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ABSTRACT 

 

Understanding the composition of an artefact has ramifications for advancing human history 

and behaviour knowledge, providing cultural information about trade, agricultural practices 

and adaptation to new environments. However, accurate plant identification from artefacts is 

problematic, since textile production, age, dirt and/or conservation treatments obscure 

morphological features, and specimen size and/or ethical considerations hamper modern 

analytical methods. This study tested the efficacy of polarised light microscopy (PLM) in the 

identification of New Zealand plant species commonly used in Māori textiles, and 

demonstrates that morphological and birefringent features observed using PLM have the 

potential to distinguish between- and within- plant genera. 
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INTRODUCTION 

 

Accurate plant material identification is critical for advancing study of material culture, since 

an object’s composition provides an insight into its origin, additionally revealing important 

cultural information such as human interactions and emigration pathways (Schaffer 1981; 

Jakes et al. 1994). However, one of the main challenges for accurate identification of plant 

species in textile artefacts is the scarcity of distinct morphological features, evident from 

whole plants or individual leaves (e.g. leaf arrangement and shape), that remain once the 

plant is processed into a textile material such as fibre or leaf strips for weaving. Species-

specific morphological characteristics of animal hair (e.g. medulla shape and size, cuticular 

scale pattern, Tridico 2009) often facilitate, if present, the identification of animal fibres from 

artefacts, although processing and ageing can limit identification to higher taxonomic levels 

(Tridico et al. 2014). Processing and age of plant materials can likewise pose ongoing 

challenges for textile scientists, archaeologists, conservators and museums professionals, 

since processing of plant material for textile production frequently obscures macroscopic 

diagnostic features (Jakes et al. 1994), and even microscopic features of different plant 

species can appear remarkably similar (Bergfjord et al. 2010; Haugan and Holst 2014). 

 

Recent research has highlighted the ramifications of incorrect plant identification in European 

textile artefacts (e.g. Haugan and Holst 2014), with the misidentification of fibres from 

European flax (Linum spp.) considered to have hampered understanding of the nexus between 

textile plant cultivation and the development of agriculture (Bergfjord et al. 2012). However, 

such misidentification of plant fibre species, and the potential misrepresentation of the history 

of particular plant species, is not only restricted to artefacts of European origin. For example, 

the majority of Māori textiles from New Zealand, represented extensively in national (e.g. 



Museum of New Zealand Te Papa Tongarewa) and international collections (e.g. British 

Museum, London, Swedish Museum of Ethnography, Stockholm), are generally assumed to 

be constructed from harakeke (Phormium tenax, New Zealand flax). This is despite a range of 

other indigenous New Zealand plant species being recognised as important in the production 

of Māori textiles (e.g. tī tōī Cordyline indivisa, tikumu Celmisia sp. and houi Hoheria sp. for 

kākahu/cloaks, tī kōuka Cordyline australis for pāraerae/sandals, kiekie Freycinetia banksii 

for kete/baskets; McCallum and Carr 2012; Tamarapa and Wallace 2013). 

 

In the case of Māori textiles, plant materials are often identified as harakeke, based on a very 

limited, and mostly macroscopic, range of characteristics thought to be ‘typical’ for this 

species (e.g. leaf material – shiny epidermis, even veins and coloured midrib and margin (if 

present); fibre - soft and pliable with very fine, round and lustrous individual strands; 

Goulding 1971). These external morphological features may be lost due to degradation or 

when a leaf’s fibre component is extracted to obtain muka/fibre aggregates (fibre bundles) 

used in the production of fine woven garments (e.g. korowai or kākahu / cloaks). Accurate 

plant material identification from internal anatomical features also remains difficult for 

objects comprised of leaf strip as the removal of a specimen necessary for preparing 

transverse sections for identification of morphological features may be considered ethically 

or culturally unacceptable, and still may not result in a definitive diagnosis (Smith et al. 

2014). Thus recent research efforts have focussed on developing less invasive identification 

techniques that use either fragments that have become detached from artefacts or minute 

samples removed directly from an artefact. Such samples are still sufficient to allow for 

diagnostic measurements at the cellular level, for example microscopic characteristics of 

individual harakeke fibre (ultimate) cells have been summarised (e.g. cell length, width; Carr 

and Cruthers 2007; Carr et al. 2008). However, a lack of knowledge concerning the 



magnitude of intra- specific variation and inter-specific overlap in these characteristics 

amongst plant species known to be used for Māori textiles production diminishes the 

potential identification power of even precise microscopic measurements. Similar problems 

with plant species misidentification is noted in European artefacts, where the narrow range of 

microscopic procedures applied, coupled with reliance on microscopic features long accepted 

as being typical (rather than diagnostic) of particular plant species (Haugan and Holst 2014), 

makes some previous positive identification of aged plant material questionable. 

