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Order sets are a critical component in hospital information systemigndeisto substantially reduce clin-
ician workload and improve patient safety and health outcomes. Ortfereggesent clusters of order
items, such as medications prescribed at hospital admission, thamairgstdred to patients during their
hospital stay. In prior research, we constructed order sets foreditiime intervals during inpatient stay
based on historical data on items ordered by clinicians across a largeenofpatients. In this study, we
build on our prior work to formulate a mathematical program for optimizirdgosets that are applicable
across the entire duration of inpatient stay and are independent of thentenals. Furthermore, due
to the intractability of the problem, we develop a Greedy algorithm to tacklewedd test instances.
We extract data sets for three clinical scenarios and conduct botlitiwegmd physical workload anal-
yses. Finally, we extend a software application to facilitate the comparisomief sets by practitioners.
Our computational results reveal that the optimization-based physidat@nitive workload models
can solve small test instances to optimality. However, for real-world inetgrthe Greedy heuristic is
more competitive, in particular when physical workload instead of cognitorkload is the optimization
objective. Overall, the Greedy heuristic can solve the test instances withimmute and outperforms
the mathematical program in 2/3 of the test instances within a time limit of ten rsindeéenonstrating
a feasible and promising approach to develop inpatient order sets thatibaequently be validated by
clinical experts.

Keywords Healthcare Information Systems; Health Informatics/Health Informa&imiems/Medical IS;
Analytical Modeling; Heuristics

This manuscript is for the 2017 IMA/ORS conference specsalas

(© The authors 2008. Published by Oxford University Press on behalf of thieitasof Mathematics and its Applications. All rights reserved.



20f18

1. Introduction

In healthcare information systems, Computerized PhysiQialer Entry (CPOE) has proven to be effec-
tive in increasing patient safety, reduce medication sraoid costs (Nuckols et al. (2014)). Specifically,
order sets support clinicians in high risk situations byer as expert-recommended guidelines, re-
ducing prescribing time by making complex ordering easi@reasing physician compliance with the
current best practice and playing a vital role in reducingessive ordering (Goldszer et al. (2017)). A
characteristic of order sets is that specific orders candgepermined to be “pre-set” or “defaulted-on”
whenever the order set is used while others are “optionaltiefaulted-off” (though there is typically
the option is to “deselect” defaulted-on orders in a givémadion), see Olson et al. (2015). For instance,
the ‘Asthma Admission Order Set’ shown in Figure 1 group®tbgr order items for Asthma patients
upon admission.

Care Set Description
Example Asthma Order Set

m Incl? | CS Display
3 [X] Admit to Diagnosis Asthma

B 7 ] Bedrest

8 [ Out of Bed As Tolerated

9 [l UpAdLib

11 [1  NPO

Order Don't 12 []  Clear Liquid Diet
order

13 [] Toddler {1-3 yrs) Diet
Default  Accept Click to 14 S T
ON e [] egular {4 yrs & >) Die
Default Click to Skip & [ Sl Fassllg
OFF select 17 [X] Vital Signs

18 [X] 02 according to Pulse Ox

Guidelines

FiG. 1: Asthma admission order set Gartner et al. (2017)

The figure shows that order item number 3 — “Admit to Diagndsithma” is defaulted ON while
order item number 7 — “Bedrest” is defaulted off in the exaengéthma order set. In general, order
items in order sets can be defaulted ON or OFF according nécalirelevance and frequency of use.
An order item can be part of multiple order sets. Despite thieefits of order sets, historical data
indicate a tremendous variability in order set usage byiaiins, driven largely by the diversity in
patient population, physician experience, and systemilitgalVithin CPOE, clinicians can search for
particular orders by typing the order names and the seastitt iacludes all a la carte orders and order
sets that match the keyword because order set usage is ndatogn A la carte orders are individual
orders that clinicians choose to enter without using ordes. dntuitively, ordering a la carte items takes
more time compared to order sets because they have to béeédoc and entered one by one. Some
orders are standalone items and a la carte is the only wayesziiibe them. Yet, reasons for ordering
a la carte items instead of order set items come from a playsscdlisagreement with order set content,
unfamiliarity with order sets, inconsistency of order smttent with current best practices, and at times,
a simple need for only one or two orders. Ordering efficienegrdases when order sets contain items
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that do not match the workflow or the patient’s conditioncfog clinicians to go through long lists of
orders to determine each item'’s relevance to particulaeipiat and eventually rely on a la carte orders
which are time-consuming and subject to errors (Zhang €2@ll4)). Size of order sets is at least 2,
varying depending on their purpose.

