, for if f € LL_(RY), then (36) exists for all ¢ € Li(R?)
(p €[1,2],qg =p/2(p— 1)), by Lemma 2.5.1. The following proposition
proceeds from this observation.

Proposition 3.3.4 Let f : RY — R. Then, f € CN(L3(R%)) if and only if
f € CN(L3(R%)R).

Proof. One direction is clear since LZ(RY)r C LZ(R?). For the reverse
implication, consider the following. Let f € CN(L2(R%)g). Then, f €
Llloc(Rd), by Lemma 3.3.1 (note that in the proof of Lemma 3.3.1, both

and W are real-valued), and thus (36) exists for all ¢ € L3(R?), by Lemma
2.5.1. Hence, f € CN(LZ(R?)). O

3.4 An extension of Schoenberg’s theorem to conditionally
negative definite functions with a singularity at zero

Theorem 3.1.1 establishes a relation between the function classes P¢ 4 and
CNg.4. We generalise this classical result to the classes P(L2(R%)) and
CN(L3(R%)), and in doing so, derive a Schoenberg-type theorem for real-
valued functions which need not be bounded at the origin.

Theorem 3.4.1 Let f : R® = R. If there exist to > 0 and p > 1 such that
ellfl e LY (RY) for all 0 < t < tg, then

f e CN(L2(RY) = e e P(LARY)) (0 <t <tp). (38)

The proof of Theorem 3.4.1 will be based on the following five lemmas. By
Propositions 2.4.1 and 3.3.4, we need only consider real-valued test functions
in LZ(RY).
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Lemma 3.4.1 Let f : R? = R and ¢ € LZ(R?) be such that [pa ¢(x) dx <
co. If f € CN(L3(RY)), then there exists a Hilbert space (H,(-,-)s) and a
mapping k : R® — H, z + k, such that for any x,y € R,

- 2: u—v X—1u —V uav —
=kl = [ [ fa=viotx—woly —v)dudv—C (39)

where

= [ [ 1= 0ot dsi (40)
R4 JRd
1s independent of x and y.

Proof. Suppose f € CN(L3(R%)). Let V be the subset of L2(R?) defined by

V= {h € L3(RY)

h(u) = Zai P(x; — u) (u € RY) for some m € N,
i=1

X; € Rd, a; € R; S.t./
Rd

h(u) du = 0}.
V is a vector space. For &,V € V, define
1
@)= [ [ 1= y)eeuiy) dxay.

Rd JRE
Since f € CN(L2(R%)), the mapping

(@, ) = (@,T)f
is a bilinear, symmetric and non-negative form on V. Set

V' ={WeV|({# n;=0}.

V' is a subspace of V since for any ¢’,h' € V/,

D=

1
(¢ +1.g +h)p=2(d W)y <2(d,g"); (M. 1)} =0
by the Cauchy-Schwarz inequality. On the quotient space V/V’, define

(gl [P]) s = {9, h)y (41)

where [g], [h] denote the equivalence classes in V/V'. The inner product in
(41) is well-defined since

(g+g h+1h)p=(g,h)s (9.heV, gheV).
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To see this, note that

1 1
(9. 1) f <{g,9)7 (W.I')} =0

and
—(g, 1)y = (g, —h")y < g, 9> (=1 —h’>f =0,

by the Cauchy-Schwarz inequality. Thus, (g, h’) s = 0 and similarly, (¢, h)§ =
0. Let (#,(-,-)f) be the Hilbert space completion of V/V’; then, in partic-
ular, V/V’ is dense in H.

Let X € R% For any z € RY, set k, := [¢p(z — -) — ¢(X — -)] € H. Then,
for any x, y € R,

lkx — Kyl = (kx — ky. kx — ky) s
:/ / Fu—v)o(x — we(y — v) dudv
‘z/Rd S Vex —wglx—v)dudv  (42)
1
- /R L H =)oty —woly - v) dudv.
since

(kx, kx) ——/ flu—v)op(x —u)p(x — v) dudv

Rd JRA
1 -
~3 /Rd y flu—v)p(x —u)p(x — v) dudv
2(kx, ky) / flu=v)o(x —u)p(y — v) dudv
R4 JRA
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and
1
k) == [ [ = v)oly — woly - v) dud

" /Rd R4 flu=v)o(x —u)é(y — v) dudv

1

- = / flu=v)op(x —u)p(Xx — v) dudv.

2 Ra JRA

By a simple change of variables, each of the last two integrals in (42) is equal
to —C/2, where C is defined by (40). Thus, formula (39) follows. O

We will refer to H as the Hilbert space associated with f and ¢, and to k
as the mapping similarly associated.

Lemma 3.4.1 can be considered as a generalised version of the GNS
construction, which is a widely celebrated technique in the literature, see
e.g. [2, Th. C.2.3]. In fact, (39) is a direct extension of [2, Th. C.2.3 (i)].
Note that in [2], it is assumed that conditionally negative definite functions
vanish at the origin. The following result is analogous to [2, Lemma C.3.1]
and [4, Chapter 3, Lemma 2.1].

Lemma 3.4.2 Let f : RY — R be such that f € CN(LZ(RY)) and ¢ €
L2(R?) be such that [pa ¢(x)dx < co. Let H and k denote the associating
Hilbert space and mapping respectively. Fiz xq € RY. The kernel

9(x,¥) = llkx = ko7 + by = ko7 = kx = kyll]  (x,y €RY)  (43)
is classically positive definite as in Definition 2.1.3.

Proof. g is clearly symmetric, that is g(x,y) = g(y, x) for all x, y € R%. As
in [2, p. 373], a straightforward calculation gives

g(X7y> :2<kx_kx0aky_kx0>f (X,yGRd)

Therefore, for any n € N, x1,Xa,...,%, € R and v1,v2,...,v, € R,
n n 2
Z g(xi,xj) UV = 2 Zvi(kxi - kxo) > 0.
i,j=1 i=1 f

O

For a real-valued function f € CN(L3(R%)) and ¢ € L2(RY) such that
Ja &(x) dx < oo, with associating Hilbert space (#, (-,-)¢) and mapping F,
define

K(x,y) = [[kx — ky”? (x,y € Rd)-
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It follows from (39) that K(x + a,y +a) = K(x,y) for any a € R?% and
hence, K(x,y) = K(x —y, 0) for all x,y € R% Define f(z) := K(z, 0) for all
z € R%. Then, K(x,y) = f(x —y) for any x,y € R%

The kernel ¢ : R¥x R? — R, defined in Lemma 3.4.2, is positive definite.
Hence, so is t"¢" for any t > 0, n € N, since the product of positive definite
kernels is also positive definite, see e.g. [2, Prop. C.1.6 (iv)]. Consequently,
el is a classically positive definite kernel as in Definition 2.1.3.

Let ¢ > 0. It follows from (43) that

e—tK(X,y) — etg(x,y) X (e—tK(X,XO) e_tK(y7XO)) (X7 y € Rd)

The kernel e tK(:%0) ¢=tK(-,x0) . Rd « Re 3 R is positive definite, since

2
n n
Z (e—tK(xz‘yxo) e—tK(Xj»XO)) Vv = (Z v; e_tK(Xi7xO)> >0
i=1

i,j=1
for any n € N, x1,Xo,...,%, € R* and v1,v2,...,v, € R; as in [2, p. 374].
Hence, e *¥ is a positive definite kernel and therefore e~*f is a classically

positive definite function as in Definition 2.1.2. By Theorem 3.1.1, it follows
that f is conditionally negative definite as in Definition 3.1.2. Thus, by the
properties of functions in CN¢ 4 (see Section 3.1), it proceeds that f + « is
conditionally negative definite for any o € R.

The next lemma highlights a connection between classically conditionally
negative definite functions and functions which are conditionally negative
definite with respect to LZ(R?). In particular, we observe that for real-
valued functions, Lf (RY) N CN(LZ(R?)) is the closure of C*°(R%) N CNc,q4,
where C*(R?) denotes the space of infinitely differentiable functions on R

Lemma 3.4.3 Let p € [1,00) and f : R? = R be such that f € LF (R%) N

loc
CN(L3(R%)). Then, there is a sequence (fn)nen of infinitely differentiable,

LP
classically conditionally negative definite functions such that f, —< f as

n — o0.

Proof. Recall the functions ¥, defined in the proof of Proposition 2.4.6; i.e.
let ¢ : R — R denote the bump function

() = { cesp (=) ol <1

0, lz| > 1,
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where ¢y > 0 is the constant chosen such that [p1(x)dx = 1, and for any
X = (21, 29,...,24) € RE define ¥(x) := ¢(21)¢(x2) ... 1(xq) and

U,(x) :=n?¥(nx) (neN). (44)

Then, for any n € N, ¥,, € CSO(Rd) is even and has compact support
[—L, 114 Moreover, [p.¥n(x)dx =1 for all n € N.