 

Textile plant species identification using microscopy requires maceration of a small sample 

of the textile in question (e.g. a fragment of fibre, processed leaf or stem) to release 

individual fibre cells for observation (The Textile Institute 1975). The basic structure and 

range of morphological features typical of plant fibre cells are well recognised (Eder and 

Burgert 2010; Gibson 2012), with Preston’s (1974) microscopic observations of cell structure 

still the most thorough and insightful treatment. Variations in the basic fibre cell structure and 

features may be due to a number of factors including; taxonomic grouping, genotype, 

position within the plant (root, stem, leaf, fruit), age of the fibrous tissue, maturity of the 

individual cell, the growing conditions of the plant and the processing route used to transform 

the plant into a textile material (Preston 1974; Eder and Burgert 2010; Long et al. 2010). The 

relative importance of these factors in determining final fibre cell dimensions is poorly 

understood. Despite this, the major microscopic features of fibre cells from common 

industrial textile plant species are considered well characterised (Luniak 1953; McCrone and 

Delly 1973; Catling and Grayson 1982). 

 

In an attempt to improve fibre identification from woven artefacts, a plethora of modern 

analytical techniques have been utilised including DNA (Hofreiter et al. 2001), micro-



computed tomography (µCT; Smith et al. 2013) and scanning electron microscopy (SEM; 

Cartwright 2013). However, access to specialised, and at times expensive equipment, and/or 

the professional training required to apply these techniques often restricts their application to 

a small percentage of cultural institutions with sufficient funding dedicated to such purposes. 

Furthermore, in many instances, modern analytical techniques have proven limited in 

identifying the plant species comprising artefacts of interest (e.g. µCT identified 50% 

artefacts to species level, Smith et al. 2013; unidentifiable plant fibres by SEM from Cook 

Voyage Collections, Cartwright 2013). More recently, researchers have attained considerable 

success in plant species identification from individual fibre cells by revisiting a relatively 

inexpensive technique, polarised light microscopy (e.g. Bergfjord and Holst 2010; Skoglund 

et al. 2013). Compared with standard light microscopy, polarised light microscopy (PLM) 

enables a greater range of fibre cell features and properties to be observed (e.g. cross-

markings, dislocations, crystals), due to the enhanced contrast possible with polarised light 

and the optical behaviour of the fibre cells when viewed with crossed polars and wavelength 

specific filters (wave plates or compensators, Preston 1933; Luniak 1953; McCrone 1999; 

Palenik 1999). Systematic observation under polarised light of cell morphology, associated 

crystal morphology and cell birefringent properties (Herzog 1955; Ilvessalo-Pfäffli 1995; 

Haugan and Holst 2013) may enable recognition of a suite of features typical of fibre cells of 

a given plant species (Bergfjord and Holst 2010; Haugan and Holst 2014). 

 

Whilst recent research has highlighted the discriminatory power of PLM techniques to 

identify plant fibres present in European artefacts, the technique had only been applied to bast 

fibres from dicot species belonging to taxonomically distinct families or genera (e.g. family, 

genus; flax: Linaceae, Linum; nettle: Urticaceae, Urtica; hemp: Cannabaceae, Cannabis); 

Bergfjord and Holst 2010; Bergfjord et al. 2012; Haugan and Holst 2014). In contrast, 



indigenous textile plants in New Zealand (and the Pacific) are almost all monocots, with leaf, 

rather than bast material the main plant part used for textiles. Similarities between leaf and 

bast fibre cells in their function (mechanical support and protection of vascular tissue) and 

cell wall structure (a thick secondary cell wall consisting of multiple layers; cellulose 

microfibrils within each layer aligned in a spiral to the longitudinal cell axis; Eder and 

Burgert 2010) indicate that PLM techniques may also provide a means to discriminate among 

New Zealand monocot species. However the latter are a much less diverse group in terms of 

leaf morphology, and often belong to a single genus (e.g. Cordyline cabbage trees 

(Asparagaceae): C. australis, C. indivisa, C. banksia); no information is currently available as 

to whether PLM techniques would still provide species-specific diagnostic characteristics 

under these more constrained parameters. To address this significant gap in knowledge, this 

study systematically investigated the morphological and birefringent characteristics of fibre 

cells extracted from plant taxa recognised as key fibre and leaf material for Māori textiles, in 

order to evaluate the potential for PLM techniques to discriminate among leaf fibres of 

culturally important, closely related plants. 

