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Abstract

It is widely known that positive and conditionally negative definite functions
take finite values at the origin. Nevertheless, there exist functions with a
singularity at zero, arising naturally e.g. in potential theory or the study of
(continuous) extremal measures, which still exhibit the general characteris-
tics of positive or conditional negative definiteness.

Taking a framework set up by Lionel Cooper as a motivation, we study
the general properties of functions which are positive definite in an extended
sense. We prove a Bochner-type theorem and, as a consequence, show how
unbounded positive definite functions arise as limits of classical positive
definite functions, as well as that their space is closed under convolution.
Moreover, we provide criteria for a function to be positive definite in the
extended sense, showing in particular that complete monotonicity in con-
junction with local absolute integrability is sufficient.

The celebrated Schoenberg theorem establishes a relation between posi-
tive definite and conditionally negative definite functions. By introducing a
notion of conditional negative definiteness which accounts for the classical,
non-singular conditionally negative definite functions, as well as functions
which are unbounded at the origin, we extend this result to real-valued
functions with a singularity at zero. Moreover, we demonstrate how singu-
lar conditionally negative definite functions arise as limits of classical condi-
tionally negative definite functions and provide several examples of functions
which are unbounded at the origin and conditionally negative definite in an
extended sense.

Finally, we study the convexity and minimisation of the energy associ-
ated with various singular, completely monotone functions, which have not
previously been considered in the field of potential theory or experimental
design and solve the corresponding energy problems by means of numerically
computing approximations to the (optimal) minimising measures.

Keywords: unbounded positive definite function; Bochner’s theorem; com-
pletely monotone function; singular conditionally negative definite function;
Schoenberg’s theorem; convexity; energy problem; optimal measure.
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1 Introduction

The concept of positive definite sequences, arising in the context of a prob-
lem in complex function theory posed by Carathéodory [13], was introduced
in 1911 by Toeplitz [44]. Herglotz [18] established a connection between
positive definite sequences and the trigonometric moment problem. Moti-
vated by the work of Carathéodory and Toeplitz, Mathias [23] and later
Bochner [9] defined and studied the properties of positive definite functions,
specifically their harmonic analysis. Before these developments, however,
Mercer [24] had studied the more general concept of positive definite kernels
in research on integral equations.

According to the classical standard definition, a function f : Rd → C is
positive definite if

n∑
i,j=1

f(xi − xj) vi vj ≥ 0 (1)

for all x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ C, with any n ∈ N; in other
words, if the matrix

[
f(xi − xj)

]n
i,j=1

is non-negative definite for all n ∈ N
and x1,x2, . . . ,xn ∈ Rd. Using (1) with n = 2, x1 = 0, x2 = x, v1 = 1
and v2 such that v2f(x) = −|f(x)|, it can be shown that |f(x)| ≤ f(0) for
all x ∈ Rd. Hence positive definite functions by the standard definition are
always bounded.

One of the principle results on this subject is Bochner’s theorem [9,
Chapter IV.20], which states that a function f : Rd → C is continuous and
positive definite if and only if it is the (inverse) Fourier transform of a finite,
non-negative measure µ on Rd, i.e.

f(x) = µ̌(x) = (2π)−
d
2

∫
Rd
e ix·z µ(dz) (x ∈ Rd).

Thus, Bochner’s theorem provides an equivalent characterisation of whether
or not a given continuous function f is positive definite. The concept of
positive definite functions was extended to positive definite distributions by
L. Schwartz [41, Chapter VII, §9], and his analogue of Bochner’s theorem
states that a distribution is positive definite (and tempered) if and only if it
is the Fourier transform of a non-negative measure of slow increase, i.e. such
that the measure of balls is polynomially bounded in terms of the radius.

As shown above, positive definite functions in the sense of the standard
definition (1) are always bounded by their value at zero. However, there
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exist functions such as f = | · |−α (0 < α < 1), which have a singularity
at the origin, yet still exhibit properties similar to those of positive definite
functions. Such functions arise in potential theory (see, e.g. [8], [21] and
[33]), and recently appeared in the context of extremal measures ([36], [37]).
Functions defined on R which are unbounded at the origin and positive
definite in the following extended sense were studied by Cooper [14].

Definition. A function f : R→ C is called positive definite w.r.t. a set J
of functions if for every φ ∈ J , the integral∫

R

∫
R
f(x− y)φ(x)φ(y) dxdy (2)

exists (in the Lebesgue sense) and is non-negative [14, p. 54].

Let P(J) denote the class of all functions which are positive definite w.r.t.
J . Cooper’s definition coincides with the standard definition (1) when f is
continuous and J = C0(R), see e.g. [14, p.53]. However, for certain spaces
of functions J , the above definition enables us to extend the concept of
positive definiteness to functions which have a singularity at the origin. In
particular, we shall consider the spaces J = Lp(Rd) (and their local versions)
for various values of p.

Building on the foundations set by Cooper, we study unbounded positive
definite functions in more detail. One of our main results is Theorem 2.5.1,
which, in analogy to Bochner’s theorem for the classical case, characterises
a larger class of (generally unbounded) positive definite functions. Various
results follow from this theorem. For example, functions which are posi-
tive definite w.r.t. L2(Rd) can be approximated, in the L1(Rd) sense, by a
sequence of continuous, classically positive definite functions (see Corollary
2.6.1). Functions which arise as ‘convolution squares’ are positive definite
in the new sense (see Corollary 2.6.4), and conversely, a function which is
positive definite w.r.t. L2(Rd) can be written, in some sense, as a convolu-
tion square (see Corollary 2.6.5). We also show that the even reflections of
locally integrable, completely monotone functions are positive definite w.r.t.
L2
0(R), the set of functions in L2(R) with compact essential support (see

Corollary 2.7.6), and, subsequently, provide many examples of unbounded
functions which are positive definite in the extended sense.

A comprehensive study of conditionally negative definite functions, which
appear naturally in both probability and potential theory, can be found in
[3], [4] and [35]. A function f : Rd → C is conditionally negative definite in
the standard sense if f is conjugate symmetric, that is f(x) = f(−x) for all
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x ∈ Rd, and

n∑
i,j=1

f(xi − xj) vi vj ≤ 0 (3)

for all x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ C satisfying
∑n

i=1 vi = 0,
with any n ∈ N.

It is clear that if f is a classically positive definite function, then −f
is conditionally negative definite. The converse is not necessarily true (see
Section 3.1 for details). Similarly to positive definite functions, conditionally
negative definite functions take finite values at zero. However, unlike their
positive counterparts, they need not be bounded away from the origin.

Motivated by Cooper’s definition of positive definiteness, we define an
extended notion of conditionally negative definite functions on Rd as follows.

Definition. A function f : Rd → C is said to be conditionally negative
definite w.r.t. a set J of functions if f is conjugate symmetric a.e., that is
f(x) = f(−x) f.a.a. x ∈ Rd, and for every φ ∈ J satisfying

∫
Rd φ(x) dx = 0,∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy ≤ 0.

Let CN(J) denote the class of all functions which are conditionally negative
definite w.r.t. the set J . For suitably chosen J , CN(J) contains the classical
conditionally negative definite functions, which take finite values at zero, as
well as functions which are singular at the origin (see Section 3.5).

The renowned Schoenberg theorem [39, Th. 2] establishes a relation
between the classical positive definite and conditionally negative definite
functions. In particular, it states that a function f : Rd → C is conditionally
negative definite if and only if for all t > 0, g : x 7→ e−tf(x) is positive definite.

The central result of Section 3 is Theorem 3.4.1, which is a generalisa-
tion of Schoenberg’s theorem to real-valued (generally unbounded) func-
tions in P(J) and CN(J), for J = L2

0(Rd). Several subsequent results
concerning the class CN(L2

0(Rd)) are also established. For instance, we
demonstrate that functions in CN(L2

0(Rd)) are locally integrable (see Lemma
3.3.1), that CN(L2

0(Rd)) is a closed subset of L1
loc(Rd) (see Lemma 3.3.2) and

that real-valued functions which are conditionally negative definite w.r.t.
L2
0(Rd) can be approximated, in the L1

loc(Rd) sense, by a sequence of in-
finitely differentiable, classically conditionally negative definite functions
(see Lemma 3.4.3). Moreover, using Theorem 3.4.1, we indicate how to
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construct numerous examples of singular functions f ∈ CN(L2
0(Rd)), such

that −f /∈ P(L2
0(Rd)) (see Section 3.5).

The classical energy problem in the field of potential theory is based
on finding the measure(s) µ ∈ M(X ) which minimise(s)/maximise(s) the
energy integral

If (µ) :=

∫
X

∫
X
f(x− y)µ(dx)µ(dy) (4)

for a given a function f : Rd → R and setM(X ) of non-negative unit Borel
measures with support in the compact set X ⊂ Rd. We define a minimising
measure µ∗ ∈M(X ) to be optimal if it is the unique minimiser for If .

The case when f = − log | · | has been widely studied, see e.g. [33],
[34]. In fact, the logarithmic energy problem has been solved for various
sets X , see e.g. [33, Chapter I.1], where circles, discs and line segments are
considered. The more general case (for d = 1) when

f(x) =

{
(1− |x|α−1)/(α− 1) if α 6= 1,
− log |x| if α = 1

(x ∈ R\{0})

has been studied in [37], where it is shown that for any α ∈ (0, 2), If (µ)
is strictly convex on the set of all probability measures on the set of Borel
subsets of [0, 1], and that the measure with generalised arcsine density,

p1−α/2(t) =
Γ
(
2− α

)
t−α/2 (1− t)−α/2

Γ2
(
1− α/2

) ,

is optimal for If , see [37, Th. 2]. The energy problem has also been greatly
considered in the literature for the Riesz kernel κα(x,y) = |x− y|α−d (0 <
α < d, x,y ∈ Rd) and the classical Newtonian kernel, i.e. when f(x) =
|x|2−d (d > 2, x ∈ Rd), see e.g. [16], [21], [28], [32]. In the non-singular case,
when f = | · |α (α > 0), properties of the maximising measures and their
potentials

Pµ(y) :=

∫
X
f(x− y)µ(dx) (y ∈ X )

have been explored in [8].
The problem of finding optimal designs in experimental design is very

closely related to the energy problem in potential theory. In particular,
the functional If (µ) arises as an optimality criterion in the optimal design
problem with correlated observations for the location model yj = θ+ εj , see
e.g. [47, Eq. 5]. The measure µ∗ that minimises If on the set of probability
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measures defined on a compact subset of R, say [0, 1], defines an optimal
design for a suitable correlation function f . Standard correlation functions
are positive definite in the classical sense, however, as in [37, Corollary 1],
we extend the optimal design problem to the case when f is singular at the
origin and positive definite in an extended sense (see Section 4 for details).

We study the energy integral If(|·|) for several singular, completely mono-
tone functions f , which have not previously been considered in the field of
potential theory, and solve the corresponding energy problems by means
of numerically computing densities of measures which minimise If(|·|). The
main result of Section 4 is an algorithm for constructing continuous probabil-
ity measures which approximate the minimising measures for such energies
If(|·|). Firstly, we consider the case when f = (·)−α (α ∈ (0, 1)), which corre-
sponds to the case of the Riesz kernel (see Section 4.5), and, secondly, when
f is replaced with a variety of alternative completely monotone functions
with a singularity at zero (see Section 4.6).

5



2 On Unbounded Positive Definite Functions

Positive definite functions are bounded, taking their maximum absolute
value at 0. Nevertheless, there are unbounded functions, arising e.g. in po-
tential theory or the study of (continuous) extremal measures, which still
exhibit the general characteristics of positive definiteness. Taking a frame-
work set up by Lionel Cooper [14] as a motivation, we study the general
properties of such functions which are positive definite in an extended sense.

Our central result is Theorem 2.5.1, which, in analogy to Bochner’s the-
orem for the classical case, characterises a larger class of (generally un-
bounded) positive definite functions. Numerous results follow from this the-
orem. For instance, functions which are positive definite w.r.t. L2(Rd) can
be approximated, in the L1(Rd) sense, by a sequence of continuous, classi-
cally positive definite functions (see Corollary 2.6.1). Functions which arise
as ‘convolution squares’ are positive definite in the new sense (see Corollary
2.6.4), and conversely, a function which is positive definite w.r.t. L2(Rd)
can be written, in some sense, as a convolution square (see Corollary 2.6.5).
Using Theorem 2.5.1, we also show that the even reflections of locally in-
tegrable, completely monotone functions are positive definite w.r.t. L2

0(R),
the set of functions in L2(R) with compact essential support (see Corol-
lary 2.7.6). This result provides many examples of functions which have a
singularity at zero and are positive definite in the extended sense. The find-
ings outlined in this section have been accepted to appear in Mathematica
Pannonica in the form of the paper [26].

The structure of this section is as follows. We begin with an overview
of the positive definite functions as defined in the classical literature, see
Section 2.1. In Section 2.3 we introduce the ideas and discuss the main
results of [14]. The proof of Theorem 2.5.1 is given in Section 2.5, and an
alternative proof can be found in Section 2.8. Sections 2.6 and 2.7 present
corollaries to Theorem 2.5.1 and their corresponding proofs. We conclude
Section 2.7 with several examples of unbounded positive definite functions.

2.1 Classical positive definite functions

Positive definite sequences, arising naturally in the context of a problem in
complex function theory posed by Carathéodory [13], were first introduced in
1911 by Toeplitz [44]. Motivated by the work of Carathéodory and Toeplitz,
Mathias [23] and subsequently, Bochner [9] defined and studied the proper-
ties of positive definite functions, specifically their harmonic analysis. Prior
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to these developments, however, Mercer [24] had studied the more general
concept of positive definite kernels in research on integral equations.

The standard definition of a positive definite function is as follows.

Definition 2.1.1 A function f : Rd → C is positive definite if

n∑
i,j=1

f(xi − xj) vi vj ≥ 0 (5)

for all x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ C, with any n ∈ N.

In other words, f is positive definite if the matrix
[
f(xi − xj)

]n
i,j=1

is non-

negative definite for all n ∈ N and x1,x2, . . . ,xn ∈ Rd. We shall denote the
set of classical positive definite functions on Rd by PC,d. A simple example
of a function in PC,1 is f = e±i(·), since for any x1, x2, . . . , xn ∈ R and
v1, v2, . . . , vn ∈ C,

n∑
i,j=1

f(xi − xj) vi vj =

∣∣∣∣∣∣
n∑
j=1

e±i xjvj

∣∣∣∣∣∣
2

≥ 0.

Setting n = 2, x1 = 0, x2 = x, v1 = 1 and v2 = v in (5) gives(
1 + |v|2

)
f(0) + vf(x) + vf(−x) ≥ 0 (6)

for any v ∈ C. Hence, vf(x) + vf(−x) is real for any v ∈ C, and thus, in
particular, both f(x) + f(−x) and i(f(x) − f(−x)) are real. It therefore
follows that functions in PC,d are conjugate symmetric, that is f(x) = f(−x)
for all x ∈ Rd. Choosing v in (6) such that vf(x) = −|f(x)| gives |f(x)| ≤
f(0) for all x ∈ Rd. Hence, positive definite functions by the standard
definition are bounded, taking their maximum absolute value at the origin.

However, a positive definite function in the classical sense need not be
positive or continuous; for example, the function f(x) = 1 if x = 0, f(x) =
0 otherwise (x ∈ Rd), is positive definite, but not continuous; the cosine
function, cosx = (e ix + e−ix)/2, is in PC,1, but not non-negative. The
positive definiteness of the cosine function follows from property ii. below,
which we list amongst two other simple properties of functions in PC,d.

i. f ∈ PC,d if and only if f ∈ PC,d.

ii. If f1, f2, . . . , fn ∈ PC,d and ci ≥ 0 for all i = 1, . . . , n , then
∑n

i=1 cifi ∈
PC,d.

7



iii. If fn ∈ PC,d for all n ∈ N and the pointwise limit, limn→∞ fn(x) =
f(x), exists for all x ∈ Rd, then f ∈ PC,d.

These properties follow directly from Definition 2.1.1. A simple consequence
of the first two properties is that if f is positive definite, then so is Re (f) =
(f + f)/2.

Another interesting result of the class PC,d is that it is closed under
pointwise products. This property is stated in the following proposition and
proved directly below.

Proposition 2.1.1 If f, g ∈ PC,d, then fg ∈ PC,d.

Proof. Let n ∈ N and x1,x2, . . . ,xn ∈ Rd. The Schur (or Hadamard)
product of two n × n matrices A = (a i j) =

[
f(xi − xj)

]n
i,j=1

and B =

(b i j) =
[
g(xi − xj)

]n
i,j=1

is the n× n matrix C with entries c i j = a i j b i j =

fg (xi−xj). We now show that since A and B are non-negative definite, then
C is also non-negative definite. This result is often referred to as Schur’s
product theorem [40, Th. VII].

Since f ∈ PC,d, then A is Hermitian, that is a i j = a j i, and non-negative
definite. Hence, A has a Cholesky decomposition of the form A = LL∗,
where L is a lower triangular matrix with non-negative diagonal entries, and
L∗ denotes the conjugate transpose of L. Thus, for any v1, v2, . . . , vn ∈ C,

n∑
i,j=1

fg (xi − xj) vi vj =

n∑
i,j=1

(
n∑
k=1

l i k l j k

)
b i j vi vj

=
n∑
k=1

 n∑
i,j=1

b i j (vi l i k) (vj l j k)

≥ 0. �

Hence, if f is positive definite, then so is |f |2 = ff .
For real-valued functions we can use the following alternative definition

of positive definiteness.

Definition 2.1.2 A function f : Rd → R is positive definite if f(x)=f(−x)
for all x∈Rd and the inequality in (5) holds for all x1,x2, . . . ,xn ∈ Rd and
v1, v2, . . . , vn ∈ R, with any n ∈ N.

In particular, the evenness of the function is now stipulated, since it no
longer follows automatically as it does in Definition 2.1.1. This is also true

8



in the case of positive definite matrices; for example, the real-valued 2 × 2
matrix

A =

(
1 2
0 1

)
is non-symmetric yet positive definite, since for any v = (v1, v2) ∈ R2,
vAvT = (v1 + v2)

2 ≥ 0.
It can easily be shown that the functions defined in Definition 2.1.2 are

immediately positive definite as in Definition 2.1.1. For instance, for n ∈ N,
x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ C,

n∑
j,k=1

f(xj − xk) vj vk =

n∑
j,k=1

f(xj − xk)(aj + i bj)(ak + i bk)

=
n∑

j,k=1

f(xj − xk) aj ak +
n∑

j,k=1

f(xj − xk) bj bk ≥ 0, (7)

where aj = Re (vj) and bj = Im (vj).
The notion of positive definite functions can be generalised to functions

and kernels defined on arbitrary topological spaces, groups and semigroups,
see e.g. [2, 35, 43]. For example, a real-valued, positive definite kernel on
Rd× Rd can be defined as follows.

Definition 2.1.3 A kernel k : Rd×Rd → R is said to be positive definite if
k is symmetric, that is k (x, y) = k (y, x) for all x, y ∈ Rd, and

n∑
i,j=1

k (xi, xj) vi vj ≥ 0 (8)

for all x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ R, with any n ∈ N.

We mainly restrict our attention to the positive definite functions de-
fined in Definition 2.1.1. Henceforth, unless clearly stated otherwise, when
referring to classically positive definite functions or functions in PC,d, we
mean those defined in Definition 2.1.1.

One of the central results on the subject of positive definite functions is
the following theorem of Bochner.

Theorem 2.1.1 (Bochner, [9, Chapter IV.20]). A function f : Rd → C
is continuous and positive definite if and only if it is the (inverse) Fourier
transform of a finite, non-negative measure µ on Rd, i.e.

f(x) = µ̌(x) = (2π)−
d
2

∫
Rd
e ix·z µ(dz) (x ∈ Rd). (9)
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One direction is trivial, for if f has the above form, then for any n ∈ N,
x1,x2, . . . ,xn ∈ R and v1, v2, . . . , vn ∈ C,

(2π)
d
2

n∑
j,k=1

f(xj − xk) vj vk =

n∑
j,k=1

(∫
Rd
e ixj ·z e ixk·z µ(dz)

)
vj vk

=

∫
Rd

∣∣∣∣∣∣
n∑
j=1

e ixj ·z vj

∣∣∣∣∣∣
2

µ(dz) ≥ 0.

For a proof of the reverse implication see e.g [20, p. 150], [9, Chapter IV.20].
Hence, Bochner’s theorem provides an equivalent characterisation of

whether or not a given continuous function f is positive definite. For exam-
ple, the continuous functions f1(x) =

√
2 e−x

2
and f2(x) =

√
2 (1 + x2)−1

(x ∈ R) are in PC,1, since they are the (inverse) Fourier transforms of

f̂1 = e−
x2

4 and f̂2 =
√
πe−|x|, respectively.

For a continuous function f ∈ PC,d, the finiteness of the measure in
Bochner’s theorem emphasizes the fact that f is non-singular at the origin,
since f(0) = µ(Rd). However, there exist functions such as f = | · |−α
(0 < α < 1), which are unbounded at the origin, yet still exhibit properties
similar to those of positive definite functions. Such functions arise naturally
in potential theory (see, e.g. [8], [21] and [33]), and recently appeared in the
context of extremal measures ([36], [37]). Functions of a real variable which
are unbounded at the origin and positive definite in an extended sense were
studied by Cooper [14], see Section 2.3 for details.

2.2 Completely monotone functions

The concept of complete monotonicity was first introduced by Bernstein [6],
who studied functions on intervals of the real line having positive derivatives
of all orders. In conjunction to presenting the definition and basic proper-
ties of completely monotone functions, we highlight two theorems of note.
In Section 2.7 we look to partially extend the second of these theorems,
Theorem 2.2.2, to functions with a singularity at zero.

Definition 2.2.1 A function f : (0,∞)→ [0,∞) is completely monotone if
f ∈ C∞((0,∞)) and

(−1)n f (n) ≥ 0 on (0, ∞)

for all n ∈ N0 [35, Def. 1.3].

10



In particular, any completely monotone function is non-negative and non-
increasing. The family of all completely monotone functions is denoted by
CM. Functions in CM can be bounded or unbounded at zero; for example,
both f1(x) = e−x and f2(x) = x−

1
2 (x ∈ (0,∞)) are completely monotone.

If f is a bounded completely monotone function, then it can be extended
continuously to [0,∞) by taking f(0) := f(0+) = limx→0 f(x) [35, p. 28].

The following theorem, given without proof, characterises functions in
CM as Laplace transforms of non-negative measures.

Theorem 2.2.1 (Bernstein, [35, Th. 1.4], [7]). Let f : (0,∞) → [0,∞)
be a completely monotone function. Then it is the Laplace transform of a
unique, non-negative measure µ on [0,∞), i.e. for all x > 0,

f(x) = L(µ ;x) =

∫
[0,∞)

e−xt µ(dt). (10)

Conversely, whenever L(µ ;x) <∞ for any x > 0, x 7→ L(µ ;x) is completely
monotone.

Theorem 2.2.1 holds for all completely monotone functions, bounded
and unbounded. It follows from (10) that f(0+) = µ([0,∞)). Hence, the
finiteness of the measure is directly related to whether or not the function is
bounded. In particular, if f ∈ CM is bounded, then µ is finite; conversely,
if f ∈ CM is unbounded, then µ([0,∞)) = +∞.

We list some useful properties of completely monotone functions below.

i. If f1, f2, . . . , fn ∈ CM and ci ≥ 0 for all i = 1, . . . , n , then
∑n

i=1 cifi ∈
CM.

ii. If fn ∈ CM for all n ∈ N and the pointwise limit, limn→∞ fn(x) = f(x),
exists for all x > 0, then f ∈ CM.

iii. If f, g ∈ CM, then fg ∈ CM.

The first property follows directly from Definition 2.2.1, whilst properties ii.
and iii. can be proved using Theorem 2.2.1, see e.g. [35, Corollary 1.6].

The following theorem belongs to Schoenberg, along with a number of
other theorems on classically positive definite functions, e.g. [35, Prop. 4.4],
[35, Th. 12.14], [5, Th. 1.6].

Theorem 2.2.2 (Schoenberg, [38, Th. 3]). A function ψ : [0,∞)→ [0,∞)
is a bounded completely monotone function if and only if for all d ∈ N, the
function f = ψ(‖ · ‖2) : Rd → [0,∞) is continuous and positive definite.

11



In particular, if ψ ∈ CM is bounded, then f = ψ(‖ · ‖2) : Rd → [0,∞) is
continuous and positive definite for any d ∈ N. We generalise this observa-
tion to potentially unbounded completely monotone functions in Corollary
2.7.1.