Applying Lemma 3.4.1 to the functions ¥,, and f, we find that for any
n €N and x,y € R,

1K = Ky

2 = u—Vv X—1u —V uav —
= [ [ == 0y - v dudv — C,.. (45)

where

C, = / F(8 — )0, (s) U (t) dsdt € R
]Rd ]Rd

and ky, , is the equivalence class [¥,,(z — -) — ¥, (X — )] in H (z, X € RY).
Let

fu(x=y) = |lknx — kn,y”?‘ (x,y € Rd)-

From Lemma 3.4.2 and the ensuing remarks, it follows that f, +«a € CNg,q
for any o € R, n € N. In particular,

fu(2) = fu(z) + Cq
:/ Fu—v)Un(z — (u—y)) ¥, (2 — (x — v)) dudv
Rd JRd
_ / F(z—t—8)Up(z — 8)Up(z — t)dsdt (z € RY)  (46)
Rd JRd

defines a classically conditionally negative definite function. Note that we
have used the evenness of f and ¥, in order to arrive at the above equation.
On rewriting (46), again by using the fact that f is even, we obtain

fu(z) = /Rd y ft—(z—s))V,(z—s)V,(z —t)dsdt
:/Rd (f % Un(t)) Un(z — t) dt.

Hence, for any n € N,

where 7, = ¥, * ¥,, = n4(¥ x ¥)(n-). Using the properties of ¥, it fol-
lows that for any n € N, 5, € C§(R?) has compact support [—%, %]d and
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Jgamn(x)dx = 1. Hence, f, € C®(R?) for all n € N, and f, —% f as

n—s oo by [42, Th. 1.18]. 0

Corollary 3.5.2 demonstrates that the converse to Lemma 3.4.3 is also true
(see Section 3.5). In the following result we establish one direction of the
equivalence (38) in Theorem 3.4.1.

Lemma 3.4.4 Let f : R® — R be such that f € CN(L3(R%)). If there
exist to > 0 and p > 1 such that elfl ¢ Lfoc(Rd) for any 0 <t < tg, then
et € P(L3(RY)) for all 0 <t < tg.

Proof. Suppose to > 0 and p > 1 are such that eflfl e Lfoc(Rd) for all
0 <t < to. Then, it follows that e~/ € LI (R?) for all 0 < ¢t < ¢y and
feLl (RY) for any 1 < g < oo.

The functions f,, as defined in the proof of Lemma 3.4.3, are condition-
ally negative definite in the sense of Definition 3.1.2. Thus, by Theorem
3.1.1, et/ is positive definite for any ¢ > 0, n € N. Moreover, et/ is
continuous for all ¢ > 0, n € N, since f, is continuous for any n € N. By

Proposition 2.4.2, it follows that e~*/» € P(L2(R%)) for any ¢ > 0, n € N.

Ll
By Lemma 2.6.2, we need only show that e */» 2% 7t as n — cc.

Let € > 0,0 <t <ty and K C R? be a compact set. Let ng € N and define
~ d

K =K+ [—n%, n%] . By Lemma 3.4.3, there exists n, € N such that for
all n > ny,

€

_— 48
e .

1= Flloe = ( [ 1860 f<x>|‘1dx)é <

where % + % = 1. W.l.o.g., we assume n, > ng.
Let n > n,. We partition K = K; U Ky, where K1 = {x € K| f(x) <
fan(x)} and Ko = {x € K| f(x) > fn(x)}. By the Mean Value Theorem,

(e —e ) (x)| = te | f,(x) - f(x)| faa xeR
where &, (x) lies between f,(x) and f(x). Therefore,

e th ot (x)|de = [ te %) n— )(x)|dx e~ tn(x) n— (x)|dx
JAl Yo o= e g e[ rem 9 o

Ky

< [ 40N g o0 et 1m0 1, i

K1
< [ te O o)t b (1 )
K K

<t(le T lp + e llpx) 1 fn = fllgxc (49)
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using Holder’s inequality in the last step. Next, for almost all x € R,

0 < etF) _ i (—1)jt_j fx)7 _ et
< 2 i <
and thus, since K C K,
le™ lpxc < Nl lp i < Nl 4 (50)

By Jensen’s inequality, see e.g. [25, Th. 1.8.1], and (47), it follows that for
any x € RY,

et/ =exp <_t/ f(x—2z)nn (z)dz> S/ @7tf(X7z)77n (z)dz= e M (%),
R4 R4

and hence,
le™ " lpx < le™ % nallpic

Moreover,

(e_tf % 1) (%) XK (%) < ((e_tka) *1,) (%) (x € RY).

This follows since for x € K and n > ng,
(™ xg) %) (x) = /[ . (e (x = y)) maly) dy
= /[ 2 e tf(x*Y)nn(y) dy = (eftf* nn) (x).

Thus, using Young’s inequality, it proceeds that

el

le™ % mallp,ic < lle™ ML, g malls = lle™ 11, 2 < Nl 4

and thus,
lle™ " lp, e < [l MI]], - (51)

From (48), (49), (50) and (51), we conclude that

/‘ ()‘dx<e.
]

Remark. We take p > 1 in the above Lemma so that ¢ < oo in (48) and
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we can apply Lemma 3.4.3. This condition allows us to compensate for
functions with a singularity at zero.

By considering complex-valued functions in Lemmas 3.4.1, 3.4.2, 3.4.3
and 3.4.4, we obtain the following results. Equation (39) becomes

— 2 — Re u—v)o(x—u)o(y — v)dudv | —
=il =Re ([ [ sta=viotx - wily = vidudv) ~c.  (52)

where

C= / f(s — t)p(s)p(t) dsdt = C € R. (53)
Rd JRA

To see this, consider the same steps as in the proof of Lemma 3.4.1, with
complex-valued f and ¢. Take V as before and for ®, ¥ € V, define

@)= =5 [ [ 5= y) BT dxay.

so that the mapping (®, V) — (P, ¥); is a sesquilinear, Hermitian and non-
negative form on V. Recall that f is conjugate symmetric a.e., since f €
CN(LZ(R9)). To arrive at (52) and (53), compute ||kx — k:y||? = (kx, kx) ¢ —
(ks ky) f = (ky, kx) g 4 (ky, ky) 5.
Lemma 3.4.2, as well as the discussion that follows it, holds true for
complex-valued f and ¢.
The complex analogue of Lemma 3.4.3 gives rise to a sequence (fy, )nen of
infinitely differentiable, classically conditionally negative definite functions,
Lp

loc

such that f, —= Re(f) as n — oo. This can be seen by using equations
(52) and (53) in the proof of Lemma 3.4.3, so that (45) becomes

=Rl = [ [ Re(fa=v) Balox = @y = v) dudv — C,.

for any n € N and x,y € R% As a direct consequence, Lemma 3.4.4, for
complex-valued f, roughly states that if f € CN(LZ(R%)), then e*Relf) ¢
P(LZ(R)); thus, yielding information about the real part of f only. It is for
this reason that we consider real-valued functions in Theorem 3.4.1.

The following lemma concludes the proof of Theorem 3.4.1.

Lemma 3.4.5 Let f : RY — R. If there emists tg > 0 such that e!lfl €
LL (R%) for any 0 <t < to, then

loc

e e P(LA(RY) (0 <t <ty) = fe CN(LIRY).
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Proof. Suppose e/ € P(L2(R%)) for all 0 < ¢t < t5. Then, for any ¢ €
L2(R?) and 0 < t < t,

/ / eftf(X7Y)¢(x)¢(y) dXdy > 0
R4 JRA

1
[ L e sty dxdy <o,
t Rd JRd
Let ¢ € L§(RY) be such that [, 1(x)dx = 0. Then, for any 0 < t < to,

_1/Rd/Rde—tf(x—y)w(xﬁ/’(y)dxdy: 1/}1@ 9 D) (y) dxdy
1 o y)
3 /Rd /Rd e’ Yh(x)(y) dxdy

1 — e*tf(X*)[)
- / / (t )wx)w(y)dxdy
R4 JRd

deeﬁ;:u—e4mﬁ(o<t§t@.nﬁmmmﬂmpﬁeCN@aR%)mr

all 0 < t < ty. To prove f € CN(L%(Rd)) we need only show that f; —= 1°° f
as t — 0, by Lemma 3.3.2. Let K C R? be a compact set. Then,

1— et/ B 1)/t~ 2f( )
[ o= (17 e f [ s
2
</, fzf”
_t %IL
_tg/KjZ; 7 dx
t ol f(x
- t/K( 0911 9] £ ()] )

(t—0).

and hence,

J
.

t
< lle
0

0

Remark. Lemma 3.4.5 is also valid for complex-valued functions f. Note,
however, we cannot prove analogous results to Lemmas 3.4.4 and 3.4.5 for
the function spaces P(L2(R?)) and CN(L?(R?)), as opposed to P(LZ(R?))
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and CN(L3(R%)), for we cannot have both f and e~/ in L}(R?). In fact, it
is clear that if f € LY(RY), then e7*/ ¢ L'(R?). Moreover, e/lfl ¢ LP(R?)
(p € [1, 00)) for f € LY(RY).

3.5 Corollaries to Theorem 3.4.1 and examples of condition-
ally negative definite functions with a singularity at zero

We begin this section by proving two results which follow directly from The-
orem 3.4.1. Firstly, we demonstrate that functions which are continuous and
conditionally negative definite for LZ(RY) are conditionally negative definite
in the classical sense.

Corollary 3.5.1 Let f : RY — R be continuous. Then, f € CN(LZ(R?)) if
and only if f € CNg,q4.