 

MATERIALS AND METHODS 

 

Sample collection 

 

Samples were obtained using customary harvesting and fibre extraction techniques (see Te 

Kanawa et al. 2006 for details; McCallum and Carr 2012) from five New Zealand monocot 

species recognised as key Māori textile plants (e.g. Pendergrast 1996) and through 

consultation with expert weavers (R. Ngarimu-Cameron pers. obs.); harakeke P. tenax 

(Hemerocallidaceae), tī kōuka Cordyline australis cabbage tree, tī ngahere Cordyline banksia 



forest cabbage tree, tōī Cordyline indivisa mountain cabbage tree (Lomandroideae), kiekie 

Freycinetia banksii (Pandanaceae; Table 1). A single leaf was harvested from three 

individual plants of each species, with the exception of tī ngahere, where three leaves were 

obtained from a single plant. Multiple cultivars (Harris et al. 2005; Scheele 2005) and/or 

phenotypes (i.e. plants with observable sets of physical characteristics) of harakeke are 

recognised based on both traditional knowledge and morphological characteristics (Scheele 

2005). Our study included harakeke specimens collected from a number of bushes valued by 

weavers (one named cultivar and three un-named phenotypes) to assess the potential 

variability in harakeke fibre cell characteristics. The potential influence of provenance and 

growing locality on ultimate fibre cell characteristics was also assessed for harakeke and 

kiekie by sampling from multiple harvest locations (Table 1). Fibre aggregates were extracted 

by removing the margin and mid-rib from each leaf prior to removal of the epidermal layer 

from the upper surface, or in the case of kiekie and tī species, soaking for an extended period 

of time in water prior to extracting fibre aggregates (retting, Goulding 1971; Te Kanawa et al. 

2006). Single leaf samples were also obtained from two sub-species of wharariki/mountain 

flax, Phormium cookianum subspecies cookianum and P. cookianum subspecies hookeri. 

Although wharariki is considered less common than harakeke in the production of woven 

objects (Goulding 1971), weavers were likely to use locally abundant fibre plants if preferred 

species were unavailable and thus species may be present in a number of museum objects 

previously assumed to be made of harakeke. To reflect the tendency for wharariki to be used 

as leaf strips rather than fibre bundles, fibre aggregates were not extracted. All samples were 

dried at ambient temperature (18°C) and in natural diffuse light before being stored in 

archival acid-free paper bags until further processing. 

 



Sample processing 

 

To obtain ultimate fibre cells from each specimen, 10 mm long sections of fibre aggregates or 

10 mm x 5mm leaf samples were cut from larger samples and placed into individual 1.5 ml 

Eppendorf tubes containing approximately 0.8ml of 1.2% w/v sodium hypochlorite. Each 

capped tube was placed into a 60°C water bath for two hours, then samples were rinsed with 

distilled water. Each sample was then transferred into a new Eppendorf tube containing 0.8ml 

of distilled water and vigorously shaken (10-20 seconds) to separate the ultimate fibre cells. 

Uncapped tubes were placed in a 40°C drying oven for 48 hours, then stored at ambient 

conditions (18°C) prior to observations using microscopy. 

 

Polarised light microscopy 

 

Five sub-samples of ultimate fibre cells were mounted on glass slides in distilled water (with 

cover slips) with a minimum of 10 ultimate fibre cells examined per slide from each 

individual leaf/plant/species (Table 1). Fibres were examined under polarised light using a 

Olympus System Microscope Model BX41 fitted with a rotating stage and optional full wave 

compensator of wavelength 525nm. An integrated Canon EOS 1100D camera captured 

images using AxioVision software (Version 4.8.2.0 Carl Zeiss MicroImaging GmbH). 

 

For each species, the fibrillar orientation was first observed (i.e. S- or Z-twist) using the 

modified Herzog test (red plate test, Haugan and Holst 2013). Secondly, we quantified 

whether fibres attained full or partial extinction under crossed polars (ie. invisible or partially 

visible fibre in relation to the black background) when fibres were aligned to the plane of 

polarised light (α = 0° and 90°), with Haugan and Holst (2013) suggesting that partial fibre 



extinction reduces the ability of the modified Herzog test to determine the fibrillar 

orientation. Thirdly, we assessed the sign of elongation (SE) by examining the fibre colour at 

α = 45° and 135°, with a positive SE considered characteristic of most textile fibres (parallel 

n∥ > perpendicular n⊥ refractive index, Luniak 1953; Wheeler and Wilson 2008). For both 

the SE and modified Herzog tests, results were classified as ‘indeterminate’ when 

inconsistent colour changes were observed. 