2.3 Positive definiteness in the extended sense

An extended notion of positive definiteness was introduced by Cooper in the
pioneering paper [14]. The definition of a positive definite function in [14]
is more general than in Definition 2.1.1, and accounts for functions which
are unbounded at the origin. In this section we highlight the main results
of [14], where all of the functions considered are defined on the real line.

For continuous functions in PC,1, (5) is equivalent to∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy ≥ 0 (11)

for all functions φ ∈ C0(R), see e.g. [14, p.53]. Motivated by this observation,
Cooper [14] used the following definition for functions which are positive
definite in an extended sense.

Definition 2.3.1 A function f : R → C is called positive definite w.r.t.
a set J of functions if for every φ ∈ J , the integral in (11) exists (in the
Lebesgue sense) and is non-negative [14, p. 54].

Let P(J) denote the class of all functions which are positive definite w.r.t.
the set J . In association with [43, Section 6], such functions may also be
called integrally positive definite for J . For certain spaces of functions J ,
Cooper’s definition enables us to extend the concept of positive definiteness
to functions which have a singularity at 0. In particular, we shall consider
the spaces J = Lp(R) (and their local versions) for various values of p. In
the following section we will also consider spaces of functions defined on Rd.

We begin with an overview of some basic properties of the positive def-
inite functions studied in [14], analogous to those for the classical case, see
[43, p. 412]. In the following, let J be a set of complex-valued measurable
functions on R. This includes functions defined on a non-empty, measurable
subset of R, which we consider to be extended by zero to the whole real line.
Then the following properties follow directly from Definition 2.3.1.

i. f ∈ P(J)⇔ f∗ ∈ P(J), where f∗(x) := f(−x) (x ∈ R).

ii. f ∈ P(J)⇔ f ∈ P(J) if J is closed under complex conjugation.

12



iii. If f1, f2, . . . , fn ∈ P(J) and ci ≥ 0 (i = 1, . . . , n), then
∑n

i=1 cifi ∈
P(J).

iv. If J1 ⊆ J2, then P(J2) ⊆ P(J1).

Before proceeding to present our new results, we highlight the most
relevant results of [14].

For p ∈ [1,∞)∪{∞}, let Lp0(R) denote the subspace of functions in Lp(R)
with compact essential support. The functions in P(L1

0(R)) are essentially
bounded [14, Th. 5] and almost everywhere equal to a continuous, positive
definite function in the classical sense [15, Sec. 6]. The functions in P(L2

0(R))
need only be locally integrable [14, Lemma 1]. Cooper has the following
Bochner-type theorem.

Theorem 2.3.1 (Cooper, [14, Th. 6]). For any function f ∈ P(L2
0(R)),

there exists a non-negative, non-decreasing function ρ, such that for almost
all x,

f(x) =
1√
2π

∫
R
eixt dρ(t) in (C, 1) sense, (12)

where ρ(t) = o (t) as t→ ±∞.

In particular, the function ρ need not be bounded, but satisfies a sublinear
growth condition at ±∞. Note also that, unlike Bochner’s theorem, the
implication here is only in one direction. The qualification “in (C, 1) sense”
in (12) means

f(x) =
1√
2π

lim
λ→∞

1

λ

∫ λ

0

( ∫ u

−u
eivx dρ(v)

)
du,

in analogy to Cesàro summation of divergent series.
The P(Lp0(R)) spaces have the following additional properties.

Proposition 2.3.1 If f ∈ PC, 1 is continuous, then f ∈ P(L2
0(R)).

Proof. By Bochner’s theorem, there exists a finite, non-negative measure µ
on R such that for any φ ∈ L2

0(R),∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy =

1√
2π

∫
R

∫
R

∫
R
ei(x−y)z µ(dz)φ(x)φ(y) dxdy

=
1√
2π

∫
R

∣∣∣∣∫
R
eixzφ(x) dx

∣∣∣∣2 µ(dz) ≥ 0.

�
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Proposition 2.3.2 If f ∈ P(L2
0(R)) and g ∈ PC,1 is continuous, then fg ∈

P(L2
0(R)) [14, Th. 1].

Proof. By Bochner’s theorem, there exists a finite, non-negative measure µ
on R such that for any φ ∈ L2

0(R),∫
R

∫
R
fg (x− y)φ(x)φ(y) dxdy

=
1√
2π

∫
R

∫
R
f(x− y)

∫
R
ei(x−y)z µ(dz)φ(x)φ(y) dxdy

=
1√
2π

∫
R

∫
R

∫
R
f(x− y)(eixzφ(x))(eiyzφ(y))dxdyµ(dz)≥0.

�

Proposition 2.3.3 For any p ∈ [1, 2], P(Lp0(R)) ⊆ P(L2
0(R)).

Proof. This follows directly from the fact that L2
0(R) ⊆ Lp0(R) (p ∈ [1, 2]). �

Proposition 2.3.4 For any q ∈ (2,∞] and r ∈ [0,∞], P(L2
0(R))=P(Lq0(R))

= P(Cr
0(R)).

Proof. Let q ∈ (2,∞] and r ∈ [0,∞]. Since Cr
0(R) ⊂ Lq0(R) ⊂ L2

0(R), it
follows directly that P(L2

0(R)) ⊂ P(Lq0(R)) ⊂ P(Cr
0(R)). For the reverse

implication, we shall use the density of Cr
0(R) in L2

0(R). Suppose that f ∈
P(Cr

0(R)). Then, the integral∫
R

∫
R
f(x− y)ψ(x)ψ(y) dxdy =

∫
R

(f∗∗ ψ)(y)ψ(y) dy

exists in the Lebesgue sense and is non-negative for all ψ ∈ Cr
0(R), where

f∗(y) = f(−y) (y ∈ R). Since f ∈ L1
loc(R) by [14, Lemma 1], and the

convolution of an element of L1
loc(R) with an element of L2

0(R) is in L2(R),
the integral also exists for all ψ ∈ L2

0(R). By a change of variables and the
Fubini theorem,∫
R

∫
R
f(x− y)ψ(x)ψ(y) dxdy =

∫
R

∫
R
f(z)ψ(z + y)ψ(y) dydz (ψ ∈ L2

0(R)).

14



Let φ ∈ L2
0(R); then there is a sequence (ψn)n∈N in Cr

0(R) such that
‖φ− ψn‖2 → 0 as n→∞. Now,

sup
z∈R

∣∣∣∣∫
R

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dy

∣∣∣∣
≤ sup

z∈R

∫
R
|φ(z + y)||(φ− ψn)(y)|dy + sup

z∈R

∫
R
|(φ− ψn)(z + y)||ψn(y)|dy

≤ ‖φ‖2 ‖φ− ψn‖2 + ‖φ− ψn‖2 ‖ψn‖2 → 0 as n→∞.

As f ∈ L1
loc(R), it follows that∣∣∣∣∫

K
f(z)

∫
R

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dydz

∣∣∣∣→ 0 as n→∞,

where K denotes an interval that contains all the supports of the functions
gn(z) =

∫
R(φ(z + y)φ(y)− ψn(z + y)ψn(y)) dy. Hence the result follows, for∫

R

∫
R
f(x− y)φ(x)φ(y) dxdy = lim

n→∞

∫
R

∫
R
f(x− y)ψn(x)ψn(y) dxdy ≥ 0. �

The last two propositions demonstrate that as p increases from 1 to 2,
P(Lp0(R)) increases from a smaller class of positive definite functions to a
larger such class. As p increases beyond 2, P(Lp0(R)) remains the same.
Moreover, roughly speaking, as p increases from 1 to 2, P(Lp0(R)) runs from
the class of bounded, continuous positive definite functions (in the standard
sense), to a class of functions which are positive definite in a wider sense
and need not be bounded or continuous.

It proceeds from the following theorem of Cooper [14] that if a function
is bounded and positive definite w.r.t. L2

0(R), then it is positive definite
w.r.t. L1

0(R), and hence almost everywhere equal to a continuous function
in PC,1 [15, Sec. 6]. This observation, in juxtaposition to Proposition 2.3.1,
clearly demonstrates the connection between continuous, classically positive
definite functions and the functions in P(L2

0(R)).

Theorem 2.3.2 (Cooper, [14, Th. 7]). Let p ∈ [1, 2], q = p/2(p − 1). If
f ∈ Lqloc(R) and f ∈ P(L2

0(R)), then f ∈ P(Lp0(R)).

It follows from Theorem 2.3.2 that for any 1 < p ≤ 2, there exist functions
which are both singular at the origin and positive definite w.r.t. Lp0(R). For
example, consider the functions fα = | · |−α, for 0 < α < 1. In Section 2.7
we show that fα ∈ P(L2

0(R)) for all 0 < α < 1, and, for any 1 < p ≤ 2, there
exists 0 < α < 1 such that fα ∈ Lqloc(R) with q = p/2(p− 1).
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Hence, when considering the classes P(Lp0(R)) for 1 ≤ p ≤ 2, Theorem
2.3.2 infers that the transition from bounded to unbounded positive definite
functions occurs at p = 1. That is, functions which are positive definite
w.r.t. Lp0(R), for 1 < p ≤ 2, may have a singularity at zero, whilst functions
in P(L1

0(R)) are essentially bounded [14, Th. 5] and thus, non-singular at
the origin.

2.4 Extension to functions in higher dimensions

Motivated by the work of Cooper [14], we introduce a notion of positive def-
initeness for functions defined on Rd. Using this framework, we demonstrate
that some of the results of Section 2.3 still hold true in higher dimensions.
We begin by introducing an extended definition of positive definite functions
on Rd, which is analogous to Definition 2.3.1.

In the following, let J be a set of complex-valued measurable functions
on Rd. This includes functions defined on a non-empty, measurable subset
of Rd, which we consider to be extended by zero to the whole of Rd.

Definition 2.4.1 A function f : Rd → C is called positive definite w.r.t.
J if for every φ ∈ J , the integral∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy (13)

exists (in the Lebesgue sense) and is non-negative.

Again, P(J) will denote the class of all functions which are positive definite
w.r.t. the set J . It follows directly from Definition 2.4.1 that properties i.- iv.
of Section 2.3 remain valid. Note that in the first property we now define
f∗(x) := f(−x) for all x ∈ Rd.

The following proposition demonstrates that, as in the classical case,
even, real-valued positive definite functions are automatically positive defi-
nite in a complex sense. When referring to a property holding true almost
everywhere (a.e.), or, alternatively, for almost all (f.a.a.) x ∈ Rd, we mean
the property holds everywhere, except on sets of Lebesgue measure zero.

Proposition 2.4.1 Let f : Rd → R be such that f(x) = f(−x) f.a.a.
x ∈ Rd. Let Ĵ denote a vector space of complex-valued functions on Rd, such

that if φ ∈ Ĵ , then φ ∈ Ĵ and |φ| ∈ Ĵ . Let ĴR :=
{
φ ∈ Ĵ | φ is real-valued

}
.

Then, f ∈ P(ĴR) if and only if f ∈ P(Ĵ).
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Proof. One direction is clear since ĴR ⊆ Ĵ . For the reverse implication,
consider the following. Let ψ ∈ Ĵ and suppose f ∈ P(ĴR). First we prove
the existence of the integral∫

Rd

∫
Rd
f(x− y)ψ(x)ψ(y) dxdy. (14)

Indeed,∫
Rd

∫
Rd
|f(x− y)ψ(x)ψ(y)| dxdy =

∫
Rd

∫
Rd
|f(x− y)| |ψ(x)| |ψ(y)| dxdy

=

∫
Rd

∫
Rd
|f(x− y) ψ̃(x) ψ̃(y)| dxdy (15)

where ψ̃ = |ψ| ∈ ĴR. The integral in (15) exists since f ∈ P(ĴR). Hence, it
follows that the integral in (14) exists in the Lebesgue sense. Next, we show
the non-negativity of (14). ψ can be re-written as

ψ = Re (ψ) + i Im (ψ)

where Re (ψ) : Rd → R and Im (ψ) : Rd → R. Moreover,

Re (ψ) =
ψ + ψ

2
∈ Ĵ and Im (ψ) =

ψ − ψ
2i

∈ Ĵ .

Thus, Re (ψ), Im (ψ) ∈ ĴR. Let a := Re (ψ), b := Im (ψ) and

t [u, v] :=

∫
Rd

∫
Rd
f(x− y)u(x) v(y) dxdy (u, v ∈ Ĵ).

Then,
t [a, b] + t [b, a] = t [a+ b, a+ b]− t [a, a]− t [b, b]

and

−i (t [a, b]− t [b, a]) = t [ψ,ψ]− t [a, a]− t [b, b] (16)

are finite, since f ∈ P(ĴR). Hence, t [a, b] and t [b, a] individually exist since
both the sum t [a, b] + t [b, a], and the difference t [a, b]− t [b, a], exist. This
allows us to use the Fubini theorem, which in conjunction with the evenness
of f gives∫

Rd

∫
Rd
f(x− y) a(x) b(y) dxdy =

∫
Rd

∫
Rd
f(x− y) b(x) a(y) dxdy.

17



Hence, t [a, b] = t [b, a], and it follows from (16) that

t [ψ,ψ] = t [a, a] + t [b, b] ≥ 0.

�

The propositions presented in Section 2.3 extend naturally to the follow-
ing results concerning functions defined on Rd.

Proposition 2.4.2 If f ∈ PC, d is continuous, then f ∈ P(L2
0(Rd)).

Proposition 2.4.3 If f ∈ P(L2
0(Rd)) and g ∈ PC,d is continuous, then

fg ∈P(L2
0(Rd)).

Proposition 2.4.4 For any p ∈ [1, 2], P(Lp0(Rd)) ⊆ P(L2
0(Rd)).

Proposition 2.4.5 For any q ∈ (2,∞] and r ∈ [0,∞], P(L2
0(Rd) =

P(Lq0(Rd)) = P(Cr
0(Rd)).

The proofs of the above propositions are analogous to those of Propositions
2.3.1, 2.3.2, 2.3.3 and 2.3.4, respectively.

Next, we demonstrate that under certain conditions on our function,
Definitions 2.1.1 and 2.4.1 coincide. In particular, a continuous function is
classically positive definite if and only if it is positive definite w.r.t. C0(Rd).

Proposition 2.4.6 Let f : Rd → C be continuous. Then, f ∈ PC,d if and
only if f ∈ P(C0(Rd)).

Proof. Let f ∈ PC,d. By Propositions 2.4.2 and 2.4.5, it follows directly
that f ∈ P(C0(Rd)).

For the reverse implication, consider the following. Let ψ : R → R
denote the bump function

ψ(x) =

{
c0 exp

(
1

|x|2−1

)
, |x| < 1

0, |x| ≥ 1,

where c0 > 0 is the constant chosen so that
∫
Rψ(x) dx = 1.
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For any x=(x1, x2, . . . , xd)∈Rd, define Ψ(x) :=ψ(x1)ψ(x2) . . . ψ(xd) and

Ψn(x) := nd Ψ(nx) (n ∈ N). (17)

For any n ∈ N, Ψn ∈ C∞0 (Rd) is even and has compact support [− 1
n ,

1
n ]d.

Moreover,
∫
RdΨn(x) dx = 1 for all n ∈ N.

For any N ∈ N and any x1,x2, . . . ,xN ∈ Rd, define

Φn(x) :=
N∑
i=1

ξi Ψn(x− xi) (x ∈ Rd, n ∈ N),

where ξ1, ξ2, . . . , ξN ∈ C. Then, Φn ∈ C∞0 (Rd) and since f is continuous,

N∑
i,j=1

f(xi−xj)ξiξj =lim
n→∞

N∑
i,j=1

∫
xj+[− 1

n
, 1
n
]d

∫
xi+[− 1

n
, 1
n
]d
f(x−y)Φn(x)Φn(y)dxdy

=lim
n→∞

∫
Rd

∫
Rd
f(x−y)Φn(x)Φn(y) dxdy ≥ 0.

�

We now show that functions which are positive definite w.r.t. C0(Rd)
are locally integrable. We adapt and clarify the proof given by Cooper [14]
in [14, Lemma 1].

Proposition 2.4.7 If f ∈ P(C0(Rd)), then f ∈ L1
loc(Rd).

Proof. Let K ⊂ Rd be any compact set and I=[a1, b1]×[a2, b2]×. . .×[ad, bd]⊂
Rd be such that K ⊂ I. Let c = max{|a1|, |b1|, |a2|, . . . , |bd|} > 0.

Let ψ ∈ C0(R) be such that ψ is positive on [−2c, 2c]. For any x =
(x1, x2, . . . , xd) ∈ Rd, define Ψ(x) :=ψ(x1)ψ(x2) . . . ψ(xd). Then Ψ ∈ C0(Rd)
is positive on [−2c, 2c]d and

g(z) =

∫
[−c, c]d

Ψ(z + y)Ψ(y) dy =
d∏
i=1

∫ c

−c
ψ(zi + yi)ψ(yi) dyi (z ∈ Rd)

is positive and continuous on [−c, c]d. Thus,

inf
x∈[−c, c]d

g(x)

∫
[−c, c]d

|f(z)| dz ≤
∫
[−c, c]d

|f(z)g(z)| dz

≤
∫
Rd

∫
Rd
|f(z)Ψ(z + y)Ψ(y)| dydz

=

∫
Rd

∫
Rd
|f(x− y)Ψ(x)Ψ(y)| dxdy (18)
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where (18) follows from the Fubini theorem. Since f ∈ P(C0(Rd)), the
integral in (18) exists. Hence,∫

K
|f(z)| dz ≤

∫
I
|f(z)| dz ≤

∫
[−c, c]d

|f(z)| dz <∞.

�

Remark. By Proposition 2.4.5, we can replace C0(Rd) in Propositions 2.4.6
and 2.4.7 with Lq0(Rd) for any q ∈ [2,∞], or Cr

0(Rd) for any r ∈ [1,∞].
Moreover, in Proposition 2.4.7, we can also replace C0(Rd) with a more
general space J of functions defined on Rd, provided that for any c > 0, J
contains a function which is positive almost everywhere on [−c, c]d.

2.5 An extension of Bochner’s theorem to unbounded posi-
tive definite functions

We use Definition 2.4.1 with J = L2(Rd). Note that L2(Rd) is a smaller
class of functions than those considered by Cooper [14], since P(L2(Rd)) ⊂
P(L2

0(Rd)). However, for L2(Rd) as opposed to the space of compactly sup-
ported functions L2

0(Rd) of Theorem 2.3.1 (with d = 1), we obtain the fol-
lowing Bochner-type theorem.

Theorem 2.5.1 Let f ∈ L1(Rd). Then

f ∈ P(L2(Rd)) if and only if f̂ ≥ 0,

where f̂ denotes the Fourier transform of f .

We remark that under the hypothesis of Theorem 2.5.1, f will correspond to
a regular, in particular tempered, distribution, and hence Schwartz’s version
of Bochner’s theorem applies, see Theorem 2.8.1. Nevertheless, with regard
to applications where both f and its Fourier transform are functions, the
above generalised form of Bochner’s theorem in Cooper’s framework seems of
interest, along with its more elementary proof and the further consequences
shown in Sections 2.6 and 2.7 below.

The proof of Theorem 2.5.1 will be based upon the following two lemmas.

Lemma 2.5.1 Let p ∈ [1, 2] and q = p/2(p− 1). Let f ∈ Lq(Rd) and φ ∈
Lp(Rd). Then the integral in (13) exists, and∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy =

∫
Rd
f(z)(φ ∗ φ∗)(z) dz, (19)

where φ∗(z) = φ(−z) (z ∈ Rd).
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Proof. Since the convolution of two elements of Lp(Rd) is in Lr(Rd) with
r = p/(2− p), and 1/q + 1/r = 1, it follows that∣∣∣∣∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy

∣∣∣∣= ∣∣∣∣∫
Rd
f(z)

∫
Rd
φ(x)φ(x− z) dxdz

∣∣∣∣
=

∣∣∣∣∫
Rd
f(z)(φ ∗ φ∗)(z) dz

∣∣∣∣≤‖f‖q ‖φ ∗ φ∗‖r.
�

Remark. Lemma 2.5.1 also holds true for f ∈ Lqloc(R
d) and φ ∈ Lp0(Rd). To

see this, let φ ∈ Lp0(Rd) and K ⊂ Rd denote the compact support of φ ∗ φ∗.
Then, in the final line of the above proof, we obtain∣∣∣∣∫

Rd
f(z)(φ ∗ φ∗)(z) dz

∣∣∣∣ ≤ (∫
K
|f(z)|q dz

) 1
q

‖φ ∗ φ∗‖r. (20)

The following result is proved in a similar fashion to Proposition 2.3.4.

Lemma 2.5.2 Let f ∈ L1(Rd). Then f ∈ P(L2(Rd)) if and only if f ∈
P(S(Rd)), where S(Rd) denotes the Schwartz space of rapidly decreasing
functions on Rd.

Proof. Since S(Rd) ⊂ L2(Rd), it follows directly that P(L2(Rd)) ⊂ P(S(Rd)).
For the reverse implication, we shall use the density of S(Rd) in L2(Rd).
Presume, f ∈ P(S(Rd)). Then, the integral∫

Rd

∫
Rd
f(x− y)ψ(x)ψ(y) dxdy =

∫
Rd

(f∗∗ ψ)ψ (21)

exists in the Lebesgue sense and is non-negative for all ψ ∈ S(Rd). Since
f ∈ L1(Rd) and the convolution of an element of L1(Rd) with an element of
L2(Rd) is in L2(Rd), the integral also exists for all ψ ∈ L2(Rd).

Let φ ∈ L2(Rd). Then, similarly to as in the proof of Proposition 2.3.4,
there is a sequence (ψn)n∈N in S(Rd) such that ‖φ−ψn‖2→0 as n→∞, and

sup
z∈Rd

∣∣∣∣∫
Rd

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dy

∣∣∣∣ → 0 as n→∞.

As f ∈ L1(Rd), it follows that∣∣∣∣∫
Rd
f(z)

∫
Rd

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dydz

∣∣∣∣→ 0 as n→∞,
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and hence∫
Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy= lim

n→∞

∫
Rd

∫
Rd
f(x− y)ψn(x)ψn(y) dxdy ≥ 0.

�

Remark. Similarly, it can be shown that if f ∈ L1(Rd), then f ∈ P(L2(Rd))
if and only if f ∈ P(C0(Rd)). Thus, by Proposition 2.4.5 it follows that for
functions which are integrable over the whole of Rd, P(L2(Rd)) = P(L2

0(Rd)).
We now use Lemmas 2.5.1 and 2.5.2 to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Since f ∈ L1(Rd), the integral in (21) exists for all
ψ ∈ S(R). Since the space of Schwartz functions is closed under convolution
[31, Th. IX.3 (a)], ψ ∗ ψ∗ ∈ S(Rd) for all ψ ∈ S(Rd), where ψ∗(z) = ψ(−z)
(z ∈ Rd). Hence, for any z ∈ Rd and ψ ∈ S(Rd),

(ψ ∗ ψ∗) (z) = (2π)−
d
2

∫
Rd

(ψ ∗ ψ∗)̌(x) e−ix·z dx =

∫
Rd
ψ̌(x) ψ̌∗(x) e−ix·z dx

=

∫
Rd
|ψ̌(x)|2 e−ix·z dx,

since ∫
Rd
ψ(−u) e iu·x du =

∫
Rd
ψ(u) e iu·x du (x ∈ Rd). (22)

Hence, ψ̌∗ = ψ̌. By Lemma 2.5.1,∫
Rd

∫
Rd
f(x− y)ψ(x)ψ(y) dxdy=

∫
Rd
f(z)(ψ ∗ ψ∗)(z) dz

=

∫
Rd

∫
Rd
f(z) |ψ̌(x)|2 e−ix·zdxdz = (2π)

d
2

∫
Rd
f̂(x) |ψ̌(x)|2dx. (23)

From (23) it is clear that if f̂ ≥ 0, then f ∈ P(S(Rd)). By Lemma 2.5.2 it
follows that f ∈ P(L2(Rd)).

Conversely, suppose that f̂(z) < 0 at some point z ∈ Rd (reductio ad
absurdum). f̂ is continuous and bounded because f ∈ L1(Rd). It follows
that there exists δ > 0 such that f̂(x) < 0 for all ‖x − z‖ < δ, where ‖·‖
denotes the Euclidean norm on Rd. Let

ψ1(x) =

{
exp

[(
‖x− z‖2 − δ2

)−1]
if ‖x− z‖ < δ

0 otherwise
(x ∈ Rd).
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Then ψ1 ∈ C∞0 (Rd) ⊂ S(Rd). For ψ2 := ψ̂1 ∈ S(Rd), it follows by (23) that

0 ≤
∫
Rd

∫
Rd
f(x− y)ψ2(x)ψ2(y) dxdy = (2π)

d
2

∫
Rd
f̂(x) |ψ̌2(x)|2 dx

= (2π)
d
2

∫
‖x−z‖<δ

f̂(x) |ψ1(x)|2 dx < 0,

which is a contradiction. �

Remark. It follows from Theorem 2.5.1 that if f ∈ L1(Rd)∩P(L2(Rd)), then
f = f∗ almost everywhere. Indeed, f̂∗ = f̂ ≥ 0 by (22), and thus f = f∗

almost everywhere by the uniqueness of the Fourier transform on L1(Rd)
[11, Th. 34].