Proof. Suppose f is continuous and classically conditionally negative def-
inite. By Theorem 3.1.1, et/ is classically positive definite for all ¢ > 0.
Moreover, for any t > 0, e/ is continuous since f is continuous. By Propo-
sition 2.4.2, e7t/ € P(LZ(R?)) for all ¢+ > 0. By Theorem 3.4.1, we conclude
that f € CN(LZ(RY)).

For the reverse implication, consider the same argument as in the proof
of Proposition 2.4.6, with

N
Op(x):=> §Un(x—x;) (xeR,neEN),
=1
for any N € N and any x1,%s,...,xy € R% where £1,&,...,ény € R are
such that YN | & = 0. Then, @, € L3(R?) and [p. ®,(x)dx = 0 for all
n € N. O

Remark. Tt follows directly from Corollary 3.5.1 that the functions f defined
in Theorem 3.2.3 are conditionally negative definite with respect to LZ(RY).
The following corollary shows that the converse to Lemma 3.4.3 is true.
Indeed, if there exists a sequence ( f,,)nen of classically conditionally negative
LP

loc

definite functions such that f, —= f as n — oo, then f is conditionally
negative definite for L2(R?).

Corollary 3.5.2 Let f : R* — R be such that f € LY (R%) for some

loc

p € [1,00). Then, f € CN(LZ(R?)) if and only if there exists a sequence
(fn)nen of infinitely differentiable, classically conditionally negative definite

. Ly
functions, such that f, —= f as n — oo.
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Proof. One direction is proved in Lemma 3.4.3. For the reverse implication,
we note that for any n € N, f, € CN(L3(R%)) by Corollary 3.5.1. By Lemma

loc

Ll
3.3.2, we need only show that f,, —> f as n — co. This follows directly,
since for any compact set K C ]Rd,

[ 1860 = ol ax < 1 ([ 17600 - <x>|pdx>‘1°

where % + % = 1 and |K| denotes the Lebesgue measure of K. O

We will now demonstrate how to construct examples of functions in
CN(L3(R%)), which have a singularity at the origin. Firstly, assume d = 1.
It is clear that if f € P(L3(R)), then —f € CN(L2(R)). Hence, the functions
—gi, for i = 1, 8, 11, 16, 19, 23, of Section 2.7 are elements of CN(LZ(R)).
Next, we show how to find examples of singular functions f € CN(L3(R))
such that —f ¢ P(L3(R)).

In view of Theorem 3.2.1 ii. with g(z) =2~ (¢t > 0), if h is a Bernstein
function, then u; = h~! is completely monotone for all t > 0. Assume h is
non-constant, define v; := h7(] - |) and let ¢y > 0. By Corollary 2.7.6, if
v € L _(R) for all 0 < ¢ < to, then v; € P(LE(R)) for all 0 < ¢ < ¢y. Define
f:=1log(h(| - |)), so that e7*/ = v;. By Theorem 3.4.1, if e/l € LY (R) for
any 0 < t < to and some p > 1, then f € CN(L3(R)). It only remains to
check the last condition, —f ¢ P(L3(R)).

Consider the following simple examples. In all three cases we choose p
=2 and ty = 1/4, so that v; € L] _(R) and e/l ¢ LY (R) for all 0 < ¢ < t.

1. Take h(z) = z, then uy(z) = 7%, v(x) = |z|~" and f(z) = log|x|.
All conditions are satisfied, hence f € CN(LZ(R)). It is easy to see that
—f ¢ P(LZ(R)). Indeed, take the test function ¢(z) = 1 for 0 < = < 8,
¢(z) = 0 otherwise. Then,

//fa:— Vo(y) dady = — //log]m | dzdy=96(1 — 21og 2) <

2. Take h(z) = z+ /7, then w(z) = (x +/x) 7%, v () = (|| + /|=])
and f = log(|-|++/|-|) € CN(L3(R)). To prove —f ¢ P(L3(R)), we take
the same test function ¢ as in the example above, giving

8 8
—/ / log (|x —yl+ ]z — y|>dwdy ~ —75.20631216 < 0.
0 JO

3. Take h(z) = F(a: + 1)/T(z), where T is the Gamma function. We
have f =logI'(|-|+3) —logF(| |) € CN(L(R)). To prove —f ¢ P(L3(R)),
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again we take the same test function ¢ as above, finding

8 8
—/ / (log'(Jz — y| +1/2) —log I'(|z — y|))dady ~ —10.83 < 0.
0 Jo

All three examples are built on the same principle: if h is a Bernstein
function and some regularity conditions are satisfied, then f =logh(|-|) €
CN(L3(R)).

We now indicate how to construct examples of functions in CN(L3(R?)),
for d > 2, which are not in P(L3(R?)). Similarly to the above, for any
x € Re, define v (x) := h~'(||x|[2)e~I*I*, and let t; > 0. By Corollary
2.7.7,if =t € LL ((0, 00)) for all 0 < ¢ < tg, then v; € P(L3(RY)) for all
0 < t < tg. Define

F(x) = log (A(|Ix[*) exp(|x]*)) = log (h(Ix|*)) + [Ix|I*  (x € RY),

so that e %/ = v,. By Theorem 3.4.1, if e/l ¢ LP (R?) for any 0 < ¢ < tg
and some p > 1, then f € CN(L2(R?)). It only remains to check the last
condition, —f ¢ P(L3(R%)).
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4 Applications in Potential Theory

The development of the classical theory of potentials was motivated by the
energy problem: given a function f : R — R and a set M(X) of non-
negative unit Borel measures with support in the compact set X C R¢,
which measure(s) p € M(X) minimise(s)/maximise(s) the energy integral

wazxééf@yMM@M@W (54)

Moreover, if p* € M(X') minimises /¢, then is it unique and thus, optimal?

In logarithmic potential theory, i.e. when f = —log| - |, the energy
problem has been solved for various sets X, see e.g. [33, Chapter I.1], where
circles, discs and line segments are considered. For example, when X C R

is a segment of length [, that is X = [—1/2,1/2], the minimising measure y*
is unique and has arcsine density;
1
W de) = ————dz (v € [~1/2,1/2),

m\/1%/4 — x?
see [33, Eq. 1.7]. The more general case (for d = 1) when
C{—lale ) a—1) i arl,
s ={ U ozl wemroy

has been considered in [37]. Here it is shown that for any a € (0,2), I¢(p)
is strictly convex on the set of all probability measures on the set of Borel
subsets of [0, 1], and that the measure with generalised arcsine density

['(2—a)t /2 (1—t)"/?
I2(1-«/2)

Pi1—a/2 (t) =

is the optimal measure for Iy, see [37, Th. 2]. The energy problem has also
been widely studied for the Riesz kernel k4 (x,y) = |x — y|*™¢ (0 < a < d,
x,y € R?%) and the classical Newtonian kernel, i.e. when f(x) = |x|>~¢
(d > 2, x € RY), see e.g. [16], [21], [28], [32]. In the non-singular case, when
f=11* (a > 0), properties of the maximising measures and their potentials

mww=A¢w—wmw>@ex>

have been explored in [8]. The main purpose of this chapter is to study the
energy integral Iy for several singular, completely monotone functions f,
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which have not previously been considered in the field of potential theory,
and to solve the corresponding energy problems by means of numerically
computing densities of measures which minimise Iy ..

It is worth noting that the energy problem in potential theory is very
closely related to the problem of finding optimal designs in experimental
design. In particular, the functional I;(u) arises as an optimality criterion
in the optimal design problem with correlated observations for the location
model y; = 0 +¢;, see e.g. [47, Eq. 5]. The measure p* that minimises /¢ on
the set of probability measures defined on a compact subset of R, say [0, 1],
defines an optimal design for a suitable correlation function f. Standard
correlation functions are positive definite in the classical sense, however, as
in [37, Corollary 1], we extend the optimal design problem to the case when
f is positive definite in an extended sense and singular at the origin.

Consider the energy integral I,y with f € CM unbounded at the origin.
Using the results of Section 4.4, where we construct discrete optimal mea-
sures for I, with g classically strictly positive definite, and Theorem 4.1.1,
which describes a method for approximating singular completely monotone
functions by non-singular such functions, we derive our principle result; an
algorithm for constructing continuous probability measures which approxi-
mate the minimising measure for If(.;). We apply this algorithm to the case
when f(|-]) = |- (o € (0,1)) - the Riesz kernel on R, or a compact
subset of R (see Section 4.5), and, later, to a variety of singular, completely
monotone functions f (see Section 4.6).

The structure of this section is as follows. We begin by introducing a
procedure for approximating a singular completely monotone function by a
family of non-singular completely monotone functions, see Section 4.1. Sec-
tion 4.3 contains some known ideas on finding the optimal measure for a
convex, non-negative energy integral. In Section 4.4 we construct discrete
optimal measures for I; in the case when f is classically strictly positive
definite. Next, we provide an in-depth analysis of the optimal density for
the Riesz energy and, in doing so, construct a general algorithmic scheme
for approximating an optimal density for a given energy by a sequence of
probability densities, see Section 4.5. We conclude with several examples of
approximate minimising measures for I,y with alternative singular, com-
pletely monotone functions f, see Section 4.6.
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4.1 Approximation of singular completely monotone func-
tions by non-singular completely monotone functions

The central result of this section, Theorem 4.1.1, determines a method for
approximating a singular completely monotone function f by a family of
bounded completely monotone functions fe (¢ > 0), and proves to be very
useful when numerically computing densities of measures which minimise
the energy I (.| defined in (54), see Sections 4.5 and 4.6 for details.