 

Morphological characteristics of ultimate fibres were described using features illustrated by 

Ilvessalo-Pfäffli (1995). In particular, the general fibre cell shape, surface markings (e.g. 

cross-markings, dislocations), lumen shape, fibre cell end shape (e.g. pointed, blunt, scimitar-

like), fibre cell wall irregularities (e.g. scalloping, pits) and associated crystals (e.g. cuboidal 

or elongated styloids, raphides, Prychid and Rudall 1999) were described. The relative 

abundance of cell pits were also classified as low (Figure 1a-b), moderate (Figure 1c-d) or 

high (Figure 1e-f). Fibre cell dimensions (length mm, width µm) for each species as 

described by Carr and Cruthers (2005-2007) were reported, with the exception of P. 

cookianum subspecies hookeri for which dimensions were assessed from 10 individual cells. 

 

Birefringence was assessed by mounting groups of fibre cells from each plant species in a 

series of Cargille™ refractive index oils (Series A, Range nD 1.460-1.640, adjustment ± 

0.0002; 20 ± 2 °C). The Becke line test (Becke 1893; Preston 1947) was used to determine n∥ 

and n⊥ refractive indices, from which the birefringence (∆n; n∥ - n⊥) and the isotropic 

refractive index (niso; 
1/3(n∥ + (2n⊥))) was calculated. Additionally, differences in n∥ and n⊥ 

refractive indices between fibre plant species of New Zealand and European origin were 

represented graphically (described from Luniak 1953). 

 



Deposition of voucher specimens 

 

Permanent reference slides of contemporary specimens prepared using Cargille Meltmount™ 

QUICK STICK (nD = 1.662) were deposited at Department of Applied Sciences - Clothing 

and Textiles, University of Otago, New Zealand; Otago Museum, New Zealand; Te Papa 

Tongawera National Museum of New Zealand. 

 

RESULTS 

 

General remarks 

 

With the exception of kiekie, identification of fibre cells required multiple morphological and 

optical characteristics to be quantified due to similarities among multiple species. For 

example, fibrillar orientation (via modified Herzog test) was either Z-twist (5/7 species) or 

indeterminate (2/7 species; tī tōī, kiekie), and a positive SE was observed for five out of 

seven species, with the SE difficult to determine for tī tōī and the harakeke cultivar 

Makaweroa. There was no observable relationship between the ease with which the fibrillar 

orientation was determined and the degree of extinction when fibres were aligned to the plane 

of polarised light. Pitted cell wall regions of kiekie and Cordyline species remained visible 

even when the remainder of the fibre cell reached extinction. 

 

Kiekie was easily distinguished from all other species by a single distinctive characteristic, 

the presence of abundant cuboidal styloid crystals (Figure 2a), a feature which remained 

consistent despite differences in provenance and growing location of the observed specimens. 

Whilst cuboidal styloid crystals were only observed from kiekie specimens, other crystal 



shapes were noted from Cordyline species tī kōuka (elongated styloid, conglomerate; Figure 

2b) and tī ngahere (raphide; Figure 2c), and from harakeke Phenotypes 2-3. Crystals were not 

observed associated with ultimate cells of tī tōī, wharariki subspecies or the harakeke cultivar 

Makaweroa investigated in this study. 

 

The general fibre cell morphology was similar among harakeke specimens, wharariki 

subspecies and tī ngahere, all of which tended to have long and slender cells with cross-

markings and dislocations (cross-markings/dislocations Figure 3); however the presence of 

moderately abundant diagonal elongated pits on tī ngahere cells differentiated tī ngahere from 

Phormium species (Figures 1c, 3d). Furthermore, the presence of cell wall swelling 

associated with dislocations on wharariki subspecies was useful for differentiating between 

Phormium species (Figure 3b). Elongated, diagonal cell wall pits were characteristic of all 

Cordyline species and kiekie, with the abundance of pits ranging from moderate abundance in 

tī kōuka and tī ngahere (Figure 1c-d) to high abundance in tī tōī and kiekie (Figure 1e-f). Pits 

were rare or absent from all harakeke cultivars/phenotypes and wharariki subspecies 

examined. 

 

Birefringence was highly variable for each New Zealand species; with a high degree of 

overlap in both n∥ and n⊥ refractive index variance (Figure 4). However, all New Zealand 

species had a considerably lower n∥ refractive index in comparison to values for European 

fibre species reported in the literature (which are highly variable). 

 

Fibre cell features 

 

Specific results for each plant species examined in this study are provided below. 



 

Harakeke Phormium tenax New Zealand flax J.R. Forst & G. Forst  Figure S1a-d 

Z-twist; indeterminate (Makaweroa) or positive SE (Phenotype 1-3); partial extinction at 

crossed-polars. Long, cylindrical fibre cells with even, narrow lumens (less than 1/3 cell 

width). Pointed fibre ends. Cross-markings frequent. Dislocations present and not associated 

with swelling of cell wall. Fibre cells often broken into smaller fragments. Pits absent or rare. 

Raphide crystals may be present (Phenotype 2-3). Length (mean ± sd) 1.63 mm ± 0.3 mm - 

4.27 mm ± 0.7 mm, width 11 µm ± 2 µm - 15 µm ± 2 µm (Carr and Cruthers 2005-2007). 

