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Order sets are a critical component in hospital information systems, designed to substantially reduce clin-
ician workload and improve patient safety and health outcomes. Order sets represent clusters of order
items, such as medications prescribed at hospital admission, that are administered to patients during their
hospital stay. In prior research, we constructed order sets for defined time intervals during inpatient stay
based on historical data on items ordered by clinicians across a large number of patients. In this study, we
build on our prior work to formulate a mathematical program for optimizing order sets that are applicable
across the entire duration of inpatient stay and are independent of the timeintervals. Furthermore, due
to the intractability of the problem, we develop a Greedy algorithm to tackle real-world test instances.
We extract data sets for three clinical scenarios and conduct both cognitive and physical workload anal-
yses. Finally, we extend a software application to facilitate the comparison oforder sets by practitioners.
Our computational results reveal that the optimization-based physical and cognitive workload models
can solve small test instances to optimality. However, for real-world instances, the Greedy heuristic is
more competitive, in particular when physical workload instead of cognitive workload is the optimization
objective. Overall, the Greedy heuristic can solve the test instances within one minute and outperforms
the mathematical program in 2/3 of the test instances within a time limit of ten minutes, demonstrating
a feasible and promising approach to develop inpatient order sets that can subsequently be validated by
clinical experts.
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1. Introduction

In healthcare information systems, Computerized Physician Order Entry (CPOE) has proven to be effec-
tive in increasing patient safety, reduce medication errors and costs (Nuckols et al. (2014)). Specifically,
order sets support clinicians in high risk situations by serving as expert-recommended guidelines, re-
ducing prescribing time by making complex ordering easier,increasing physician compliance with the
current best practice and playing a vital role in reducing excessive ordering (Goldszer et al. (2017)). A
characteristic of order sets is that specific orders can be predetermined to be “pre-set” or “defaulted-on”
whenever the order set is used while others are “optional” or“defaulted-off” (though there is typically
the option is to “deselect” defaulted-on orders in a given situation), see Olson et al. (2015). For instance,
the ‘Asthma Admission Order Set’ shown in Figure 1 groups together order items for Asthma patients
upon admission.

FIG. 1: Asthma admission order set Gartner et al. (2017)

The figure shows that order item number 3 – “Admit to DiagnosisAsthma” is defaulted ON while
order item number 7 – “Bedrest” is defaulted off in the example asthma order set. In general, order
items in order sets can be defaulted ON or OFF according to clinical relevance and frequency of use.
An order item can be part of multiple order sets. Despite the benefits of order sets, historical data
indicate a tremendous variability in order set usage by clinicians, driven largely by the diversity in
patient population, physician experience, and system usability. Within CPOE, clinicians can search for
particular orders by typing the order names and the search result includes all a la carte orders and order
sets that match the keyword because order set usage is not mandatory. A la carte orders are individual
orders that clinicians choose to enter without using order sets. Intuitively, ordering a la carte items takes
more time compared to order sets because they have to be searched for and entered one by one. Some
orders are standalone items and a la carte is the only way to prescribe them. Yet, reasons for ordering
a la carte items instead of order set items come from a physician’s disagreement with order set content,
unfamiliarity with order sets, inconsistency of order set content with current best practices, and at times,
a simple need for only one or two orders. Ordering efficiency decreases when order sets contain items
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that do not match the workflow or the patient’s condition, forcing clinicians to go through long lists of
orders to determine each item’s relevance to particular patients, and eventually rely on a la carte orders
which are time-consuming and subject to errors (Zhang et al.(2014)). Size of order sets is at least 2,
varying depending on their purpose.

This paper aims to address these challenges by proposing andtesting approaches based on Discrete
and Metaheuristic Optimization to create order sets from usage data with the objective of minimizing
clinicians’ workload. Clinicians’ workload can be measured in two ways: Physical workload (PW)
associated with mouse clicks and cognitive workload (CW) associated with mental tasks in order pre-
scription. PW is associated with i) assigning patients’ orders to order sets, ii) deselecting non-required
order items from order sets, iii) deselecting order items which are prescribed multiple times and iv)
ordering items a la carte. In addition, CW is incurred when order items are confirmed to be defaulted
ON or OFF after assigning order sets to patients.

In this paper, we build on previous work from Gartner et al. (2017) who developed a time-dependent
mathematical program to generate order sets, assign patients’ order items to order sets or, if workload
cannot be minimized by using order sets, items are selected individually. Figure 2 illustrates the notion
of time-dependent vs. -independent order set optimization. In the case of time-dependent order set
optimization, time intervals are explicit. For example, assume we have 3 time intervals (t = 0,1,2) that
distinguish different episodes of the patients’ length of stay. Intervalt = 0 represents the time interval 24
hours before admission until admission,t = 1 represents the admission andt = 2 represents the patient’s
treatment stage. Witin these time intervals, order items can be grouped into, for example, pre-admission
order sets fort = 0. Admission-related order items are grouped in admission order sets (t = 1) and
treatment-related items are clustered into treatment order sets fort = 2. On the contrary, with time-
independent order set optimization, all items that are relevant for prescription during the entire patients’
hospital visit are grouped into time-independent order sets which include pre-admission, admission and
treatment stage orders.