For g € BF of the form (35), let f = ¢’ € CM. Then, for any = > 0,

flz)=b+ /(0 )te_zt,u(dt) (55)

and the measure v(dt) := tu(dt) satisfies

1 t
th—/ — p(dt g/ min(1,t) u(dt) < oo, 56
oo = [ e s [ mino (56)

see [35, p.18]. The following proposition demonstrates that the converse to
the above discussion is also true. That is, a completely monotone function
of the form (55) with representing measure satisfying (56) has a primitive
in BF. This, in turn, characterises the image of BF under differentiation.

Proposition 4.1.1 ([35, Prop. 3.4]). Let f € CM be of the form
flz)="» +/ e y(dt) (z>0). (57)
(000)

Then, f has primitive g € BF if and only if the representing measure v
satisfies

/ (1+t) "t u(dt) < . (58)
(000)

Proof. Retracing the steps in the above discussion, namely equations (55)
and (56), reveals that functions of the form (57), with representing measure
satisfying (58), have primitives which can be written in the form of (35). O

Let f € CM with representing measure v satisfying (58). Then, by
Proposition 4.1.1, there exists g € BF such that g(x) = [ f(t)dt (z > 0).
As discussed in Section 2.2, the value f(0) may be undefined, that is, f may
be singular at the origin. For any = > 0, define the family of functions

_ [ 1@ =d'@) <=0
fe(z) = { Lrrefydt = 2(g(x +e€) — g(x)), €>0. o
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Next, we show that the functions defined in (59) are completely monotone
and that f.(0+) = lim, 04 fe(x) < oo for all € > 0 and lime_,¢ fc(z) = f(x)
for all x > 0.

Theorem 4.1.1 Let f € CM with representing measure v satisfying (58).
Consider the family of functions f. defined in (59), where g € BF and
g(x) = [y f(t)dt (x> 0). Then,

i. fe(04) = limg—o4 fe(x) < 00 for any € > 0,
1. fe € CM for any e > 0,
1. fs— fe € CM for any 0 < § <,
w. lime_yo fe(z) = f(z) for any x > 0.

Proof. i. Let € > 0. Then, f(0) = (g(€)—g(0))/e < oo since g is non-negative
and increasing by definition.

ii. The case € = 0 is trivial. For € > 0, consider the following. Using
the Lévy-Khintchine representation of g, see (35), it follows that for any
€, x>0,

fol@) = Mgla+ o) —gle)) =b+ 1 / e~ (1 — =) pu(dt)
(0,00)

€ €

or, alternatively,

fe(z) = /(0700)6_"% ve(dt), (60)

where v, (dt) = bdg(dt)+he(t)p(dt), dp(dt) denotes the delta (Dirac) measure
concentrated at 0 and h(t) = e (1 — e~¢) for any t > 0. Since h.(t) > 0
for any €, t > 0 and f.(0+) < oo for any € > 0 by i., it follows from Theorem
2.2.1 that f. € CM for any € > 0.

iii. Let 0 < § < e. Using the representations of f. and fs described in
(60), we have that for any = > 0,

f3(z) — fulz) = /( =@ (61)

where (v5 — ve)(dt) = (hs — he)(t)p(dt) for any ¢ > 0. The measure (v5 —
ve)(dt) is non-negative, since (hs — h¢)(t) > 0 for any ¢ > 0. Indeed, for
fixed ¢ > 0, the function h¢, considered as a function of € > 0, is positive, as
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shown in the proof of ii., and strictly decreasing. The latter property follows
since

Ohe(t) (1+ét)e ¢ —1

g e
and (1 + s)e™®— 1 is negative for any s > 0. Thus, since f5(0+) — fc(0+)
< o0 by i., it follows from Theorem 2.2.1 that fs — f. € CM.
Consider the case § = 0. It follows from (59) and (55) that for any x > 0,

folw) = o' (2) = b+ /(0 e ) = /(0 ),

where vy (dt) = bdg(dt) + tu(dt). Setting 6 = 0 in (61) gives the representing
measure (v — ve)(dt) = (t — he(t))u(dt) (t > 0) for fo— f.. Since t —e (1 —
e~ >0 for any ¢, € > 0, f(0+) < oo for any € > 0 and fo(z) = f(x) <
for any > 0, it follows from Theorem 2.2.1 that fy — f. € CM for any
€ > 0.

iv. Let z > 0. For any € > 0, f(z + €) < fe(x) since f is decreasing
on (0, 00), and fc(z) < (f(x +¢€) + f(x))/2 since f is convex on (0, c0).
Moreover, there exists x < £ < x + € such that

f@) = flz+e) =ef'(9),
by the Mean Value Theorem. Hence, fc(z) — f(z +¢€) = O(e) as € — 0 and
thus, lim¢_o fe(z) = f(x). O

4.2 Convexity of the energy functional

Let f : RY — R and M denote a general set of signed measures on R, or
a compact subset of R?. We define the energy functional

b0 = [ [ =yt (e M) (62)
As follows from the standard definition, ®;: M — R is conver on M if

Pr((l—a)pr+ap) <(1—a)@p(um)+ady(u) (63)

for any 0 < a <1 and py,pue € M. @y is said to be strictly convex if for
any p1 # pa2, the inequality in (63) is replaced with a strict inequality and
O0<a<l.

In the field of experimental design, the location model y; = 0 + €; with
correlated errors €; is often considered. The normalised variance of the least
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square estimator of 6, i.e. the optimality criterion, is the energy ®,(u)
defined in (62), where ;1 € M is a design and p is the correlation function
of the error process. M is commonly taken to be the set of probability
measures on [0, 1], and since p is classically positive definite by definition, it
follows that ®, is convex on M, see e.g. [47, Lemma 1]. Due to the bounded
nature of p, ®, is finite on the set of all probability measures on [0, 1]. This
is clearly not the case when p is replaced with a function f which has a
singularity at the origin, for ®;(u) = 400 for any discrete measure .

Using the framework developed in Sections 2 and 3, we now provide sev-
eral examples of alternative functions f (potentially unbounded at 0) which
guarantee the convexity of ®  on certain sets of measures M. Although these
results will not be used in later sections, we present them for completeness.
Firstly, we introduce the notion of conditional positive definiteness, which
is simply the “negative” of conditional negative definiteness.

Definition 4.2.1 A function f : R¢ — R is called conditionally positive
definite w.r.t. a set J of functions, denoted f € CP(J), if —f € CN(J), as
in Definition 3.3.2.

For any c € R, define Lg,c(Rd) to be the set of functions ¢ € L3(R?) such
that [p4 ¢(x)dx = c. A consequence of the following proposition is that
if f € CP(L3(R%)), then @ is convex on the set of absolutely continuous
signed measures with densities in La .(R9). Note, in the proceeding results,
M; will always denote a set of signed measures.

Proposition 4.2.1 Let f € L] _(RY) be even a.e., c € R and M; = {p |
p absolutely continuous with density ¢ € La (RO}, Then, &5 : My — R,

as defined in (62), is conver if and only if f € CP(L3(R?)).

Proof. For any 0 < o < 1 and pup,pe € My with densities ¢; and ¢o,
respectively, we rewrite the left hand side in (63) as follows,

O (L—a)pr +ap) =(1—a)Ps(u)+ads(u)—a(l-a) ‘I’f(m,éu)),
64

where

Wp(pr, p2) = /Rd /Rd F(x —y) (1 — p2)(dx) (1 — p2)(dy)
B /Rd S0 = 82) () (01 = ) (y) dxdy,  (65)
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see e.g. [29, p. T1]. It follows that ®y is convex if and only if (65) is
non-negative for all ¢, ¢s € L%7C(Rd).

One direction is clear, since if ¢1, ¢2 € Lac(Rd), then [pq(d1—¢2)(x) dx =
0. Thus, if f € CP(L3(RY)), then ®; is convex on M;. For the reverse
implication, let ¢ € L2(R?) be such that Jpa ®(x)dx = 0, and let K
denote the compact support of ¢. Take ¢1(x) = ¢(x) + ¢ for x € K,
¢1(x) = 0 otherwise, and ¢a(x) = ¢ for x € K, ¢a(x) = 0 otherwise. Then,
o1, ¢2 € Lg (R?) and ¢ = ¢1 — ¢2. O

Hence, for the functions —log(|z|), —log(|z| + /|z[) and logT'(|z|) —
logT(|z| + 1) (z € R\ {0}), see examples 1, 2 and 3 of Section 3.5, the
corresponding energy functionals on M are convex.

Remark. 1t is clear that if f € P(L3(R?)), then ®; : My — R is convex on
Ms = {p | p absolutely continuous with density ¢ € L2(R?)}. Similarly, if
f € P(L%(RY)), then ®; : M3 — R is convex on M3 := {u | u absolutely
continuous with density ¢ € L2(R%)}.

Using the above observations in conjunction with Corollaries 2.7.1, 2.7.4,
2.7.6 and 2.7.7, respectively, we present the following results, which are given
without proof.