Refractive index (mean ± variance, n = 3): n∥ 1.552 ± 0.017, n⊥ 1.515 ± 0.002 (Figure 4). 

Birefringence (∆n) 0.037 ± 0.015. Isotropic refractive index (niso) 1.527 ±0.007. 

 

Wharariki Phormium cookianum subspecies hookeri coastal flax  Figure S2a-e 

Z-twist; positive SE; partial extinction at cross-polars. Long, cylindrical fibre cells with 

narrow lumens (less than 1/3 cell width). Outer cell walls may be uneven. Pointed ends. 

Cross-markings frequent. Dislocations present and not associated with swelling of cell wall. 

Fibre cells often broken into smaller fragments. Pits absent or rare. Crystals absent. Length 

(mean ± sd) 3.29 mm ± 0.96 mm; width 17 µm ± 2 µm. Refractive indices not assessed. 

 

Wharariki Phormium cookianum subspecies cookianum mountain flax  Figure S3a-d 

Z-twist; positive SE; partial extinction at cross-polars. Long, cylindrical fibre cells with 

narrow lumens (less than 1/3 cell width). Outer cell walls may be uneven. Pointed ends. 

Cross-markings frequent. Dislocations associated with swelling of cell wall. Fibre cells often 

broken into smaller fragments. Pits absent or rare. Crystals absent. Length (mean ± sd) 3.95 

mm ± 0.51 mm; width 13 µm ± 1 µm (2WhWhiB, Carr and Cruthers 2005-2007). Refractive 



index (single sample): n∥ 1.561, n⊥ 1.519 (Figure 4). Birefringence (∆n) 0.042, Isotropic 

refractive index (niso) 1.533. 

 

Tī kōuka Cordyline australis cabbage tree (Forst. f.) Endl.  Figure S4a-c 

Z-twist; positive SE; partial extinction at cross-polars. Smooth, cylindrical fibre cells, though 

scalloped cell walls occasionally occur. Lumen width consistent within single cells, but 

variable among cells. Blunt cell ends. No dislocations or cross-markings. Moderate abundant 

diagonally orientated elongated pits (fewer than tī tōī). Elongated styloid or conglomerate 

crystals may be present. Variable cell length, greater cell width than tī ngahere. Length (mean 

± sd) 1.01 mm ± 0.3 mm - 1.39 mm ± 0.52 mm; width 13 µm ± 3 µm (Carr and Cruthers 

2005-2007). Refractive index (mean ± variance, n = 3): n∥ 1.552 ± 0.009, n⊥1.517 ± 0.006 

(Figure 4). Birefringence (∆n) 0.034 ± 0.009. Isotropic refractive index (niso) 1.529 ± 0.006. 

 

Tī ngahere Cordyline banksii forest cabbage tree Hook.f.  Figure S5a-d 

Z-twist, though may be difficult to determine; positive SE; full extinction at cross-polars. 

Long, smooth, cylindrical fibre cells with lumen ~1/3 of cell width. Fibre cell ends may be 

pointed, blunt or scimitar-like. Cross-markings and dislocations present (less abundant than 

harakeke). Moderately abundant diagonally orientated pits (fewer than tī tōī). Raphide and/or 

elongated styloid crystals may be present. Length (mean ± sd) 1.44 mm ± 0.49 mm; width not 

measured (Carr and Cruthers 2005-2007). Refractive index (mean ± variance, n = 3): n∥ 

1.558 ± 0.013, n⊥1.516 ± 0.009 (Figure 4). Birefringence (∆n) 0.041 ± 0.003. Isotropic 

refractive index (niso) 1.530 ± 0.010. 

 

Tī tōī Cordyline indivisa mountain cabbage tree (G.Forst.) Steud. Figure S6a-e 



Twist direction difficult to determine; positive, negative or indeterminate SE may be 

observed; full extinction at cross-polars except for pits. Cylindrical fibre cells with wide 

lumens (>1/3 cell width). Blunt cell ends. Cell walls can be lightly scalloped. Cross-markings 

and dislocations absent. Highly abundant diagonally orientated, elongated pits. Crystals 

absent. Variable cell length, greater cell width than other Cordyline species. Length (mean ± 

sd) 1.15 mm ± 0.2 mm - 1.45 mm ± 0.3 mm; width 15 µm ± 2 µm (Carr and Cruthers 2005-

2007). Refractive index (mean ± variance, n = 3): n∥ 1.533 ± 0.014, n⊥1.522 ± 0.005 (Figure 

4). Birefringence (∆n) 0.011 ± 0.009. Isotropic refractive index (niso) 1.525 ± 0.008. 