An alternative notion of L2-positive definiteness was introduced in [12],
where Definition 2.4.1 is used with J = L2(R) and f replaced with a two-
variable kernel k ∈ L2(R2). Buescu et al. were primarily interested in the
spectral properties of the integral operator∫

R
k(x, y)φ(x) dx (φ ∈ L2(R)),

where k is such that
∫
R
∫
R k(x, y)φ(x)φ(y)dxdy ≥ 0 for all φ ∈ L2(R). In our

case, we define the operator for a given function f ∈ L1(Rd) ∩ P(L2(Rd)),
associated with the sesquilinear form

q [φ, ψ] :=

∫
Rd

∫
Rd
f(x− y)φ(x)ψ(y) dxdy (φ, ψ ∈ L2(Rd)),

by

T (φ) :=

∫
Rd
f(x− y)φ(x) dx = f∗∗ φ (φ ∈ L2(Rd)).

By Young’s inequality, T : L2(Rd) → L2(Rd). The following facts proceed
immediately from the standard theory on forms and operators, see e.g. [19,
46]. Since f ∈ P(L2(Rd)), the quadratic form q[φ] := q[φ, φ] is non-negative
and thus, q is symmetric; that is, q [φ, ψ] = q [ψ, φ] for all φ, ψ ∈ L2(Rd).
q is bounded below by zero and its upper bound is ‖f‖1, since for any
φ ∈ L2(Rd),

0 ≤ q [φ, φ] ≤ ‖f∗∗ φ‖2‖φ‖2 ≤ ‖f∗‖1‖φ‖22 = ‖f‖1‖φ‖22,

by the Cauchy-Schwarz inequality and Young’s inequality, respectively. Our
operator T is non-negative, bounded and self-adjoint. Moreover, for any
φ ∈ S(Rd), f∗∗ φ ∈ L1(Rd) ∩ L2(Rd) by Young’s inequality, and thus

T (φ) = f∗∗ φ = F−1F
(
f∗∗ φ

)
(φ ∈ S(Rd)),
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where F denotes the Fourier transform on L2(Rd). Since F(·) and (̂·), the
Fourier transform on L1(Rd), coincide on L1(Rd) ∩ L2(Rd), it follows that

T (φ) = F−1
(
(2π)

d
2 f̂∗F(φ)

)
(φ ∈ S(Rd)).

By equation (22), f̂∗ = f̂ ≥ 0, and thus T = (2π)
d
2F−1Mf̂ F , where Mf̂

denotes the multiplication operator Mf̂ (·) := f̂×(·).
Mf̂ is a bounded linear operator on L2(Rd), for ‖Mf̂ (φ)‖2 ≤ ‖f̂‖∞‖φ‖2

for any φ ∈ L2(Rd), and thus, so is T . Since S(Rd) is dense in L2(Rd),
for any φ ∈ L2(Rd) there exists a sequence of functions (φn)n∈N such that
φn ∈ S(Rd) and ‖φ− φn‖2 → 0 as n→∞. Thus, for any ψ ∈ L2(Rd), there
exists a sequence of functions (ψn)n∈N such that ψn ∈ S(Rd),

‖T (ψ)− T (ψn)‖2 = ‖T (ψ − ψn)‖2 ≤ ‖T‖op‖ψ − ψn‖2 → 0 as n→∞,

where ‖T‖op denotes the operator norm of T , and

‖f∗∗ ψ − f∗∗ ψn‖2 = ‖f∗∗(ψ − ψn)‖2 ≤ ‖f∗‖1‖ψ − ψn‖2 → 0 as n→∞.

Hence,

T (φ) = (2π)
d
2F−1Mf̂ F (φ) = f∗∗ φ (φ ∈ L2(Rd)).

Since F is unitary on L2(Rd), it follows that the spectrum of T , σ(T ),
coincides with the spectrum of Mf̂ , σ(Mf̂ ). We know that σ(Mf̂ ) =

Range(f̂) = [0, max(f̂)], where Range(f̂) denotes the closure of Range(f̂),
since the operator Mf̂ − λ is invertible if and only if λ is not in this range.

Moreover, it is clear that λ ∈ σ(Mf̂ ) if and only if there exists a set K ⊂ Rd,
|K| > 0, such that f̂(x) = λ for all x ∈ K, see [46, p. 103] for details.

2.6 Approximation by positive definite functions and convo-
lution squares

In this section we present some corollaries to Theorem 2.5.1. In particular,
we show that functions in P(L2(Rd)) can be approximated by continuous,
classically positive definite functions. We also establish connections between
functions which are positive definite for L2(Rd) and functions which arise as
convolution squares. We begin by proving the following technical lemma, a
consequence of which is that L1(Rd)∩P(L2(Rd)) is a closed subset of L1(Rd).
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Lemma 2.6.1 Let p ∈ [1, 2] and q = p/2(p− 1). Let (fn)n∈N be a se-
quence of functions such that fn ∈ Lq(Rd) and fn ∈ P(Lp(Rd)) (n ∈ N).
If limn→∞ ‖fn − f‖q = 0 for some f ∈ Lq(Rd), then f ∈ P(Lp(Rd)).

Proof. Let φ ∈ Lp(R) and r = p/(2− p). By Lemma 2.5.1,∣∣∣∣∫
Rd

∫
Rd

(fn(x−y)− f(x− y))φ(x)φ(y) dxdy

∣∣∣∣ ≤ ‖fn − f‖q‖φ ∗ φ∗‖r → 0

(n→∞). Thus,∫
Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy= lim

n→∞

∫
Rd

∫
Rd
fn(x− y)φ(x)φ(y) dxdy ≥ 0.

�

Similarly, P(L2
0(Rd)) is a closed subset of L1

loc(Rd) (recall, functions in
P(L2

0(Rd)) are automatically locally integrable by Proposition 2.4.7). In
fact, we have the following lemma, which will be used during the proof of
Lemma 3.4.4 (see Section 3.4).

Lemma 2.6.2 Let p∈ [1, 2] and q= p/2(p− 1). Let (fn)n∈N be a sequence
of functions such that fn ∈ Lqloc(R

d) and fn ∈ P(Lp0(Rd)) (n ∈ N). If
limn→∞

∫
K |fn(x) − f(x)|q dx = 0 for some f ∈ Lqloc(R

d) and any compact
set K ⊂ Rd, then f ∈ P(Lp0(Rd)).

The proof of Lemma 2.6.2 follows the same steps as the proof of Lemma
2.6.1, using Lemma 2.5.1 and its ensuing remark. Lemmas 2.6.1 and 2.6.2
are analogous to the pointwise convergence property for the classical positive
definite functions, see [43, p. 412].

We now present some consequences of Theorem 2.5.1. The first obser-
vation is that L1(Rd) ∩ P(L2(Rd)) is the closure of L1(Rd) ∩ PC,d.

Corollary 2.6.1 Let f ∈ L1(Rd). Then, f ∈ P(L2(Rd)) if and only if there
is a sequence (gn)n∈N of continuous functions such that gn ∈ L1(Rd) ∩ PC,d

(n ∈ N) and limn→∞ ‖gn − f‖1 = 0.

Proof. Suppose f ∈ P(L2(Rd)). As f ∈ L1(Rd), its Fourier transform f̂ is
continuous and bounded, and f̂(x)→ 0 as ‖x‖ → ∞ (again, ‖·‖ denotes the
Euclidean norm on Rd). Also, by Theorem 2.5.1, f̂ ≥ 0. Let

η(u) = (2π)−
d
2 e−‖u‖

2/2 (u ∈ Rd),
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and, for n ∈ N, ηn := nd η (n ·) . Then,∫
Rd
|ηn(x)| dx =

∫
Rd
|η(x)| dx =

d∏
i=1

(
(2π)−

1
2

∫
R
e−x

2
i /2 dxi

)
= 1.

Define
hn(u) = f̂(u) e−‖u‖

2/(2n2) ≥ 0 (u ∈ Rd).

Then, hn ∈ L1(Rd). Let gn = ȟn be the inverse Fourier transform of hn.
By Bochner’s theorem [9, Chapter IV.20], gn is continuous and classically
positive definite. In particular, it has the property that |gn(v)| ≤ gn(0) <∞
(v ∈ Rd). By the Fubini theorem, for any v ∈ Rd and n ∈ N,

gn(v) = (2π)−
d
2

∫
Rd

(
(2π)−

d
2

∫
Rd
f(z) e−ix·z dz

)
e−‖x‖

2/(2n2) eiv·x dx

=

∫
Rd
f(z)

(
(2π)−

d
2

∫
Rd

(2π)−
d
2 e−‖x‖

2/(2n2) e−ix·(z−v) dx

)
dz

=

∫
Rd
f(z)

(
d∏
i=1

(
(2π)−

1
2

∫
R

(
(2π)−

1
2 e−x

2
i /2n

2
)
e−ixi(zi−vi) dxi

))
dz

=

∫
Rd
f(z)

(
d∏
i=1

n (2π)−
1
2 e−(n(zi−vi))

2/2

)
dz

=

∫
Rd
f(z)

(
nd(2π)−

d
2 e−‖n(v−z)‖

2/2
)
dz = f ∗ ηn (v).

By Young’s inequality, gn ∈ L1(Rd) (n ∈ N). Since f ∈L1(Rd) and η∈L1(Rd)
with

∫
Rd η(x) dx = 1, it follows that limn→∞ ‖gn − f‖1 = 0 [42, Th. 1.18].

For the reverse direction, we need only show that gn ∈ P(L2(Rd)) (n ∈
N). Since gn ∈ L1(Rd) (n ∈ N), gn has a continuous Fourier transform, and it
follows from Bochner’s theorem that ĝn ≥ 0 (n ∈ N). Thus, gn ∈ P(L2(Rd))
(n ∈ N) by Theorem 2.5.1. �

We show next that L1(Rd) ∩ P(L2(Rd)) is closed under convolution and,
under the further assumption of square integrability, under pointwise mul-
tiplication as well.

Corollary 2.6.2 Let f, g∈L1(Rd). If f, g∈P(L2(Rd)) then f∗g∈P(L2(Rd)).

Proof. Suppose f, g ∈ P(L2(Rd)). By Theorem 2.5.1, f̂ , ĝ ≥ 0. By Young’s
inequality, f ∗ g ∈ L1(Rd); moreover

f̂ ∗ g = (2π)
d
2 f̂ ĝ ≥ 0,
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so f ∗ g ∈ P(L2(Rd)) by Theorem 2.5.1. �

Corollary 2.6.3 Let f, g ∈ L1(Rd) ∩ L2(Rd). If f, g ∈ P(L2(Rd)) then
fg ∈ P(L2(Rd)).

Proof. Suppose f, g ∈ P(L2(Rd)). By Theorem 2.5.1, f̂ , ĝ ≥ 0. By the
Cauchy-Schwarz inequality, fg ∈ L1(Rd); furthermore

f̂g = (2π)−
d
2 f̂ ∗ ĝ ≥ 0,

hence fg ∈ P(L2(Rd)) by Theorem 2.5.1. �

The next statement shows that functions which arise as ‘convolution squares’
are positive definite in the new sense, note that p∗(z) = p(−z) (z ∈ Rd) as
before.

Corollary 2.6.4 If f = p ∗ p∗ for some p ∈ L1(Rd), then f ∈ P(L2(Rd)).

Proof. Suppose f = p ∗ p∗ with p ∈ L1(Rd). By Young’s inequality, f ∈
L1(Rd). From (22) it follows that

f̂ = p̂ ∗ p∗ = (2π)
d
2 p̂ p̂∗ = (2π)

d
2 |p̂|2 ≥ 0.

Thus, f ∈ P(L2(Rd)) by Theorem 2.5.1. �

This result is analogous to the classical result that if f = g ∗ g∗ for some
g ∈ L2(R), then f is continuous and positive definite in the original sense
[22, Th. 4.2.4]. Note that in the classical case we have f ∈ L∞(R), since the
convolution of two elements of L2(R) is in L∞(R), whereas in our present
situation we have f = p ∗ p∗ ∈ L1(Rd), again by Young’s inequality.

In Corollary 2.6.5 we show that a version of the converse to Corollary
2.6.4 is also true, viz. that a function which is positive definite w.r.t. L2(Rd)
can be written, in some sense, as a convolution square. An analogous state-
ment is known for continuous, classically positive definite functions (Khin-
chine’s criterion, [22, Th. 4.2.5]). In particular, if f : R→ C is a characteris-
tic function then there exists a sequence (gn)n∈N of complex-valued functions,
such that for any n ∈ N,

∫
R |gn(x)|2 dx = 1, and f(t) = limn→∞ gn ∗ g∗n(t)

holds uniformly in every finite t-interval. Note that a function f : R→ C is
a characteristic function if and only if f ∈ PC,1 is continuous and f(0) = 1.
The final condition can always be achieved via normalisation due to the
bounded nature of classical positive definite functions.
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Corollary 2.6.5 Let f ∈ L1(Rd). If f ∈ P(L2(Rd)), then there is a se-
quence (pn)n∈N of functions such that pn ∈ L2(Rd), pn∗p∗n ∈ L1(Rd) (n ∈ N),
and limn→∞ ‖pn ∗ p∗n − f‖1 = 0.

Proof. Let gn = ȟn (n ∈ N) be the functions constructed in the proof of
Corollary 2.6.1: then, limn→∞ ‖gn−f‖1 = 0. Let n ∈ N. Since hn ≥ 0, then
hn = q2n for qn :=

√
hn ∈ L2(Rd). The Fourier transformation q̃n = F(qn)

given by

q̃n(u) = l.i.m.
R→∞

(2π)−
d
2

∫
[−R,R]d

qn(x) e−ix·u dx (u ∈ Rd)

defines a unitary operator F on L2(Rd) to L2(Rd). By l.i.m.R→∞ we mean
the limit in the mean as R tends to infinity. In other words, ‖q̃n− q̂n,R‖2 → 0
as R→∞, where for any R > 0, qn,R denotes the integrable function

qn,R(x) =

{
qn(x), x ∈ [−R, R]d

0, otherwise,

and q̂n,R represents its Fourier transform

q̂n,R(u) = (2π)−
d
2

∫
Rd
qn,R(x) e−ix·u dx (u ∈ Rd).

The inverse operator F−1(q̃n) is given by

qn(x) = l.i.m.
R→∞

(2π)−
d
2

∫
[−R,R]d

q̃n(u) eiu·x du (x ∈ Rd). (24)

Let y ∈ Rd and define ṽn(x) := q̃n(x+y) for all x ∈ Rd. Then, ṽn ∈ L2(Rd),
and it follows from (24) that

vn(x) = l.i.m.
R→∞

(2π)−
d
2

∫
[−R,R]d

q̃n(u + y) eiu·x du = qn(x) e−iy·x (x ∈ Rd).

(25)
By the Parseval identity [1, Ex. 4.2.9] and (25), we have∫

Rd
q̃n(x)ṽn(x) dx =

∫
Rd
qn(x)vn(x) dx =

∫
Rd
q2n(x) eiy·x dx.

It follows from a change of variables that∫
Rd
q̃n(x)q̃n(x + y) dx =

∫
Rd
q̃n(−x)q̃∗n(x− y) dx,
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and thus,

gn(y) = (2π)−
d
2

∫
Rd
hn(x) eix·y dx = pn ∗ p∗n (y)

where pn = (2π)−
d
4 q̃n(−·) ∈ L2(Rd). �

Remark. Firstly, the converse to Corollary 2.6.5 is true, since for any n ∈ N,
pn ∗ p∗n is continuous and classically positive definite by [22, Th. 4.2.4], and
thus, f ∈ P(L2(Rd)) by Corollary 2.6.1. Secondly, pn /∈ L1(Rd) in general.
The proof of Corollary 2.6.5 is a natural extension of the proof of Theorem
4.2.4 (i) [22], to functions defined on Rd. Note, however, that unlike in
Theorem 4.2.4 (ii) [22], we don’t have

∫
Rd |pn(x)|2 dx = 1, since we do not

assume that hn is the density of a probability measure.

2.7 Sufficient criteria for generalised positive definiteness

It proceeds from Theorem 2.5.1 that an integrable function is positive def-
inite for L2(Rd) if its Fourier transform is non-negative. In this section we
provide sufficient conditions for this criterion.

For a measurable set K ⊂ Rd and p ∈ [1,∞), let

Lp(K) =

{
f : K → C

∣∣∣∣ ∫
K
|f(x)|p dx <∞

}
.

Naturally Lp(K) ⊂ Lp(Rd), extending functions by zero on Rd\K. We
always use this embedding by extension in the following.

A direct consequence of Theorem 2.2.2 is that if ψ ∈ CM is bounded,
then f = ψ(‖·‖2) : Rd → [0,∞) is continuous and classically positive definite
for any d ∈ N. We now generalise this observation to potentially unbounded
completely monotone functions.

Corollary 2.7.1 Let f ∈ CM and g = f(‖ · ‖2) : Rd → [0,∞). If g ∈
L1(Rd), then g ∈ P(L2(Rd)).

Proof. By Theorem 2.2.1, f is the Laplace transform of a non-negative
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measure µ on [0,∞). By the Fubini theorem, for any u ∈ Rd,

ĝ(u) = (2π)−
d
2

∫
[0,∞)

∫
Rd
e−‖x‖

2te−ix·u dxµ(dt)

=

∫
[0,∞)

d∏
i=1

(
(2π)−

1
2

∫
R
e−x

2
i te−ixiui dxi

)
µ(dt)

=

∫
[0,∞)

d∏
i=1

(
(2t)−

1
2 e−u

2
i /4t
)
µ(dt) =

∫
[0,∞)

(2t)−
d
2 e−‖u‖

2/4tµ(dt) ≥ 0.

Thus, g ∈ P(L2(Rd)) by Theorem 2.5.1. �

The next result is an analogue of Pólya’s criterion [22, Th. 4.3.1] for con-
tinuous positive definite functions. Our extension also applies to unbounded
functions with an integrable singularity at 0. The proof is based on a tech-
nique used by Tuck [45], which shows the non-negativity of a certain Fourier
transform, and considers the case d = 1, i.e., functions defined on the real
line.

Corollary 2.7.2 Let f ∈ L1(R) be a function with the following three prop-
erties.

i. f is locally absolutely continuous on (0,∞), and f ′ ∈ L1
loc((0,∞)) has

a non-positive, non-decreasing representative.

ii. f(x) = f(−x) (x ∈ R).

iii. f ≥ 0.

Then, f ∈ P(L2(R)).

Proof. By Theorem 2.5.1, we need only show that the Fourier transform
f̂ ≥ 0. Since f is even and real-valued, its Fourier transform f̂ is given by

f̂(ξ) =

√
2

π

∫ ∞
0

f(x) cos(x ξ) dx (ξ ∈ R) ,

a real-valued, even, bounded function. It is immediate from property iii that
f̂(0) ≥ 0. Hence, it suffices to consider ξ > 0 in the following. By property i,
f is non-decreasing on (0,∞). Using this property combined with the facts
that f is non-negative and integrable, it follows that

lim
x→∞

f(x) = 0. (26)
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By the Mean Value Theorem, for any x > 0 there is 0 < ξx < x such that∫ x

0
f(y) dy = xf(ξx).

Hence, since f is non-increasing on (0,∞), it follows that

0 ≤ xf(x) ≤
∫ x

0
f(y) dy (x > 0)

and consequently,

lim
x→0

xf(x) = 0. (27)

Since f is locally absolutely continuous on (0,∞), we can use integration by
parts to obtain∫ x2

x1

f(x) cos(x ξ) dx =
1

ξ
[f(x) sin(x ξ)]x2x1 −

1

ξ

∫ x2

x1

f ′(x) sin(x ξ) dx

(0 < x1 < x2 <∞), where

1

ξ
[f(x) sin(x ξ)]x2x1 =

1

ξ
f(x2) sin(x2 ξ)− x1f(x1)

sin(x1 ξ)

x1ξ
.

Since | sin(x)|, | sin(x)x | ≤ 1 (x ∈ R), it follows from (26) and (27) that

lim
x1→0
x2→∞

1

ξ
[f(x) sin(x ξ)]x2x1 = 0.

Hence ∫ ∞
0

f(x) cos(x ξ) dx = −1

ξ

∫ ∞
0

f ′(x) sin(x ξ) dx.

Using the same technique as in [45, Eq. 4] we find

−
∫ ∞
0
f ′(x) sin(x ξ) dx=−

∞∑
j=0

∫ 2π(j+1)
ξ

2πj
ξ

f ′(x) sin(x ξ) dx

=
1

ξ

∞∑
j=0

∫ π

0

[
f ′
(

2πj+θ

ξ
+
π

ξ

)
−f ′

(
2πj+θ

ξ

)]
sin(θ) dθ.

Since sin(θ) ≥ 0 on [0, π] and f ′ is non-decreasing, it follows that∫ ∞
0

f(x) cos(x ξ) dx = −1

ξ

∫ ∞
0

f ′(x) sin(x ξ) dx ≥ 0.
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Up to this point, we stipulated that the (generalised) positive definite func-
tions must be in L1(Rd). This assumption ensures both the existence of
the integral (21) for ψ ∈ L2(Rd) and the pointwise existence of f̂ . In the
following we show that the generalised definition of positive definiteness can
be localised, extending it from L1(Rd) to functions in L1

loc(Rd) or in L1(K)
for some closed, bounded set K ⊂ Rd.

Let I=[a1, b1]×[a2, b2]×. . .×[ad, bd] ⊂ Rd and define ‖I‖ := [−|I1|, |I1|]×
[−|I2|, |I2|]×. . .×[−|Id|, |Id|] ⊂ Rd where |Ii| = bi − ai denotes the length of
the interval Ii. Let f ∈ L1(‖I‖). Then, similarly to Lemma 2.5.1, for any
φ ∈ L2(I),∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy =

∫
‖I‖

f(z)φ ∗ φ∗(z) dz, (28)

since φ ∗ φ∗ has support in ‖I‖. The existence of the integral is guaranteed
by the fact that f ∈ L1(‖I‖). By Theorem 2.5.1, if the Fourier transform of
fχ‖I‖ is non-negative, then fχ‖I‖ ∈ P(L2(Rd)) ⊂ P(L2(I)), which in turn
shows the non-negativity of the integral in (28).

The next result is a local variant of Corollary 2.7.2, based on the natural
embedding of Lp(K) into Lp(R). We need a further technical condition at
the end-point of the interval.

Corollary 2.7.3 Let I = [a, b] ⊂ R be any closed, bounded interval, and
|I| = b− a its length. Let f ∈ L1([−|I|, |I|]) be a function with the following
properties.

i. f is locally absolutely continuous on (0, |I|], and f ′ ∈ L1
loc((0, |I|]) has

a non-positive, non-decreasing representative.

ii. f(x) = f(−x) (x ∈ [−|I|, |I|]).

iii. f(x) ≥ 0 (x ∈ [−|I|, |I|]).

iv. f(|I|) = 0 if f ′(|I|) = 0.

Then, f ∈ P(L2(I)).

Proof. Define

f̃(x) =

{
f(x) if |x| ≤ |I|

f(|I|)e
f ′(|I|)
f(|I|) (|x|−|I|)

otherwise
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if f(|I|) 6= 0; if f(|I|) = 0, we set f̃(x) = 0 for |x| > |I|.
Then, the function f̃ satisfies the hypotheses of Corollary 2.7.2, and

hence, is an element of P(L2(R)) ⊂ P(L2(I)). Moreover, f̃(x) = f(x) (x ∈
[−|I|, |I|]), so f ∈ P(L2(I)). �

Remark. If f ′(|I|) = 0 and f(|I|) 6= 0, then it is not possible to find an
extension of the function f from [−|I|, |I|] to the whole real line which is
continuous, integrable and has a derivative with a non-decreasing represen-
tative.

It follows immediately from Corollary 2.7.1 that if f ∈ CM and g =
f( ·2) ∈ L1(R), then g is positive definite for L2(R). We remark that the
result of squaring, or taking the square root of, the argument in a completely
monotone function will, in general, not be a completely monotone function.