This paper aims to address these challenges by proposingstirdy approaches based on Discrete
and Metaheuristic Optimization to create order sets froagagata with the objective of minimizing
clinicians’ workload. Clinicians’ workload can be meadiiia two ways: Physical workload (PW)
associated with mouse clicks and cognitive workload (CWdeissed with mental tasks in order pre-
scription. PW is associated with i) assigning patientseosdo order sets, ii) deselecting non-required
order items from order sets, iii) deselecting order itemsctvlare prescribed multiple times and iv)
ordering items a la carte. In addition, CW is incurred whetteolitems are confirmed to be defaulted
ON or OFF after assigning order sets to patients.

In this paper, we build on previous work from Gartner et ab1(2) who developed a time-dependent
mathematical program to generate order sets, assign {gtieder items to order sets or, if workload
cannot be minimized by using order sets, items are selestiddually. Figure 2 illustrates the notion
of time-dependent vs. -independent order set optimizationthe case of time-dependent order set
optimization, time intervals are explicit. For examplesase we have 3 time intervalis=£ 0,1, 2) that
distinguish different episodes of the patients’ lengthtafsintervat = O represents the time interval 24
hours before admission until admission; 1 represents the admission and 2 represents the patient’s
treatment stage. Witin these time intervals, order itenmsbeagrouped into, for example, pre-admission
order sets fot = 0. Admission-related order items are grouped in admissiderosets (= 1) and
treatment-related items are clustered into treatmentrareles fort = 2. On the contrary, with time-
independent order set optimization, all items that arevegiefor prescription during the entire patients’
hospital visit are grouped into time-independent ordes gdtich include pre-admission, admission and
treatment stage orders.

before admissiort(=0)  admissiont(= 1) treatment = 2)

Time-dependent E 3E | 3 3

-24h 0 24h

Time-independent —

N

FIG. 2: Time-dependent vs. time-independent order set opitioiz

To address the time-independent order set optimizatioblgmn, we extend the model from Gart-
ner et al. (2017) in the following four ways: Firstly, we fouhate a mathematical program for time-
independent order sets. Because the problem is intractableecondly develop a Greedy algorithm
to tackle real-world test instances. Thirdly, we solve «watld data sets using three types of clinical
conditions and conduct a cognitive and physical workloaalymis. Finally, we extend the graphical
user interface to facilitate the comparison of order setpragtitioners.

The remainder of this paper is structured as follows. In & Bection, we provide an overview of
related work. Next, we provide a formal description of thelgjem and the mathematical programming
formulation followed by a description of the heuristic s@dn approach. In a computational study, we
demonstrate the effectiveness of our approach based ofroiata major hospital in the United States.
In that section, we describe our evaluation metrics folldyg a presentation of our results. We finally
summarize our paper with a conclusion and outline streanfsifther research.
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2. Related Work
We focus on two relevant fields: Order set management andcalétim clustering.

2.1 Order Set Management

Table 1 provides an overview of order set management prablem

Table 1: Overview of order set management problems (CW: {fisgtWorkload, PW: Physical Work-
load)

Publication Zhang et al. Zhang and Gartner et al. Gartner et al. Our paper

(2014) Padman (2015) (2017)
(2015)

Objective function CW, PW Cw PW Cw Cw, PW

Problem size large large small large small, large

Method 2 stage Tabu-search Mathematical Mathematical Mathematical
heuristic optimization Program- Program- Program-
opti- ming, ming, ming,
mization K—means K—means Greedy
embedding decomposi- decomposi- Heuristic
K—means tion tion
clustering

Time dimension yes (flexi- yes (flexi- yes (fixed) yes (fixed) no
ble) ble)

Clinical Condition acute, acute acute chronic acute,
chronic, chronic,
surgical surgical

Related work on order set management includes Zhang e0dl4)and the references therein. The
authors employ heuristic methods to reduce physician warkin hospitals through order set improve-
ment. Gartner et al. (2015) provide a mathematical modekaha the order set optimization problem
with fixed time intervals to optimality with the objective teduce physician workload for one clinical
condition. Time intervals were fixed because the use casgality is that clinicians should be able to
prescribe, for example, admission order sets to patiertes@ contain prescriptions and activities car-
ried out to admit the patient to the hospital. On an aggrebeitw, time-independent order sets allow
to bundle all order items required during the patients’rerttiospital stay.

Our study has a similar focus as compared to Zhang et al. j20%hang and Padman (2015)’s,
Gartner et al. (2015)’s and Gartner et al. (2017)’s studidse extension, however, is that we provide
a mathematical model without decomposing it into fixed timterivals. Because of the larger number
of order items, the problem is expected to be computatipmafire challenging because of the union
of all order items in all time intervals. Another extensiartat we develop a Greedy heuristic which
determines order sets based on frequency measures inrthdétmand. Finally, we focus on cognitive
workload in addition to physical workload and two additibalnical conditions.