 

Kiekie Freycinetia banksii A.Cunn Figure S7a-d 

Twist direction difficult to determine; positive SE; full extinction at cross-polars except for 

pits. Blunt cell ends. Wide lumens (>1/2 cell width). Cross-marking absent. Abundant pits. 

Abundant cuboidal styloid crystals. Outer cell wall may show scalloping in association with 

evenly spaced cuboidal styloid crystals. Length (mean ± sd) 0.68 mm ± 0.16 mm; width 13 

µm ± 3 µm – 18 µm ± 3 µm (Carr and Cruthers 2005-2007). Refractive index (mean ± 

variance, n = 3): n∥ 1.547 ± 0.006, n⊥ 1.526 ± 0.005 (Figure 4). Birefringence (∆n) 0.022 ± 

0.001. Isotropic refractive index (niso) 1.533 ± 0.005. 

 

DISCUSSION 

 

This study has demonstrated that morphological and birefringent characteristics of fibre cells 

observed using PLM techniques are highly useful in discriminating among leaf fibres of 

indigenous New Zealand monocot plant species commonly used to produce Māori textiles. 

The ubiquitous presence of cuboidal styloid crystals proved the single most useful diagnostic 

feature for identifying kiekie specimens, which shared many other morphological features 



with Cordyline species tī kōuka and tī tōī (e.g. cell shape, pits). Preliminary studies by C. 

Smith et al. (unpublished) and J. Davies (unpublished honours thesis) also suggest that 

cuboidal styloid crystal presence in kiekie is not influenced by specimen age (+150 years) nor 

provenance, thus reinforcing the capability of this feature to correctly identify kiekie 

specimens. Whilst other crystal shapes were observed from tī kōuka and tī ngahere 

(Cordyline species), there was great variability as to whether crystals would be observed 

when ~ 100-500 fibre cells were examined, thus the presence or absence of crystals has a low 

capacity for differentiating among other plant species. Furthermore, our results support 

previous findings that crystal presence in harakeke may be cultivar- and phenotype-specific 

(e.g. Waihirere cultivar, Karikari Beach phenotype, Carr and Cruthers 2005-2007; Carr and 

Cruthers 2007), however the presence of raphide crystals in harakeke Phenotypes 2-3 

(unknown cultivars, Table 1) is in direct contrast to Prychid and Rudall (1999) findings, 

which noted an absence of raphide and presence of styloid crystals in Phormium species. 

 

Both the SE and fibrillar orientation were shown to have limited power to differentiate among 

New Zealand plant species, with most demonstrating both a positive SE and Z-twist. 

However, the fibrillary orientation was consistently difficult to quantify from both highly 

pitted tī tōī and kiekie fibre cells, whereas a Z-twist was clearly evident from other less pitted 

Cordyline species, tī kōuka and tī ngahere. The ability to determine the SE of harakeke was 

highly dependent on cultivar/provenance (positive: harakeke Phenotypes 1-3; indeterminate: 

Makaweroa), thus both measures have poor classification potential to differentiate Phormium 

species. Despite this, a number of fibre cell characteristics of harakeke differentiate this 

species from the fibre cells of wharariki and tī ngahere, the two species most likely to be 

confused with harakeke. In particular, harakeke’s long, thin fibres, with absence/rare pits 

(abundance per cell; harakeke <2 vs. 20+ tī ngahere), frequent cross-markings and 



dislocations not associated with enlarged cell walls (a characteristic of wharariki), enable this 

species to be easily differentiated from otherwise similar species used in woven objects. Our 

study also demonstrates opposing fibrillar orientation between harakeke (New Zealand flax; 

Z-twist if determined) to that of otherwise morphologically similar (in terms of cell shape, 

cross-markings and dislocations) European flax (Linum sp., S-twist; Haugan and Holst 2014). 

Although determination of fibrillar orientation using the modified Herzog test has been 

mostly applied to bast fibres, the technique is potentially applicable to any fibre cell having 

microfibrils arranged in a helical structure within the cell wall (Valaskovic 1991), including 

leaf fibres (e.g. sisal and abaca; Petraco and Kubic 2004). However, the clarity of results 

obtained using this technique is dependent on the secondary cell wall structural 

characteristics, such as the number and thickness of cell wall layers (Valaskovic 1991), and 

may be further complicated by localised variations in microfibril angle associated with pits or 

dislocations (Eder and Burgert 2010). Investigations of palm and bamboo species indicate 

monocot fibre cells may have more secondary cell wall layers than bast fibre cells (Liese 

1987, Tomlinson 2006), although pineapple leaf fibre cells have been reported as having only 

three layers (Wan Nadirah et al. 2012). Such variability in cell wall layering, if present in 

New Zealand monocot fibre cells, may have contributed to the difficulty in determining the 

fibrillar orientation of some species assessed here. However, at present the fine detail of 

secondary cell wall structure of New Zealand fibre species remains unknown. 