-24h 0 24h

before admission (t = 0) admission (t = 1) treatment (t = 2)

Time-dependent

Time-independent

FIG. 2: Time-dependent vs. time-independent order set optimization

To address the time-independent order set optimization problem, we extend the model from Gart-
ner et al. (2017) in the following four ways: Firstly, we formulate a mathematical program for time-
independent order sets. Because the problem is intractable, we secondly develop a Greedy algorithm
to tackle real-world test instances. Thirdly, we solve real-world data sets using three types of clinical
conditions and conduct a cognitive and physical workload analysis. Finally, we extend the graphical
user interface to facilitate the comparison of order sets bypractitioners.

The remainder of this paper is structured as follows. In the next section, we provide an overview of
related work. Next, we provide a formal description of the problem and the mathematical programming
formulation followed by a description of the heuristic solution approach. In a computational study, we
demonstrate the effectiveness of our approach based on datafrom a major hospital in the United States.
In that section, we describe our evaluation metrics followed by a presentation of our results. We finally
summarize our paper with a conclusion and outline streams for further research.
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2. Related Work

We focus on two relevant fields: Order set management and medical item clustering.

2.1 Order Set Management

Table 1 provides an overview of order set management problems.

Table 1: Overview of order set management problems (CW: Cognitive Workload, PW: Physical Work-
load)

Publication Zhang et al.
(2014)

Zhang and
Padman
(2015)

Gartner et al.
(2015)

Gartner et al.
(2017)

Our paper

Objective function CW, PW CW PW CW CW, PW
Problem size large large small large small, large
Method 2 stage

heuristic
opti-
mization
embedding
K−means
clustering

Tabu-search
optimization

Mathematical
Program-
ming,
K−means
decomposi-
tion

Mathematical
Program-
ming,
K−means
decomposi-
tion

Mathematical
Program-
ming,
Greedy
Heuristic

Time dimension yes (flexi-
ble)

yes (flexi-
ble)

yes (fixed) yes (fixed) no

Clinical Condition acute,
chronic,
surgical

acute acute chronic acute,
chronic,
surgical

Related work on order set management includes Zhang et al. (2014) and the references therein. The
authors employ heuristic methods to reduce physician workload in hospitals through order set improve-
ment. Gartner et al. (2015) provide a mathematical model andsolve the order set optimization problem
with fixed time intervals to optimality with the objective toreduce physician workload for one clinical
condition. Time intervals were fixed because the use case in reality is that clinicians should be able to
prescribe, for example, admission order sets to patients. Those contain prescriptions and activities car-
ried out to admit the patient to the hospital. On an aggregated view, time-independent order sets allow
to bundle all order items required during the patients’ entire hospital stay.

Our study has a similar focus as compared to Zhang et al. (2014)’s, Zhang and Padman (2015)’s,
Gartner et al. (2015)’s and Gartner et al. (2017)’s studies.The extension, however, is that we provide
a mathematical model without decomposing it into fixed time intervals. Because of the larger number
of order items, the problem is expected to be computationally more challenging because of the union
of all order items in all time intervals. Another extension is that we develop a Greedy heuristic which
determines order sets based on frequency measures in the item demand. Finally, we focus on cognitive
workload in addition to physical workload and two additional clinical conditions.

Chen et al. (2017) evaluate the accuracy of predicting orderpatterns for patients. They use proba-
bilistic topic models to generate clinical topic models andto predict subsequent clinical orders. Using
classification accuracy as performance metric, the authorsdemonstrate that probabilistic topic modelling
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can increase classification accuracy as compared to using existing order sets as a classifier. Their ap-
proach is different to our approach since they create a set ofclinical topics whereas we create data-driven
order sets.

2.2 Clustering Medical Items

Focusing on healthcare, Cardoen et al. (2015) has similarities to our work because they group medical
items for surgeries which can be seen as a clustering problem. The difference to our problem is, among
others, that we have a defaulted ON and defaulted OFF option as shown in Figure 1. Each order item in
an order set can be defaulted ON or OFF according to clinical relevance and frequency of use (Gartner
et al. (2017)) With respect to the solution methodology, we use a different heuristic approach. Similarly,
Dobson et al. (2015) propose a mathematical programming formulation to decide on the composition
of instrument trays to minimize the costs of owning, maintaining, and using both the trays and the
instruments.