If we do not square the argument, but just extend the completely mono-
tone function to an even function on the line, then the resulting function
will satisfy the hypotheses of Corollary 2.7.2, yielding the following corollary,
which is similar to Corollary 2.7.1 for functions defined on R. However, the
function g of Corollary 2.7.1 (again, with d = 1), with a squared argument,
does not satisfy property i. in Corollary 2.7.2, since g′(x) = 2xf ′(x2) is
not non-decreasing on (0,∞); hence, for functions defined on the real line,
Corollary 2.7.1 cannot be obtained in this simple way.

Corollary 2.7.4 Let f ∈ CM. If g = f(| · |) ∈ L1(R), then g ∈ P(L2(R)).

Moreover, we have the following localised versions.

Corollary 2.7.5 Let I ⊂ R be any closed, bounded interval. Let f ∈ CM
be non-constant. If g = f(| · |) ∈ L1([−|I|, |I|]), then g ∈ P(L2(I)).

Proof. If f ∈ CM, then by [35, Remark 1.5], f (n)(x) 6= 0 for all n ≥ 1 and
all x > 0 unless f is identically constant. Thus g satisfies the hypotheses of
Corollary 2.7.3. �

Corollary 2.7.6 Let f ∈ CM be non-constant. If g = f(| · |) ∈ L1
loc(R),

then g ∈ P(L2
0(R)).

Proof. For any φ ∈ L2
0(R),∫

R

∫
R
g(x− y)φ(x)φ(y) dxdy =

∫
I

∫
I
g(x− y)φ(x)φ(y) dxdy, (29)
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where I denotes a closed, bounded interval which includes the compact sup-
port of φ. Since g ∈ L1

loc(R), it follows that g ∈ L1([−|I|, |I|]), and by
Corollary 2.7.5 the integral in (29) is non-negative. �

Completely monotone functions can be obtained as derivatives of Bernstein
functions [35, p.18]. Taking functions fi from the list of Bernstein functions
in [35, Chapter 15], the following derived functions gi = f ′i(| · |) (up to
multiplication by a positive normalising constant) are elements of P(L2

0(R))\
PC, 1 by Corollary 2.7.6.

g1(x) = |x|−α, 0 < α < 1;

g8(x) = |x|α−1/(1 + |x|)α+1, 0 < α < 1;

g11(x) =
(
α|x|α−1(1− |x|β)− β|x|β−1(1− |x|α)

)
/(1− |x|α)2,

0 < α < β < 1 ;

g16(x) =
(
α1|x|−α1−1 + . . .+ αn|x|−αn−1

)
/
(
|x|−α1 + . . .+ |x|−αn

)2
,

0 ≤ α1, . . . , αn ≤ 1;

g19(x) =
(

1− (λ
√
|x| − 1)e−λ

√
|x|
)
/
√
|x| , λ > 0;

g23(x) = |x| (1 + 1/|x|)1+|x| log (1 + 1/|x|) (x ∈ R \ {0}).

Remark. It is not the case that all functions in P(L2
0(R)) are of the form de-

scribed in Corollary 2.7.6. In other words, there exist functions in P(L2
0(R))

which are not the even reflection of a non-constant, completely monotone
function. For example, by Proposition 2.3.1, the cosine function is positive
definite with respect to L2

0(R). The same is true for functions in P(L2(R)).
The inverse hyperbolic cosine function has a non-negative Fourier transform,
and thus is positive definite for L2(R) by Theorem 2.5.1, yet, its second
derivative changes sign at x ' 0.8815.

The following result is a direct consequence of Corollary 2.7.1, and pro-
vides a basis for finding examples of functions in P(L2

0(Rd)) with d ≥ 2,
which are unbounded at zero.

Corollary 2.7.7 Let f ∈ CM ∩ L1
loc((0, ∞)). For any s > 0, define

g(x) = f(‖x‖2)e−s‖x‖2 (x ∈ Rd). (30)

Then, g ∈ P(L2
0(Rd)) for any d ≥ 2.

Proof. Let s > 0 and d ≥ 2. Since the product of completely monotone
functions is completely monotone, see Section 2.2, it follows that fe−s|(0,∞) ∈
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CM, where e−s|(0,∞) denotes the restriction of e−s to the domain (0,∞).

Moreover, g ∈ L1(Rd); for a change of variables to polar co-ordinates gives,∫
Rd
g(x) dx = ωd−1

∫ 1

0
f(r2)e−sr

2
rd−1 dr + ωd−1

∫ ∞
1
f(r2)e−sr

2
rd−1 dr

≤ ωd−1
2

∫ 1

0
f(x)x

d−2
2 dx+ ωd−1 f(1)

∫ ∞
1
e−sr

2
rd−1 dr <∞,

where ωd−1 denotes the volume of the unit (d−1)-dimensional ball and r the
radius. Thus, g ∈ P(L2

0(Rd)) by Proposition 2.7.1. �

The derivatives of the functions listed in [35, Chapter 15] are completely
monotone and locally integrable on (0,∞). For those with a singularity
at the origin, the corresponding functions in P(L2

0(Rd)) (d ≥ 2) can be
constructed using (30).

2.8 Positive definite distributions and an alternative proof
of Theorem 2.5.1

The concept of positive definite functions was extended to positive definite
distributions by L. Schwartz [41, Chapter VII, §9]. We introduce the no-
tion of a positive definite distribution and present Schwartz’s analogue of
Bochner’s theorem, which states that a distribution is positive definite (and
tempered) if and only if it is the Fourier transform of a non-negative measure
of slow growth, i.e. such that the measure of balls is polynomially bounded
in terms of the radius. Using this result, we then provide an alternative
proof of Theorem 2.5.1.

Firstly, we introduce the following notation. Let Nd denote the set of all
d-tuples of natural numbers and for f : Rd → C and u = (u1, u2, . . . , ud) ∈
Nd, define

Du(f(x)) :=
δ|u|

δxu11 . . . δxudd
f(x1, x2, . . . , xd) (x ∈ Rd),

where |u| =
∑d

i=1 ui.
Let D(Rd) denote the set C∞0 (Rd) with the topology usual for the theory

of distributions: a sequence of functions fn ∈ D(Rd) converges to f if and
only if the supports of f and all the fn’s lie inside a common compact set
K ⊂ Rd, and Dufn converges uniformly to Duf for each multi-index u ∈ Nd,
as n → ∞. A distribution (or generalised function) is a continuous linear
functional on D(Rd). The space of all continuous linear functionals on D(Rd)
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is denoted by D ′(Rd). Positive definiteness is now defined in the following
sense.

Definition 2.8.1 A distribution T ∈ D ′(Rd) is said to be positive definite
if T(φ ∗ φ∗) ≥ 0 for all φ ∈ D(Rd), where φ∗(x) = φ(−x) for any x ∈ Rd.

In order to see why this definition can be considered an extension of
Definition 2.1.1, observe the distribution Tf associated with any locally
integrable function f ;

Tf (φ) =

∫
Rd
f(x)φ(x) dx (φ ∈ D(Rd)). (31)

In this particular case, for any φ ∈ D(Rd),

Tf (φ ∗ φ∗) =

∫
Rd
f(x)(φ ∗ φ∗)(x) dx =

∫
Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy,

by Lemma 2.5.1. Hence, for f ∈ L1
loc(Rd), Tf is a positive definite distribu-

tion if and only if f ∈ P(C∞0 (Rd)). Moreover, by Proposition 2.4.6, if f is
continuous, then Tf is positive definite if and only if f is classically positive
definite as in Definition 2.1.1.

Next, we define what it means for a distribution to be tempered. Recall
that S(Rd) denotes the Schwartz space of rapidly decreasing functions on
Rd. That is,

S(Rd) =

{
f ∈ C∞(Rd)

∣∣∣∣ ‖f‖u,v <∞ for any u,v ∈ Nd
}
,

where
‖f‖u,v = sup

x∈Rd

∣∣xuDv(f(x))
∣∣ (u,v ∈ Nd, f ∈ S(Rd))

and xu =
∏d
i=1 x

ui
i , as in standard multi-index notation.

Definition 2.8.2 The dual space of S(Rd), denoted by S ′(Rd), is called the
space of tempered distributions.

For m,n ∈ N and f ∈ S(Rd), let

|||f |||m,n :=
∑
|u|≤m
|v|≤n

‖f‖u,v.

This defines a family of norms on S(Rd). For if f ∈ S(Rd) and |||f |||m,n = 0
for some m,n ∈ N, then for each x 6= 0, we have Dv(f(x)) = 0 for all
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v ∈ Nd such that |v| ≤ n. Moreover, since Dv(f) is continuous, it follows
that Dv(f(x)) = 0 for any x ∈ Rd. Hence, f ∈ S(Rd) is a polynomial which
vanishes at infinity and therefore, f = 0.

For a linear functional T on S(Rd) to be in S ′(Rd) it must be continuous.
By Theorem [30, Th. V.2], this is equivalent to requiring C > 0 and m,n ∈
N, such that |T(φ)| ≤ C|||φ|||m,n for all φ ∈ S(Rd). Using this observation,
we now present some examples of tempered distributions.

1. Let f ∈ L1(Rd) and consider the functional

Tf (φ) =

∫
Rd
f(x)φ(x) dx (φ ∈ S(Rd)). (32)

Tf is clearly linear and |Tf (φ)| ≤ C|||φ|||0,0 with C=‖f‖1, for any φ ∈ S(Rd).
Thus, the distribution associated with an integrable function is tempered.

2. Let f ∈ L1
loc(Rd) be such that there exists n ∈ N with

∫
Rd |f(x)|/(1 +

‖x‖2)ndx<∞, where ‖·‖ denotes the Euclidean norm. Consider the func-
tional defined in (31) with test functions in S(Rd).

Tf is linear and for any φ ∈ S(Rd),

|Tf (φ)| ≤
∫
Rd

|f(x)|
(1 + ‖x‖2)n

(1 + ‖x‖2)n |φ(x)| dx.

Let ψ ∈ S(Rd). Then, for any x ∈ Rd,

(1 + ‖x‖2)n|ψ(x)| =
n∑
i=0

(
n

i

)
‖x‖2n|ψ(x)|

≤ K
(
|ψ(x)|+ ‖x‖2|ψ(x)|+ . . .+ ‖x‖2n|ψ(x)|

)
≤ K

∑
|u|≤2n

|xuψ(x)| ≤ K
∑
|u|≤2n

sup
z∈Rd

|zuψ(z)| <∞,

where K is chosen so that K ≥
(
n
i

)
for any i=0, . . . , n, and

(
n
i

)
=n!/i!(n−i)!

denotes the standard binomial coefficient. Thus, |Tf (ψ)| ≤ C|||ψ|||m,0 with

C = K
∫
Rd |f(x)|/(1 + ‖x‖2)ndx and m = 2n.

Definition 2.8.3 ([41, p.97]). A measure µ on Rd is said to be of slow
growth, or polynomially bounded, if there exists n ∈ N such that∫

Rd

|dµ(x)|
(1 + ‖x‖2)n

<∞.
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3. Let ν denote a non-negative, slow-growing measure on Rd. Similarly
to example 2 above, the distribution associated with ν,

Tν(φ) =

∫
Rd
φ(x) dν(x) (φ ∈ S(Rd)),

is tempered [41, Th. VII].
The following result proceeds directly from Lemmas 2.5.1 and 2.5.2, and

demonstrates that the tempered distribution associated with an integrable
function in P(L2(Rd)) is positive definite.

Proposition 2.8.1 Let f ∈ L1(Rd). Then, Tf , as defined in (32), is posi-
tive definite if and only if f ∈ P(L2(Rd)).

Next, we define the Fourier transform on S ′(Rd).

Definition 2.8.4 Let T ∈ S ′(Rd). Then, the Fourier transform of T, de-
noted by T̂, is the tempered distribution defined by T̂(φ)=T(φ̂) (φ ∈ S(Rd)).

Remark. For f ∈ L1(Rd) and Tf as defined in (32), it follows directly from

the Fubini theorem that T̂f = Tf̂ . For, for any φ ∈ S(Rd),

Tf (φ̂) =

∫
Rd
f(x)

(
(2π)−

d
2

∫
Rd
φ(z) e−ix·z dz

)
dx =

∫
Rd
f̂(z)φ(z) dz = Tf̂ (φ).

The central result on the theory of positive definite distributions is the
Bochner-Schwartz theorem, which characterises positive definite, tempered
distributions as Fourier transforms of non-negative, slow-growing measures.

Theorem 2.8.1 (Schwartz, [41, Th. XVIII]). A distribution T ∈ D ′(Rd) is
positive definite if and only if T ∈ S ′(Rd) and T is the Fourier transform
of a non-negative, slow-growing measure.

Theorem 2.8.1 infers that certain distributions in D′(Rd), namely those
which are positive definite, are necessarily tempered. Moreover, the result
can be used to prove Theorem 2.5.1 as follows.

Proof of Theorem 2.5.1. Since f ∈ L1(Rd), then Tf (φ) =
∫
Rdf(x)φ(x) dx

(φ ∈ S(Rd)) is a tempered distribution, see example 1 above.
Suppose, f ∈ P(L2(Rd)). Then, Tf is positive definite by Proposition

2.8.1 and thus, by Theorem 2.8.1,

T̂f (φ) = Tf̂ (φ) =

∫
Rd
f̂(x)φ(x) dx =

∫
Rd
φ(x) dµ(x) = Tµ(φ) (33)
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for any φ ∈ S(Rd), where µ is a non-negative, slow-growing measure on Rd.
It follows that f̂ ≥ 0 by proof by contradiction; for if f̂(z) < 0 at some point
z ∈ Rd, then there exists δ > 0 such that f̂(x) < 0 for all ‖x− z‖ < δ, since
f̂ is continuous. Let

ψ(x) =

{
exp

[(
‖x− z‖2 − δ2

)−1]
if ‖x− z‖ < δ

0 otherwise
(x ∈ Rd).

Then ψ ∈ C∞0 (Rd) ⊂ S(Rd) and it follows by (33) that

0 ≤
∫
Rd
ψ(x) dµ(x) =

∫
‖x−z‖<δ

f̂(x)ψ(x) dx < 0,

which is a contradiction.
Conversely, suppose f̂ ≥ 0. Since f ∈ L1(Rd), then f̂ is bounded on Rd.

Take ν to be the measure whose density is f̂ . Then, ν is non-negative and
slow-growing on Rd, and

T̂f (φ) = Tf̂ (φ) =

∫
Rd
φ(x) dν(x) = Tν(φ) (φ ∈ S(Rd)).

Thus, Tf is positive definite by Theorem 2.8.1 and hence, f ∈ P(L2(Rd)) by
Proposition 2.8.1. �
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3 On Conditionally Negative Definite Functions
With A Singularity At Zero

The renowned Schoenberg theorem [39, Th. 2] establishes a connection be-
tween positive definite and conditionally negative definite functions. Using
the framework outlined in Sections 2.3 and 2.4 as motivation, we consider
the class of functions CN(J), which are conditionally negative definite with
respect to a given set of test functions J . For suitably chosen J , CN(J)
contains the classical conditionally negative definite functions, which take
finite values at zero, as well as functions which are singular at the origin.

Our main result is Theorem 3.4.1, which is a generalisation of Schoen-
berg’s theorem to functions in P(J) and CN(J), for J = L2

0(Rd). Several
other results concerning the class CN(L2

0(Rd)) are also established. For ex-
ample, we demonstrate that functions in CN(L2

0(Rd)) are locally integrable
(see Lemma 3.3.1) and that CN(L2

0(Rd)) is a closed subset of L1
loc(Rd) (see

Lemma 3.3.2). Furthermore, we show that real-valued functions which are
conditionally negative definite w.r.t. L2

0(Rd) can be approximated, in the
L1
loc(Rd) sense, by a sequence of infinitely differentiable, classically condi-

tionally negative definite functions (see Lemma 3.4.3). Finally, using The-
orem 3.4.1, we indicate how to construct numerous examples of singular
functions f ∈ CN(L2

0(Rd)), such that −f /∈ P(L2
0(Rd)) (see Section 3.5).

The results described in this section have appeared in the Journal of Math-
ematical Analysis and Applications in the form of the paper [27].

The structure of this section is as follows. We start with an overview of
the conditionally negative definite functions as defined in the classical liter-
ature, see Section 3.1. In Section 3.3 we extend the definition of conditional
negative definiteness to incorporate functions with a singularity at zero, and
subsequently, develop the theory of these newly defined functions. Section
3.4 contains the proof of Theorem 3.4.1, split into a series of lemmas. In
Section 3.5 we prove two corollaries to Theorem 3.4.1 and provide several
algorithmic schemes for constructing functions in CN(L2

0(Rd)).

3.1 Classical conditionally negative definite functions

Conditionally negative definite functions arise naturally in the theories of
probability and potentials. The standard references for these functions are
the monographs [3] and [4], where the term conditionally is dropped and the
functions are called simply, negative definite. In other areas of the litera-
ture, however, see e.g. [35, Def. 4.3], negative definite functions are defined
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differently to those which are conditionally negative definite. We quash
this confusion and solely focus our attention on the following definition of
conditional negative definiteness.

Definition 3.1.1 A function f : Rd → C is conditionally negative definite
if f is conjugate symmetric, that is f(x) = f(−x) for all x ∈ Rd, and

n∑
i,j=1

f(xi − xj) vi vj ≤ 0 (34)

for all x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ C satisfying
∑n

i=1 vi = 0,
with any n ∈ N.

We shall denote the set of functions defined in Definition 3.1.1 by CNC,d.
The conjugate symmetry of functions in CNC,d is stipulated since unlike
functions in PC,d, which are automatically conjugate symmetric by (5), the
property no longer follows from the sum in (34) due to the extra constraint
on the vis. For example, the function f(x) = x (x ∈ R) is non-conjugate
symmetric, yet, for any n ∈ N, x1, x2, . . . , xn ∈ R and v1, v2, . . . , vn ∈ C such
that

∑n
i=1 vi = 0,

n∑
i,j=1

f(xi − xj) vi vj =

n∑
i,j=1

xi vi vj −
n∑

i,j=1

xj vi vj = 0.

The same is true for g(x) = (a+ x)2, for any a ∈ R\{0}.
A simple example of a function in CNC,d is f = ‖ · ‖2, since for any

n ∈ N, x1,x2, . . . ,xn ∈ Rd with component form xi = (xi1 , xi2 , . . . , xid),
and v1, v2, . . . , vn ∈ C such that

∑n
i=1 vi = 0,

n∑
i,j=1

‖xi−xj‖2vivj =

d∑
k=1

n∑
i,j=1

(
x2ik−2xikxjk+x

2
jk

)
vivj =−2

d∑
k=1

∣∣∣∣∣
n∑
i=1

xikvi

∣∣∣∣∣
2

≤ 0.

It is clear that if f is a classically positive definite function, then −f
is conditionally negative definite. The converse is not true. For example,
f(x) =−|x|2 (x ∈ Rd) is not positive definite since |f(x)| > f(0) for any
x ∈ Rd\{0}. Both classically positive definite and conditionally negative
definite functions take finite values at zero. However, unlike positive defi-
nite functions, functions in CNC,d can be unbounded away from the origin.
Again, the example f = | · |2 demonstrates this. Conditionally negative def-
inite functions need not be negative or continuous; the function f(x) = −1
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if x = 0, f(x) = 0 otherwise (x ∈ Rd) is in CNC,d, but not continuous; the
negative cosine function is in CNC,1, but not non-positive.

The following are simple properties of functions in CNC,d.

i. f ∈ CNC,d if and only if f ∈ CNC,d.

ii. If f1, f2, . . . , fn ∈ CNC,d and ci ≥ 0 for all i = 1, . . . , n , then∑n
i=1 cifi ∈ CNC,d.

iii. If f ∈ CNC,d, then f + α ∈ CNC,d for any α ∈ C.

iv. If fn ∈ CNC,d for all n ∈ N and the pointwise limit, limn→∞ fn(x) =
f(x), exists for all x ∈ Rd, then f ∈ CNC,d.

These properties follow immediately from Definition 3.1.1. A direct con-
sequence of the first two properties is that if f is conditionally negative
definite, then so is Re (f) = (f + f)/2.

For real-valued functions we can use the following alternative definition
of conditional negative definiteness.

Definition 3.1.2 A function f : Rd → R is conditionally negative definite
if f(x) = f(−x) for all x ∈ Rd and the inequality in (34) holds for all
x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ R satisfying

∑n
i=1 vi = 0, with any

n ∈ N.

The functions defined in Definition 3.1.2 are automatically conditionally
negative definite as in Definition 3.1.1. This can be seen by using (7) with
v1, v2, . . . , vn ∈ C such that

∑n
i=1vi=0, giving

∑n
i=1ai=

∑n
i=1bi=0.

As with positive definite functions, the definition of a conditionally neg-
ative definite function can be extended to functions and two-variable kernels
on general topological spaces, groups and semigroups, see e.g. [2, 4, 5, 35].
However, we restrict our attention to the conditionally negative definite
functions defined in Definition 3.1.1. In later sections we will mainly be
interested in real-valued functions, in which case, Definitions 3.1.1 and 3.1.2
are interchangeable. Henceforth, when referring to classically conditionally
negative definite functions or functions in CNC,d, we mean those defined in
Definition 3.1.1.

The celebrated Schoenberg theorem establishes a relation between posi-
tive definite and conditionally negative definite functions.

Theorem 3.1.1 (Schoenberg, [35, Prop. 4.4]). A function f : Rd → C
is conditionally negative definite if and only if for all t > 0, the function
g : x 7→ e−tf(x) is positive definite.
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Theorem 3.1.1 stems from [39, Th. 2] where it is stipulated that f is con-
tinuous and non-negative, and vanishes at the origin. Proofs of the result
can be found in [2, Th. C.3.2] and [4, p.74], as well as [35, Prop. 4.4] and
[39, Th. 2]. In Section 3.4 we generalise Theorem 3.1.1 to the case when
the functions f and g can be singular at the origin.

3.2 Bernstein functions

The notion of a Bernstein function is thought to have originated in the poten-
tial theory school of A. Beurling and J. Deny. The name Bernstein function
is not universally accepted in the literature, for example, Bochner [10] re-
ferred to Bernstein functions as completely monotone mappings, and many
probabilists still choose to call them Laplace exponents. Bernstein functions
are closely related to completely monotone functions, in fact, Schoenberg
[38] defined them as primitives of functions in CM. We introduce the defi-
nition of the Bernstein functions presented in [35, Chapter 3] and provide a
short introduction into their theory.

Definition 3.2.1 A function f : (0,∞) → [0,∞) is a Bernstein function
if f ∈ C∞((0,∞)) and

(−1)n−1 f (n) ≥ 0 on (0, ∞)

for all n ∈ N [35, Def. 3.1].

In particular, any Bernstein function is non-negative and non-decreasing.
Unlike completely monotone functions, Bernstein functions are always boun-
ded at zero, however, they may or may not be bounded away from the origin.
For example, both f1(x) =

√
x and f2(x) = x/(x + 1) (x ∈ (0, ∞)) are

Bernstein functions. The family of all Bernstein functions is denoted by BF.
Similarly to bounded completely monotone functions, functions in BF can
be extended continuously to [0, ∞). Due to the monotonicity of f ∈ BF,
this can be achieved by taking f(0) := f(0+) = limx→0 f(x) [35, p. 28].

The derivative of a Bernstein function is completely monotone. The
converse is only true if the primitive of a completely monotone function is
non-negative. This condition fails, for example, for the completely mono-
tone function f(x) = x−α (0 < α < 1, x > 0). However, a non-negative
C∞((0,∞))-function f , is a Bernstein function if and only if f ′ is completely
monotone. The following theorem of Bochner highlights further connections
between Bernstein and completely monotone functions.
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Theorem 3.2.1 (Bochner, [10, p. 83]) Let f be a positive function on
(0,∞). Then, the following assertions are equivalent.

i. f ∈ BF.

ii. g ◦ f ∈ CM for every g ∈ CM.

iii. e−tf ∈ CM for every t > 0.

For a recent proof see e.g. [35, Th. 3.6]. Many corollaries to Theorem 3.2.1
may be found in [35, Chapters 3, 4].

The next theorem, given without proof, provides a useful characterisa-
tion of Bernstein functions.

Theorem 3.2.2 ([35, Th. 3.2]). A function f : (0,∞) → [0,∞) is a
Bernstein function if, and only if, it admits the representation

f(x) = a+ bx+

∫
(0,∞)

(1 − e−xt)µ(dt), (35)

where a, b ≥ 0 and µ is a non-negative measure on (0,∞) satisfying∫
(0,∞) min(1, t)µ(dt) < ∞. In particular, the triplet (a, b, µ) determines f

uniquely and vice versa.