 

The usefulness of birefringence measures for distinguishing among New Zealand plant 

species was also low due to significant overlap in both n∥ and n⊥ refractive indices when 

intraspecific variation was accounted for. Such variation in refractive indices is rarely 

acknowledged in fibre identification literature, with a tendency to report mean values only 

(e.g. Wheeler and Wilson 2008; Goodman 2009; but see Luniak 1953). This incorrectly 



suggests that a high degree of precision, and therefore discriminatory function, can be 

achieved from assessment of refractive index (although the need to sample adequately, 

condition fibres, control temperature and relative humidity and develop considerable skill 

with the technique has been described in earlier literature; Preston 1947). Despite this 

limitation, this study clearly indicates that New Zealand plant fibre cells exhibit noticeably 

lower n∥ values than their European counterparts. Therefore birefringence measures may be 

incorporated in the suite of techniques for determining if an artefact from New Zealand is 

comprised of plant material of indigenous or European origin. 

 

Whilst the present study examined the characteristics of fibre cells of plant species 

considered to be the major textile species used in New Zealand, it remains possible that other 

plant species may have been used historically, albeit less frequently. Previous studies by 

Goulding (1971), Pendergrast (1996) and McCallum and Carr (2012) have suggested lesser-

known plants were used in the production of woven objects (e.g. pingao Ficinia spiralis 

(Cyperaceae), houi/houhere Hoheria species (Malvaceae), tikumu Celmisia species 

(Asteraceae, generally C. semicordata; Lord et al. 2010)), with the latter two genera 

representing more than 10 separate species or subspecies. Therefore future research efforts 

should be focused towards not only characterising all known Māori textile plants species, but 

also other taxonomically related species used within New Zealand and around the Pacific. For 

example, there are two additional Cordyline species with restricted distributions in New 

Zealand; tī koraha/tī rauriki Cordyline pumilio dwarf cabbage tree (northern North Island; 

north of 38°S) and Cordyline obtecta (synonym C. kaspar) Norfolk Island/Three Kings 

cabbage tree (North Cape and offshore islands [e.g. Three Kings Islands, Poor Knights 

Islands], North Island, New Zealand, and Norfolk Island; Harris et al. 2001). Although 

neither species has been previously mentioned in literature pertaining to Māori textiles, it is 



possible that “tī kōuka” textiles from these regions may be composed from these locally 

abundant Cordyline species. Furthermore the genus Cordyline is represented by up to 10 

additional species throughout the western Pacific which may also be represented in the 

collections of cultural institutions. 

 

As current knowledge of species used in Māori woven objects largely originates from inter-

generational knowledge transferred between weavers, it remains possible that knowledge has 

been lost in the use of plant species with restricted geographic distributions or with less 

favoured physical properties. Herein lies the importance of verifying the plant species from 

Māori artefacts present in institutional collections worldwide, since such artefacts may hold 

the key to unlocking the hidden diversity of plant species used in the production of textiles, 

which are no longer in use by contemporary weavers. The need now is to determine whether 

the techniques outlined in this study provide superior characterisation of plant species 

composition than other analytical techniques (e.g. µCT, Smith et al. 2013; SEM, Cartwright 

2013) and to increase confidence in species identification through wider sampling of 

phenotypic variation within each species. Future research also needs to determine whether 

customary dye treatments, commonplace in objects held within museum collections, alter the 

morphological and/or birefringent characteristics of ultimate fibre cells used to identify 

woven Māori objects. 

 

This technique provides two important benefits in the context of plant materials identification 

in museum artefacts. Very small specimens of fibre aggregate or whole leaf (2-3mm long 

pieces) yield abundant quantities of ultimate fibre cells from which multiple species 

identification from single genera may be achieved. In a context where destructive and 

purposive sampling directly from artefacts is problematic, this sample size, coupled with the 



high confidence of accurate identification, is very appealing. The typical size of specimen 

required will neither alter the structural integrity nor aesthetic properties of most museum 

artefacts (for example raw internal woven edges of kete, or a frayed / abraded fibre of a 

kakahu could easily provide sufficient material for positive identification of the plant species 

in almost 100 percent of cases). While the use of already detached material for identification 

purposes is an appealing prospect in most museum contexts, the accuracy of the method 

described in this study, in conjunction with the small sample size required, show a way 

forward where direct sampling may become more acceptable to stakeholders. 
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TABLES 

 

Table 1. Provenance/phenotype and sampling details of New Zealand plant species assessed using polarised light microscopy. 