As a conclusion of our literature review, our study can be considered to be the first to employ
mathematical programming for the time-independent order set optimization problem. In addition, we
develop an exact and a heuristic approach to solve real-world test instances. Furthermore, we prove
structural properties of the problem. Finally, we develop aJava-based application with a graphical user
interface that covers all components: order set optimization and current order set usage. This allows
clinicians to take advantage of the methods we develop in this paper.

3. Problem Description, Model Formulation and Complexity

In what follows, we provide a concise problem description followed by the mathematical model that
clusters order items to which patients are assigned. We thenprovide insights into the complexity of the
problem. In the remainder of this paper, we will use the following terms as synonyms: activities, items,
orders, order items, procedures and treatments. Similarly, clusters and order sets are used synonymously.

3.1 Problem Description

When patients are admitted to the hospital, we wish to assign these patients to clusters which represent
sets of order items. Unlike a la carte order placement, whereclinicians need to apply one mouse click
every time to select an individual order, defaulted ON itemsare automatically selected when an order
set is chosen. With additional clicks, users can add defaulted OFF items to the selection or deselect
defaulted ON items from the order placement, see Figure 1 in Section 1.

In what follows, we start with the definition of the general parameters for building clusters and then
turn to patient-related parameters as well as workload parameters for the assignment of patients’ order
items to order sets, and for selecting order items a la carte,among others.

3.1.1 Clusters, Order Items, Patients and Patients’ Order Items.Order sets are indexed using the
setK := {1,2, . . . ,K} with the maximum number of order sets denoted byK. Order item demand,
which is the universe of order items required by all patients, is denoted by setI := {1,2, . . . , I}. In this
set,I is the biggest index of order items. Patients are denoted by set P := {1,2, . . . ,P} in which P is
the last index of all patients. LetIp denote patientp’s order items.
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3.1.2 Workload. We break down the clinicians’ workload into i) selection workload when patients
are assigned to order sets, ii) workload associated with theselection and de-selection of patients’ order
items from order sets, and iii) workload associated with theconfirmation of patients’ order items.

Order set selection workload. When an order set is assigned toa patient, we denote the workload asso-
ciated with each selection ascos.

Selection workload for required order items. If additionalorder items are required (in addition to the
activities in an order set), workload ofcoff,on arises for each additional order item. Selection
workload for adding an a la carte item is denoted bycalc. We denote a la carte workload ascalc

and assume that the workload is greater than or equal to zero.

Deselection workload for non-required and multiple prescribed order items. When an order item that is
part of an order set must be deselected for that particular patient because it is not required,
there is a workload which we denote bycoff,non-req. Sometimes, patients may be assigned to
multiple order sets. In that case, it can happen that order items are prescribed multiple times and
workload associated with the deselection of items that are prescribed multiple times are denoted
by coff,mult.

Cognitive workload. We denotecconf,onas cognitive workload when a patient’s order item is confirmed
as defaulted ON in an order set. Similarly, we denotecconf,off as cognitive workload when an
order item is confirmed as defaulted OFF in an order set. As a consequence, it is not assigned
to the patient.

3.2 Model Formulation

We will now introduce the decision variables, the objectivefunction and the constraints to model the
problem. The decision variables are shown in Table 2.
We denote theaoff

i,k andaon
i,k variables as ‘clustering variables’ because in each order set k (cluster) they

will provide information about which order item is defaulted OFF and ON, respectively. All other
variables will mainly be used for assigning patients to order sets or performing decisions on the patients’
item level to determine the physician workload in our objective function. With the introduced parameters
and decision variables, our mathematical model can be formulated as a Mixed-Integer Program (MIP)
follows:

minimize z= ∑
p∈P

[

∑
i∈Ip

calc ·xalc
p,i + ∑

k∈K

cos·xos
p,k

+coff,non-req·



 ∑
i∈I :i /∈Ip

∑
k∈K

xon,off
p,i,k +coff,mult · ∑

i∈I

xm,on
p,i





+coff,on · ∑
i∈Ip

∑
k∈K

xoff,on
p,i,k + ∑

i∈Ip

∑
k∈K

cconf,on·xconf,on
p,i,k + ∑

i∈I :i /∈Ip

∑
k∈K

cconf,off ·xconf,off
p,i,k

]

(3.1)

subject to
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Table 2: Overview of decision variables

Decision
variable

Description

aoff
i,k 1, if order itemi is defaulted OFF in order setk, 0 otherwise

aon
i,k 1, if order itemi is defaulted ON in order setk, 0 otherwise

xalc
p,i 1, if patientp’s order itemi is chosen from a la carte items, 0 otherwise

xconf,off
p,i,k 1, if patientp’s order itemi chosen from order setk is confirmed OFF, 0

otherwise
xconf,on

p,i,k 1, if patientp’s order itemi chosen from order setk is confirmed ON, 0
otherwise

xoff,on
p,i,k 1, if patientp’s order itemi is defaulted OFF in order setk and is selected,

