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Abstract

The depth-sensing indentation (DSI) is currently one of the main experimen-
tal techniques for studying elastic properties of materials of small volumes.
Usually DSI tests are performed using sharp pyramidal indenters and the
load-displacement curves obtained are used for estimations of elastic mod-
uli of materials, while the curve analysis for these estimations is based on
the assumptions of the Hertz contact theory of non-adhesive contact. The
Borodich-Galanov (BG) method provides an alternative methodology for es-
timations of the elastic moduli along with estimations of the work of adhesion
of the contacting pair in a single experiment using the experimental DSI data
for spherical indenters. The method assumes fitting the experimental points
of the load-displacement curves using a dimensionless expression of an appro-
priate theory of adhesive contact. Earlier numerical simulations showed that
the BG method was robust. Here first the original BG method is modified
and then its accuracy in the estimation of the reduced elastic modulus is
directly tested by comparison with the results of conventional tensile tests.

The method modification is twofold: (i) a two-stage fitting of the theoret-
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ical DSI dependency to the experimental data is used and (ii)a new objective
functional is introduced which minimizes the squared norm of difference be-
tween the theoretical curve and the one used in preliminary data fitting. The
direct experimental validation of accuracy and robustness of the BG method
has two independent steps. First the material properties of polyvinyl silox-
ane (PVS) are determined from a DSI data by means of the modified BG
method; and then the obtained results for the reduced elastic modulus are
compared with the results of tensile tests on dumbbell specimens made of
the same charge of PVS.

Comparison of the results of the two experiments showed that the abso-
lute minimum in relative difference between individual identified values of the
reduced elastic modulus in the two experiments was 3.80%; the absolute max-
imum of the same quantity was 27.38%; the relative difference in averaged
values of the reduced elastic modulus varied in the range 16.20 ... 17.09%
depending on particular settings used during preliminary fitting. Hence, the
comparison of the results shows that the experimental values of the elastic
modulus obtained by the tensile tests are in good agreement with the results
of the extended BG method. Our analysis shows that unaccounted factors
and phenomena tend to decrease the difference in the results of the two ex-
periments. Thus, the robustness and accuracy of the proposed extension of
the BG method has been directly validated.

Keywords: the BG method, estimation of material properties, depth
sensing indentation, tensile testing, polyvinyl siloxane (PVS)

1. Introduction

Evaluation of elastic moduli of materials and their adhesive properties is
one of the important tasks of modern materials science. However, the experi-
mental estimations of the material properties become particularly challenging
if the specimen is made of a small quantity of material or if it is a thin film
deposited on the surface of another object. In these cases one of the most
useful techniques is the depth sensing indentation (DSI). This technique in-
cludes loading and unloading of a material specimen by a probe (indenter),
and continuous monitoring the value of the applied force (P ) and the probe
displacement (δ).

DSI was introduced by Kalei (1968) 50 years ago. Then it was suggested
to use the experimental unloading P − δ curves for extracting the values
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of the elastic modulus of the tested material (Bulychev et al., 1975, 1976;
Shorshorov et al., 1981). Currently there are several approaches for eval-
uation of the elastic modulus employing the DSI experiments with sharp
pyramidal indenters (Doerner and Nix, 1986; Oliver and Pharr, 1992; Bull,
2005; Galanov and Dub, 2017). On the other hand, the DSI technique works
with spherical indenters too. One of the techniques based on an inverse
analysis of the DSI experiments with spherical indenters is the BG method.
Originally the BG method was introduced by Borodich and Galanov (2008)
and then it was discussed in a series of papers (Borodich et al., 2012a,b,
2013). Numerical tests and experimental studies showed that even the origi-
nal BG method is simple and robust. Our paper is devoted to the extension
of the BG method and direct experimental validation of both the accuracy
and robustness of this extended method.