Theorem 3.2.2 appears elsewhere in the literature, see e.g. [10, Chapter 4],
[3, p.114]. Equation (35) is often called the Lévy-Khintchine representation
of f . The measure µ and the triplet (a, b, µ) are referred to as the Lévy
measure and the Lévy triplet of the Bernstein function f , respectively, see
e.g. [35, Rem. 3.3 (i)], [3, Chapter 4].

We note that the integrability condition
∫
(0,∞) min(1, t)µ(dt) < ∞ en-

sures that the integral in (35) exists for all x > 0 [35, Rem. 3.3 (iii)]. It
follows from (35) that a = f(0+), and using the dominated convergence
theorem it can be shown that b = limx→∞ f(x)/x, [35, Rem. 3.3 (iv)].

Some properties of Bernstein functions are listed below.

i. If f1, f2, . . . , fn ∈ BF and ci ≥ 0 for all i = 1, . . . , n , then
∑n

i=1 cifi ∈
BF.

ii. If fn ∈ BF for all n ∈ N and the pointwise limit, limn→∞ fn(x) = f(x),
exists for all x > 0, then f ∈ BF.

iii. If f1, f2 ∈ BF, then f1 ◦ f2 ∈ BF.

iv. If f ∈ BF, then x 7→ f(x)/x is in CM.
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v. f ∈ BF is bounded if, and only if, in (35) b = 0 and µ(0,∞) <∞.

vi. Let f1, f2 ∈ BF and α, β ∈ (0, 1) be such that α + β ≤ 1. Then,
x 7→ f1(x

α)f2(x
β) is in BF.

The first property follows directly from Definition 3.2.1 or, alternatively,
from the representation in (35). The remaining properties can be proved
using Theorems 3.2.1 and 3.2.2, see e.g. [35, Cor. 3.7].

Another theorem belonging to Schoenberg, which links Bernstein func-
tions and conditionally negative definite functions in a similar fashion to the
bounded completely monotone functions and positive definite functions in
Theorem 2.2.2, is as follows.

Theorem 3.2.3 (Schoenberg, [38, Eq. 5.14]). A function ψ : [0,∞) →
[0,∞) is a Bernstein function if and only if for all d ∈ N, the function
f = ψ(‖·‖2) : Rd → [0,∞) is continuous and conditionally negative definite.

In particular, if ψ ∈ BF, then f = ψ(‖ · ‖2) : Rd → [0,∞) is continuous and
conditionally negative definite for any d ∈ N. In Corollary 3.5.1 we show
that such functions are also conditionally negative definite in an extended
sense. For a recent proof of Theorem 3.2.3 see e.g. [35, Th. 12.14], [10, p.
99].

3.3 Conditional negative definiteness in the extended sense

We now introduce a definition of conditional negative definiteness which al-
lows for functions with a singularity at the origin. As in Section 2.4, let
J be a set of complex-valued measurable functions on Rd. Again, this in-
cludes functions defined on a non-empty, measurable subset of Rd, which
we consider to be extended by zero to the whole of Rd. Motivated by Defi-
nition 2.4.1 we define an extended notion of conditionally negative definite
functions as follows.

Definition 3.3.1 A function f : Rd → C is called conditionally negative
definite w.r.t. J if f is conjugate symmetric a.e., that is f(x) = f(−x) f.a.a.
x ∈ Rd, and for every φ ∈ J satisfying

∫
Rd φ(x) dx = 0, the integral∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy (36)

exists (in the Lebesgue sense) and is non-positive.
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Let CN(J) denote the class of all functions which are conditionally negative
definite w.r.t. the set J . Similarly to as in Sections 2.3 and 2.4, for certain
spaces of functions J , Definition 3.3.1 enables us to extend the concept of
conditional negative definiteness to functions which have a singularity at
zero. Again, we shall mainly consider the spaces J = Lp(Rd) (and their
local versions) for various values of p.

The following properties proceed directly from Definition 3.3.1.

i. f ∈ CN(J)⇔ f ∈ CN(J) if J is closed under complex conjugation.

ii. If f1, f2, . . . , fn ∈ CN(J) and ci ≥ 0 (i = 1, . . . , n), then
∑n

i=1 cifi ∈
CN(J).

iii. If f ∈ P(J), then −f ∈ CN(J).

iv. If f ∈ CN(J), then f + α ∈ CN(J) for any α ∈ C.

v. If J1 ⊆ J2, then CN(J2) ⊆ CN(J1).

In Corollary 3.5.1 we show that under certain conditions on our function,
Definitions 3.1.1 and 3.3.1 coincide. In particular, a real-valued, continuous
function is classically conditionally negative definite if and only if it is con-
ditionally negative definite w.r.t. C0(Rd).

Recall that for p ∈ [1,∞)∪{∞}, Lp0(Rd) denotes the subspace of functions

in Lp(Rd) with compact essential support, and by fn
Lploc−−→ f as n→∞, we

mean that fn converges to f in the Lploc(R
d) sense as n→∞; that is,

lim
n→∞

∫
K
|fn(x)− f(x)|p dx = 0

for any compact set K ⊂ Rd. Next, we demonstrate that as p increases from
1 to 2, CN(Lp0(Rd)) increases from a smaller class of functions to a larger
such class; but for all p ≥ 2, CN(Lp0(Rd)) remains the same.

Proposition 3.3.1 For any p ∈ [1, 2], CN(Lp0(Rd)) ⊆ CN(L2
0(Rd)).

Proof. This follows directly from property v. above. �

Proposition 3.3.2 For any p ∈ (2,∞] and r ∈ [0,∞], CN(L2
0(Rd)) =

CN(Lp0(Rd)) = CN(Cr
0(Rd)).
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Proof. Let p ∈ (2,∞], r ∈ [0,∞]. Since Cr
0(Rd) ⊂ Lp0(Rd) ⊂ L2

0(Rd), it
follows immediately that CN(L2

0(Rd)) ⊂ CN(Lp0(Rd)) ⊂ CN(Cr
0(Rd)).

For the reverse implication, consider the following. Let φ ∈ L2
0(Rd) be

such that
∫
Rd φ(x) dx = 0. For n ∈ N, let Ψn denote the functions defined

in (17), and set
ψn := φ ∗ Ψn (n ∈ N).

Then, ψn ∈ Cr
0(Rd) ⊂ Lp0(Rd) for all r ∈ [0,∞], p ∈ [2,∞], n ∈ N, and by

the Fubini theorem,∫
Rd
ψn(x) dx =

∫
Rd

(φ ∗ Ψn)(x) dx =

∫
Rd

∫
Rd
φ(x− y) Ψn(y) dydx

=

∫
Rd
φ(z) dz

∫
Rd

Ψn(y) dy = 0.

Moreover, ψn
L2
loc−−→ φ as n→∞, by [42, Th. 1.18].

Let r ∈ [0,∞] and suppose f ∈ CN(Cr
0(Rd)). Provided f ∈ L1

loc(Rd),
which it is by Lemma 3.3.1 below, the integral∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy =

∫
Rd

(f∗∗ φ)(y)φ(y) dy

exists as a Lebesgue integral. Similarly to as in the proof of Proposition
2.3.4, it can be shown that∫

Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy= lim

n→∞

∫
Rd

∫
Rd
f(x− y)ψn(x)ψn(y) dxdy≤ 0,

and the result follows, for CN(Cr
0(Rd)) ⊂ CN(L2

0(Rd)). �

As Propositions 3.3.1 and 3.3.2 suggest, CN(L2
0(Rd)) is a wide and in-

teresting class of functions. In particular, functions in CN(L2
0(Rd)) need not

be bounded at the origin, which will be demonstrated in later examples (see
Section 3.5), they need only be locally integrable. This fact is proved in the
following lemma.

Lemma 3.3.1 If f ∈ CN(L2
0(Rd)), then f ∈ L1

loc(Rd).

Proof. Let K ⊂ Rd be any compact set and I=[a1, b1]×[a2, b2]×. . .×[ad, bd]⊂
Rd be such that K ⊂ I. Let c = max{|a1|, |b1|, |a2|, . . . , |bd|} > 0.

Let ψ ∈ L2
0(R) be such that ψ is positive and continuous on [−2c, 2c],

and
∫
R ψ(x) dx = 0. For any x = (x1, x2, . . . , xd) ∈ Rd, define Ψ(x) :=
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ψ(x1)ψ(x2) . . . ψ(xd). Then, Ψ ∈ L2
0(Rd),

∫
Rd Ψ(x) dx = 0 and, using the

same steps as in the proof of Proposition 2.4.7, it can be shown that∫
K
|f(z)| dz ≤

∫
I
|f(z)| dz ≤

∫
[−c, c]d

|f(z)| dz <∞.

�

Remark. By Proposition 3.3.2, we can replace L2
0(Rd) in Lemma 3.3.1 with

Lp0(Rd) for any p ∈ (2,∞], or Cr
0(Rd) for any r ∈ [0,∞]. We can also replace

L2
0(Rd) with a more general space J of functions defined on Rd, provided that

for any c > 0, J contains a function h, which is positive almost everywhere
on [−c, c]d and

∫
Rd h(x) dx = 0.

The following result is analogous to Lemma 2.6.2 and demonstrates, as
a particular case, that CN(L2

0(Rd)) is a closed subset of L1
loc(Rd) (recall,

functions in CN(L2
0(Rd)) are necessarily locally integrable by Lemma 3.3.1).

Lemma 3.3.2 Let p∈ [1, 2] and q= p/2(p− 1). Let (fn)n∈N be a sequence
of functions such that fn ∈ Lqloc(R

d) and fn ∈ CN(Lp0(Rd)) (n ∈ N). If

fn
Lqloc−−→ f as n→∞, for some f ∈ Lqloc(R

d), then f ∈ CN(Lp0(Rd)).

Proof. Let φ ∈ Lp0(Rd), K ⊂ Rd denote the compact support of φ ∗ φ∗, and
r = p/(2− p). By equations (19) and (20),∣∣∣∣∫

Rd

∫
Rd

(fn(x−y)− f(x− y))φ(x)φ(y) dxdy

∣∣∣∣
≤
(∫

K
|fn(z)− f(z)|q dz

) 1
q

‖φ ∗ φ∗‖r → 0

(n→∞). Thus,∫
Rd

∫
Rd
f(x− y)φ(x)φ(y) dxdy= lim

n→∞

∫
Rd

∫
Rd
fn(x− y)φ(x)φ(y) dxdy ≥ 0.

�

In the next section, for reasons which will be discussed, we will mainly
be interested in real-valued functions f . For any set of functions J , let
JR := {ψ ∈ J | ψ is real-valued}. Consider the following definition for real-
valued, conditionally negative definite functions.

Definition 3.3.2 A real-valued function f : Rd → R is called conditionally
negative definite w.r.t. J if f is even a.e., that is f(x) = f(−x) f.a.a. x ∈ Rd,
and for every function φ ∈ JR satisfying

∫
Rd φ(x) dx = 0, the integral in (36)

exists (in the Lebesgue sense) and is non-positive.
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Note that in general, J is an arbitrary set of test functions containing both
real and complex-valued elements.

Let CN(JR) denote the class of all real-valued functions which are con-
ditionally negative definite with respect to J by Definition 3.3.2. The next
proposition demonstrates the connection between real-valued functions which
are conditionally negative definite as in Definitions 3.3.1 and 3.3.2.

Proposition 3.3.3 Let f : Rd → R and J̃ denote a vector space of complex-
valued functions on Rd, such that if φ ∈ J̃ , then φ ∈ J̃ . Then, f ∈ CN(J̃R)
if f ∈ CN(J̃). Moreover, if (36) exists for all φ ∈ J̃ such that

∫
Rd φ(x) dx =

0, then f ∈ CN(J̃) if f ∈ CN(J̃R).

Proof. The first statement is clear since J̃R ⊆ J̃ . For the second statement,
consider the following. Let ψ ∈ J̃ be such that

∫
Rd ψ(x) dx = 0, and suppose

f ∈ CN(J̃R). As in the proof of Proposition 2.4.1, we write ψ as

ψ = Re (ψ) + i Im (ψ)

where Re (ψ), Im (ψ) ∈ J̃R and
∫
Rd Re (ψ)(x) dx =

∫
Rd Im (ψ)(x) dx = 0.

Again, we define a := Re (ψ), b := Im (ψ) and

t [u, v] :=

∫
Rd

∫
Rd
f(x− y)u(x) v(y) dxdy (u, v ∈ J̃).

Then,
t [a, b] + t [b, a] = t [a+ b, a+ b]− t [a, a]− t [b, b]

and

−i (t [a, b]− t [b, a]) = t [ψ,ψ]− t [a, a]− t [b, b] (37)

are finite, since f ∈ CN(J̃R) and we know that t [ψ,ψ] exists. Hence, both
t [a, b] and t [b, a] exist, and t [a, b] = t [b, a]. Thus, it follows from (37) that

t [ψ,ψ] = t [a, a] + t [b, b] ≤ 0.

�

Remark. The above proof is almost identical to that of Proposition 2.4.1.
The difference between the two lies in proving the existence of the integral
in (36) for the appropriate set of test functions. In Proposition 3.3.3 we
simply stipulate that (36) exists for all φ ∈ J̃ such that

∫
Rd φ(x) dx = 0,

whereas in Proposition 2.4.1, the existence of the integral follows under the
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assumption that f ∈ P(ĴR), and since Ĵ is closed under the operation |·|, see
(15). A similar approach will not work in the case of Proposition 3.3.3, since
for ψ ∈ Ĵ such that

∫
Rd ψ(x) dx = 0, although we have ψ̃ = |ψ| ∈ ĴR, as

in (15), it doesn’t necessarily follow that
∫
Rd ψ̃(x) dx = 0. Hence, assuming

f ∈CN(ĴR) does not guarantee the existence of the integral in (36) for ψ∈ Ĵ .
It follows from Proposition 3.3.3 that under certain conditions, real-

valued functions are conditionally negative definite as in both Definitions
3.3.2 and 3.3.1. This is the case when J is a vector space of complex-
valued functions which is closed under complex conjugation and (36) exists
for all φ ∈ J such that

∫
Rd φ(x) dx = 0. In most of our examples this

will be the case, for if f ∈ Lqloc(R
d), then (36) exists for all φ ∈ Lp0(Rd)

(p ∈ [1, 2], q = p/2(p − 1)), by Lemma 2.5.1. The following proposition
proceeds from this observation.

Proposition 3.3.4 Let f : Rd → R. Then, f ∈ CN(L2
0(Rd)) if and only if

f ∈ CN(L2
0(Rd)R).

Proof. One direction is clear since L2
0(Rd)R ⊂ L2

0(Rd). For the reverse
implication, consider the following. Let f ∈ CN(L2

0(Rd)R). Then, f ∈
L1
loc(Rd), by Lemma 3.3.1 (note that in the proof of Lemma 3.3.1, both ψ

and Ψ are real-valued), and thus (36) exists for all φ ∈ L2
0(Rd), by Lemma

2.5.1. Hence, f ∈ CN(L2
0(Rd)). �

3.4 An extension of Schoenberg’s theorem to conditionally
negative definite functions with a singularity at zero

Theorem 3.1.1 establishes a relation between the function classes PC,d and
CNC,d. We generalise this classical result to the classes P(L2

0(Rd)) and
CN(L2

0(Rd)), and in doing so, derive a Schoenberg-type theorem for real-
valued functions which need not be bounded at the origin.

Theorem 3.4.1 Let f : Rd → R. If there exist t0 > 0 and p > 1 such that
e t|f | ∈ Lploc(R

d) for all 0 < t ≤ t0, then

f ∈ CN(L2
0(Rd)) ⇐⇒ e−tf ∈ P(L2

0(Rd)) (0 < t ≤ t0). (38)

The proof of Theorem 3.4.1 will be based on the following five lemmas. By
Propositions 2.4.1 and 3.3.4, we need only consider real-valued test functions
in L2

0(Rd).
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Lemma 3.4.1 Let f : Rd → R and φ ∈ L2
0(Rd) be such that

∫
Rd φ(x) dx <

∞. If f ∈ CN(L2
0(Rd)), then there exists a Hilbert space (H, 〈·, ·〉f ) and a

mapping k : Rd → H, z 7→ kz such that for any x,y ∈ Rd,

‖kx − ky‖2f =

∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(y − v) dudv − C (39)

where

C =

∫
Rd

∫
Rd
f(s− t)φ(s)φ(t) dsdt (40)

is independent of x and y.

Proof. Suppose f ∈ CN(L2
0(Rd)). Let V be the subset of L2

0(Rd) defined by

V =

{
h ∈ L2

0(Rd)
∣∣∣∣h(u) =

m∑
i=1

ai φ(xi − u) (u ∈ Rd) for some m ∈ N,

xi ∈ Rd, ai ∈ R; s.t.

∫
Rd
h(u) du = 0

}
.

V is a vector space. For Φ,Ψ ∈ V, define

〈Φ,Ψ〉f := −1

2

∫
Rd

∫
Rd
f(x− y)Φ(x)Ψ(y) dxdy.

Since f ∈ CN(L2
0(Rd)), the mapping

(Φ,Ψ) 7→ 〈Φ,Ψ〉f

is a bilinear, symmetric and non-negative form on V. Set

V′ =
{
h′ ∈ V

∣∣ 〈h′, h′〉f = 0
}
.

V′ is a subspace of V since for any g′, h′ ∈ V′,

〈g′ + h′, g′ + h′〉f = 2 〈g′, h′〉f ≤ 2 〈g′, g′〉
1
2
f 〈h

′, h′〉
1
2
f = 0

by the Cauchy-Schwarz inequality. On the quotient space V/V′, define

〈[g], [h]〉f := 〈g, h〉f , (41)

where [g], [h] denote the equivalence classes in V/V′. The inner product in
(41) is well-defined since

〈g + g′, h+ h′〉f = 〈g, h〉f (g, h ∈ V, g′, h′ ∈ V′).
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To see this, note that

〈g, h′〉f ≤ 〈g, g〉
1
2
f 〈h

′, h′〉
1
2
f = 0

and

−〈g, h′〉f = 〈g,−h′〉f ≤ 〈g, g〉
1
2
f 〈−h

′,−h′〉
1
2
f = 0,

by the Cauchy-Schwarz inequality. Thus, 〈g, h′〉f = 0 and similarly, 〈g′, h〉f =
0. Let (H, 〈·, ·〉f ) be the Hilbert space completion of V/V′; then, in partic-
ular, V/V′ is dense in H.

Let x̃ ∈ Rd. For any z ∈ Rd, set kz := [φ(z − ·) − φ(x̃ − ·)] ∈ H. Then,
for any x, y ∈ Rd,

‖kx − ky‖2f = 〈kx − ky, kx − ky〉f

=

∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(y − v) dudv

− 1

2

∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(x− v) dudv (42)

− 1

2

∫
Rd

∫
Rd
f(u− v)φ(y − u)φ(y − v) dudv,

since

〈kx, kx〉f =− 1

2

∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(x− v) dudv

+

∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(x̃− v) dudv

− 1

2

∫
Rd

∫
Rd
f(u− v)φ(x̃− u)φ(x̃− v) dudv,

2〈kx, ky〉f =−
∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(y − v) dudv

+

∫
Rd

∫
Rd
f(u− v)φ(x̃− u)φ(y − v) dudv

+

∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(x̃− v) dudv

−
∫
Rd

∫
Rd
f(u− v)φ(x̃− u)φ(x̃− v) dudv
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and

〈ky, ky〉f =− 1

2

∫
Rd

∫
Rd
f(u− v)φ(y − u)φ(y − v) dudv

+

∫
Rd

∫
Rd
f(u− v)φ(x̃− u)φ(y − v) dudv

− 1

2

∫
Rd

∫
Rd
f(u− v)φ(x̃− u)φ(x̃− v) dudv.

By a simple change of variables, each of the last two integrals in (42) is equal
to −C/2, where C is defined by (40). Thus, formula (39) follows. �

We will refer to H as the Hilbert space associated with f and φ, and to k
as the mapping similarly associated.

Lemma 3.4.1 can be considered as a generalised version of the GNS
construction, which is a widely celebrated technique in the literature, see
e.g. [2, Th. C.2.3]. In fact, (39) is a direct extension of [2, Th. C.2.3 (i)].
Note that in [2], it is assumed that conditionally negative definite functions
vanish at the origin. The following result is analogous to [2, Lemma C.3.1]
and [4, Chapter 3, Lemma 2.1].

Lemma 3.4.2 Let f : Rd → R be such that f ∈ CN(L2
0(Rd)) and φ ∈

L2
0(Rd) be such that

∫
Rd φ(x) dx < ∞. Let H and k denote the associating

Hilbert space and mapping respectively. Fix x0 ∈ Rd. The kernel

g(x,y) = ‖kx − kx0‖2f + ‖ky − kx0‖2f − ‖kx − ky‖2f (x,y ∈ Rd) (43)

is classically positive definite as in Definition 2.1.3.

Proof. g is clearly symmetric, that is g(x,y) = g(y,x) for all x, y ∈ Rd. As
in [2, p. 373], a straightforward calculation gives

g(x,y) = 2〈kx − kx0 , ky − kx0〉f (x,y ∈ Rd).

Therefore, for any n ∈ N, x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ R,

n∑
i,j=1

g(xi,xj) vi vj = 2

∥∥∥∥ n∑
i=1

vi(kxi − kx0)

∥∥∥∥2
f

≥ 0.

�

For a real-valued function f ∈ CN(L2
0(Rd)) and φ ∈ L2

0(Rd) such that∫
Rd φ(x) dx <∞, with associating Hilbert space (H, 〈·, ·〉f ) and mapping k,

define
K(x,y) := ‖kx − ky‖2f (x,y ∈ Rd).
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It follows from (39) that K(x + a,y + a) = K(x,y) for any a ∈ Rd, and
hence, K(x,y) = K(x−y,0) for all x,y ∈ Rd. Define f̃(z) := K(z,0) for all
z ∈ Rd. Then, K(x,y) = f̃(x− y) for any x,y ∈ Rd.

The kernel g : Rd×Rd → R, defined in Lemma 3.4.2, is positive definite.
Hence, so is tngn for any t > 0, n ∈ N, since the product of positive definite
kernels is also positive definite, see e.g. [2, Prop. C.1.6 (iv)]. Consequently,
etg is a classically positive definite kernel as in Definition 2.1.3.

Let t > 0. It follows from (43) that

e−tK(x,y) = etg(x,y)×
(
e−tK(x,x0) e−tK(y,x0)

)
(x,y ∈ Rd).

The kernel e−tK( · ,x0) e−tK( · ,x0) : Rd× Rd → R is positive definite, since

n∑
i,j=1

(
e−tK(xi,x0) e−tK(xj ,x0)

)
vi vj =

(
n∑
i=1

vi e
−tK(xi,x0)

)2

≥ 0

for any n ∈ N, x1,x2, . . . ,xn ∈ Rd and v1, v2, . . . , vn ∈ R; as in [2, p. 374].

Hence, e−tK is a positive definite kernel and therefore e−tf̃ is a classically
positive definite function as in Definition 2.1.2. By Theorem 3.1.1, it follows
that f̃ is conditionally negative definite as in Definition 3.1.2. Thus, by the
properties of functions in CNC,d (see Section 3.1), it proceeds that f̃ + α is
conditionally negative definite for any α ∈ R.

The next lemma highlights a connection between classically conditionally
negative definite functions and functions which are conditionally negative
definite with respect to L2

0(Rd). In particular, we observe that for real-
valued functions, Lploc(R

d) ∩ CN(L2
0(Rd)) is the closure of C∞(Rd) ∩ CNC,d,

where C∞(Rd) denotes the space of infinitely differentiable functions on Rd.

Lemma 3.4.3 Let p ∈ [1,∞) and f : Rd → R be such that f ∈ Lploc(R
d) ∩

CN(L2
0(Rd)). Then, there is a sequence (fn)n∈N of infinitely differentiable,

classically conditionally negative definite functions such that fn
Lploc−−→ f as

n→∞.

Proof. Recall the functions Ψn defined in the proof of Proposition 2.4.6; i.e.
let ψ : R→ R denote the bump function

ψ(x) =

{
c0 exp

(
1

|x|2−1

)
, |x| < 1

0, |x| ≥ 1,
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where c0 > 0 is the constant chosen such that
∫
Rψ(x) dx = 1, and for any

x = (x1, x2, . . . , xd) ∈ Rd, define Ψ(x) := ψ(x1)ψ(x2) . . . ψ(xd) and

Ψn(x) := nd Ψ(nx) (n ∈ N). (44)

Then, for any n ∈ N, Ψn ∈ C∞0 (Rd) is even and has compact support
[− 1

n ,
1
n ]d. Moreover,

∫
RdΨn(x) dx = 1 for all n ∈ N.