0 otherwise
xon,off

p,i,k 1, if patient p’s order itemi is defaulted ON in order setk and is dese-
lected, 0 otherwise

xos
p,k 1, if patientp is assigned to order setk, 0 otherwise

xos,on
p,i,k 1, if patient p is assigned to order setk and orderi of that patient is

defaulted ON, 0 otherwise
xm,on

p,i an integer number which represents how often patientp’s order itemi has
to be deselected because it is prescribed in order sets multiple times

xalc
p,i + ∑

k∈K

(

xconf,on
p,i,k +xoff,on

p,i,k

)

= 1 ∀p∈ P, i ∈ Ip (3.2)

xos
p,k+aon

i,k−xon,off
p,i,k 6 1 ∀p∈ P,k∈ K , i ∈ I : i /∈ Ip (3.3)

xos
p,k+aoff

i,k −xconf,off
p,i,k 6 1 ∀p∈ P,k∈ K , i ∈ I : i /∈ Ip (3.4)

aoff
i,k −xoff,on

p,i,k > 0 ∀p∈ P,k∈ K , i ∈ Ip (3.5)

aon
i,k−xon,off

p,i,k > 0 ∀p∈ P,k∈ K , i ∈ I : i /∈ Ip (3.6)

xos,on
p,i,k > xos

p,k+aon
i,k−1 ∀p∈ P,k∈ K , i ∈ Ip (3.7)

xm,on
p,i > ∑

k∈K

xos,on
p,i,k −1 ∀p∈ P, i ∈ Ip (3.8)

aon
i,k−xconf,on

p,i,k > 0 ∀p∈ P,k∈ K , i ∈ Ip (3.9)

aoff
i,k −xconf,off

p,i,k > 0 ∀p∈ P,k∈ K , i ∈ I : i /∈ Ip (3.10)

aon
i,k+aoff

i,k 6 1 ∀i ∈ I ,k∈ K (3.11)

xos
p,k−xoff,on

p,i,k > 0 ∀p∈ P, i ∈ Ip,k∈ K (3.12)

xos
p,k−xconf,on

p,i,k > 0 ∀p∈ P, i ∈ Ip,k∈ K (3.13)

xos
p,k−xon,off

p,i,k > 0 ∀p∈ P, i ∈ I : i /∈ Ip,k∈ K (3.14)
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xos
p,k−xconf,off

p,i,k > 0 ∀p∈ P, i ∈ I : i /∈ Ip,k∈ K (3.15)

aon
i,k,a

off
i,k ∈ {0,1} ∀i ∈ I ,k∈ K (3.16)

xos
p,k ∈ {0,1} ∀p∈ P,k∈ K (3.17)

xalc
p,i ∈ {0,1} ∀p∈ P, i ∈ Ip (3.18)

xconf,off
p,i,k ,xon,off

p,i,k ∈ {0,1} ∀p∈ P, i ∈ I : i /∈ Ip,k∈ K (3.19)

xconf,on
p,i,k ,xos,on

p,i,k ,x
off,on
p,i,k ∈ {0,1} ∀p∈ P, i ∈ Ip,k∈ K (3.20)

xm,on
p,i ∈ N>0 ∀p∈ P, i ∈ Ip (3.21)

Objective function (3.1) minimizes workload for selectingpatients’ order items from a la carte, assigning
patients to order sets, deselecting defaulted ON order items from order sets, selecting defaulted OFF
order items from order sets, confirm defaulted ON order itemswithin order sets and confirm defaulted
OFF order items within order sets. We will denote the different terms of the objective function aszalc, zos,
zoff,non-req, zoff,mult, zoff,on, zconf,onandzconf,off. Constraints (3.2) ensure that each patient’s required order
item is either selected a la carte or it is selected from ordersets. If it is selected from order sets, the order
item is confirmed defaulted ON or it is switched on because it is defaulted OFF. Constraints (3.3) ensure
that if a patient is assigned to an order set and a non-required order item is defaulted ON, then it has to
be de-selected. Constraints (3.4) ensure that if a patient is assigned to an order set and a non-required
order item is defaulted OFF, then it has to be confirmed to be OFF. Constraints (3.5) ensure that if a
patient’s order item is switched ON from defaulted OFF, it has to be defaulted OFF in the corresponding
order set. Constraints (3.6) ensure that if a patient’s non-required order item is switched OFF from
defaulted ON, it has to be defaulted ON in the corresponding order set. Constraints (3.7) ensure that if
the patient is assigned to an order set and the order item is defaulted ON, thexos,on