Corollary 4.2.1 Let g € CM and f = g(|| - |?) : R? — [0,00). If f €
LY(RY), then @ : M3 — R defined in (62) is convex on Ms.

Corollary 4.2.2 Let g€ CM. If f = g(|-|) € L'(R), then ®; : M3 — R is
convex on M3 (d =1).

Corollary 4.2.3 Let g € CM be non-constant. If f = g(|-|) € LL.(R),
then ®; : My — R is convex on My (d =1).

Corollary 4.2.4 Let g€ CMNLL _((0, 00)). For any s > 0, define

loc
J60) = g(Ix|?)e " (x e RY),
similarly to (30). Then, ®;: My — R is convex on My (d > 2).
It follows directly from Corollary 4.2.3 that the functions g;, for i =
1, 8, 11, 16, 19, 23, of Section 2.7 give rise to convex energy functionals ®,
on Msy. In the case when a general functional ¢ is convex and bounded

from below on a given set of measures M, there exists at least one measure
p* = argmin ¢ s ®(p) which minimises .
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4.3 Optimality criterion

In this short section we compute the directional derivative of ®; along a
measure in a given set M and introduce the notion of the potential of a
measure. Moreover, we establish a criterion for finding the optimal measure
which minimises a strictly convex energy functional which is bounded from
below and show that, in some cases, this measure is a probability measure.
Consider the energy ®; defined in (62), where f is even a.e. and M
denotes a general set of signed measures on a compact subset X C R%. We
assume that ®; is finite on M. Let v € M. Then, by (64), for any € M,
we have for the directional derivative of ®; at u in the direction of v,
D, (q)f('u)) — lim q)f((l - Oé),u + aV) - (I)f(,u)

a—0

_o ( /X /X flx— y?mdx)u(dy) - <1>f<u>)

_9 (/X Po(y)(dy) — <I>f(u)>,

Puly) = /X fx—y)u(dx) (y € X) (66)

is the potential of u at y, see e.g. [8, p. 256], [34, p. 21].

The following theorem provides a criterion for finding the unique measure
which minimises a given energy functional ®; which is both bounded below
and strictly convex. We call such a measure optimal or the minimum-energy
measure. Terms such as equilibrium measure, see e.g. [34, p. 24|, minimal
distribution, see e.g. [8, p. 256, and, in the area of experimental design,
optimal design, see e.g. [47], are also widely used in the literature.

where

Theorem 4.3.1 ([47, Th. 1]). Let f : R? — R be even a.e. and M denote
a set of signed measures on a compact subset X C R?, with total mass 1.
Let ®; denote the energy functional defined in (62), which we assume to
be finite, bounded below and strictly convexr on M. Then, a measure p* is
optimal if the potential Py» is constant, that is Pyx(x) =P (p*) for all x € X.

4.4 Construction of optimal measures for ®; with f classi-
cally strictly positive definite

On describing a real-valued function on R as being classically strictly positive
definite we mean that the inequality in Definition 2.1.2 is strictly positive
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for all z1,29,...,2, € R and vy, v2,...,v, € R\{0}, with any n € N. Such
functions are considered at this stage, as opposed to those which are solely
positive definite, so that the matrix [f(z; — mj)] _, is (strictly) positive
definite for all n € N and z1,2z9,...,2, € R, and ﬂence invertible. More-
over, roughly speaking, a strictly p081tlve definite function f generates a
strictly convex energy ®, see e.g. [47, Lemma 1], which, in turn, gives rise
to a unique and therefore, optimal minimising measure.

For a real-valued, strictly positive definite function f we can construct
the optimal measure for the energy ®; using the following approach. Note,
for simplicity in our numerical algorithms, we consider functions defined on
R, or some compact subset of R, in the remaining sections of this chapter.

Firstly, consider the discrete case. Assume X C R is of the form X =
Xy = {z1,...,xzny} and M is a set of signed measures on Xy with total
mass 1. Let 1 = (1,1,...,1)T be the vector of ones of size N and f =

[f(m2 :rj)]]vj . For w = (wl, ...,wn)7, the vector of weights assigned to

the points g (k =1,...,N) by a measure y € M, the energy is ®7(u) =
Pp(w) = w!fw. The vector of optimal weights can be easily computed, for

P
88’:15:‘,) :eJwa—i—waej :2e]wa (j=1,...,N),

by the product rule, where e]T = (0,...,0,1,0,...,0) denotes the j* stan-
dard basis vector, and, by the method of Lagrange multipliers,

DL W) o (0s(w) = A (S wi 1)) o

j=1,...,N

when \ = Qe?fw for all j =1,...,N: in other words, when w = %f‘ll.
Hence,

A
sz—lT =1 =1

and the vector of optlmal weights w* is

wh=f"11/(17f'1), (67)
giving
O(w*) =min®p(w) =1/ (le_ll) ,
w
where the minimum is taken over all vectors w = (wq, ..., wy)? such that

17w = Zf\il w; = 1. The potential of the optimal measure p* € M with
weights w* is the vector Py« = fw* =1/ (17f711).
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Note, by [17, Th. 5.3], if f is convex on X, in addition to being (strictly)
positive definite, then the components of the vector of optimal weights w* =
(w3, ..., wi)T are all non-negative, meaning that u* € M is automatically
a probability measure.

Next, consider the general case. For arbitrary X C R we approximate X
with a discrete set Xy = {z1,...,2n} and, in doing so, we approximate the
original problem of finding the optimal measure for the energy ®; defined
in (62) with the discrete problem of optimising the energy ®(w) = w’fw.
As discussed above, this discrete problem has the unique solution w*, see
(67). In the main cases of interest, both the continuous optimal measure p*
and the discrete optimal measure with weights w* are probability measures.
Thus, we can easily construct the continuous optimal measure from the
discrete one, building piece-wise constant or continuous piece-wise linear
approximations to the optimal density, for example.

4.5 Approximations to the optimal measure for the Riesz
energy

Using the results of Section 4.1 we now demonstrate how to construct accu-
rate approximations to the optimal measure of the Riesz energy.

The Riesz kernel of order a € (0,1) on [0, 1] given by ko (z,y) = |z—y| ™%,
x,y € [0,1], z # y, was first studied by Riesz [32], see also [21]. We define
fa =|-|7% to be the function associated with k4, so that

Hoz($7y) = foc(x - y) = “T - y‘ia (‘T7 Yy € [07 1]7 x 7é Y, 0<a< 1) (68)
Consider the Riesz energy, i.e. the energy functional ®; : M — [0, +00]
defined in (62) where M denotes the set of probability measures on [0, 1]
and f = f,. In this case the optimal measures p} are known, see e.g. [37,
Corollary 1]; in fact, they are probability measures with densities
T'(a+1 _
Pa(t) = Fg(a_;l))(t(l — 1))@ (t e 0,1]). (69)
That is, u}, have densities of a Beta distribution on [0, 1] with parameters
(a+1)/2 and (a4 1)/2. Note, the strict convexity of the energy @, follows
from [37, Th. 3], where only measures i1, uo € M such that @ (p1) < oo
and @, (p2) < 0o are considered in (63).
For any o € (0,1) and y € [0,1], y # z, we have for the Riesz potential
of p} at y, see [37, Prop. 1],

=% , (70)



where ®7 = min,enm Py, (). Values of @3 are plotted in Fig. 1 (left).

-«

Normalised values of (@}a) , see Fig. 1 (right), appear more interesting.
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Figure 1: Left: values of ®}, for o € [0,0.9]. Right: values of ((I)Z)lfa for
a € [0,1].

Next, we discuss how well the uniform measure minimises the energy
®; compared to the optimal measures pu,. Let po denote the uniform
probability distribution on [0, 1]. For any o € (0, 1), we define the efficiency
of ug as

7, _(1-0)2- ) (520 (a+1)
@y, (ko) (a21) 7

eff (o) = (71)

where

2. (ko) //’”C‘ s = e

is the energy of the uniform measure. For all @ € (0,1) the efficiency is
reasonably high, see Fig. 2 (left) below. In fact, the lowest value of the
efficiency is ~ 0.98135, which is achieved when a ~ 0.36253. This demon-
strates that the behaviour of the energy ® for the uniform measure pyg is
indicative of that for the optimal measure 1.

For aw € (0,1) and y € [0, 1], y # x, the Riesz potential of ug at y is,

y T+ a-ytte
11—« )

Prsali) = [ =)ot [0 i -
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This potential, along with its average value ®y, (10) = fol P, 1o (W) 1o(dy),
is plotted in Fig. 2 (right) for a = 0.5. Despite the fact that the uni-
form measure is highly efficient, as discussed above, there is still scope for
improvement in the approximation to the optimal measure. Indeed, the
potential of the optimal measure is a constant function.
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Figure 2: Left: efficiency of the uniform measure, see (71), for a € [0,1).
Right: potential of the uniform measure Po, ,u,(t) and its average value
s, (o) computed for o = 0.5.

The primitive of the completely monotone function fu|0,cc) = ()7,
0 < a < 1, is the Bernstein function g,(z) = 2!7%/(1 — ) (z > 0). For
€ > 0, the corresponding family of functions defined in (59) are

(x4 e)l7> — pl-@

Jadl@) = ——q =5

(x>0,0<a<l).