Applying Lemma 3.4.1 to the functions Ψn and f , we find that for any
n ∈ N and x,y ∈ Rd,

‖kn,x − kn,y‖2f =

∫
Rd

∫
Rd
f(u− v)Ψn(x− u)Ψn(y − v) dudv − Cn, (45)

where

Cn =

∫
Rd

∫
Rd
f(s− t)Ψn(s)Ψn(t) dsdt ∈ R

and kn,z is the equivalence class [Ψn(z − ·) − Ψn(x̃ − ·)] in H (z, x̃ ∈ Rd).
Let

f̃n(x− y) = ‖kn,x − kn,y‖2f (x,y ∈ Rd).

From Lemma 3.4.2 and the ensuing remarks, it follows that f̃n +α ∈ CNC,d

for any α ∈ R, n ∈ N. In particular,

fn(z) := f̃n(z) + Cn

=

∫
Rd

∫
Rd
f(u− v)Ψn(z− (u− y))Ψn(z− (x− v)) dudv

=

∫
Rd

∫
Rd
f(z− t− s)Ψn(z− s)Ψn(z− t) dsdt (z ∈ Rd) (46)

defines a classically conditionally negative definite function. Note that we
have used the evenness of f and Ψn in order to arrive at the above equation.
On rewriting (46), again by using the fact that f is even, we obtain

fn(z) =

∫
Rd

∫
Rd
f(t− (z− s))Ψn(z− s)Ψn(z− t) dsdt

=

∫
Rd

(f ∗Ψn(t)) Ψn(z− t) dt.

Hence, for any n ∈ N,

fn = f ∗ ηn, (47)

where ηn = Ψn ∗ Ψn = nd(Ψ ∗ Ψ)(n · ). Using the properties of Ψn, it fol-
lows that for any n ∈ N, ηn ∈ C∞0 (Rd) has compact support [− 2

n ,
2
n ]d and
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∫
Rd ηn(x) dx = 1. Hence, fn ∈ C∞(Rd) for all n ∈ N, and fn

Lploc−−→ f as
n→∞ by [42, Th. 1.18]. �

Corollary 3.5.2 demonstrates that the converse to Lemma 3.4.3 is also true
(see Section 3.5). In the following result we establish one direction of the
equivalence (38) in Theorem 3.4.1.

Lemma 3.4.4 Let f : Rd → R be such that f ∈ CN(L2
0(Rd)). If there

exist t0 > 0 and p > 1 such that et|f | ∈ Lploc(R
d) for any 0 < t ≤ t0, then

e−tf ∈ P(L2
0(Rd)) for all 0 < t ≤ t0.

Proof. Suppose t0 > 0 and p > 1 are such that et|f | ∈ Lploc(R
d) for all

0 < t ≤ t0. Then, it follows that e−tf ∈ Lploc(R
d) for all 0 < t ≤ t0 and

f ∈ Lqloc(R
d) for any 1 ≤ q <∞.

The functions fn, as defined in the proof of Lemma 3.4.3, are condition-
ally negative definite in the sense of Definition 3.1.2. Thus, by Theorem
3.1.1, e−tfn is positive definite for any t > 0, n ∈ N. Moreover, e−tfn is
continuous for all t > 0, n ∈ N, since fn is continuous for any n ∈ N. By
Proposition 2.4.2, it follows that e−tfn ∈ P(L2

0(Rd)) for any t > 0, n ∈ N.

By Lemma 2.6.2, we need only show that e−tfn
L1
loc−−→ e−tf as n → ∞.

Let ε > 0, 0 < t ≤ t0 and K ⊂ Rd be a compact set. Let n0 ∈ N and define

K̂ := K +
[
− 2
n0
, 2
n0

]d
. By Lemma 3.4.3, there exists n∗ ∈ N such that for

all n ≥ n∗,

‖fn − f‖q,K =

(∫
K
|fn(x)− f(x)|q dx

) 1
q

<
ε

2t ‖et|f |‖p,K̂
(48)

where 1
p + 1

q = 1. W.l.o.g., we assume n∗ ≥ n0.
Let n > n∗. We partition K = K1 ∪K2, where K1 = {x ∈ K | f(x) ≤

fn(x)} and K2 = {x ∈ K | f(x) > fn(x)}. By the Mean Value Theorem,∣∣(e−tfn − e−tf)(x)
∣∣ = t e−t ξn(x) |fn(x)− f(x)| f. a. a. x ∈ Rd,

where ξn(x) lies between fn(x) and f(x). Therefore,∫
K

∣∣(e−tfn−e−tf)(x)
∣∣dx=

∫
K1

te−tξn(x)|(fn−f)(x)|dx+

∫
K2

te−tξn(x)|(fn−f)(x)|dx

≤
∫
K1

te−tf(x)|(fn−f)(x)|dx+

∫
K2

te−tfn(x)|(fn−f)(x)|dx

≤
∫
K
te−tf(x)|(fn−f)(x)|dx+

∫
K
te−tfn(x)|(fn−f)(x)|dx

≤ t (‖e−tf‖p,K + ‖e−tfn‖p,K) ‖fn − f‖q,K , (49)
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using Hölder’s inequality in the last step. Next, for almost all x ∈ Rd,

0 ≤ e−tf(x) =

∞∑
j=0

(−1) j t j f(x) j

j!
≤ et |f(x)|,

and thus, since K ⊂ K̂,

‖e−tf‖p,K ≤ ‖et |f |‖p,K ≤ ‖et |f |‖p,K̂ . (50)

By Jensen’s inequality, see e.g. [25, Th. 1.8.1], and (47), it follows that for
any x ∈ Rd,

e−tfn(x)=exp

(
−t
∫
Rd
f(x− z)ηn(z)dz

)
≤
∫
Rd
e−tf(x−z)ηn(z)dz=e−tf∗ ηn(x),

and hence,
‖e−tfn‖p,K ≤ ‖e−tf ∗ ηn‖p,K .

Moreover,(
e−tf ∗ ηn

)
(x)χK(x) ≤

(
(e−tfχK̂) ∗ ηn

)
(x) (x ∈ Rd).

This follows since for x ∈ K and n ≥ n0,(
(e−tfχK̂) ∗ ηn

)
(x) =

∫
[− 2

n
, 2
n
]d

(
e−tf(x−y)χK̂(x− y)

)
ηn(y) dy

=

∫
[− 2

n
, 2
n
]d
e−tf(x−y)ηn(y) dy =

(
e−tf ∗ ηn

)
(x).

Thus, using Young’s inequality, it proceeds that

‖e−tf ∗ ηn‖p,K ≤ ‖e−tf‖p,K̂ ‖ηn‖1 = ‖e−tf‖p,K̂ ≤ ‖e
t |f |‖p,K̂ ,

and thus,

‖e−tfn‖p,K ≤ ‖et |f |‖p,K̂ . (51)

From (48), (49), (50) and (51), we conclude that∫
K

∣∣∣(e−tfn − e−tf)(x)
∣∣∣ dx < ε.

�

Remark. We take p > 1 in the above Lemma so that q < ∞ in (48) and
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we can apply Lemma 3.4.3. This condition allows us to compensate for
functions with a singularity at zero.

By considering complex-valued functions in Lemmas 3.4.1, 3.4.2, 3.4.3
and 3.4.4, we obtain the following results. Equation (39) becomes

‖kx − ky‖2f = Re

(∫
Rd

∫
Rd
f(u− v)φ(x− u)φ(y − v) dudv

)
− C, (52)

where

C =

∫
Rd

∫
Rd
f(s− t)φ(s)φ(t) dsdt = C ∈ R. (53)

To see this, consider the same steps as in the proof of Lemma 3.4.1, with
complex-valued f and φ. Take V as before and for Φ,Ψ ∈ V, define

〈Φ,Ψ〉f := −1

2

∫
Rd

∫
Rd
f(x− y)Φ(x)Ψ(y) dxdy,

so that the mapping (Φ,Ψ) 7→ 〈Φ,Ψ〉f is a sesquilinear, Hermitian and non-
negative form on V. Recall that f is conjugate symmetric a.e., since f ∈
CN(L2

0(Rd)). To arrive at (52) and (53), compute ‖kx − ky‖2f = 〈kx, kx〉f −
〈kx, ky〉f − 〈ky, kx〉f + 〈ky, ky〉f .

Lemma 3.4.2, as well as the discussion that follows it, holds true for
complex-valued f and φ.

The complex analogue of Lemma 3.4.3 gives rise to a sequence (fn)n∈N of
infinitely differentiable, classically conditionally negative definite functions,

such that fn
Lploc−−→ Re(f) as n → ∞. This can be seen by using equations

(52) and (53) in the proof of Lemma 3.4.3, so that (45) becomes

‖kn,x − kn,y‖2f =

∫
Rd

∫
Rd

Re (f(u− v)) Ψn(x− u)Ψn(y − v) dudv − Cn,

for any n ∈ N and x,y ∈ Rd. As a direct consequence, Lemma 3.4.4, for
complex-valued f , roughly states that if f ∈ CN(L2

0(Rd)), then e−tRe(f) ∈
P(L2

0(Rd)); thus, yielding information about the real part of f only. It is for
this reason that we consider real-valued functions in Theorem 3.4.1.

The following lemma concludes the proof of Theorem 3.4.1.

Lemma 3.4.5 Let f : Rd → R. If there exists t0 > 0 such that et|f | ∈
L1
loc(Rd) for any 0 < t ≤ t0, then

e−tf ∈ P(L2
0(Rd)) (0 < t ≤ t0) =⇒ f ∈ CN(L2

0(Rd)).
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Proof. Suppose e−tf ∈ P(L2
0(Rd)) for all 0 < t ≤ t0. Then, for any φ ∈

L2
0(Rd) and 0 < t ≤ t0,∫

Rd

∫
Rd
e−tf(x−y)φ(x)φ(y) dxdy ≥ 0

and hence,

−1

t

∫
Rd

∫
Rd
e−tf(x−y)φ(x)φ(y) dxdy ≤ 0.

Let ψ ∈ L2
0(Rd) be such that

∫
Rd ψ(x) dx = 0. Then, for any 0 < t ≤ t0,

−1

t

∫
Rd

∫
Rd
e−tf(x−y)ψ(x)ψ(y)dxdy=

1

t

∫
Rd

∫
Rd
ψ(x)ψ(y) dxdy

− 1

t

∫
Rd

∫
Rd
e−tf(x−y)ψ(x)ψ(y) dxdy

=

∫
Rd

∫
Rd

(
1− e−tf(x−y)

t

)
ψ(x)ψ(y)dxdy

Define ft := (1 − e−tf )/t (0 < t ≤ t0). It follows that ft ∈ CN(L2
0(Rd)) for

all 0 < t ≤ t0. To prove f ∈ CN(L2
0(Rd)) we need only show that ft

L1
loc−−→ f

as t→ 0, by Lemma 3.3.2. Let K ⊂ Rd be a compact set. Then,

∫
K

∣∣∣∣∣f(x)−

(
1− e−tf(x)

t

)∣∣∣∣∣ dx =

∫
K

∣∣∣∣∣∣ t
∞∑
j=2

(−1) j t j−2 f(x) j

j!

∣∣∣∣∣∣ dx
≤
∫
K
t
∞∑
j=2

t j−20 |f(x)| j

j!
dx

=
t

t 20

∫
K

∞∑
j=2

t j0 |f(x)| j

j!
dx

=
t

t 20

∫
K

(
et0|f(x)| − 1− t0 |f(x)|

)
dx

≤ t

t 20
‖et0|f |‖1,K → 0 (t→ 0).

�

Remark. Lemma 3.4.5 is also valid for complex-valued functions f . Note,
however, we cannot prove analogous results to Lemmas 3.4.4 and 3.4.5 for
the function spaces P(L2(Rd)) and CN(L2(Rd)), as opposed to P(L2

0(Rd))
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and CN(L2
0(Rd)), for we cannot have both f and e−tf in L1(Rd). In fact, it

is clear that if f ∈ L1(Rd), then e−tf /∈ L1(Rd). Moreover, et|f | /∈ Lp(Rd)
(p ∈ [1, ∞)) for f ∈ L1(Rd).

3.5 Corollaries to Theorem 3.4.1 and examples of condition-
ally negative definite functions with a singularity at zero

We begin this section by proving two results which follow directly from The-
orem 3.4.1. Firstly, we demonstrate that functions which are continuous and
conditionally negative definite for L2

0(Rd) are conditionally negative definite
in the classical sense.

Corollary 3.5.1 Let f : Rd → R be continuous. Then, f ∈ CN(L2
0(Rd)) if

and only if f ∈ CNC,d.

Proof. Suppose f is continuous and classically conditionally negative def-
inite. By Theorem 3.1.1, e−tf is classically positive definite for all t > 0.
Moreover, for any t > 0, e−tf is continuous since f is continuous. By Propo-
sition 2.4.2, e−tf ∈ P(L2

0(Rd)) for all t > 0. By Theorem 3.4.1, we conclude
that f ∈ CN(L2

0(Rd)).
For the reverse implication, consider the same argument as in the proof

of Proposition 2.4.6, with

Φn(x) :=

N∑
i=1

ξi Ψn(x− xi) (x ∈ Rd, n ∈ N),

for any N ∈ N and any x1,x2, . . . ,xN ∈ Rd, where ξ1, ξ2, . . . , ξN ∈ R are
such that

∑N
i=1 ξi = 0. Then, Φn ∈ L2

0(Rd) and
∫
Rd Φn(x) dx = 0 for all

n ∈ N. �

Remark. It follows directly from Corollary 3.5.1 that the functions f defined
in Theorem 3.2.3 are conditionally negative definite with respect to L2

0(Rd).
The following corollary shows that the converse to Lemma 3.4.3 is true.

Indeed, if there exists a sequence (fn)n∈N of classically conditionally negative

definite functions such that fn
Lploc−−→ f as n → ∞, then f is conditionally

negative definite for L2
0(Rd).

Corollary 3.5.2 Let f : Rd → R be such that f ∈ Lploc(R
d) for some

p ∈ [1,∞). Then, f ∈ CN(L2
0(Rd)) if and only if there exists a sequence

(fn)n∈N of infinitely differentiable, classically conditionally negative definite

functions, such that fn
Lploc−−→ f as n→∞.
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Proof. One direction is proved in Lemma 3.4.3. For the reverse implication,
we note that for any n ∈ N, fn ∈ CN(L2

0(Rd)) by Corollary 3.5.1. By Lemma

3.3.2, we need only show that fn
L1
loc−−→ f as n → ∞. This follows directly,

since for any compact set K ⊂ Rd,∫
K
|fn(x)− f(x)| dx ≤ |K|

1
q

(∫
K
|fn(x)− f(x)|p dx

) 1
p

where 1
p + 1

q = 1 and |K| denotes the Lebesgue measure of K. �

We will now demonstrate how to construct examples of functions in
CN(L2

0(Rd)), which have a singularity at the origin. Firstly, assume d = 1.
It is clear that if f ∈ P(L2

0(R)), then −f ∈ CN(L2
0(R)). Hence, the functions

−gi, for i = 1, 8, 11, 16, 19, 23, of Section 2.7 are elements of CN(L2
0(R)).

Next, we show how to find examples of singular functions f ∈ CN(L2
0(R))

such that −f /∈ P(L2
0(R)).

In view of Theorem 3.2.1 ii. with g(x) = x−t (t > 0), if h is a Bernstein
function, then ut = h−t is completely monotone for all t > 0. Assume h is
non-constant, define vt := h−t(| · |) and let t0 > 0. By Corollary 2.7.6, if
vt ∈ L1

loc(R) for all 0 < t ≤ t0, then vt ∈ P(L2
0(R)) for all 0 < t ≤ t0. Define

f := log(h(| · |)), so that e−tf = vt. By Theorem 3.4.1, if e t|f | ∈ Lploc(R) for
any 0 < t ≤ t0 and some p > 1, then f ∈ CN(L2

0(R)). It only remains to
check the last condition, −f /∈ P(L2

0(R)).
Consider the following simple examples. In all three cases we choose p

= 2 and t0 = 1/4, so that vt ∈ L1
loc(R) and e t|f | ∈ Lploc(R) for all 0 < t ≤ t0.

1. Take h(x) = x, then ut(x) = x−t, vt(x) = |x|−t and f(x) = log |x|.
All conditions are satisfied, hence f ∈ CN(L2

0(R)). It is easy to see that
−f /∈ P(L2

0(R)). Indeed, take the test function φ(x) = 1 for 0 < x < 8,
φ(x) = 0 otherwise. Then,

−
∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy=−

∫ 8

0

∫ 8

0
log |x− y| dxdy=96(1− 2 log 2)<0.

2. Take h(x) = x+
√
x, then ut(x) = (x+

√
x)−t, vt(x) = (|x|+

√
|x|)−t

and f = log(| · | +
√
| · |) ∈ CN(L2

0(R)). To prove −f /∈ P(L2
0(R)), we take

the same test function φ as in the example above, giving

−
∫ 8

0

∫ 8

0
log
(
|x− y|+

√
|x− y|

)
dxdy ' −75.20631216 < 0.

3. Take h(x) = Γ(x + 1
2)/Γ(x), where Γ is the Gamma function. We

have f = log Γ(| · |+ 1
2)− log Γ(| · |) ∈ CN(L2

0(R)). To prove −f /∈ P(L2
0(R)),
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again we take the same test function φ as above, finding

−
∫ 8

0

∫ 8

0

(
log Γ(|x− y|+ 1/2)− log Γ(|x− y|)

)
dxdy ' −10.83 < 0.

All three examples are built on the same principle: if h is a Bernstein
function and some regularity conditions are satisfied, then f = log h(| · |) ∈
CN(L2

0(R)).
We now indicate how to construct examples of functions in CN(L2

0(Rd)),
for d ≥ 2, which are not in P(L2

0(Rd)). Similarly to the above, for any
x ∈ Rd, define vt(x) := h−t(‖x‖2)e−t‖x‖2 , and let t0 > 0. By Corollary
2.7.7, if h−t ∈ L1

loc((0, ∞)) for all 0 < t ≤ t0, then vt ∈ P(L2
0(Rd)) for all

0 < t ≤ t0. Define

f(x) := log
(
h(‖x‖2) exp(‖x‖2)

)
= log

(
h(‖x‖2)

)
+ ‖x‖2 (x ∈ Rd),

so that e−tf = vt. By Theorem 3.4.1, if e t|f | ∈ Lploc(R
d) for any 0 < t ≤ t0

and some p > 1, then f ∈ CN(L2
0(Rd)). It only remains to check the last

condition, −f /∈ P(L2
0(Rd)).

62



4 Applications in Potential Theory

The development of the classical theory of potentials was motivated by the
energy problem: given a function f : Rd → R and a set M(X ) of non-
negative unit Borel measures with support in the compact set X ⊂ Rd,
which measure(s) µ ∈M(X ) minimise(s)/maximise(s) the energy integral

If (µ) :=

∫
X

∫
X
f(x− y)µ(dx)µ(dy)? (54)

Moreover, if µ∗∈M(X ) minimises If , then is it unique and thus, optimal?
In logarithmic potential theory, i.e. when f = − log | · |, the energy

problem has been solved for various sets X , see e.g. [33, Chapter I.1], where
circles, discs and line segments are considered. For example, when X ⊂ R
is a segment of length l, that is X = [−l/2, l/2], the minimising measure µ∗

is unique and has arcsine density;

µ∗(dx) =
1

π
√
l2/4− x2

dx (x ∈ [−l/2, l/2]),

see [33, Eq. 1.7]. The more general case (for d = 1) when

f(x) =

{
(1− |x|α−1)/(α− 1) if α 6= 1,
− log |x| if α = 1

(x ∈ R\{0})

has been considered in [37]. Here it is shown that for any α ∈ (0, 2), If (µ)
is strictly convex on the set of all probability measures on the set of Borel
subsets of [0, 1], and that the measure with generalised arcsine density

p1−α/2(t) =
Γ
(
2− α

)
t−α/2 (1− t)−α/2

Γ2
(
1− α/2

)
is the optimal measure for If , see [37, Th. 2]. The energy problem has also
been widely studied for the Riesz kernel κα(x,y) = |x− y|α−d (0 < α < d,
x,y ∈ Rd) and the classical Newtonian kernel, i.e. when f(x) = |x|2−d
(d > 2, x ∈ Rd), see e.g. [16], [21], [28], [32]. In the non-singular case, when
f = | · |α (α > 0), properties of the maximising measures and their potentials

Pµ(y) :=

∫
X
f(x− y)µ(dx) (y ∈ X )

have been explored in [8]. The main purpose of this chapter is to study the
energy integral If(|·|) for several singular, completely monotone functions f ,
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which have not previously been considered in the field of potential theory,
and to solve the corresponding energy problems by means of numerically
computing densities of measures which minimise If(|·|).

It is worth noting that the energy problem in potential theory is very
closely related to the problem of finding optimal designs in experimental
design. In particular, the functional If (µ) arises as an optimality criterion
in the optimal design problem with correlated observations for the location
model yj = θ+εj , see e.g. [47, Eq. 5]. The measure µ∗ that minimises If on
the set of probability measures defined on a compact subset of R, say [0, 1],
defines an optimal design for a suitable correlation function f . Standard
correlation functions are positive definite in the classical sense, however, as
in [37, Corollary 1], we extend the optimal design problem to the case when
f is positive definite in an extended sense and singular at the origin.

Consider the energy integral If(|·|) with f ∈ CM unbounded at the origin.
Using the results of Section 4.4, where we construct discrete optimal mea-
sures for Ig with g classically strictly positive definite, and Theorem 4.1.1,
which describes a method for approximating singular completely monotone
functions by non-singular such functions, we derive our principle result; an
algorithm for constructing continuous probability measures which approxi-
mate the minimising measure for If(|·|). We apply this algorithm to the case
when f(| · |) = | · |−α (α ∈ (0, 1)) - the Riesz kernel on R, or a compact
subset of R (see Section 4.5), and, later, to a variety of singular, completely
monotone functions f (see Section 4.6).

The structure of this section is as follows. We begin by introducing a
procedure for approximating a singular completely monotone function by a
family of non-singular completely monotone functions, see Section 4.1. Sec-
tion 4.3 contains some known ideas on finding the optimal measure for a
convex, non-negative energy integral. In Section 4.4 we construct discrete
optimal measures for If in the case when f is classically strictly positive
definite. Next, we provide an in-depth analysis of the optimal density for
the Riesz energy and, in doing so, construct a general algorithmic scheme
for approximating an optimal density for a given energy by a sequence of
probability densities, see Section 4.5. We conclude with several examples of
approximate minimising measures for If(|·|) with alternative singular, com-
pletely monotone functions f , see Section 4.6.
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4.1 Approximation of singular completely monotone func-
tions by non-singular completely monotone functions

The central result of this section, Theorem 4.1.1, determines a method for
approximating a singular completely monotone function f by a family of
bounded completely monotone functions fε (ε > 0), and proves to be very
useful when numerically computing densities of measures which minimise
the energy If(|·|) defined in (54), see Sections 4.5 and 4.6 for details.

For g ∈ BF of the form (35), let f = g′ ∈ CM. Then, for any x > 0,

f(x) = b+

∫
(0∞)

te−xtµ(dt) (55)

and the measure ν(dt) := tµ(dt) satisfies∫
(0∞)

1

1 + t
ν(dt) =

∫
(0∞)

t

1 + t
µ(dt) ≤

∫
(0∞)

min(1, t)µ(dt) <∞, (56)

see [35, p.18]. The following proposition demonstrates that the converse to
the above discussion is also true. That is, a completely monotone function
of the form (55) with representing measure satisfying (56) has a primitive
in BF. This, in turn, characterises the image of BF under differentiation.

Proposition 4.1.1 ([35, Prop. 3.4]). Let f ∈ CM be of the form

f(x) = b+

∫
(0∞)

e−xtν(dt) (x > 0). (57)

Then, f has primitive g ∈ BF if and only if the representing measure ν
satisfies ∫

(0∞)
(1 + t)−1 ν(dt) <∞. (58)

Proof. Retracing the steps in the above discussion, namely equations (55)
and (56), reveals that functions of the form (57), with representing measure
satisfying (58), have primitives which can be written in the form of (35). �

Let f ∈ CM with representing measure ν satisfying (58). Then, by
Proposition 4.1.1, there exists g ∈ BF such that g(x) =

∫ x
0 f(t) dt (x > 0).