h,p,i,k-variables have to
be 1. Using these variables, Constraints (3.8) ensure that if the patient’s required order item is selected
multiple times, it has to be counted by the auxiliary decision variables. Constraints (3.9) ensure that a
patient’s required order item can only be confirmed on if it isdefaulted ON in the corresponding order
set. Constraints (3.10) ensure that a patient’s required order item can only be confirmed OFF if it is
defaulted OFF in the corresponding order set. Constraints (3.11) ensure that an order item cannot be
defaulted ON and defaulted OFF in the same order set at the same time interval. Constraints (3.12)
ensure that if a patient’s order item is switched on from defaulted OFF in an order set, the patient has
to be assigned to the corresponding order set. Constraints (3.13) ensure that if a patient’s order item is
switched OFF from defaulted ON in an order set, the patient has to be assigned to the corresponding
order set. Constraints (3.14) ensure that if a patient’s defaulted ON order item is switched OFF, the
patient has to be assigned to the corresponding order set. Constraints (3.15) ensure that if a patient’s
defaulted OFF order item is confirmed OFF, the patient has to be assigned to the corresponding order
set. (3.16)–(3.20) are the decision variables and their domain.

The parameters introduced in the problem description are similar to the ones introduced in Gartner
et al. (2017) and Gartner et al. (2015). The problem and modelformulation is, however, different to
the one developed by Gartner et al. (2017) because of the time-independence of order sets that are now
generated. The time index is removed which means that the problem does not decompose into disjoint
time intervals. As a consequence, the temporal decomposition strategy introduced in Gartner et al.
(2015) for the MCC problem cannot be employed any more. As a consequence, a significantly larger
number of order items are expected to be part of the solution space for thea−variables and most of the
x−variables.
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3.3 Complexity

Proposition The physical workload minimizing Order Set Optimization Problem withcos = 1,calc =
1,coff,mult = 1,coff,on = 1,coff,non-req= 1,cconf,on= 0,cconf,off = 0, K = 1 andP> 1 is NP-Hard.

The optimization problem reduces to the set covering problem (Garey and Johnson (1979)). The
optimal item combination in order setK = 1 and patients’ order set and a la carte assignment has to be
found such that mouse clicks are minimized. Figure 3 shows different combinations of sets covered by
using|I |= 3 order items.

1

2

3

(a)

1

2

3

(b)

FIG. 3: All order items a la carte (a) and the set of a la carte itemsplus one order set consisting of items
I := {1,2} (b)

Since the problem can be intractable already for small sizesof the order set optimization problem, a
promising way to solve it is a Greedy-based heuristic which will be introduced next.

4. A Greedy-based Decomposition Heuristic

Instead of solving the entire model (3.1)–(3.20), we use a decomposition approach which breaks the
problem into a clustering and an assignment problem. More specifically, we determine the value of
the clustering variablesaon

i,k heuristically. We introduce a threshold parameterκ and relative frequency
measureξi,k which is the relative frequency of itemi when splitting the patient demand into subsets
k= 1, . . . ,K. The threshold parameterκ can be determined by parameter optimization or set manually.
For example ifκ = 0.5, then order items which were prescribed in 50% of the cases in subsetk of the
patients will be defaulted-on in the corresponding order set. Thex-variables which determine whether
patients’ order items are chosen from order sets or a la carteare determined using our MIP.
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Algorithm 4.1 shows the pseudocode of our Greedy heuristic.

Algorithm 4.1: Greedy-based decomposition heuristic

1: Split P into K disjoint subsetsP1,P2, . . . ,PK .
2: for all k∈ K do
3: Let ξi,k denote the relative frequency of order itemsIp for patientp∈ Pk

4: if ξi,k > κ then
5: Fix defaulted-on variablesaon

i,k = 1
6: else
7: Fix defaulted-on variablesaon

i,k = 0
8: end if
9: end for

10: Solve model (3.1)–(3.21) based on fixed clusters.

In Line 1 we split the set of patients intok (16 k6 K) groups and calculate the relative frequencyξi,k

of each order itemi in groupk. Afterwards, we fix the defaulted-on variables in the order sets in Line 7
if thresholdκ is exceeded for the relative frequency of the occurrence of each item. In our experimental
analysis, we setκ = 0.5 which we determined using parameter optimization for a small set of acute care
test instances, see Figure 4.
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FIG. 4: Parameter optimization results
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A demonstration that our Greedy heuristic fails optimalitywill be shown next.

Proposition The Greedy heuristic fails to guarantee optimality.