For any = € [—1,1]\{0} and 0 < aw < 1, let
fae(@) = fae(lz)- (72)

We now study the quality of the approximations to the energy @y, (for fq
defined in (68)) by s (for fq,e defined in (72)).
For any ¢ > 0 and 0 < a < 1, the energy ® o of the uniform measure is

) B 1 r1 . . - (1+6)3—a_63—a_(3_a)62—a_1
B, o) = [ [ oclle = ydedy ~2 5 S S0

(73)
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Since fo(z) < fo(z) for any o € (0,1), > 0 and € > 0, it follows that
<I>];a’€(uo) < @y (po) for any o € (0,1) and e > 0. Values of the ratio
P (no)/®y, (po) are plotted in Fig. 3 (left). Observe that if a is not too
close to 1, that is, if the singularity of f, is not too strong, then (I)fa,e (10) can

be considered as an accurate approximation to ®, (1), even for relatively
large e.

Remark. The case when f, has a strong singularity, i.e. when « is close to
1, is not overly interesting, since for any ¢ € [0,1], ¢o(t) — 1 as a — 1 and
hence, p} — po - the uniform probability distribution on [0,1], as a — 1.

On re-writing the equation in (73) and using Newton’s generalised bino-
mial theorem we obtain, for any 0 < a < 1,

€ dma _ 6370‘ — —« 62704 o
& (o) = By, (o) 1 - o(j Ja 1

=, (110) (1 — 7 +e(1— a/2) + O(27)), € 0;

hence the reason why & i (10) provides such a precise approximation to

€

@y (uo). Already, the simple estimate
q)fa,e (MO)/(bfa (/’LO) =~ 1 - 61_a (6 ~ 0) (74)

demonstrates the accuracy of the approximation, see Fig. 3 (right).
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Figure 3: Left: ratios ®; (p0)/®y.(1o) for € = 107% k = 2,4,8. Right:
quality of the approximation in (74) for e = 0.001 and « € [0, 1).
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Next, we demonstrate an application of the methodology outlined in
Section 4.4 and construct approximations to the optimal measures for the
energies ®;  with foc as defined in (72).

Let N € N and choose N + 1 points 0 < zg < z1 < ... < zy < 1lin
[0, 1]; for example, set x; = k/N for k = 0,1,...,N. For a € (0,1), form
the matrix i}a,e,N = [fa,E (x5 —xj)m;:r It follows from (67) that the optimal
weights are given by

when =Ff, i1/ (AT 1), (75)

where 1 denotes the vector of ones of size N+1
The discrete energy <I>J;a7€’N(w) =wl fo,e, v W is minimised when w =
W, . - the vector of optimal weights, in which case

O;  y(whon) =1/ E L N1).

For fixed ¢ > 0 and o € (0,1), CIJfM’N(wZ’QN) — mingepm q’fa,e(“) as

N — oo, where M denotes the set of all probability measures on [0, 1].

This convergence could be slow however, since for small €, fme is very sharp

at zero and approximates a function with a singularity at the origin. Note,

also, that if € is small, the value of 5 S’N(w;e’N) can be far away from
7.+ see (70), since for any N €N, (bfa,e,l’\/(W;,aN) — oo ase— 0.

Discrete measures do not provide accurate approximations to the optimal
measures for the Riesz energy, since f, is singular at the origin (0 < a < 1).
However, using the following general scheme, we construct continuous prob-
ability measures which approximate the discrete measures with weights (75)
and, in turn, provide precise estimates of the optimal probability measures
with densities (69).

Let 0 = 29 < 71 < ... < xy = 1 be the support points of a discrete
probability measure and w;, > 0, kK = 0,..., N, be the corresponding weights
with chvzo wy = 1. Firstly, define N + 2 points z; (¢ = 0,...,N + 1) by
20 =0, zy4y1 =1 and zj = (zj_1 + x;)/2 for j =1,..., N. Next, partition
the interval [0,1) into N + 1 non-intersecting intervals I = [2k, 2k+1), k =
0,...,N. Denote by I, the length of the interval Iy: that is, [y = zxy1 —
2. We have [, > 0 for all k = 0,...,N, and .o _,lx = 1. Note that if
xx = k/N for k = 0,1,...,N, then Iy = Iy = 1/(2N) and [,, = 1/N for
n=1,...,N -1

Define the piece-wise constant function

() = wi/lg, te Il for some kK =0,1,..., N
PNAU=90 0, te¢o,1).
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Then, py > 0 and fo pn(t)dt = Zk owr = 1, and therefore, py is a
probability density function. We shall use py as a continuous approximation
to the discrete probability measure supported on 0 =2 < 1 < ... < axny =
1 with weights wy (K =0,...,N).

For a measure py with density py, see (76), we have for the Riesz energy,

&5 (1) / / & — 4|~ pyv () p (y) dedy

_2Zw’/ Z“’J/ )~dy d:c—l—z //|:z: y|~dzdy

1]0 zOZ

Zi+1 Z+1
wzw]/’ /J x—y) “dydz
'L

0<j<1
N Zit1 fZit1
22/ / |z —y| “dzdy (0 <a<1).
i=0 1 z z

@ @

Moreover, for any 0 < a < b <c¢ <d,

b b Y - 2(b—a)2’°‘
[ ey = SO

d rb B Y _(d_a)2—a+ (C_b)Q—a_(d_b)Q—a_(C_a)Q—a
Jo e 1o a) |

Combining the above formulas we obtain an explicit expression for comput-
ing @y, (1n) and, in turn, the efficiency of py, eff (un) = @3 /Py, (1N).
Let un be the probability measures with densities py defined in (76),
where wy, are the k" elements of the vector of optimal weights W N see
(75). In Tables 1-5 of Section 5.1 we highlight the efficiency of the mea-
sures py for various values of @ € (0,1), N € N and € > 0. Numerous
graphs displaying both the optimal densities ¢,, see (69), and the numer-
ically computed densities described above, see (76), can also be found in
Section 5.1. By construction, it is clear that for any « € (0, 1), the approx-
imations improve as € — 0 and N — oco. However, computing the densities
py for N > 250 is rather time-consuming due to the calculation of the in-
verse matrix f N in our algorithm. For fixed N € N, chosen so that the
computation tlme is reasonable, we are faced with the problem of finding
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a “good” € > 0 which gives rise to accurate minimising probability densi-
ties. This a-dependent € is not found by simply choosing ¢ > 0 as small
as possible. For N reasonably large we need € small, but not too small, in
order to obtain the best approximations. Roughly speaking, we pass both
parameters through the limit at the same time, and in proportion to one
another. These observations are demonstrated in Tables 1 -5, see Section
5.1, and Figures 4 and 5 below. For N = 250 and « € (0,1), ¢ = 0.001
produces very accurate approximating densities, see e.g. Figures 20, 26, 32,
38 and 44 of Section 5.1.

=}
o —
2

Figure 4: Optimal density (black), see (69), and numerically computed den-
sities, see (76), on the uniform grid xy = k/N, k=0,1,...,N, for N = 100,
a = 0.5. Left: ¢ = 0.1 (blue), ¢ = 0.01 (red). Right: ¢ = 0.001 (purple),
e = 0.0001 (green). It is clear that e ~ 0.01 produces the best approximation.
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Figure 5: Optimal density (black), see (69), and numerically computed den-
sities, see (76), on the uniform grid xy = k/N, k=0,1,...,N, for N = 250,
a = 0.5. Left: ¢ = 0.1 (blue), ¢ = 0.01 (red). Right: ¢ = 0.001 (purple),
e = 0.0001 (green). Hence, € ~ 0.001 now produces the best approximation.

4.6 Numerical approximations to minimising measures for
¢, with f unbounded at zero and f| ) € CM

Motivated by the work of Section 4.5 where we constructed precise approx-
imations to the optimal densities for the Riesz energy, we now construct
continuous probability measures which accurately estimate the minimising
measures for the energy ®, see (62), with alternative singular functions f
such that f|p ) € CM. Note, f|(,) denotes the restriction of f to the
domain (0, 00).

The general approach is as follows. Firstly, we take one of the many
Bernstein functions g from the list in [35, Chapter 15], so that the following
derived function, f = ¢/(| -|) (up to multiplication by a positive normalis-
ing constant), is singular at the origin, and h := f| ) € CM. Next, we
construct the corresponding family of functions he defined in (59) (replacing
f with h). For any € > 0, h. € CM and thus, f. := he(|-|) € P(LE(R))
by Corollary 2.7.6. Moreover, since f. is continuous for any € > 0, it fol-
lows from Proposition 2.4.6 that fe is classically positive definite for any
e > 0. Using the results of Section 4.4, we then construct the vector of
discrete minimising weights w¢ - for the energy ®; (e> 0), see (67), (75),
and, subsequently, derive continuous approximations to the density of the
minimising probability measure (on [0, 1]) for ®, see (76). By [17, Th. 5.3],
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the numerically computed probability measures are also minimisers over the
set of signed measures on [0, 1] with total mass 1.