As discussed in Section 2.2, the value f(0) may be undefined, that is, f may
be singular at the origin. For any x > 0, define the family of functions

fε(x) =

{
f(x) = g′(x), ε = 0
1
ε

∫ x+ε
x f(t) dt = 1

ε (g(x+ ε)− g(x)), ε > 0.
(59)
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Next, we show that the functions defined in (59) are completely monotone
and that fε(0+) = limx→0+ fε(x) <∞ for all ε > 0 and limε→0 fε(x) = f(x)
for all x > 0.

Theorem 4.1.1 Let f ∈ CM with representing measure ν satisfying (58).
Consider the family of functions fε defined in (59), where g ∈ BF and
g(x) =

∫ x
0 f(t) dt (x > 0). Then,

i. fε(0+) = limx→0+ fε(x) <∞ for any ε > 0,

ii. fε ∈ CM for any ε ≥ 0,

iii. fδ − fε ∈ CM for any 0 ≤ δ < ε,

iv. limε→0 fε(x) = f(x) for any x > 0.

Proof. i. Let ε > 0. Then, f(0) = (g(ε)−g(0))/ε <∞ since g is non-negative
and increasing by definition.

ii. The case ε = 0 is trivial. For ε > 0, consider the following. Using
the Lévy-Khintchine representation of g, see (35), it follows that for any
ε, x > 0,

fε(x) =
1

ε
(g(x+ ε)− g(x)) = b+

1

ε

∫
(0,∞)

e−xt(1− e−εt)µ(dt)

or, alternatively,

fε(x) =

∫
(0,∞)

e−xtνε(dt), (60)

where νε(dt) = bδ0(dt)+hε(t)µ(dt), δ0(dt) denotes the delta (Dirac) measure
concentrated at 0 and hε(t) = ε−1(1 − e−εt) for any t > 0. Since hε(t) > 0
for any ε, t > 0 and fε(0+) <∞ for any ε > 0 by i., it follows from Theorem
2.2.1 that fε ∈ CM for any ε > 0.

iii. Let 0 < δ < ε. Using the representations of fε and fδ described in
(60), we have that for any x > 0,

fδ(x)− fε(x) =

∫
(0,∞)

e−xt(νδ − νε)(dt), (61)

where (νδ − νε)(dt) = (hδ − hε)(t)µ(dt) for any t > 0. The measure (νδ −
νε)(dt) is non-negative, since (hδ − hε)(t) > 0 for any t > 0. Indeed, for
fixed t > 0, the function hε̃, considered as a function of ε̃ > 0, is positive, as
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shown in the proof of ii., and strictly decreasing. The latter property follows
since

∂hε̃(t)

∂ε̃
=

(1 + ε̃t)e−ε̃t − 1

ε̃2

and (1 + s)e−s− 1 is negative for any s > 0. Thus, since fδ(0+)− fε(0+)
<∞ by i., it follows from Theorem 2.2.1 that fδ − fε ∈ CM.

Consider the case δ = 0. It follows from (59) and (55) that for any x > 0,

f0(x) = g′(x) = b+

∫
(0,∞)

te−xtµ(dt) =

∫
(0,∞)

e−xtν0(dt),

where ν0(dt) = bδ0(dt) + tµ(dt). Setting δ = 0 in (61) gives the representing
measure (ν0−νε)(dt) = (t−hε(t))µ(dt) (t > 0) for f0−fε. Since t− ε−1(1−
e−εt) > 0 for any t, ε > 0, fε(0+) <∞ for any ε > 0 and f0(x) = f(x) <∞
for any x > 0, it follows from Theorem 2.2.1 that f0 − fε ∈ CM for any
ε > 0.

iv. Let x > 0. For any ε > 0, f(x + ε) < fε(x) since f is decreasing
on (0, ∞), and fε(x) < (f(x + ε) + f(x))/2 since f is convex on (0, ∞).
Moreover, there exists x < ξ < x+ ε such that

f(x)− f(x+ ε) = εf ′(ξ),

by the Mean Value Theorem. Hence, fε(x)− f(x+ ε) = O(ε) as ε→ 0 and
thus, limε→0 fε(x) = f(x). �

4.2 Convexity of the energy functional

Let f : Rd → R and M denote a general set of signed measures on Rd, or
a compact subset of Rd. We define the energy functional

Φf (µ) :=

∫
Rd

∫
Rd
f(x− y)µ(dx)µ(dy) (µ ∈M). (62)

As follows from the standard definition, Φf :M→ R is convex on M if

Φf ((1− α)µ1 + αµ2) ≤ (1− α) Φf (µ1) + αΦf (µ2) (63)

for any 0 ≤ α ≤ 1 and µ1, µ2 ∈ M. Φf is said to be strictly convex if for
any µ1 6= µ2, the inequality in (63) is replaced with a strict inequality and
0 < α < 1.

In the field of experimental design, the location model yj = θ + εj with
correlated errors εj is often considered. The normalised variance of the least
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square estimator of θ, i.e. the optimality criterion, is the energy Φρ(µ)
defined in (62), where µ ∈ M is a design and ρ is the correlation function
of the error process. M is commonly taken to be the set of probability
measures on [0, 1], and since ρ is classically positive definite by definition, it
follows that Φρ is convex onM, see e.g. [47, Lemma 1]. Due to the bounded
nature of ρ, Φρ is finite on the set of all probability measures on [0, 1]. This
is clearly not the case when ρ is replaced with a function f which has a
singularity at the origin, for Φf (µ) = +∞ for any discrete measure µ.

Using the framework developed in Sections 2 and 3, we now provide sev-
eral examples of alternative functions f (potentially unbounded at 0) which
guarantee the convexity of Φf on certain sets of measuresM. Although these
results will not be used in later sections, we present them for completeness.
Firstly, we introduce the notion of conditional positive definiteness, which
is simply the “negative” of conditional negative definiteness.

Definition 4.2.1 A function f : Rd → R is called conditionally positive
definite w.r.t. a set J of functions, denoted f ∈ CP(J), if −f ∈ CN(J), as
in Definition 3.3.2.

For any c ∈ R, define L2
0, c(Rd) to be the set of functions φ ∈ L2

0(Rd) such
that

∫
Rd φ(x) dx = c. A consequence of the following proposition is that

if f ∈ CP(L2
0(Rd)), then Φf is convex on the set of absolutely continuous

signed measures with densities in L2
0, c(Rd). Note, in the proceeding results,

Mi will always denote a set of signed measures.

Proposition 4.2.1 Let f ∈ L1
loc(Rd) be even a.e., c ∈ R and M1 = {µ |

µ absolutely continuous with density φ ∈ L2
0, c(Rd)}. Then, Φf : M1 → R,

as defined in (62), is convex if and only if f ∈ CP(L2
0(Rd)).

Proof. For any 0 ≤ α ≤ 1 and µ1, µ2 ∈ M1 with densities φ1 and φ2,
respectively, we rewrite the left hand side in (63) as follows,

Φf ((1− α)µ1 + αµ2) = (1− α) Φf (µ1) + αΦf (µ2)− α (1− α) Ψf (µ1, µ2),
(64)

where

Ψf (µ1, µ2) =

∫
Rd

∫
Rd
f(x− y)(µ1 − µ2)(dx)(µ1 − µ2)(dy)

=

∫
Rd

∫
Rd
f(x− y)(φ1 − φ2)(x)(φ1 − φ2)(y) dxdy, (65)
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see e.g. [29, p. 71]. It follows that Φf is convex if and only if (65) is
non-negative for all φ1, φ2 ∈ L2

0, c(Rd).
One direction is clear, since if φ1, φ2 ∈ L2

0, c(Rd), then
∫
Rd(φ1−φ2)(x) dx =

0. Thus, if f ∈ CP(L2
0(Rd)), then Φf is convex on M1. For the reverse

implication, let φ ∈ L2
0(Rd) be such that

∫
Rd φ(x) dx = 0, and let K

denote the compact support of φ. Take φ1(x) = φ(x) + c for x ∈ K,
φ1(x) = 0 otherwise, and φ2(x) = c for x ∈ K, φ2(x) = 0 otherwise. Then,
φ1, φ2 ∈ L2

0, c(Rd) and φ = φ1 − φ2. �

Hence, for the functions − log(|x|), − log(|x| +
√
|x|) and log Γ(|x|) −

log Γ(|x| + 1
2) (x ∈ R \ {0}), see examples 1, 2 and 3 of Section 3.5, the

corresponding energy functionals on M1 are convex.

Remark. It is clear that if f ∈ P(L2
0(Rd)), then Φf :M2 → R is convex on

M2 := {µ | µ absolutely continuous with density φ ∈ L2
0(Rd)}. Similarly, if

f ∈ P(L2(Rd)), then Φf : M3 → R is convex on M3 := {µ | µ absolutely
continuous with density φ ∈ L2(Rd)}.

Using the above observations in conjunction with Corollaries 2.7.1, 2.7.4,
2.7.6 and 2.7.7, respectively, we present the following results, which are given
without proof.

Corollary 4.2.1 Let g ∈ CM and f = g(‖ · ‖2) : Rd → [0,∞). If f ∈
L1(Rd), then Φf :M3 → R defined in (62) is convex on M3.

Corollary 4.2.2 Let g ∈ CM. If f = g(| · |) ∈ L1(R), then Φf :M3 → R is
convex on M3 (d = 1).

Corollary 4.2.3 Let g ∈ CM be non-constant. If f = g(| · |) ∈ L1
loc(R),

then Φf :M2 → R is convex on M2 (d = 1).

Corollary 4.2.4 Let g ∈ CM ∩ L1
loc((0, ∞)). For any s > 0, define

f(x) = g(‖x‖2)e−s‖x‖2 (x ∈ Rd),

similarly to (30). Then, Φf :M2 → R is convex on M2 (d ≥ 2).

It follows directly from Corollary 4.2.3 that the functions gi, for i =
1, 8, 11, 16, 19, 23, of Section 2.7 give rise to convex energy functionals Φgi

on M2. In the case when a general functional Φ is convex and bounded
from below on a given set of measuresM, there exists at least one measure
µ∗ = arg minµ∈MΦ(µ) which minimises Φ.
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4.3 Optimality criterion

In this short section we compute the directional derivative of Φf along a
measure in a given set M and introduce the notion of the potential of a
measure. Moreover, we establish a criterion for finding the optimal measure
which minimises a strictly convex energy functional which is bounded from
below and show that, in some cases, this measure is a probability measure.

Consider the energy Φf defined in (62), where f is even a.e. and M
denotes a general set of signed measures on a compact subset X ⊂ Rd. We
assume that Φf is finite on M. Let ν ∈M. Then, by (64), for any µ∈M,
we have for the directional derivative of Φf at µ in the direction of ν,

Dν
(
Φf (µ)

)
= lim

α→0

Φf ((1− α)µ+ αν)− Φf (µ)

α

= 2

(∫
X

∫
X
f(x− y)µ(dx)ν(dy)− Φf (µ)

)
= 2

(∫
X
Pµ(y)ν(dy)− Φf (µ)

)
,

where

Pµ(y) :=

∫
X
f(x− y)µ(dx) (y ∈ X ) (66)

is the potential of µ at y, see e.g. [8, p. 256], [34, p. 21].
The following theorem provides a criterion for finding the unique measure

which minimises a given energy functional Φf which is both bounded below
and strictly convex. We call such a measure optimal or the minimum-energy
measure. Terms such as equilibrium measure, see e.g. [34, p. 24], minimal
distribution, see e.g. [8, p. 256], and, in the area of experimental design,
optimal design, see e.g. [47], are also widely used in the literature.

Theorem 4.3.1 ([47, Th. 1]). Let f : Rd → R be even a.e. and M denote
a set of signed measures on a compact subset X ⊂ Rd, with total mass 1.
Let Φf denote the energy functional defined in (62), which we assume to
be finite, bounded below and strictly convex on M. Then, a measure µ∗ is
optimal if the potential Pµ∗ is constant, that is Pµ∗(x)=Φf (µ∗) for all x∈X.

4.4 Construction of optimal measures for Φf with f classi-
cally strictly positive definite

On describing a real-valued function on R as being classically strictly positive
definite we mean that the inequality in Definition 2.1.2 is strictly positive
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for all x1, x2, . . . , xn ∈ R and v1, v2, . . . , vn ∈ R\{0}, with any n ∈ N. Such
functions are considered at this stage, as opposed to those which are solely
positive definite, so that the matrix

[
f(xi − xj)

]n
i,j=1

is (strictly) positive
definite for all n ∈ N and x1, x2, . . . , xn ∈ R, and hence, invertible. More-
over, roughly speaking, a strictly positive definite function f generates a
strictly convex energy Φf , see e.g. [47, Lemma 1], which, in turn, gives rise
to a unique and therefore, optimal minimising measure.

For a real-valued, strictly positive definite function f we can construct
the optimal measure for the energy Φf using the following approach. Note,
for simplicity in our numerical algorithms, we consider functions defined on
R, or some compact subset of R, in the remaining sections of this chapter.

Firstly, consider the discrete case. Assume X ⊂ R is of the form X =
XN = {x1, . . . , xN} and M is a set of signed measures on XN with total
mass 1. Let 1 = (1, 1, . . . , 1)T be the vector of ones of size N and f =[
f(xi − xj)

]N
i,j=1

. For w = (w1, . . . , wN )T, the vector of weights assigned to

the points xk (k = 1, . . . , N) by a measure µ ∈ M, the energy is Φf (µ) =
Φf (w) = wT f w. The vector of optimal weights can be easily computed, for

∂Φf (w)

∂wj
= eTj f w + wT f ej = 2eTj f w (j = 1, . . . , N),

by the product rule, where eTj = (0, . . . , 0, 1, 0, . . . , 0) denotes the jth stan-
dard basis vector, and, by the method of Lagrange multipliers,

∂L(λ, w)

∂wj
=
∂
(

Φf (w)− λ
(∑N

i=1wi − 1
))

∂wj
= 0 (j = 1, . . . , N)

when λ = 2 eTj f w for all j = 1, . . . , N : in other words, when w = λ
2 f−11.

Hence,
N∑
i=1

wi = 1Tw =
λ

2
1T f−11 = 1

and the vector of optimal weights w∗ is

w∗ = f−11/
(
1T f−11

)
, (67)

giving
Φ(w∗) = min

w
Φf (w) = 1/

(
1T f−11

)
,

where the minimum is taken over all vectors w = (w1, . . . , wN )T such that
1Tw =

∑N
i=1wi = 1. The potential of the optimal measure µ∗ ∈ M with

weights w∗ is the vector Pw∗ = f w∗ = 1/
(
1T f−11

)
.
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Note, by [17, Th. 5.3], if f is convex on X , in addition to being (strictly)
positive definite, then the components of the vector of optimal weights w∗ =
(w∗1, . . . , w

∗
N )T are all non-negative, meaning that µ∗ ∈ M is automatically

a probability measure.
Next, consider the general case. For arbitrary X ⊂ R we approximate X

with a discrete set XN = {x1, . . . , xN} and, in doing so, we approximate the
original problem of finding the optimal measure for the energy Φf defined
in (62) with the discrete problem of optimising the energy Φf (w) = wT f w.
As discussed above, this discrete problem has the unique solution w∗, see
(67). In the main cases of interest, both the continuous optimal measure µ∗

and the discrete optimal measure with weights w∗ are probability measures.
Thus, we can easily construct the continuous optimal measure from the
discrete one, building piece-wise constant or continuous piece-wise linear
approximations to the optimal density, for example.

4.5 Approximations to the optimal measure for the Riesz
energy

Using the results of Section 4.1 we now demonstrate how to construct accu-
rate approximations to the optimal measure of the Riesz energy.

The Riesz kernel of order α ∈ (0, 1) on [0, 1] given by κα(x, y) = |x−y|−α,
x, y ∈ [0, 1], x 6= y, was first studied by Riesz [32], see also [21]. We define
fα = | · |−α to be the function associated with κα, so that

κα(x, y) = fα(x− y) = |x− y|−α (x, y ∈ [0, 1], x 6= y, 0 < α < 1). (68)

Consider the Riesz energy, i.e. the energy functional Φf :M→ [0,+∞]
defined in (62) where M denotes the set of probability measures on [0, 1]
and f = fα. In this case the optimal measures µ∗α are known, see e.g. [37,
Corollary 1]; in fact, they are probability measures with densities

φα(t) =
Γ
(
α+ 1

)
Γ2
(
α+1
2

) (t(1− t))(α−1)/2 (t ∈ [0, 1]). (69)

That is, µ∗α have densities of a Beta distribution on [0, 1] with parameters
(α+ 1)/2 and (α+ 1)/2. Note, the strict convexity of the energy Φfα follows
from [37, Th. 3], where only measures µ1, µ2 ∈ M such that Φfα(µ1) < ∞
and Φfα(µ2) <∞ are considered in (63).

For any α ∈ (0, 1) and y ∈ [0, 1], y 6= x, we have for the Riesz potential
of µ∗α at y, see [37, Prop. 1],

Pµ∗α(y) =

∫ 1

0
|y − x|−αφα(x) dx =

Γ
(
1−α
2

)
Γ
(
α+ 1

)
Γ
(
α+1
2

) = Φ∗fα , (70)
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where Φ∗fα = minµ∈MΦfα(µ). Values of Φ∗fα are plotted in Fig. 1 (left).

Normalised values of
(
Φ∗fα

)1−α
, see Fig. 1 (right), appear more interesting.

Figure 1: Left: values of Φ∗α for α ∈ [0, 0.9]. Right: values of (Φ∗α)1−α for
α ∈ [0, 1].

Next, we discuss how well the uniform measure minimises the energy
Φfα compared to the optimal measures µ∗α. Let µ0 denote the uniform
probability distribution on [0, 1]. For any α ∈ (0, 1), we define the efficiency
of µ0 as

eff(µ0) =
Φ∗fα

Φfα(µ0)
=

(1− α)(2− α)Γ
(
1−α
2

)
Γ
(
α+ 1

)
2 Γ
(
α+1
2

) , (71)

where

Φfα(µ0) =

∫ 1

0

∫ 1

0
|x− y|−αdxdy =

2

(1− α)(2− α)

is the energy of the uniform measure. For all α ∈ (0, 1) the efficiency is
reasonably high, see Fig. 2 (left) below. In fact, the lowest value of the
efficiency is ' 0.98135, which is achieved when α ' 0.36253. This demon-
strates that the behaviour of the energy Φfα for the uniform measure µ0 is
indicative of that for the optimal measure µ∗α.

For α ∈ (0, 1) and y ∈ [0, 1], y 6= x, the Riesz potential of µ0 at y is,

Pα,µ0(y) =

∫ y

0
(y − x)−αdx+

∫ 1

y
(x− y)−αdx =

y1−α + (1− y)1−α

1− α
.
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This potential, along with its average value Φfα(µ0) =
∫ 1
0 Pα,µ0(y)µ0(dy),

is plotted in Fig. 2 (right) for α = 0.5. Despite the fact that the uni-
form measure is highly efficient, as discussed above, there is still scope for
improvement in the approximation to the optimal measure. Indeed, the
potential of the optimal measure is a constant function.

Figure 2: Left: efficiency of the uniform measure, see (71), for α ∈ [0, 1).
Right: potential of the uniform measure Pα,µ0(t) and its average value
Φfα(µ0) computed for α = 0.5.

The primitive of the completely monotone function fα|(0,∞) = (·)−α,
0 < α < 1, is the Bernstein function gα(x) = x1−α/(1− α) (x > 0). For
ε > 0, the corresponding family of functions defined in (59) are

fα,ε(x) =
(x+ ε)1−α − x1−α

ε(1− α)
(x > 0, 0 < α < 1).

For any x ∈ [−1, 1]\{0} and 0 < α < 1, let

f̃α,ε(x) := fα,ε(|x|). (72)

We now study the quality of the approximations to the energy Φfα (for fα
defined in (68)) by Φf̃α,ε

(for f̃α,ε defined in (72)).
For any ε > 0 and 0 < α < 1, the energy Φf̃α,ε

of the uniform measure is

Φf̃α,ε
(µ0) =

∫ 1

0

∫ 1

0
fα,ε(|x− y|)dxdy= 2

(1 + ε)3−α − ε3−α − (3− α)ε2−α − 1

ε(1− α)(2− α)(3− α)
.

(73)
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Since fα,ε(x) < fα(x) for any α ∈ (0, 1), x > 0 and ε > 0, it follows that
Φf̃α,ε

(µ0) < Φfα(µ0) for any α ∈ (0, 1) and ε > 0. Values of the ratio

Φf̃α,ε
(µ0)/Φfα(µ0) are plotted in Fig. 3 (left). Observe that if α is not too

close to 1, that is, if the singularity of fα is not too strong, then Φf̃α,ε
(µ0) can

be considered as an accurate approximation to Φfα(µ0), even for relatively
large ε.

Remark. The case when fα has a strong singularity, i.e. when α is close to
1, is not overly interesting, since for any t ∈ [0, 1], φα(t)→ 1 as α→ 1 and
hence, µ∗α → µ0 - the uniform probability distribution on [0, 1], as α→ 1.

On re-writing the equation in (73) and using Newton’s generalised bino-
mial theorem we obtain, for any 0 < α < 1,

Φf̃α,ε
(µ0) = Φfα(µ0)

(1 + ε)3−α − ε3−α − (3− α)ε2−α − 1

ε(3− α)

= Φfα(µ0)
(
1− ε1−α + ε(1− α/2) +O(ε2−α)

)
, ε→ 0;

hence the reason why Φf̃α,ε
(µ0) provides such a precise approximation to

Φfα(µ0). Already, the simple estimate

Φf̃α,ε
(µ0)/Φfα(µ0) ' 1− ε1−α (ε ' 0) (74)

demonstrates the accuracy of the approximation, see Fig. 3 (right).

Figure 3: Left: ratios Φf̃α,ε
(µ0)/Φfα(µ0) for ε = 10−k, k = 2, 4, 8. Right:

quality of the approximation in (74) for ε = 0.001 and α ∈ [0, 1).
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Next, we demonstrate an application of the methodology outlined in
Section 4.4 and construct approximations to the optimal measures for the
energies Φf̃α,ε

with f̃α,ε as defined in (72).
Let N ∈ N and choose N + 1 points 0 ≤ x0 < x1 < . . . < xN ≤ 1 in

[0, 1]; for example, set xk = k/N for k = 0, 1, . . . , N . For α ∈ (0, 1), form

the matrix f̃α,ε,N =
[
f̃α,ε(xi−xj)

]N
i,j=1

. It follows from (67) that the optimal
weights are given by

w∗α,ε,N = f̃ −1α,ε,N 1/
(
1T f̃ −1α,ε,N 1

)
, (75)

where 1 denotes the vector of ones of size N + 1.
The discrete energy Φf̃α,ε,N

(w) := wT f̃α,ε,N w is minimised when w =
w∗α,ε,N , the vector of optimal weights, in which case

Φf̃α,ε,N
(w∗α,ε,N ) = 1/

(
1T f̃ −1α,ε,N 1

)
.

For fixed ε > 0 and α ∈ (0, 1), Φf̃α,ε,N
(w∗α,ε,N ) → minµ∈MΦf̃α,ε

(µ) as

N → ∞, where M denotes the set of all probability measures on [0, 1].
This convergence could be slow however, since for small ε, f̃α,ε is very sharp
at zero and approximates a function with a singularity at the origin. Note,
also, that if ε is small, the value of Φf̃α,ε,N

(w∗α,ε,N ) can be far away from

Φ∗fα , see (70), since for any N ∈N, Φf̃α,ε,N
(w∗α,ε,N )→∞ as ε→ 0.

Discrete measures do not provide accurate approximations to the optimal
measures for the Riesz energy, since fα is singular at the origin (0 < α < 1).
However, using the following general scheme, we construct continuous prob-
ability measures which approximate the discrete measures with weights (75)
and, in turn, provide precise estimates of the optimal probability measures
with densities (69).

Let 0 = x0 < x1 < . . . < xN = 1 be the support points of a discrete
probability measure and wk ≥ 0, k = 0, . . . , N , be the corresponding weights
with

∑N
k=0wk = 1. Firstly, define N + 2 points zi (i = 0, . . . , N + 1) by

z0 = 0, zN+1 = 1 and zj = (xj−1 + xj)/2 for j = 1, . . . , N . Next, partition
the interval [0, 1) into N + 1 non-intersecting intervals Ik = [zk, zk+1), k =
0, . . . , N . Denote by lk, the length of the interval Ik: that is, lk = zk+1 −
zk. We have lk > 0 for all k = 0, . . . , N , and

∑N
k=0 lk = 1. Note that if

xk = k/N for k = 0, 1, . . . , N , then l0 = lN = 1/(2N) and ln = 1/N for
n = 1, . . . , N − 1.