Proof. Proof by reductio ad absurdumLet I = {1,2,3,4} be the set of order items,P = {1,2}
patients,I1 = {1,2,3,4} andI2 = {1} be the set of order items required by the patients. Since the
Greedy heuristic decides on the majority of order items required by patients, it would createA on= {1}
as order set because the item is required by both patients. However, this solution is dominated by
creating one order set based on all first patient’s order items, assigning the first patient to the order set
and selecting the second patient’s order item from a la carte. �

5. Experimental Analysis

In the following, we provide an experimental investigationof the presented methods. We first give
a description of the data employed for our study, followed byan analysis of each of our approaches.
Within each approach and test instance, computation times and workload are reported. For the MIP
approach, the linear programming (LP) relaxation gap is provided.

5.1 Data and General Parameters

5.1.1 Data. We evaluated our approaches on data from a major U.S. university hospital and focused
on the following clinical conditions with moderate severity: ‘Bronchiolitis and pneumonia with respira-
tory syncytial virus’, ‘Asthma’ and ‘Tonsil and adenoid procedures’ patients. We denote these conditions
henceforth as ‘acute care’, ‘chronic care’ and ‘surgical care’ conditions, respectively. Our instances con-
sist of patients to whom orders were prescribed between 24 hours before and after admission.

Dataset Clinical Condition |P| Unique
orders

∑
p∈P

|Ip| PW CW

Acute Bronchiolitis and pneumonia with
respiratory syncytial virus

83 559 4,723 3,630 6,174.3

Chronic Asthma 106 697 7,685 6,227 9,857.2
Surgical Tonsil and adenoid procedures 79 627 5,111 3,752 6,149.6

Table 3: Summary statistics of the data

The table reveals that the instances consist of 83, 106 and 79patients for the acute, chronic and
surgical care condition, respectively. Moreover, 4,723, 7,685 and 5,111 order items were prescribed,
respectively which means that an average between 56.9 and 72.5 order items were required by each
of the patients. For the acute, chronic and surgical care patients 559, 697 and 627 unique order items
were prescribed, respectively. In the current system, 39, 32 and 32 unique order sets were used for the
acute, chronic and surgical care conditions, respectively, along with a la carte orders. The table also
reveals that, for example, in the acute condition a physicalworkload (PW) of 3,630 clicks was required
to prescribe all order items to patients. However, for surgical patients, a cognitive workload (CW) of
6,149.6 was required. Cost coefficients are discussed in thenext subsection.

We joined usage data from the current CPOE system with data from the electronic medical record.
In doing so, we obtained time stamps for the current order setassignments and patient demand, among
others. This allows us to generate all parameters for our exact and heuristic approaches and to compare
the solution with the clinicians’ current workload.
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All computations were performed on an Intel Core i7-4940MX CPU with 32 GB RAM running
Windows 7 operating system. The models were coded in Java in an ILOG Concert environment. The
solver used was IBM ILOG CPLEX 12.6 (64 bit).

5.1.2 Evaluating the Frequency of Order Set Prescriptions.Figure 5 provides an overview of order
sets prescribed to patients in the current system.

FIG. 5: Frequency distribution of order sets currently in use

The figure reveals that 10 order sets are most commonly used and may be prescribed multiple times
to patients.

5.1.3 General Parameters. Table 4 shows how we chose the workload coefficients of the objective
function. Measuring the clinicians’ workload associated with their mouse clicks are framed as physi-
cal workload (PW). We also evaluate cognitive workload denoted by CW (Zhang et al. (2014)). The
objective function coefficients are set according to the values shown in Table 4.

Table 4: Setup of our objective function coefficients (Zhanget al. (2014))

Metric calc cos coff,non-req coff,mult cconf,on cconf,off coff,on

PW 1.0 1.0 1.0 1.0 0.0 0.0 1.0
CW 1.1 1.1 1.3 1.3 1.0 1.1 1.4

The table shows that all CW coefficients are greater than or equal to one while using the PW metric, two
workload coefficients are zero. Also, sincecoff,on > calc, switching order items from default OFF to ON
is dominated by a la carte assignment.

In what follows, we present the results of our mathematical model and the heuristic. We stop the
computation of the MIP after 600s computation time. We report the relative gap between the best integer
solution’s objective function value and the objective function value found by solving the linear program
(without integrality, refered to as LP relaxation gap).
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5.2 Computational Complexity and LP Relaxation Gap Analysis

We break down our computational complexity analysis by the physical and cognitive workload mini-
mization model. For each model, we report the results of the acute, chronic and surgical care condition.

The performance of the approaches for PW minimization is shown in Table 5.

Table 5: Computation time analysis results for the PW metric(Best performance figures are in bold.
Figures marked with∗ are LP relaxation gaps obtained after approx. 600s.)