Chen et al. (2017) evaluate the accuracy of predicting gud#erns for patients. They use proba-
bilistic topic models to generate clinical topic models amgbredict subsequent clinical orders. Using
classification accuracy as performance metric, the autt@r®nstrate that probabilistic topic modelling
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can increase classification accuracy as compared to usisignexorder sets as a classifier. Their ap-
proach is different to our approach since they create a sdihéfal topics whereas we create data-driven
order sets.

2.2 Clustering Medical Items

Focusing on healthcare, Cardoen et al. (2015) has singatid our work because they group medical
items for surgeries which can be seen as a clustering prolamdifference to our problem is, among
others, that we have a defaulted ON and defaulted OFF opgish@wn in Figure 1. Each order item in
an order set can be defaulted ON or OFF according to clinetaVance and frequency of use (Gartner
et al. (2017)) With respect to the solution methodology, we a different heuristic approach. Similarly,
Dobson et al. (2015) propose a mathematical programminguiation to decide on the composition
of instrument trays to minimize the costs of owning, maimitaj, and using both the trays and the
instruments.

As a conclusion of our literature review, our study can besatered to be the first to employ
mathematical programming for the time-independent ordepptimization problem. In addition, we
develop an exact and a heuristic approach to solve reawest instances. Furthermore, we prove
structural properties of the problem. Finally, we develala@a-based application with a graphical user
interface that covers all components: order set optimonasind current order set usage. This allows
clinicians to take advantage of the methods we develop sngaper.

3. Problem Description, Model Formulation and Complexity

In what follows, we provide a concise problem descriptioliofeed by the mathematical model that
clusters order items to which patients are assigned. Weptmide insights into the complexity of the
problem. In the remainder of this paper, we will use the fegitg terms as synonyms: activities, items,
orders, order items, procedures and treatments. Simitdulsters and order sets are used synonymously.

3.1 Problem Description

When patients are admitted to the hospital, we wish to ashiggetpatients to clusters which represent
sets of order items. Unlike a la carte order placement, whlarieians need to apply one mouse click
every time to select an individual order, defaulted ON iteares automatically selected when an order
set is chosen. With additional clicks, users can add defdu@FF items to the selection or deselect
defaulted ON items from the order placement, see Figure Batich 1.

In what follows, we start with the definition of the generatgraeters for building clusters and then
turn to patient-related parameters as well as workloadnpeters for the assignment of patients’ order
items to order sets, and for selecting order items a la cameng others.

3.1.1 Clusters, Order Items, Patients and Patients’ Order Item@rder sets are indexed using the
set? :={1,2,...,K} with the maximum number of order sets denotedkbyOrder item demand,
which is the universe of order items required by all patigistdenoted by se¥ :={1,2,...,1}. In this
set,| is the biggest index of order items. Patients are denotectby’s= {1,2,...,P} in which P is
the last index of all patients. Le£, denote patienp’s order items.
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3.1.2 Workload. We break down the clinicians’ workload into i) selection Wioad when patients
are assigned to order sets, ii) workload associated witkehextion and de-selection of patients’ order
items from order sets, and iii) workload associated withdbefirmation of patients’ order items.

Order set selection workload. When an order set is assignegatient, we denote the workload asso-
ciated with each selection a%°.

Selection workload for required order items. If additiooatler items are required (in addition to the
activities in an order set), workload of™°" arises for each additional order item. Selection
workload for adding an a la carte item is denoted:8§. We denote a la carte workload e&°
and assume that the workload is greater than or equal to zero.

Deselection workload for non-required and multiple présd order items. When an order item that is
part of an order set must be deselected for that particulbergebecause it is not required,
there is a workload which we denote b§"°"ed Sometimes, patients may be assigned to
multiple order sets. In that case, it can happen that ordersitare prescribed multiple times and
Workllcfoacf associated with the deselection of items that s¥eguibed multiple times are denoted
by CO ,mut_

Cognitive workload. We denoi°"°" as cognitive workload when a patient’s order item is confitme
as defaulted ON in an order set. Similarly, we dendif8"° as cognitive workload when an
order item is confirmed as defaulted OFF in an order set. As\aarpuence, it is not assigned
to the patient.

3.2 Model Formulation

We will now introduce the decision variables, the objecfwrction and the constraints to model the
problem. The decision variables are shown in Table 2.