 

Species Latin name Provenance/phenotype Sample location Sample year 

Harakeke Phormium tenax a) Makaweroa cultivar; 

b) Phenotype 1 (P7); 

c) Phenotype 2 (P6); 

d) Phenotype 3 (P1) 

a) Waitati, Otago, South Island; 

b-d) Dunedin Botanic Garden, Dunedin, 

Otago, South Island 

a) 2014; 

b-d) 2007 

Wharariki Phormium cookianum 

subsp. cookianum 

Limestone Stream, Upper Awatere Valley, 

Westland, South Island1 

National New Zealand Flax Collection, 

Lincoln, Canterbury, South Island 

2006 

Wharariki Phormium cookianum 

subsp. hookeri 

Long Beach, Otago, South Island Waipuna Bay, Otago, South Island 2014 

Tī kōuka Cordyline australis Lower Arahura, Westland, South Island Tī kōuka Collection, Invermay, Otago, 

South Island 

2014 

Tī ngahere Cordyline banksii Mt Te Aroha, Waikato, North Island Tī kōuka Collection, Invermay, Otago, 

South Island 

2014 

Tī tōī Cordyline indivisa Hauhungaroa Range, Manawatu-

Wanganui, North Island 

Tī kōuka Collection, Invermay, Otago, 

South Island 

2014 

Kiekie Freycinetia banksii a) unknown;  

b) Cape Foulwind, Westland, South Island; 

c) Broughton Bay, Marlborough, South 

Island2 

a-b) Dunedin Botanic Garden, Dunedin, 

Otago, South Island;  

c) Broughton Bay, Marlborough, South 

Island 

a-b) 2014; 

c) 2006 

Notes: 1Specimen 2WhiWhB and 24_KieKie_July_06 from Carr and Cruthers 2005-2008 

 

 



FIGURES 

 

 

 

Figure 1. Variation in fibre cell wall pits abundance among New Zealand plant species 

utilised in Māori textiles; low abundance - (a) harakeke Makaweroa Phormium tenax, (b) 

wharariki P. cookianum subspecies cookianum; moderate abundance – (c) tī ngahere 

Cordyline banksii, (d) tī kōuka C. australis; high abundance – (e) kiekie Freycinetia banksii, 

(f) tī tōī C. indivisa.  



 

 

 

Figure 2. Variation in crystal shapes associated with New Zealand plant species utilised in 

Māori textiles; (a) cuboidal styloids - kiekie Freycinetia banksii; (b) elongated styloids and 

conglomerate – tī kōuka Cordyline australis; (c) raphide – tī ngahere C. banksii. Arrows 

indicate crystal position. 

  



 

 

 

Figure 3. Cross-markings and dislocation of fibre cells among New Zealand plant species 

utilised in Māori textiles; (a) harakeke Makaweroa Phormium tenax, (b) wharariki P. 

cookianum subspecies cookianum, (c) wharariki P. cookianum subspecies hookeri, (d) tī 

ngahere Cordyline banksii. 

  



 

 

 

Figure 4. Comparison of parallel and perpendicular refractive indices (n∥ and n⊥) of fibre 

cells from New Zealand (dark circles, this study) and European plant species (open circle; 

Luniak 1953). Error bars represent variance. 

  



SUPPLEMENTARY FILES 

 

 

Figure S1. Harakeke - Phormium tenax, Makaweroa cultivar; a) sign of elongation SE α = 

45°, b) SE α = 135°, c) Herzog α = 0°, d) Herzog α = 90°. 

  



 

 

Figure S2. Wharariki - Phormium cookianum subsp. hookeri; a) sign of elongation SE α = 

45°, b) SE α = 135°, c) Herzog α = 0°, d) Herzog α = 90°, e) whole cells. 

  



 

 

Figure S3. Wharariki - Phormium cookianum subsp. cookianum; a) sign of elongation SE α = 

45° and 135°, b) Herzog α = 0°, c) Herzog α = 90, d) whole cells. 

  



 

 

Figure S4. Tī kōuka – Cordyline australis; a) sign of elongation SE α = 45° and = 135°, b) 

Herzog α = 0°, c) Herzog α = 90°. 

  



 

 

Figure S5. Tī ngahere – Cordyline banksii; a) sign of elongation SE α = 45°, b) SE α = 135°, 

c) Herzog α = 0°, d) Herzog α = 90°. 

  



 

 

Figure S6. Tī toi – Cordyline indivisa; a) sign of elongation SE α = 45°, b) SE α = 135°, c) 

Herzog α = 0°, d) Herzog α = 90°, e) whole cells. 

  



 

 

Figure S7. Kiekie – Freycinetia banksii; a) sign of elongation SE α = 45° and 135°, b) 

Herzog α = 0°and 90°, c) cuboidal styloid crystal alignment, d) scalloping. 

 

 