MIP Greedy Heuristic

Condition |K | #Var. #Constr. Comp. z Gap [%] Comp. z Impr. [%]
time [s] time [s]

acute
1 61,208 148,637 600 3,931 21.77∗ 0.077 3,764 4.25
2 112,970 287,828 600 4,643 90.48∗ 0.435 3,671 20.93
5 268,256 705,401 600 4,723 98.24∗ 2.015 3,541 25.03

chronic
1 97,740 237,016 600 5,634 19.52∗ 0.115 5,259 6.67
2 180,110 458,662 600 7,490 98.04∗ 1.133 5,110 31.78
5 427,220 1,123,600 601 7,685 98.62∗ 1.605 4,893 36.33

surgical
1 65,572 158,821 600 3,597 9.16∗ 0.081 3,616 -0.53
2 120,922 307,420 600 4,979 93.50∗ 0.585 3,501 29.68
5 286,972 753,217 600 5,111 98.45∗ 3.150 3,258 36.26

The figures reveal that none of the problem instances can be solved to optimality by the MIP approach.
More specifically, the best LP relaxation gap is 9.16% for thesurgical condition test instance. Another
observation for the MIP approach is that the objective function valuez increases whenK increases. This
is counter-intuitive but can be explained by the increased model complexity. When running small-scale
instances to optimality (see Appendix A)zdecreases with increasingK. Another observation is that the
Greedy approach outperforms the MIP approach in all but one problem instances. In the case of the
chronic condition, the improvement when comparing the Greedy approach with the MIP approach is
best. More specifically, forK=5, the Greedy approach improves the MIP by 36.33%. One explanation
for this phenomenon is that the test instances for the chronic condition are largest with 106 patients.
Accordingly, the problem sizes which are reported by the number of decision variables and constraints,
are the largest for that condition. Overall, we can observe that the main driver for the problem size is
the number of order sets|K | which dramatically increases and more than quadruples from|K |= 1 to
|K |= 5.

The performance of the approaches for CW as minimization objective is shown in Table 6.
The figures show a similar pattern with respect to the objective function behavior in the MIP approach.
Increasing the number of order setsK may lead to even worse objective function values which is true
for the data sets of the chronic and the surgical condition. For the acute condition,z decreases whenK
is set from 1 to 2. But then it increases again whenK = 5. One explanation of this phenomenon is that
the problem sizes are just too big to handle with the solver and it converges very slowly.

The figures also reveal that the difference between the Greedy approach and the MIP, which is used
as a heuristic because it is not solved to optimality, is lessthan 1%. Another observation is that the LP
relaxation gaps of the MIP are smaller when comparing the CW model with the PW model. A more
detailed analysis of the CPLEX output revealed that the initial objective function value is already close
to the LP relaxation gap. More specifically, in the initial solution the solver sets all order items a la
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Table 6: Computation time analysis results for the CW metric(Best performance figures are in bold.
Figures marked with∗ are LP relaxation gaps obtained after approx. 600s.)

MIP Greedy Heuristic

Condition |K | #Var. #Constr. Comp. z Gap [%] Comp. z Impr. [%]
time [s] time [s]

acute
1 108,164 283,664 601 5,185.9 2.24∗ 1.775 5,194.3 -0.16
2 206,882 557,882 601 5,181.5 7.07∗ 5.546 5,192.5 -0.21
5 503,036 1,380,536 601 5,195.3 7.33∗ 23.901 5,192.1 0.06

chronic
1 172,319 451,674 600 8,434.3 3.44∗ 3.359 8,450.0 -0.19
2 329,268 887,978 601 8,453.5 7.71∗ 9.801 8,450.2 0.04
5 800,115 2,196,890 603 8,453.5 100∗ 53.613 8,445.3 0.10

surgical
1 115,732 302,936 600 5,594.5 1.70∗ 1.859 5,618.7 -0.43
2 221,242 595,650 600 5,609.3 7.30∗ 6.177 5,617.7 -0.15
5 537,772 1,473,792 602 5,622.1 100∗ 39.406 5,612.6 0.17

carte. The marginal improvement potential of this solutionis lower than in the case of PW minimization
because of the cognitive costs associated with confirming defaulted-ON items paired with the workload
of assigning the patient to the order set.

5.3 A Platform for Order Set Optimization

We extended the Java-based order set optimization platformfrom Gartner al. (2017) to better commu-
nicate the effectiveness of the approaches to hospital practitioners. The difference now is that we have
time-independent order sets and can choose between different clinical conditions. Figure 6 shows the
platform.

FIG. 6: Order set optimization platform
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5.4 Generalizability of the Approaches

Our results have demonstrated that mathematical programming and the Greedy heuristic can reduce
physical and cognitive workload for the prescription of order items. We argue that our approaches can
be generalized to similar order set optimization problems in other developed-world countries, such as the
U.K. national healthcare system (NHS). In this system, Fleming et al. (2009) evaluated clinical outcomes
of order sets on mortality and costs. Our study setting is also applicable in the U.K. because patients’
conditions can be selected based on Diagnosis-related groups (DRGs). These are named Healthcare
Resource Groups (HRGs) in the NHS and are structured in a similar way.