Define the piece-wise constant function

pN (t) =

{
wk/lk, t ∈ Ik for some k = 0, 1, . . . , N

0, t /∈ [0, 1).
(76)
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Then, pN ≥ 0 and
∫ 1
0 pN (t) dt =

∑N
k=0wk = 1, and therefore, pN is a

probability density function. We shall use pN as a continuous approximation
to the discrete probability measure supported on 0 = x0 < x1 < . . . < xN =
1 with weights wk (k = 0, . . . , N).

For a measure µN with density pN , see (76), we have for the Riesz energy,

Φfα(µN )=

∫ 1

0

∫ 1

0
|x− y|−α pN (x)pN (y) dxdy

=2

N∑
i=1

wi
li

∫
Ii

 i−1∑
j=0

wj
lj

∫
Ij

(x−y)−αdy

dx+

N∑
i=0

w2
i

l2i

∫
Ii

∫
Ii

|x−y|−αdxdy

=2

N∑
0≤j<i

wi
li

wj
lj

∫ zi+1

zi

∫ zj+1

zj

(x− y)−α dydx

+
N∑
i=0

w2
i

l2i

∫ zi+1

zi

∫ zi+1

zi

|x− y|−α dxdy (0 < α < 1).

Moreover, for any 0 ≤ a ≤ b ≤ c ≤ d,∫ b

a

∫ b

a
|x− y|−α dxdy =

2 (b− a)2−α

(1− α)(2− α)

and∫ d

c

∫ b

a
(x− y)−αdydx=

(d− a)2−α+ (c− b)2−α− (d− b)2−α− (c− a)2−α

(1− α)(2− α)
.

Combining the above formulas we obtain an explicit expression for comput-
ing Φfα(µN ) and, in turn, the efficiency of µN , eff(µN ) = Φ∗fα/Φfα(µN ).

Let µN be the probability measures with densities pN defined in (76),
where wk are the kth elements of the vector of optimal weights w∗α,ε,N , see
(75). In Tables 1 – 5 of Section 5.1 we highlight the efficiency of the mea-
sures µN for various values of α ∈ (0, 1), N ∈ N and ε > 0. Numerous
graphs displaying both the optimal densities φα, see (69), and the numer-
ically computed densities described above, see (76), can also be found in
Section 5.1. By construction, it is clear that for any α ∈ (0, 1), the approx-
imations improve as ε→ 0 and N →∞. However, computing the densities
pN for N > 250 is rather time-consuming due to the calculation of the in-
verse matrix f̃ −1α,ε,N in our algorithm. For fixed N ∈ N, chosen so that the
computation time is reasonable, we are faced with the problem of finding
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a “good” ε > 0 which gives rise to accurate minimising probability densi-
ties. This α-dependent ε is not found by simply choosing ε > 0 as small
as possible. For N reasonably large we need ε small, but not too small, in
order to obtain the best approximations. Roughly speaking, we pass both
parameters through the limit at the same time, and in proportion to one
another. These observations are demonstrated in Tables 1 – 5, see Section
5.1, and Figures 4 and 5 below. For N = 250 and α ∈ (0, 1), ε = 0.001
produces very accurate approximating densities, see e.g. Figures 20, 26, 32,
38 and 44 of Section 5.1.

Figure 4: Optimal density (black), see (69), and numerically computed den-
sities, see (76), on the uniform grid xk = k/N , k = 0, 1, . . . , N , for N = 100,
α = 0.5. Left: ε = 0.1 (blue), ε = 0.01 (red). Right: ε = 0.001 (purple),
ε = 0.0001 (green). It is clear that ε ' 0.01 produces the best approximation.
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Figure 5: Optimal density (black), see (69), and numerically computed den-
sities, see (76), on the uniform grid xk = k/N , k = 0, 1, . . . , N , for N = 250,
α = 0.5. Left: ε = 0.1 (blue), ε = 0.01 (red). Right: ε = 0.001 (purple),
ε = 0.0001 (green). Hence, ε ' 0.001 now produces the best approximation.

4.6 Numerical approximations to minimising measures for
Φf with f unbounded at zero and f |(0,∞) ∈ CM

Motivated by the work of Section 4.5 where we constructed precise approx-
imations to the optimal densities for the Riesz energy, we now construct
continuous probability measures which accurately estimate the minimising
measures for the energy Φf , see (62), with alternative singular functions f
such that f |(0,∞) ∈ CM. Note, f |(0,∞) denotes the restriction of f to the
domain (0,∞).

The general approach is as follows. Firstly, we take one of the many
Bernstein functions g from the list in [35, Chapter 15], so that the following
derived function, f = g′(| · |) (up to multiplication by a positive normalis-
ing constant), is singular at the origin, and h := f |(0,∞) ∈ CM. Next, we
construct the corresponding family of functions hε defined in (59) (replacing
f with h). For any ε ≥ 0, hε ∈ CM and thus, f̃ε := hε(| · |) ∈ P(L2

0(R))
by Corollary 2.7.6. Moreover, since f̃ε is continuous for any ε > 0, it fol-
lows from Proposition 2.4.6 that f̃ε is classically positive definite for any
ε > 0. Using the results of Section 4.4, we then construct the vector of
discrete minimising weights w∗ε,N for the energy Φf̃ε

(ε> 0), see (67), (75),
and, subsequently, derive continuous approximations to the density of the
minimising probability measure (on [0, 1]) for Φf , see (76). By [17, Th. 5.3],
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the numerically computed probability measures are also minimisers over the
set of signed measures on [0, 1] with total mass 1.

Note, although the functions f̃ε are classically positive definite, they
need not be strictly positive definite. However, in the examples we consider
below, the corresponding functions f̃ε are sufficiently strictly positive definite

for any ε > 0. By “sufficiently” we mean that f̃ε,N :=
[
f̃ε(xi − xj)

]N
i,j=1

is

invertible for any N ∈ [0, Ñ ], where Ñ is reasonably large (usually Ñ = 250),
so that for any ε > 0 and N ∈ [0, Ñ ], all the eigenvalues of the matrix f̃ε,N
are positive.

The corresponding energies Φf̃ε
, ε > 0, are convex on the set of proba-

bility measures on [0, 1], see e.g. [47, Lemma 1]. Taking ε→ 0 and N →∞
in the approximating density provides an estimate of the density of the
minimising (not necessarily unique/optimal) measure for Φf .

We assess the accuracy of the approximating measure by computing its
potential P, see (66). The closer this value is to a constant, the more
accurate the approximation, see Theorem 4.3.1. The following method for
computing the potential of an approximating measure will be used in the
examples below.

Let µN denote the probability measure with density pN defined in (76),
where wk are the kth elements of the vector of minimising weights, see (67).
Then, for any N ∈ N and x ∈ Ij = [zj , zj+1) (j = 0, . . . , N),

PµN(x)=

∫ 1

0
f(x− y) pN (y) dy =

N∑
i=0

wi
li

∫
Ii

g′(|x− y|) dy

=

j−1∑
i=0

wi
li

∫ zi+1

zi

g′(x− y) dy +
wj
lj

∫ zj+1

zj

g′(|x− y|) dy

+
N∑

k=j+1

wk
lk

∫ zk+1

zk

g′(y − x) dy

=

j−1∑
i=0

wi
li

[g(x−zi)−g(x−zi+1)] +
wj
lj

[g(zj+1−x)+g(x−zj)−2g(0)]

+

N∑
k=j+1

wk
lk

[g(zk+1−x)−g(zk−x)] . (77)

We provide three examples of numerical approximations to the minimis-
ing measures for Φf with f unbounded at the origin and f |(0,∞) ∈ CM.
Note, in each case we takeM to be the set of probability measures on [0, 1].
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1. Let gα(t) = (1 − α)−1 t1−α/(1 + t)1−α (t > 0, α ∈ (0, 1)), so that
fα(t) = g′α(|t|) = |t|−α/(1 + |t|)2−α (t ∈ R, α ∈ (0, 1)). Since gα ∈ BF, then
hα := fα|(0,∞) ∈ CM, for any α ∈ (0, 1): in fact, hα is proportional to the
function g8 of Section 2.7. Moreover, for any α ∈ (0, 1), fα shares the same
singularity as the function associated with the Riesz kernel, | · |−α. Figure 6
below demonstrates this observation for α = 0.25 and α = 0.75.

Figure 6: t−α (red) and hα(t) (blue). Left: α = 0.25. Right: α = 0.75.

For any α ∈ (0, 1) and ε ≥ 0, the family of functions hα,ε are constructed
by (59). Next, we define the classically continuous, positive definite func-
tions f̃α,ε := hα, ε(|·|), and by (75), compute the vector of discrete minimising
weights w∗α,ε,N for the energy Φf̃α,ε

. Finally, based on the analysis of Section
4.5, and due to the similarity between fα and the function associated with
the Riesz kernel, we use N = 250 and ε = 0.001 to construct the continuous
probability measures µN with densities pN defined in (76). The approximat-
ing probability densities turn out to be very close to the optimal densities
φα for the Riesz energy, see (69). Figures 7 and 8 below show the relation
between pN and φα for various values of α ∈ (0, 1).
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Figure 7: Optimal density for the Riesz energy φα (red), see (69), and the
numerically computed density pN (blue) on the uniform grid xk = k/N ,
k = 0, 1, . . . , N , for N = 250, ε = 0.001. Left: α = 0.1. Right: α = 0.25.

Figure 8: Optimal density for the Riesz energy φα (red), see (69), and the
numerically computed density pN (blue) on the uniform grid xk = k/N ,
k = 0, 1, . . . , N , for N = 250, ε = 0.001. Left: α = 0.5. Right: α = 0.75.

Indeed, it is true that for any α ∈ (0, 1), there is a strong resemblance
between the approximating densities (for N = 250 and ε = 0.001) and
the optimal densities for the Riesz energy; which we believe is due to the
similarity between the singularities of fα and | · |−α.
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The potential of µN at x ∈ [0, 1],

PµN (x) =

∫ 1

0
fα(x− y) pN dy =

∫ 1

0

|x− y|−α

(1 + |x− y|)2−α
pN (y) dy,

is approximately constant for any α ∈ (0, 1), see e.g. Figures 45, 46 and 47
of Section 5.1. Thus, by Theorem 4.3.1, we conclude that the approximating
probability measures µN are very close to the minimising measures for Φfα .

2. Take gλ(t) = 2
√
t
(
1 + e−λ

√
t
)

(t, λ > 0), so that fλ(t) = g′λ(|t|) =(
1− (λ

√
|t| − 1)e−λ

√
|t|)/√|t| (t ∈ R, λ > 0). hλ := fλ|(0,∞) is exactly the

function g19 of Section 2.7, and since gλ ∈ BF, then hλ ∈ CM for any λ > 0.
Computing the series expansion of hλ about t = 0 gives, for any λ > 0,

hλ(t) =
2√
t
− 2λ+

3

2
λ2
√
t− 2

3
λ3t+O(t

3
2 ), t→ 0,

and hence,

hλ(t) ' 2√
t
− 2λ (t ' 0, λ > 0).

It is clear that for λ ' 0, hλ(t) ' 2 t−1/2 for small t. Thus, fλ(t)→ 2 |t|−1/2,
which is twice the function associated with the Riesz kernel (68) for α = 1/2,
as t, λ → 0. Fig. 9 (left) below demonstrates that, in fact, for any t > 0,
hλ(t)→ 2 t−1/2 as λ→ 0 and hλ(t)→ t−1/2 as λ→∞.

For any λ > 0 and ε ≥ 0, the family of functions hλ,ε are constructed
by (59) (replacing f with h). Again, we define the classically continuous,
positive definite functions f̃λ,ε := hλ, ε(| · |), compute the vector of discrete
minimising weights w∗λ,ε,N for the energy Φf̃λ,ε

(using (75)) and construct

the continuous probability measures µN with densities pN defined in (76).

Since, for any t ∈ R, fλ(t) ' 2 |t|−1/2 for small λ, i.e. λ ≤ 0.01 and

fλ(t) ' |t|−1/2 for reasonably large λ, i.e. λ ≥ 25, it follows that the
approximating probability densities pN are almost identical to the optimal
density φ1/2 for the Riesz energy, see (69), when λ ≤ 0.01 and λ ≥ 25. This
is demonstrated in Figures 9 (right) and 10 below. Note, throughout the
whole example, we use N = 250 and ε = 0.001 in our approximations, since
for any λ > 0, fλ ' | · |−1/2 (up to multiplication by a positive constant)
near the origin.
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Figure 9: Left: t−1/2 (red), 2 t−1/2 (blue), h0.05(t) (green), h0.25(t) (cyan),
h1(t) (purple), h10(t) (black). Right: Optimal density for the Riesz energy
φ1/2 (red), see (69), and the numerically computed density pN (blue) on the
uniform grid xk = k/N , k = 0, 1, . . . , N , for N = 250, ε = 0.001, λ = 0.001.

Figure 10: Optimal density for the Riesz energy φ1/2 (red), see (69), and
the numerically computed density pN (blue) on the uniform grid xk = k/N ,
k = 0, 1, . . . , N , for N = 250, ε = 0.001. Left: λ = 100. Right: λ = 1000.

For λ ∈ (0.01, 25), there exists β ∈ (1, 2) such that β | · |−1/2 has the
same singularity as fλ at zero, see e.g. Fig. 11 below, where λ = 1, β = 1.75
and λ = 10, β = 1.1 are shown.
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Figure 11: Left: 1.75t−1/2 (red) and h1(t) (blue). Right: 1.1 t−1/2 (red) and
h10(t) (blue).

For any λ > 0, the approximate minimising densities for Φfλ are closely
related to the optimal density φ1/2 for the Riesz energy. Indeed, for λ ≤
0.01 and λ ≥ 25, they are almost identical, see the discussion above; for
λ ∈ (0.01, 25), we believe the similarity between the singularities of fλ and

β | · |−1/2, for some β ∈ (1, 2), gives rise to a strong connection between pN
and φ1/2. However, we now notice that the strength of the singularity of
fλ plays an important role in how close pN is to φ1/2. In particular, the
stronger the singularity, i.e. the smaller the λ ∈ (0.01, 25), or the closer fλ
is to 2 |t|−1/2, the stronger the likeness between the approximate minimising
densities for Φfλ and the optimal density φ1/2 for the Riesz energy, see
Fig. 12 below.
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Figure 12: Optimal density for the Riesz energy φ1/2 (red), see (69), and
the numerically computed density pN (blue) on the uniform grid xk = k/N ,
k = 0, 1, . . . , N , for N = 250, ε = 0.001. Left: λ = 0.1. Right: λ = 10.

The potential of µN at x ∈ [0, 1],

PµN (x) =

∫ 1

0
fα(x− y) pN dy =

∫ 1

0

1−(λ
√
|x−y|−1)e−λ

√
|x−y|√

|x−y|
pN (y) dy,

is approximately constant for any λ > 0, see e.g. Figures 48, 49 and 50
of Section 5.1. Hence, by Theorem 4.3.1, we conclude that the probability
measures µN accurately approximate the minimising measures for Φfλ .

3. Let g(t) = t(1 + 1/t)1+t−1 (t > 0), so that f(t) = g′(|t|) = |t|(1 +
1/|t|)1+|t| log(1 + 1/|t|) (t ∈ R). h := f |(0,∞) is equal to the function g23
of Section 2.7, and since g ∈ BF, then h ∈ CM. On computing the series
expansion of h about t = 0 we obtain

h(t) = − log(t) +
(
1− log(t)− log(t)2

)
t+O(t), t→ 0,

and hence,
h(t) ' − log(t) (t ' 0).

The density of the optimal measure for the energy Φf with f = − log | · |
is the arcsine density φarc(t) = t−1/2(1− t)−1/2/Γ

(
1/2
)2

(t ∈ [0, 1]), see e.g.
[47, Corollary 1]. Note, φarc = limα→0 φα; the limiting case of the optimal
density for the Riesz energy.

We construct the family of functions hε using (59) and define the classi-
cally continuous, positive definite functions f̃ε := hε(| · |). Next, by (75), we
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compute the vector of discrete minimising weights w∗ε,N for the energy Φf̃ε
.

Note that, formally, the matrix f̃ε,N blows up on the diagonal. However, by
construction, we know that f̃ε is bounded at the origin and thus, we replace
the diagonal elements f̃ε(0) with the numerically computed series expansion
of f̃ε(t) (or hε(t)) at t = 0. Finally, we construct the continuous probability
measures µN with densities pN using (76).

Since f shares the same singularity as − log | · |, then, based on the anal-
ysis of examples 1 and 2, one would expect there to be a similarity between
the approximate minimising densities pN and the optimal probability den-
sity for Φ− log |·|, φarc. However, the pN s do not resemble the optimal density
as much as we have witnessed in the previous two examples, see Figures 13
and 14 below. Intuitively, we believe this is due (at least partly) to the fact
that f and − log | · | have a relatively weak singularity; for instance, fλ of
example 2 is much sharper than f at the origin. We do not investigate this
claim further, however, since it is not the focus of our research.

We have for the potential of µN at x ∈ [0, 1],

PµN (x) =

∫ 1

0
|x− y|

(
1 + |x− y|−1

)1+|x−y|
log
(
1 + |x− y|−1

)
pN (y) dy.

For N = 250 and ε = 0.001, PµN (x) ' 3.139 for all x ∈ [0, 1], see Fig. 52
(right) of Section 5.1. Hence, by Theorem 4.3.1, we conclude that the cor-
responding probability measure µN is very close to the minimising measure
for Φf .
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Figure 13: Arcsine density (red) and the numerically computed density pN
(blue) on the uniform grid xk = k/N , k = 0, 1, . . . , N , for N = 100. Left:
ε = 0.01. Right: ε = 0.001.

Figure 14: Arcsine density (red) and the numerically computed density pN
(blue) on the uniform grid xk = k/N , k = 0, 1, . . . , N , for N = 250. Left:
ε = 0.01. Right: ε = 0.001.
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5 Appendix

5.1 Miscellaneous tables and figures

The following tables highlight the efficiency of the measures µN (eff(µN ) =
Φ∗α/Φα(µN )) with densities pN , see (76), for various values of α ∈ (0, 1),
N ∈ N and ε > 0, see Section 4.5 for details.

Table 1: eff(µN ), α = 0.1.

α N ε eff(µN )

0.1 100 0.1 0.994455
0.01 0.999508
0.001 0.999888
0.0001 0.999594

200 0.1 0.993406
0.01 0.999388
0.001 0.999957
0.0001 0.999836

250 0.1 0.993066
0.01 0.999344
0.001 0.999957
0.0001 0.999888

Table 2: eff(µN ), α = 0.25.

α N ε eff(µN )

0.25 100 0.1 0.982312
0.01 0.998394
0.001 0.999620
0.0001 0.998074

200 0.1 0.978736
0.01 0.997881
0.001 0.999846
0.0001 0.999133

250 0.1 0.977586
0.01 0.997708
0.001 0.999866
0.0001 0.999359

Table 3: eff(µN ), α = 0.5.

α N ε eff(µN )

0.5 100 0.1 0.953078
0.01 0.995425
0.001 0.998697
0.0001 0.993893

200 0.1 0.942722
0.01 0.993577
0.001 0.999546
0.0001 0.995921

250 0.1 0.939382
0.01 0.992941
0.001 0.999653
0.0001 0.996648

Table 4: eff(µN ), α = 0.75.

α N ε eff(µN )

0.75 100 0.1 0.927120
0.01 0.991419
0.001 0.997564
0.0001 0.995842

200 0.1 0.908509
0.01 0.988184
0.001 0.998694
0.0001 0.996052

250 0.1 0.902328
0.01 0.986822
0.001 0.998955
0.0001 0.996242
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Table 5: eff(µN ), α = 0.9.

α N ε eff(µN )

0.9 100 0.1 0.940572
0.01 0.989972
0.001 0.995564
0.0001 0.995886

200 0.1 0.921485
0.01 0.989034
0.001 0.997549
0.0001 0.997626

250 0.1 0.914352
0.01 0.988011
0.001 0.997950
0.0001 0.997950

Next, we present several figures comparing the optimal densities φα for
the Riesz energy, see (69), which appear in red throughout, and the nu-
merically computed densities pN , see (76), represented in blue. Note, for
simplicity, we use the uniform grid xk = k/N , k = 0, 1, . . . , N , in all approx-
imations.

Figure 15: N = 100, α = 0.1. Left: ε = 0.1. Right: ε = 0.01.
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Figure 16: N = 100, α = 0.1. Left: ε = 0.001. Right: ε = 0.0001.

Figure 17: N = 200, α = 0.1. Left: ε = 0.1. Right: ε = 0.01.

Figure 18: N = 200, α = 0.1. Left: ε = 0.001. Right: ε = 0.0001.
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Figure 19: N = 250, α = 0.1. Left: ε = 0.1. Right: ε = 0.01.

Figure 20: N = 250, α = 0.1. Left: ε = 0.001. Right: ε = 0.0001.

Figure 21: N = 100, α = 0.25. Left: ε = 0.1. Right: ε = 0.01.
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Figure 22: N = 100, α = 0.25. Left: ε = 0.001. Right: ε = 0.0001.

Figure 23: N = 200, α = 0.25. Left: ε = 0.1. Right: ε = 0.01.

Figure 24: N = 200, α = 0.25. Left: ε = 0.001. Right: ε = 0.0001.
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Figure 25: N = 250, α = 0.25. Left: ε = 0.1. Right: ε = 0.01.

Figure 26: N = 250, α = 0.25. Left: ε = 0.001. Right: ε = 0.0001.

Figure 27: N = 100, α = 0.5. Left: ε = 0.1. Right: ε = 0.01.
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Figure 28: N = 100, α = 0.5. Left: ε = 0.001. Right: ε = 0.0001.

Figure 29: N = 200, α = 0.5. Left: ε = 0.1. Right: ε = 0.01.

Figure 30: N = 200, α = 0.5. Left: ε = 0.001. Right: ε = 0.0001.
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Figure 31: N = 250, α = 0.5. Left: ε = 0.1. Right: ε = 0.01.

Figure 32: N = 250, α = 0.5. Left: ε = 0.001. Right: ε = 0.0001.

Figure 33: N = 100, α = 0.75. Left: ε = 0.1. Right: ε = 0.01.
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Figure 34: N = 100, α = 0.75. Left: ε = 0.001. Right: ε = 0.0001.

Figure 35: N = 200, α = 0.75. Left: ε = 0.1. Right: ε = 0.01.

Figure 36: N = 200, α = 0.75. Left: ε = 0.001. Right: ε = 0.0001.
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Figure 37: N = 250, α = 0.75. Left: ε = 0.1. Right: ε = 0.01.

Figure 38: N = 250, α = 0.75. Left: ε = 0.001. Right: ε = 0.0001.

Figure 39: N = 100, α = 0.9. Left: ε = 0.1. Right: ε = 0.01.
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Figure 40: N = 100, α = 0.9. Left: ε = 0.001. Right: ε = 0.0001.

Figure 41: N = 200, α = 0.9. Left: ε = 0.1. Right: ε = 0.01.

Figure 42: N = 200, α = 0.9. Left: ε = 0.001. Right: ε = 0.0001.
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Figure 43: N = 250, α = 0.9. Left: ε = 0.1. Right: ε = 0.01.

Figure 44: N = 250, α = 0.9. Left: ε = 0.001. Right: ε = 0.0001.

The following figures display the potentials Pµ(x) :=
∫ 1
0 f(x − y) pN dy

(x ∈ [0, 1]) of the approximate minimising measures constructed in examples
1, 2 and 3 of Section 4.6. In each case, we plot the expression in (77) at 200
equally spaced points in [0, 1]. Note, N = 250 and ε = 0.001, unless stated
otherwise.
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Figure 45: fα = | · |−α/(1 + | · |)2−α. Left: α = 0.1. Right: α = 0.25.

Figure 46: fα = | · |−α/(1 + | · |)2−α. Left: α = 0.5. Right: α = 0.75.

Figure 47: fα = | · |−α/(1 + | · |)2−α, α = 0.9.
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Figure 48: fλ =
(
1− (λ

√
| · | − 1)e−λ

√
|·|)/√| · |. Left: λ = 0.001. Right: λ = 0.1

Figure 49: fλ =
(
1− (λ

√
| · | − 1)e−λ

√
|·|)/√| · |. Left: λ = 1. Right: λ = 10

Figure 50: fλ =
(
1− (λ

√
| · | − 1)e−λ

√
|·|)/√| · |. Left: λ = 100. Right: λ = 1000
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Figure 51: f = | · |(1 + | · |−1)1+|·| log(1 + | · |−1), N = 100. Left: ε = 0.01. Right:
ε = 0.001.

Figure 52: f = | · |(1 + | · |−1)1+|·| log(1 + | · |−1), N = 250. Left: ε = 0.01. Right:
ε = 0.001.
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