We denote thef anday variables as ‘clustering variables’ because in each orlde €luster) they
will provide information about which order item is default©FF and ON, respectively. All other
variables will mainly be used for assigning patients to osggs or performing decisions on the patients’
item level to determine the physician workload in our olijectunction. With the introduced parameters
and decision variables, our mathematical model can be flatedias a Mixed-Integer Program (MIP)
follows:

minimize z= Yy a0+ > %Xk
peZ [iedp ket
_'_Coff,non—req. (F),r: Eff_’_coff,mult_ Xr;ion
ic.s ¢ Ipke ics
off,on offon confon conf,on conf,off onf,off
DY pwz Z Xoik > S (3.1)
ieSpkex iefpk iesi¢spke

subject to
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Table 2: Overview of decision variables

Decision  Description

variable

a?{(f 1, if order itemi is defaulted OFF in order skf 0 otherwise

a’y 1, if order itemi is defaulted ON in order sét O otherwise

x%'f 1, if patientp’s order itemi is chosen from a la carte items, 0 otherwise

x‘;f}”g'o‘(f 1, if patientp’s order itemi chosen from order sétis confirmed OFF, O
' otherwise

‘F:)Oi“g'o” 1, if patientp’s order itemi chosen from order sétis confirmed ON, 0
otherwise
x‘;fif:‘;” 1, if patientp’s order itemi is defaulted OFF in order skiand is selected,
0 otherwise

ng;:ﬁff 1, if patientp's order itemi is defaulted ON in order sétand is dese-
B lected, O otherwise

ngk 1, if patientp is assigned to order skt 0 otherwise

Xpik 1, if patient p is assigned to order sé&tand orderi of that patient is
' defaulted ON, O otherwise

x’;;"” an integer number which represents how often pag&norder itemi has
' to be deselected because it is prescribed in order setpiaulthes
A S (el =1 Vpe i€ .7 (3.2)

ket
X% +alk N < 1 Vpe P ke ic I i¢ Iy (3.3)
X% +alk — T < 1 Vpe Z ke xic sid¢ s (3.4)
a2 >0 Vpe P.ke X ie 7, (3.5)
a’p— x>0 Vpe ke x,ic s i¢ 7, (3.6)
x?f;ﬁ”} Xk +adk—1 Vpe Z.ke X ie I, (3.7
x"’;;ong z x‘,’)ﬁ:ﬁ”— 1 Vpe Zie 9, (3.8)
ket

R — x>0 Vpe P.ke X ie 7, (3.9)
al x>0 Vpe P ke x,ic I i¢ 7 (3.10)
alR+all <1 Vie s kex (3.11)
X=X >0 Vpe P ke H (3.12)
X% — X" > 0 Vpe Pi€ S ke H (3.13)
X=X >0 Vpe Pic 7 i¢ I ke X (3.14)
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X% =X >0 VpE Pic.s ¢ Iy ke H (3.15)
%y, all € {0,1} Vie s ket (3.16)
Xg?ke {0,1} Vpe P kex (3.17)
X3¢ € {0,1} Vpe Z,ie .7, (3.18)
XS xomot e {0, 1} Vpe Pic s i¢ ke H (3.19)
Xk " Xpik i € {0.1) Vpe i€ Spke X (3.20)
Xpi € Nxo Vpe Z,ie s (3.21)

Obijective function (3.1) minimizes workload for selectjpatients’ order items from a la carte, assigning
patients to order sets, deselecting defaulted ON ordersifeom order sets, selecting defaulted OFF
order items from order sets, confirm defaulted ON order iteditisin order sets and confirm defaulted
OFF order items within order sets. We will denote the diffiéterms of the objective function a&¢, 2,
Zoffnon-req off,mult Zoff.on  Zconf.on gpgzcont.off Constraints (3.2) ensure that each patient’s requiregrord
item is either selected a la carte or it is selected from adts. If it is selected from order sets, the order
item is confirmed defaulted ON or it is switched on becausedeifaulted OFF. Constraints (3.3) ensure
that if a patient is assigned to an order set and a non-ratjaider item is defaulted ON, then it has to
be de-selected. Constraints (3.4) ensure that if a paseagsigned to an order set and a non-required
order item is defaulted OFF, then it has to be confirmed to bE. @enstraints (3.5) ensure that if a
patient’s order item is switched ON from defaulted OFF, & tabe defaulted OFF in the corresponding
order set. Constraints (3.6) ensure that if a patient’s negpuired order item is switched OFF from
defaulted ON, it has to be defaulted ON in the correspondidgroset. Constraints (3.7) ensure that if
the patient is assigned to an order set and the order itenfasltd ON, thex 3" -variables have to
be 1. Using these variables, Constraints (3.8) ensurefttia patient’s required order item is selected
multiple times, it has to be counted by the auxiliary decisiariables. Constraints (3.9) ensure that a
patient’s required order item can only be confirmed on if iéfaulted ON in the corresponding order
set. Constraints (3.10) ensure that a patient’'s requirddratem can only be confirmed OFF if it is
defaulted OFF in the corresponding order set. Constralisl] ensure that an order item cannot be
defaulted ON and defaulted OFF in the same order set at the Hara interval. Constraints (3.12)
ensure that if a patient’s order item is switched on from dikéal OFF in an order set, the patient has
to be assigned to the corresponding order set. Constrairit8)(ensure that if a patient’s order item is
switched OFF from defaulted ON in an order set, the patieattbde assigned to the corresponding
order set. Constraints (3.14) ensure that if a patient'audefd ON order item is switched OFF, the
patient has to be assigned to the corresponding order seisti@mts (3.15) ensure that if a patient’s
defaulted OFF order item is confirmed OFF, the patient hagtadsigned to the corresponding order
set. (3.16)—(3.20) are the decision variables and theirailom