Note, although the functions fe are classically positive definite, they
need not be strictly positive definite. However, in the examples we consider
below, the corresponding functions f€ are sufficiently strictly positive definite
for any € > 0. By “sufficiently” we mean that f@N = [fe(xl — :cj)]i]j:l is
invertible for any N € [0, N], where N is reasonably large (usually N = 250),
so that for any € > 0 and N € [0, ]\7], all the eigenvalues of the matrix f'aN
are positive.

The corresponding energies ® fo€> 0, are convex on the set of proba-
bility measures on [0, 1], see e.g. [47, Lemma 1]. Taking e — 0 and N — oo
in the approximating density provides an estimate of the density of the
minimising (not necessarily unique/optimal) measure for ®.

We assess the accuracy of the approximating measure by computing its
potential P, see (66). The closer this value is to a constant, the more
accurate the approximation, see Theorem 4.3.1. The following method for
computing the potential of an approximating measure will be used in the
examples below.

Let un denote the probability measure with density py defined in (76),
where wy, are the k" elements of the vector of minimising weights, see (67).
Then, for any N € Nand z € I; = [25,2j41) (j =0,...,N),

1 N s
Puse)= [ Se = oty =32 [ oo

7j—1 2 2
w; i+1 W J+1
:ZL/ g'(ﬂﬁ—y)dy+l7/ g'(lv —yl)dy
i=0 * VF 7 Iz
N
w Zk+1
+ > l’“/ gy —=z)dy
k=j+1 F e
7j—1
w; W
=) 7 l9le—z)—g(z—2it1)] + 77 [9(zj41 - 2) +9(z—2j) —29(0)]
i=0 " J
N w
k
+ Z E[g(zk+l_x)_g(zk_x)]- (77)

We provide three examples of numerical approximations to the minimis-
ing measures for ®; with f unbounded at the origin and f| ) € CM.
Note, in each case we take M to be the set of probability measures on [0, 1].
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1. Let go(t) = (1 — ) tti72/(1 + )17 (¢ > 0, a € (0,1)), so that
fat) = gb(It) = |t|7*/(1 + [t])?>~* (t € R, a € (0,1)). Since g, € BF, then
ha = fal0,00) € CM, for any a € (0,1): in fact, h, is proportional to the
function gg of Section 2.7. Moreover, for any « € (0,1), f, shares the same
singularity as the function associated with the Riesz kernel, |- |~¢. Figure 6
below demonstrates this observation for o = 0.25 and a = 0.75.

3

Figure 6: t=% (red) and ho(t) (blue). Left: o = 0.25. Right: o = 0.75.

For any o € (0,1) and € > 0, the family of functions h, . are constructed
by (59). Next, we define the classically continuous, positive definite func-
tions fu.c := ha,c(|-]), and by (75), compute the vector of discrete minimising
weights wy, _ y for the energy ® Fa Finally, based on the analysis of Section
4.5, and due to the similarity between f, and the function associated with
the Riesz kernel, we use N = 250 and € = 0.001 to construct the continuous
probability measures py with densities py defined in (76). The approximat-
ing probability densities turn out to be very close to the optimal densities
¢o for the Riesz energy, see (69). Figures 7 and 8 below show the relation
between py and ¢, for various values of o € (0, 1).
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Figure 7: Optimal density for the Riesz energy ¢o (red), see (69), and the
numerically computed density py (blue) on the uniform grid x = k/N,
k=0,1,...,N, for N =250, e = 0.001. Left: @ = 0.1. Right: a = 0.25.

Figure 8: Optimal density for the Riesz energy ¢ (red), see (69), and the
numerically computed density py (blue) on the uniform grid x, = k/N,
k=0,1,...,N, for N =250, e = 0.001. Left: a = 0.5. Right: a = 0.75.

Indeed, it is true that for any a € (0, 1), there is a strong resemblance
between the approximating densities (for N = 250 and ¢ = 0.001) and
the optimal densities for the Riesz energy; which we believe is due to the
similarity between the singularities of f, and |- |~¢.
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The potential of uy at x € [0,1],

/f ]ONdy—/1 v~y pn(y) dy
“ o (14 ]z —yl)*« ’

is approximately constant for any « € (0,1), see e.g. Figures 45, 46 and 47
of Section 5.1. Thus, by Theorem 4.3.1, we conclude that the approximating
probability measures py are very close to the minimising measures for ®, .

2. Take gy(t) = 2vE (1 + e V1) (t,X > 0), so that fy(t) = gh(Jt]) =
(1=t - 1)e A ‘t|)/\/|t| (t € R, A >0). hy:= fal(o,00) Is exactly the
function g19 of Section 2.7, and since gy € BF, then hy € CM for any A > 0.
Computing the series expansion of hy about ¢t = 0 gives, for any A > 0,

2

2oy /\2\f —/\3t+(’)% t—0,
i (t2),

ha(t) =

and hence,
h ()N——2)\ (t~0,X>0).

g

It is clear that for A ~ 0, hy(t) ~ 2¢~Y/2 for small t. Thus, fy(t) — 2[¢| V2,
which is twice the function associated with the Riesz kernel (68) for o = 1/2,
as t,A — 0. Fig. 9 (left) below demonstrates that, in fact, for any ¢ > 0,
ha(t) — 2t7/2 as X — 0 and hy(t) =t~ /% as A — oo.

For any A > 0 and € > 0, the family of functions h) . are constructed
by (59) (replacing f with h). Again, we define the classically continuous,
positive definite functions f . := hy (| - |), compute the vector of discrete
minimising weights w} .y for the energy ® P (using (75)) and construct
the continuous probability measures uy with densities pn defined in (76).
Since, for any t € R, fa(t) ~ 2 t|7/2 for small A, ie. A < 0.01 and
i(t) ~ \t\71/2 for reasonably large A, i.e. A > 25, it follows that the
approximating probability densities py are almost identical to the optimal
density ¢/, for the Riesz energy, see (69), when A < 0.01 and A > 25. This
is demonstrated in Figures 9 (right) and 10 below. Note, throughout the
whole example, we use N = 250 and € = 0.001 in our approximations, since
for any A > 0, f) ~ |- \*1/2 (up to multiplication by a positive constant)
near the origin.
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Figure 9: Left: t=Y/2 (red), 2t='/2 (blue), hoos(t) (green), hoos(t) (cyan),
hi(t) (purple), hio(t) (black). Right: Optimal density for the Riesz energy
b1/2 (red), see (69), and the numerically computed density px (blue) on the
uniform grid xp, = k/N, k=0,1,..., N, for N =250, ¢ = 0.001, A = 0.001.
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Figure 10: Optimal density for the Riesz energy ¢1/2 (red), see (69), and
the numerically computed density py (blue) on the uniform grid x, = k/N,
k=0,1,...,N, for N =250, ¢ = 0.001. Left: A\ =100. Right: A = 1000.

For A € (0.01,25), there exists 8 € (1,2) such that 3 |-|~"/? has the

same singularity as f) at zero, see e.g. Fig. 11 below, where A =1, § = 1.75
and A = 10, 8 = 1.1 are shown.
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Figure 11: Left: 1.75t~ Y2 (red) and hi(t) (blue). Right: 1.1t='/2 (red) and
hlo(t) (blue)

For any A > 0, the approximate minimising densities for ®y, are closely
related to the optimal density ¢/, for the Riesz energy. Indeed, for A <
0.01 and A > 25, they are almost identical, see the discussion above; for
A € (0.01,25), we believe the similarity between the singularities of fy and
Bl |_1/2, for some € (1,2), gives rise to a strong connection between py
and ¢;/,. However, we now notice that the strength of the singularity of
fx plays an important role in how close py is to ¢y/5. In particular, the
stronger the singularity, i.e. the smaller the A € (0.01,25), or the closer fy
is to 2 |t|_1/ 2, the stronger the likeness between the approximate minimising
densities for @y, and the optimal density ¢,/ for the Riesz energy, see
Fig. 12 below.
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Figure 12: Optimal density for the Riesz energy ¢1 /o (red), see (69), and
the numerically computed density py (blue) on the uniform grid xy = k/N,
k=0,1,...,N, for N =250, e = 0.001. Left: A = 0.1. Right: A = 10.

The potential of uy at z € [0,1],

1 11 T—y|— ef)\ |z—y|
PNN@):/Ofa(x—y)dey:/o L= ﬂ%’ p () dy.

is approximately constant for any A > 0, see e.g. Figures 48, 49 and 50
of Section 5.1. Hence, by Theorem 4.3.1, we conclude that the probability
measures py accurately approximate the minimising measures for ®y, .

3. Let g(t) = t(1+ 1/t)!*'—1 (¢t > 0), so that f(t) = ¢'(|t|) = [¢t|(1 +
1/|t) M og(1 + 1/[t]) (t € R). h := fl(o,00) 18 equal to the function ge3
of Section 2.7, and since g € BF, then h € CM. On computing the series
expansion of h about ¢ = 0 we obtain

h(t) = —log(t) + (1 — log(t) — log(t)*)t + O(t), t— 0,

and hence,

h(t) ~ —log(t) (t~0).
The density of the optimal measure for the energy ®; with f = —log| - |
is the arcsine density ¢arc(t) = t~1/2(1 — 75)*1/2/1“(1/2)2 (t € [0,1]), see e.g.
[47, Corollary 1]. Note, ¢arc = limgy—0 ¢q; the limiting case of the optimal
density for the Riesz energy.