To explain the advantages of the BG approach, we need to discuss the
common DSI techniques working with pyramidal indenters first. In the above
cited approaches to DSI by sharp indenters, the unknown elastic proper-
ties of samples are estimated from the experimental DSI data by solving an
inverse problem to the non-adhesive Hertz-type contact problem (see e.g.,
Johnson (1985); Popov (2010); Borodich (2014)). As any other model-based
approaches, it requires a prebuilt mathematical model of the interaction be-
tween the probe and the specimen. It follows from the Hertz contact the-
ory that the elastic modulus may be estimated using the BASh (Bulychev–
Alekhin–Shorshorov) formula. Originally formula was derived for frictionless
contact of some axisymmetric punches and it was suggested to extend it to
non-axisymmetric indenters, e.g. pyramidal indenters (Bulychev et al., 1975).
Then it was noted that if one applies the geometrically linear formulation of
Hertz-type contact problem to unloading branch of the P − δ curve then one
needs to take into account the actual distance between the indenter and the
plastically distorted surface (the Galanov effect) (Galanov et al., 1983, 1984).
It was also shown that the friction between the indenter and the speciment
surface may also affect the slope of the unloading curve (Borodich and Keer,
2004b). Thus, the BASh formula can be written as (Argatov et al., 2017)

dP

dδ
= β

2√
π
E∗

√
A, β = β1 · β2 · β3 (1)

where A is the area of the contact region and E∗ is the reduced elastic contact
modulus. For isotropic materials, this modulus can be obtained from the
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following formula
1

E∗
=

1− ν2
1

E1

+
1− ν2

2

E2

where Ei and νi (i = 1, 2) are the elastic modulus and Poisson’s ratio of
the two contacting solids (the specimen and the indenter) respectively. If the
indenter is rigid, i.e. E2 = ∞ then E∗ = E/(1−ν2) where E = E1 and ν = ν1
are the elastic modulus and Poisson’s ratio of the half-space, respectively. In
(1) the factor β1 is introduced due to the concept of the effective indenter
shape (the Galanov effect) (Galanov et al., 1983, 1984), β2 is the contact
area shape factor which extends the BASh formula to the non-axisymmetric
case, and the factor β3 is introduced due to the effects of friction between
the indenter and the half-space (Borodich and Keer, 2004a,b). It has been
shown in the case of adhesive (no-slip) contact between a rigid indenter and
an elastic sample β3 = CNS that can be expressed as a function of the
material Poisson ratio (ν)

CNS =
(1− ν) ln(3− 4ν)

1− 2ν
. (2)

The above described approaches to indentation by sharp indenters have
several drawbacks. Strictly speaking the Hertz contact theory is not appli-
cable to these tests based on the use of sharp indenters (see a discussion in
Borodich and Keer (2004a); Chaudhri and Lim (2007); Borodich (2014)), in
addition, it ignores the adhesive effects between the indenter and the sample.
On the other hand, the use of spherical indenters allows the researchers to
avoid plastic deformations of specimens and therefore, they may work in the
framework of theory of elasticity and do not violate the geometrical assump-
tions of the Hertz formulation. In addition, devices with cantilever-supported
indenters may be used. In the case of cantilever support the inavoidable in-
clination of the cantilever (see e.g. Al-Musawi et al. (2016)) has much less
influence on interaction between the indenter and the specimen in comparison
to the case when a sharp indenter is used.

The original version of the BG method is based on solving an inverse
problem to adhesive contact between a spherical indenter and an elastic half-
space using one of the well-established theories of adhesive contact, e.g. the
JKR or DMT ones. The method uses a dimensionless mathematical depen-
dency between the force applied to the indenter and its displacement (the
theoretical load-displacement curve) as the mathematical model of the adhe-
sive interaction ”indenter-specimen”.
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Any analytical force-displacement dependency can be written in a dimen-
sionless form. To do so, one needs to determine the so-called characteristic
scales of the problem. These scales are the model parameters and their values
are subject to adjustment through an optimization process until the best fit
of the theoretical curve to the experimental data points is found. The par-
ticular representation of the theoretical curve and the characteristic scales
depends on the theory of adhesive contact chosen as the framework of the
problem (e.g. the Johnson-Kendall-Roberts (JKR)(Johnson et al., 1971) or
the Derjaguin-Muller-Toporov (DMT)(Derjaguin et al., 1975) theories). For
example, for a spherical indenter of radius R, the characteristic scales may
be taken as