The parameters introduced in the problem description anéagito the ones introduced in Gartner
et al. (2017) and Gartner et al. (2015). The problem and mimdeiulation is, however, different to
the one developed by Gartner et al. (2017) because of theitidependence of order sets that are now
generated. The time index is removed which means that tH#gmmodoes not decompose into disjoint
time intervals. As a consequence, the temporal decompositrategy introduced in Gartner et al.
(2015) for the MCC problem cannot be employed any more. Asnseguence, a significantly larger
number of order items are expected to be part of the solufianesfor thea—variables and most of the
X—variables.
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3.3 Complexity

Proposition The physical workload minimizing Order Set i@ytation Problem withcs = 1, ¢3¢ =
1. coffimult _ 1 coff.on _ 9 coffnon-req_ q cconfon_ g cconfoff _ o K — 1 andP > 1 is NP-Hard.

The optimization problem reduces to the set covering prok@arey and Johnson (1979)). The
optimal item combination in order st= 1 and patients’ order set and a la carte assignment has to be
found such that mouse clicks are minimized. Figure 3 shovfsrdnt combinations of sets covered by
using|.#| = 3 order items.

(@) (b)

FiG. 3: All order items a la carte (a) and the set of a la carte itglms one order set consisting of items
S :={1,2} (b)

Since the problem can be intractable already for small sik&se order set optimization problem, a
promising way to solve it is a Greedy-based heuristic whidhbe introduced next.

4. A Greedy-based Decomposition Heuristic

Instead of solving the entire model (3.1)—(3.20), we use@uposition approach which breaks the
problem into a clustering and an assignment problem. Moeeiipally, we determine the value of
the clustering variablea’; heuristically. We introduce a threshold parameteand relative frequency
measureg; x which is the relative frequency of iteinwhen splitting the patient demand into subsets
k=1,...,K. The threshold parametercan be determined by parameter optimization or set manually
For example ifk = 0.5, then order items which were prescribed in 50% of the casesgbsek of the
patients will be defaulted-on in the corresponding ordér $he x-variables which determine whether
patients’ order items are chosen from order sets or a la aegtdetermined using our MIP.
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Algorithm 4.1 shows the pseudocode of our Greedy heuristic.

Algorithm 4.1: Greedy-based decomposition heuristic
1: Split & into K disjoint subsets?,, %, ..., %.
2: for all ke o2 do

3: Let & « denote the relative frequency of order itets for patientp € 2
4: if Ei,k > K then

5: Fix defaulted-on variableaP; = 1

6: ese

7: Fix defaulted-on variableaP) = 0

8: end if

9: end for

10: Solve model (3.1)—(3.21) based on fixed clusters.

In Line 1 we split the set of patients inko(1 < k < K) groups and calculate the relative frequedgy
of each order itemhin groupk. Afterwards, we fix the defaulted-on variables in the orads én Line 7
if thresholdk is exceeded for the relative frequency of the occurrencecti éem. In our experimental

analysis, we set = 0.5 which we determined using parameter optimization for alsseaof acute care
test instances, see Figure 4.

1100
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FiG. 4: Parameter optimization results
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A demonstration that our Greedy heuristic fails optimalitjt be shown next.
Proposition The Greedy heuristic fails to guarantee ogtiyna

Proof.  Proof by reductio ad absurdutret .# = {1,2,3,4} be the set of order items? = {1,2}
patients,.7; = {1,2,3,4} and.#; = {1} be the set of order items required by the patients. Since the
Greedy heuristic decides on the majority of order itemsirediby patients, it would create’®" = {1}

as order set because the item is required by both patientsveVn, this solution is dominated by
creating one order set based on all first patient’s ordersterssigning the first patient to the order set
and selecting the second patient’s order item from a la carte O

5. Experimental Analysis

In the following, we provide an experimental investigatiohthe presented methods. We first give
a description of the data employed for our study, followedahyanalysis of each of our approaches.
Within each approach and test instance, computation timdsamrkload are reported. For the MIP

approach, the linear programming (LP) relaxation gap isigel.