In the model we tested the scenario what happened if the doctors would have been faced with the
new order sets (based on demand). This assumes that the future patient population has a similar structure
as compared to the one we used for testing the approaches.

6. Summary and Conclusions

In this paper, we have introduced a MIP and a Greedy-based global order set optimization approach
to better design Hospital Information Systems. Depending on the number of allowed order sets and
the solution time limit, our Greedy approach can outperformthe MIP. Developing further heuristic
optimization approaches as well as parametric optimization of the objective function coefficients are
promising future directions for this research. Another area of future research is the development of upper
and lower bounds for the problem as well as providing complexity results for arbitrary combinations
of numbers of order sets, patients and objective function coefficients. Furthermore, the model could be
extended towards incorporating precedence relations in the order items which relates to clinical pathway
mining.

A. Experiments for incrementing K

To benchmark the Greedy approach with optimal solutions, weselected a subset of 10 patients and per-
formed the computation. The results for the PW and CW metric are shown in Table 7 and 8, respectively.

The figures from the PW metric reveal that the objective function value of the MIP decreases mono-
tonically with increasingK. Another observation is that the computation times increase dramatically
with increasingK. The figures also show that the gap between the heuristic’s and the MIP’s objective
function value increases with increasingK. However, the gap is relatively small in the case whereK = 1.
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Table 7: Computation time analysis results for small test instances and the PW metric solved to opti-
mality

MIP Greedy Heuristic

Condition |K | #Var. #Constr. Comp. z Optimality Comp. z Heuristic
time [s] Gap [%] time [s] Gap. [%]

acute

1 4,007 7,538 2.3 401 0.0 0.012 406 1.25
2 6,926 13,988 15.9 326 0.0 0.051 378 15.95
3 9,845 20,438 100.4 268 0.0 0.044 330 23.13
4 12,764 26,888 669.9 215 0.0 0.061 309 43.72
5 15,683 33,338 876.7 169 0.0 0.085 315 86.39

chronic

1 4,834 8,452 0.7 469 0.0 0.009 469 0.00
2 8,146 15,382 23.7 373 0.0 0.040 429 15.01
3 11,458 22,312 172.4 296 0.0 0.097 373 26.01
4 14,770 29,242 643.9 239 0.0 0.099 345 44.35
5 18,082 36,172 1,626.2 186 0.0 0.106 376 102.15

surgical

1 4,523 8,290 0.7 445 0.0 0.010 447 0.45
2 7,746 15,280 12.1 340 0.0 0.033 373 9.71
3 10,969 22,270 112.2 291 0.0 0.067 328 12.71
4 14,192 29,260 772.1 244 0.0 0.078 341 39.75
5 17,415 36,250 1,386.1 200 0.0 0.104 356 78.00

The results from the CW optimization confirm the pattern thatthe objective function values decrease
with increasingK. However, the gap between the heuristic’s and optimal objective function value are
increasing less dramatically.
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Table 8: Computation time analysis results for small test instances and the CW metric solved to opti-
mality

MIP Greedy Heuristic

Condition |K | #Var. #Constr. Comp. z Optimality Comp. z Heuristic
time [s] Gap [%] time [s] Gap. [%]

acute

1 6,372 13,659 1.1 591.6 0.0 0.042 598.4 1.16
2 11,656 26,230 13.4 585.9 0.0 0.196 598.4 2.13
3 16,940 38,801 48.0 580.3 0.0 0.337 595.4 2.60
4 22,224 51,372 52.1 575.4 0.0 0.314 598.4 4.00
5 27,508 63,943 77.7 570.6 0.0 0.417 598.4 4.87

chronic

1 7,375 14,852 1.9 824.7 0.0 0.038 837.1 1.50
2 13,228 28,182 38.6 815.9 0.0 0.200 837.1 2.60
3 19,081 41,512 270.3 808.2 0.0 0.361 835.8 3.41
4 24,934 54,842 736.9 801.1 0.0 0.377 837.1 4.49
5 30,787 68,172 520.9 795.2 0.0 0.494 837.1 5.27

surgical

1 7,086 14,863 2.4 707.2 0.0 0.047 715.0 1.10
2 12,872 28,426 15.3 699.5 0.0 0.184 714.9 2.20
3 18,658 41,989 55.9 691.9 0.0 0.277 712.9 3.04
4 24,444 55,552 347.7 686.2 0.0 0.397 713.4 3.96
5 30,230 69,115 147.8 681.2 0.0 0.428 715.0 4.96
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