Pc =
3

2
πwR, δc =

3

4

(

π2w2R

E∗2

)1/3

. (3)

In the JKR theory, the above characteristic scales have a clear mechanical
meaning: Pc is denoted the absolute value of the pull-off force, and δc is the
absolute value of the minimum displacement that occurs due to adhesion.
Once optimal values of Pc and δc are found, the material properties E∗ and
w can be easily evaluated by inversion of the latter formulae

w =
2Pc

3πR
, E∗ =

Pc

4

√

3

Rδ3c
. (4)

Contrary to the interpretation of the DSI tests based on the BASh for-
mula, the BG method allows not only to evaluate the elastic properties (the
reduced elastic contact modulus E∗) but also the adhesive properties (the
work of adhesion w) of tested pair of materials. Unlike the other methods
of mechanics of materials that require separate experimental set-ups for the
determination of elastic and adhesive properties of materials, the BG method
allows to identify those quantities simultaneously using a single set-up. More-
over, it can utilize only the stable compressive part of the load-displacement
data whereas some other approaches require the pull-off force measurements
in order to estimate the value of the work of adhesion (e.g. Ebenstein and
Wahl (2006); Carrillo et al. (2005); Rundlöf et al. (2000); Wahl et al. (2006);
Yu et al. (2015)). However, measurements of the pull-off force can be influ-
enced by many factors: the roughness of contacting surfaces, surface chem-
istry, wear of the DSI probe, chemical modification of its surface (in case of
atomic force microscopy used), dust particles etc. (see e.g., Grierson et al.
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(2005); Beach et al. (2002); Gorb and Gorb (2009)). Therefore, the ten-
sile part of DSI load-displacement data can be considered unstable and less
trustworthy, and the BG method has an advantage here.

The BG method is non-direct because the characteristic values are not
measured but rather evaluated from the stable part of the P − δ diagram,
while Pc is extracted from measurements on the unstable part of the dia-
gram in the direct methods (Wahl et al., 2006; Ebenstein and Wahl, 2006).
In addition, the BG method differs from the ordinary least-squares fitting
because: (i) it uses different objective functional and therefore, it provides
different optimum, (ii) whenever possible, dimensionless variables are used
which allows to apply optimization procedures to the quantities of different
physical nature and different orders of magnitude.

The paper is organized as follows. In Section 2, the paradigm of the BG
method is extended. Originally the method was applied only to the con-
tact problem between a spherical indenter and an elastic half-space. Here,
it is argued that the BG method can be considered as a general model-
based approach to determination of the effective contact modulus and the
work of adhesion of materials or structures from the DSI data. Examples
of appropriate theories of adhesive contact and the corresponding theoret-
ical load-displacement curves are considered. Then an alternative formula-
tion of the objective functional of the BG method is also given. A concept
of two-stage fitting of the theoretical DSI dependency to the experimental
data points is introduced. This means that the data is fitted firstly by an
auxiliary curve which acts as a filter in certain sense. The mathematical
representation of that pre-fitting curve is supposed to be as simple as pos-
sible. This allows one to use some advanced fitting/filtering techniques to
reduce measurement noise and fluctuations in the data. Secondly, the the-
oretical load-displacement curve (the expected DSI dependency which may
be a complex expression) is fitted to the auxiliary one via minimization of
the squared norm of the difference of the two functions (the objective func-
tional). The sought material properties are determined from the optimal set
of characteristic parameters that give minimum to the objective functional.