5.1 Data and General Parameters

5.1.1 Data. We evaluated our approaches on data from a major U.S. uitivbospital and focused
on the following clinical conditions with moderate sevgriBronchiolitis and pneumonia with respira-
tory syncytial virus’, ‘Asthma’ and ‘Tonsil and adenoid pealures’ patients. We denote these conditions
henceforth as ‘acute care’, ‘chronic care’ and ‘surgicatteonditions, respectively. Our instances con-
sist of patients to whom orders were prescribed between @rstimfore and after admission.

Dataset  Clinical Condition |22|  Unique S |.%] PW Cw
orders P<¥
Acute Bronchiolitis and pneumonia with 83 559 4,723 3,630 6,174.3
respiratory syncytial virus
Chronic  Asthma 106 697 7,685 6,227 9,857.2
Surgical Tonsil and adenoid procedures 79 627 5,111 3,752496

Table 3: Summary statistics of the data

The table reveals that the instances consist of 83, 106 armghfénts for the acute, chronic and
surgical care condition, respectively. Moreover, 4,7288% and 5,111 order items were prescribed,
respectively which means that an average between 56.9 aBdider items were required by each
of the patients. For the acute, chronic and surgical caienqgat559, 697 and 627 unique order items
were prescribed, respectively. In the current system, 3@l 32 unique order sets were used for the
acute, chronic and surgical care conditions, respectietng with a la carte orders. The table also
reveals that, for example, in the acute condition a physicakload (PW) of 3,630 clicks was required
to prescribe all order items to patients. However, for stagpatients, a cognitive workload (CW) of
6,149.6 was required. Cost coefficients are discussed inegkiesubsection.

We joined usage data from the current CPOE system with daa fine electronic medical record.
In doing so, we obtained time stamps for the current ordeassggnments and patient demand, among
others. This allows us to generate all parameters for owtexal heuristic approaches and to compare
the solution with the clinicians’ current workload.
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All computations were performed on an Intel Core i7-4940MRWwith 32 GB RAM running
Windows 7 operating system. The models were coded in Java Ibh@G Concert environment. The
solver used was IBM ILOG CPLEX 12.6 (64 bit).

5.1.2 Evaluating the Frequency of Order Set Prescription§igure 5 provides an overview of order
sets prescribed to patients in the current system.

Prescription frequency distribution

a | | | I I I I I [ | | | |
1 2 3 4 5 6 7 8 E] 10

11 12
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FIG. 5: Frequency distribution of order sets currently in use

The figure reveals that 10 order sets are most commonly ugkohay be prescribed multiple times
to patients.

5.1.3 General Parameters. Table 4 shows how we chose the workload coefficients of theablp
function. Measuring the clinicians’ workload associatathwheir mouse clicks are framed as physi-
cal workload (PW). We also evaluate cognitive workload deddiy CW (Zhang et al. (2014)). The
objective function coefficients are set according to theesishown in Table 4.

Table 4: Setup of our objective function coefficients (Zhahgl. (2014))

Metric Calc cos Coff,non—req Coff.mult Ccom‘,on Cconf,off Coff,on

PW 1.0 1.0 1.0 1.0 0.0 0.0 1.0
CwW 11 11 13 1.3 1.0 11 1.4

The table shows that all CW coefficients are greater thanwaleéqg one while using the PW metric, two
workload coefficients are zero. Also, sing:°" > ¢, switching order items from default OFF to ON
is dominated by a la carte assignment.

In what follows, we present the results of our mathematicatieh and the heuristic. We stop the
computation of the MIP after 600s computation time. We refha relative gap between the best integer
solution’s objective function value and the objective fiimie value found by solving the linear program
(without integrality, refered to as LP relaxation gap).
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5.2 Computational Complexity and LP Relaxation Gap Analysis

We break down our computational complexity analysis by thesjcal and cognitive workload mini-
mization model. For each model, we report the results of thea chronic and surgical care condition.
The performance of the approaches for PW minimization isvehia Table 5.

Table 5: Computation time analysis results for the PW méBiest performance figures are in bold.
Figures marked with are LP relaxation gaps obtained after approx. 600s.)

MIP Greedy Heuristic
Condition |7| #Var. #Constr.  Comp. z  Gap [%] Comp. z Impr. [%)]
time [s] time [s]
1 61,208 148,637 600 3,931 21477 0.077 3,764 4.25
acute 2 112,970 287,828 600 4,643 90748 0.435 3,671 20.93
5 268,256 705,401 600 4,723 98124 2.015 3541 25.03
1 97,740 237,016 600 5,634 19152 0.115 5,259 6.67
chronic 2 180,110 458,662 600 7,490 98104 1.133 5,110 31.78
5 427,220 1,123,600 601 7,685 9862 1.605 4,893 36.33
1 65,572 158,821 600 3,597 9.16* 0.081 3,616 -0.53
surgical 2 120,922 307,420 600 4,979 9350 0.585 3,501 29.68
5 286,972 753,217 600 5,111 98.45 3.150 3,258 36.26