We construct the family of functions k. using (59) and define the classi-
cally continuous, positive definite functions f. := h(| - |). Next, by (75), we
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compute the vector of discrete minimising weights w; y for the energy i
Note that, formally, the matrix f'e, ~ blows up on the diagonal. However, by
construction, we know that f; is bounded at the origin and thus, we replace
the diagonal elements fe(O) with the numerically computed series expansion
of fe(t) (or he(t)) at t = 0. Finally, we construct the continuous probability
measures jy with densities py using (76).

Since f shares the same singularity as —log |- |, then, based on the anal-
ysis of examples 1 and 2, one would expect there to be a similarity between
the approximate minimising densities py and the optimal probability den-
sity for @_1og.|, Parc. However, the pys do not resemble the optimal density
as much as we have witnessed in the previous two examples, see Figures 13
and 14 below. Intuitively, we believe this is due (at least partly) to the fact
that f and —log| - | have a relatively weak singularity; for instance, f of
example 2 is much sharper than f at the origin. We do not investigate this
claim further, however, since it is not the focus of our research.

We have for the potential of uy at x € [0,1],

1
—1\ 1+|z— _
P,LN(HT)—/O =y (14 |z — ™) ¥ og (14 & — y| ) pw (y) dy.

For N = 250 and € = 0.001, P, (z) ~ 3.139 for all x € [0, 1], see Fig. 52
(right) of Section 5.1. Hence, by Theorem 4.3.1, we conclude that the cor-
responding probability measure uy is very close to the minimising measure
for ®y.
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Figure 13: Arcsine density (red) and the numerically computed density py
(blue) on the uniform grid x = k/N, k = 0,1,...,N, for N = 100. Left:
€ = 0.01. Right: ¢ = 0.001.

Figure 14: Arcsine density (red) and the numerically computed density py
(blue) on the uniform grid x = k/N, k = 0,1,...,N, for N = 250. Left:
€ = 0.01. Ruight: ¢ = 0.001.
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5 Appendix

5.1 Miscellaneous tables and figures

The following tables highlight the efficiency of the measures uy (eff (un)

OF /P, (un)) with densities py, see (76), for various values of o € (0,1),

N € N and € > 0, see Section 4.5 for details.

Table 1: eff(un), « = 0.1.

a | N € eff ()
0.1 100 | 0.1 0.994455
0.01 0.999508

0.001 | 0.999888

0.0001 | 0.999594

200 | 0.1 0.993406
0.01 0.999388

0.001 | 0.999957

0.0001 | 0.999836

250 | 0.1 0.993066
0.01 0.999344

0.001 | 0.999957

0.0001 | 0.999888

Table 3: eff(un), a = 0.5.
a | N € eff ()
0.5 100 | 0.1 0.953078
0.01 0.995425

0.001 | 0.998697

0.0001 | 0.993893

200 | 0.1 0.942722
0.01 0.993577

0.001 | 0.999546

0.0001 | 0.995921

250 | 0.1 0.939382
0.01 0.992941

0.001 | 0.999653

0.0001 | 0.996648

Table 2: eff (un), o = 0.25.

! N € eff (un)
0.25 | 100 | 0.1 0.982312
0.01 0.998394

0.001 | 0.999620

0.0001 | 0.998074

200 | 0.1 0.978736
0.01 0.997881

0.001 | 0.999846

0.0001 | 0.999133

250 | 0.1 0.977586
0.01 0.997708

0.001 | 0.999866

0.0001 | 0.999359

Table 4: eff (un), o = 0.75.

a N € eff (un)
0.75 | 100 | 0.1 0.927120
0.01 0.991419

0.001 | 0.997564

0.0001 | 0.995842

200 | 0.1 0.908509
0.01 0.988184

0.001 | 0.998694

0.0001 | 0.996052

250 | 0.1 0.902328
0.01 0.986822

0.001 | 0.998955

0.0001 | 0.996242
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Table 5: eff (un), a = 0.9.

a | N € eff (un)
0.9 | 100 | 0.1 0.940572
0.01 0.989972

0.001 | 0.995564

0.0001 | 0.995886

200 | 0.1 0.921485
0.01 0.989034

0.001 | 0.997549

0.0001 | 0.997626

250 | 0.1 0.914352
0.01 0.988011

0.001 | 0.997950

0.0001 | 0.997950

Next, we present several figures comparing the optimal densities ¢, for
the Riesz energy, see (69), which appear in red throughout, and the nu-
merically computed densities py, see (76), represented in blue. Note, for
simplicity, we use the uniform grid zx, = k/N, k=0, 1,.

imations.

s
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Figure 15: N =100, o = 0.1. Left: € = 0.1. Right: ¢ = 0.01.
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Figure 16: N =100, a = 0.1. Left: e = 0.001. Right: e = 0.0001.
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Figure 17: N =200, a = 0.1. Left: ¢ =0.1. Right: ¢ = 0.01.
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Figure 18: N =200, o = 0.1. Left: € = 0.001. Right: ¢ = 0.0001.
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Figure 19: N =250, a = 0.1. Left: ¢ =0.1. Right: ¢ = 0.01.
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Figure 20: N =250, a =0.1. Left: e =0.001. Right: e = 0.0001.
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Figure 21: N =100, o = 0.25. Left: ¢ = 0.1. Right: ¢ = 0.01.
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Figure 22: N =100, o = 0.25. Left:
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Figure 23: N =200, a = 0.25. Left: ¢ = 0.1. Right: ¢ = 0.01.
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Figure 24: N =200, o = 0.25. Left: € = 0.001. Right: ¢ = 0.0001.
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Figure 25: N =250, a = 0.25. Left: ¢ = 0.1. Right: ¢ = 0.01.
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Figure 26: N = 250, o = 0.25. Left: e = 0.001. Right: e = 0.0001.

10+
5
g
4-
& 1
4 2
2 Q 1 kﬁ—,:._‘J
o T T T 0 T T y T
] 02 04 06 08 1 L] 02 04 06 08 1
t t

Figure 27: N =100, a = 0.5. Left: ¢ =0.1. Right: ¢ = 0.01.
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Figure 28: N =100, a = 0.5. Left: e = 0.001. Right: e = 0.0001.
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Figure 29: N =200, a = 0.5. Left: ¢ =0.1. Right: ¢ = 0.01.

Figure 30: N =200, o = 0.5. Left: € = 0.001. Right: ¢ = 0.0001.
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Figure 31: N =250, a = 0.5. Left: ¢ =0.1. Right: ¢ = 0.01.

Figure 32: N =250, a =0.5. Left:
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Figure 33: N =100, o = 0.75. Left: ¢ = 0.1. Right: ¢ = 0.01.
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Figure 34: N =100, a = 0.75. Left: ¢ = 0.001. Right: ¢ = 0.0001.
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Figure 35: N =200, a = 0.75. Left: ¢ = 0.1. Right: ¢ = 0.01.
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Figure 36: N =200, o =0.75. Left: e = 0.001. Right: e = 0.0001.
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Figure 37: N =250, a = 0.75. Left: ¢ = 0.1. Right: ¢ = 0.01.
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Figure 38: N =250, o =0.75. Left: e = 0.001. Right: e = 0.0001.
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Figure 39: N =100, a =0.9. Left: ¢ =0.1. Right: ¢ = 0.01.
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Figure 40: N =100, a =0.9. Left: e = 0.001. Right: e = 0.0001.
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Figure 41: N =200, a =0.9. Left: ¢ =0.1. Right: ¢ = 0.01.
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Figure 42: N =200, o = 0.9. Left: € = 0.001. Right: ¢ = 0.0001.
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Figure 43: N =250, a =0.9. Left: ¢ =0.1. Right: ¢ = 0.01.

Figure 44: N =250, a = 0.9. Left: € = 0.001. Right: € = 0.0001.

The following figures display the potentials P, (x) := fol flx —y)pndy
(x € [0, 1]) of the approximate minimising measures constructed in examples
1, 2 and 3 of Section 4.6. In each case, we plot the expression in (77) at 200
equally spaced points in [0, 1]. Note, N = 250 and ¢ = 0.001, unless stated
otherwise.
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Figure 45: fo =|-|7%/(1+|-)>7. Left: a = 0.1. Right: o = 0.25.
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Figure 46: fo, =|-|7%/(1+|-)>7. Left: a = 0.5. Right: o = 0.75.
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Figure 47: fo =|-|7*/(1+]-)*7, a =0.9.
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Figure 48: fy = (1—-(\/] |- 1)e—A\/ﬂ)/\/ﬂ. Left: A = 0.001. Right: A = 0.1
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Figure 49: fy = (1—(\/| |- 1)e—M/W)/\/H, Left: A\ = 1. Right: A =10
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Figure 50: fa=(1— (/] |- 1)e—A\/ﬂ)/‘/| -|. Left: A =100. Right: A = 1000
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Figure 51: f=|-|(1+|-|")"log(1+|-|7'), N = 100. Left: ¢ = 0.01. Right:
€ = 0.001.
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Figure 52: f =|-|(1+|-|"H)"log(1 +|-|7Y), N = 250. Left: ¢ = 0.01. Right:
e = 0.001.
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