The figures reveal that none of the problem instances canledsto optimality by the MIP approach.
More specifically, the best LP relaxation gap is 9.16% forghegical condition test instance. Another
observation for the MIP approach is that the objective fiamctaluezincreases whel increases. This
is counter-intuitive but can be explained by the increasedehcomplexity. When running small-scale
instances to optimality (see Appendix Ajlecreases with increasiig Another observation is that the
Greedy approach outperforms the MIP approach in all but eoblem instances. In the case of the
chronic condition, the improvement when comparing the @yespproach with the MIP approach is
best. More specifically, foK=5, the Greedy approach improves the MIP by 36.33%. One eaptm
for this phenomenon is that the test instances for the cbrommdition are largest with 106 patients.
Accordingly, the problem sizes which are reported by the Ioemof decision variables and constraints,
are the largest for that condition. Overall, we can obsemat the main driver for the problem size is
the number of order sets?’| which dramatically increases and more than quadruples fréih= 1 to
|2 | =5.

The performance of the approaches for CW as minimizatioeativg is shown in Table 6.

The figures show a similar pattern with respect to the ohjedtinction behavior in the MIP approach.
Increasing the number of order sétanay lead to even worse objective function values which is tru
for the data sets of the chronic and the surgical conditiam.tiie acute conditiorg decreases whef

is set from 1 to 2. But then it increases again whes 5. One explanation of this phenomenon is that
the problem sizes are just too big to handle with the solvdriaronverges very slowly.

The figures also reveal that the difference between the @rgoroach and the MIP, which is used
as a heuristic because it is not solved to optimality, is tkas 1%. Another observation is that the LP
relaxation gaps of the MIP are smaller when comparing the Cddeghwith the PW model. A more
detailed analysis of the CPLEX output revealed that théinitbjective function value is already close
to the LP relaxation gap. More specifically, in the initialigeon the solver sets all order items a la
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Table 6: Computation time analysis results for the CW mdBiest performance figures are in bold.
Figures marked with are LP relaxation gaps obtained after approx. 600s.)

MIP Greedy Heuristic
Condition |.7| #Var. #Constr.  Comp. z Gap [%] Comp. z  Impr. [%]
time [s] time [s]
1 108,164 283,664 601 5,185.9 2.24 1.775 5,194.3 -0.16
acute 2 206,882 557,882 601 5,181.5 7.07 5.546 5,192.5 -0.21
5 503,036 1,380,536 601 5,195.3 733 23901 51921 0.06
1 172,319 451,674 600 8,434.3 3.44 3.359 8,450.0 -0.19
chronic 2 329,268 887,978 601 8,453.5 771 9.801 8,450.2 0.04
5 800,115 2,196,890 603 8,453.5 100 53.613 84453 0.10
1 115,732 302,936 600 5,594.5 1.70 1859 5,618.7 -0.43
surgical 2 221,242 595,650 600 5,609.3 7.30° 6.177 5,617.7 -0.15
5 537,772 1,473,792 602 5,622.1 100 39.406 5,612.6 0.17

carte. The marginal improvement potential of this solut®lower than in the case of PW minimization
because of the cognitive costs associated with confirmifegutted-ON items paired with the workload
of assigning the patient to the order set.

5.3 A Platform for Order Set Optimization

We extended the Java-based order set optimization plaffemm Gartner al. (2017) to better commu-
nicate the effectiveness of the approaches to hospitatifoaers. The difference now is that we have
time-independent order sets and can choose between diffeieical conditions. Figure 6 shows the
platform.

| £ | OrderSetAnalytics l e 5 e S
- —— o ——
Clinical Condition: | Acute | DOptimization Parameters
Wiarkload Objective: \y Physical () Cagnitive Mumber of Order Sets to be Generated 1 B
Approach 1 Current Configuration I Approach 2 MIP v
| 2 i MIP | Greedy Heuristic
| tem 1D | ONJOR | Item Description . ltem ID | ONiOT | item Description ] ShiE -
0 K Drug aerasol o [ Drug aerosal (® Solution tirme limit | 3600 seconds
1 K DA with albuteral 1 M DA with albuterol
4 [ Sadium chloride 4 1 Sodium chlaride { : "
12 pq Pulse Oxymetry 13 pq Toddler (1-3yrs) Diet i i 5[
17 [ Wital Signs
| A [ v Run Optirmization
[ R —] | Re— R - |
rder set WE orderset 1 |

FIG. 6: Order set optimization platform
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5.4 Generalizability of the Approaches

Our results have demonstrated that mathematical progragnamd the Greedy heuristic can reduce
physical and cognitive workload for the prescription of@ritems. We argue that our approaches can
be generalized to similar order set optimization problemether developed-world countries, such as the
U.K. national healthcare system (NHS). In this system, ktgrat al. (2009) evaluated clinical outcomes
of order sets on mortality and costs. Our study setting is afgplicable in the U.K. because patients’
conditions can be selected based on Diagnosis-relategpg@RGs). These are hamed Healthcare
Resource Groups (HRGS) in the NHS and are structured in éasivway.

In the model we tested the scenario what happened if the doatould have been faced with the
new order sets (based on demand). This assumes that theatient population has a similar structure
as compared to the one we used for testing the approaches.

6. Summary and Conclusions

In this paper, we have introduced a MIP and a Greedy-basdthlgtyder set optimization approach
to better design Hospital Information Systems. Dependimghe number of allowed order sets and
the solution time limit, our Greedy approach can outperfohe MIP. Developing further heuristic
optimization approaches as well as parametric optiminatibthe objective function coefficients are
promising future directions for this research. AnotheaarEfuture research is the development of upper
and lower bounds for the problem as well as providing conipgleesults for arbitrary combinations
of numbers of order sets, patients and objective functi@fficients. Furthermore, the model could be
extended towards incorporating precedence relationgiorither items which relates to clinical pathway
mining.

A. Experimentsfor incrementing K

To benchmark the Greedy approach with optimal solutionsselected a subset of 10 patients and per-
formed the computation. The results for the PW and CW meteishown in Table 7 and 8, respectively.
The figures from the PW metric reveal that the objective fiomctalue of the MIP decreases mono-
tonically with increasind. Another observation is that the computation times ineelamatically
with increasingK. The figures also show that the gap between the heuristid'stenMIP’s objective
function value increases with increasiigHowever, the gap is relatively small in the case whére 1.
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Table 7: Computation time analysis results for small testances and the PW metric solved to opti-

mality
MIP Greedy Heuristic
Condition |7 #Var. #Constr. Comp. z Optimality Comp. z Heuristic
time [s] Gap [%] time [s] Gap. [%]
1 4,007 7,538 23 401 0.0 0.012 406 1.25
2 6,926 13,988 159 326 0.0 0.051 378 15.95
acute 3 9,845 20,438 100.4 268 0.0 0.044 330 23.13
4 12,764 26,888 669.9 215 0.0 0.061 309 43.72
5 15,683 33,338 876.7 169 0.0 0.085 315 86.39
1 4,834 8,452 0.7 469 0.0 0.009 469 0.00
2 8,146 15,382 23.7 373 0.0 0.040 429 15.01
chronic 3 11,458 22,312 172.4 296 0.0 0.097 373 26.01
4 14,770 29,242 643.9 239 0.0 0.099 345 44.35
5 18,082 36,172 1,626.2 186 0.0 0.106 376 102.15
1 4,523 8,290 0.7 445 0.0 0.010 447 0.45
2 7,746 15,280 12.1 340 0.0 0.033 373 9.71
surgical 3 10,969 22,270 112.2 291 0.0 0.067 328 12.71
4 14,192 29,260 7721 244 0.0 0.078 341 39.75
5 17,415 36,250 1,386.1 200 0.0 0.104 356 78.00

The results from the CW optimization confirm the pattern thatobjective function values decrease
with increasingk. However, the gap between the heuristic’s and optimal ¢ilbgfunction value are

increasing less dramatically.
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Table 8: Computation time analysis results for small testances and the CW metric solved to opti-
mality

MIP Greedy Heuristic
Condition |.7| #Var. #Constr.  Comp. z Optimality Comp. z Heuristic
time [s] Gap [%] time [s] Gap. [%]
1 6,372 13,659 1.1 5916 0.0 0.042 5984 1.16
2 11,656 26,230 13.4 585.9 0.0 0.196 598.4 2.13
acute 3 16,940 38,801 48.0 580.3 0.0 0.337 595.4 2.60
4 22,224 51,372 52.1 5754 0.0 0.314 598.4 4.00
5 27,508 63,943 77.7 570.6 0.0 0.417 598.4 4.87
1 7,375 14,852 1.9 8247 0.0 0.038 837.1 1.50
2 13,228 28,182 38.6 815.9 0.0 0.200 837.1 2.60
chronic 3 19,081 41,512 270.3 808.2 0.0 0.361 835.8 341
4 24,934 54,842 736.9 801.1 0.0 0.377 837.1 4.49
5 30,787 68,172 520.9 795.2 0.0 0.494 837.1 5.27
1 7,086 14,863 24 707.2 0.0 0.047 715.0 1.10
2 12,872 28,426 15.3 699.5 0.0 0.184 714.9 2.20
surgical 3 18,658 41,989 559 691.9 0.0 0.277 712.9 3.04
4 24,444 55,552 347.7 686.2 0.0 0.397 7134 3.96
5 30,230 69,115 147.8 681.2 0.0 0.428 715.0 4.96
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