In Section 3 the results of a DSI-based experiment and an application of
the extended BG method are described. The experimental set-up and raw
data pre-processing are also discussed. A specimen was made of polyvinyl
siloxane (PVS). This is an elastomer widely used as an impression material,
particularly in dentistry. A series of DSI tests was carried out using DSI
equipment and a spherical indenter (lens) of large radius (R = 5.155 mm)
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supported by a cantilever spring with constant c = 1023.9N/m. The experi-
mental data was processed using the extended BG method, and the values of
the modulus E∗ and the work of adhesion w were calculated. The specimen
size was large enough to consider it as an elastic half-space, and therefore,
the JKR theory of adhesive contact was applied.

In Section 4 the description of the tensile set-up used for the validation of
the BG method is given as well as the discussion regarding post-processing
of the measured data and the obtained results. In this experiment we per-
formed conventional tensile testing (Davis, 2004) of ISO 37 type 3 dumbbell
specimens made of exactly the same PVS material using Zwick Roell ten-
sile machine. As the result of this experiment, the elastic modulus E and
Poisson’s ratio ν were determined which allowed us to calculate the reduced
elastic contact modulus E∗ = E/ (1− ν2) and compare it to the value ob-
tained using the BG method. Since our piece of equipment was not equipped
with extensometer, two types of mathematical modelling (analytical and fi-
nite element) of the tensile experiment was used to introduce correction into
the values of E produced from the raw tensile data. The value of Poisson’s
ratio was estimated from video records of stretching process by using the
methods of photogrammetry.

In Section 5, the results of the two experiments are compared and the used
approaches discussed. It is shown that the values of E∗ calculated using the
two different approaches coincide well. Our analysis shows that unaccounted
factors and phenomena tend to decrease the difference in the results of the
two experiments. Thus, the accuracy of the BG method has been directly
validated in this work. The obtained results also provide more experimen-
tal data on PVS properties, since this matter is not widely represented in
literature (see e.g., Chai et al. (1998); Wieckiewicz et al. (2016))

2. The extended BG method

As it is mentioned above, the BG method allows one to extract from the
experimental data of DSI test the two properties of the tested material simul-
taneously: the reduced elastic contact modulus E∗ and the work of adhesion
w. The BG method in its original form presumes the use of either the JKR
or the DMT theories of adhesive contact between a spherical indenter and
an elastic half-space. The load-displacement relation in these theories can be
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represented in the dimensionless form as

F

(

P

Pc

,
δ

δc

)

= 0. (5)

Let us consider a set of N measured experimental values of indentation
depth δi and indentation force Pi : (δi, Pi) , i = 1, . . . , N . If the measurements
are absolutely exact, then the values of Pc and δc can be determined quite
easily. Indeed, the theoretical curve in such case passes through all the data
points which can be mathematically expressed as the set of equalities

F

(

Pi

Pc

,
δi
δc

)

= 0, i = 1, . . . , N. (6)

The correct values of Pc and δc make all of these equations valid simultane-
ously. Therefore, one needs to take any two of them and solve for Pc and
δc. However, the real experimental measuremets (δi, Pi) always contain some
measurement errors. Therefore, one needs to take into account all of the N
expressions in (6) simultaneously. Due to measurement errors the expres-
sions (6) never become true at the same time and the inverse problem of
finding the characteristic scales from the DSI data is ill-defined (one has an
overdetermined system of equations) (Borodich and Galanov, 2008).

Since it is impossible to make all of the expressions in (6) true, one
can only minimize the measure of the overall ’error’ produced in (6). If

εi = F

(

Pi

Pc

,
δi
δc

)

is the residual of i-th equation, then the measure of the

total ’error’ can be the mean square value of all such residuals

ǫ =
1

N

N
∑

i=1

ε2i . (7)

Hence, in order to find the appropriate values of the characteristic pa-
rameters an optimization problem must be solved. The optimal values of the
characteristic parameters P ∗

c , δ
∗
c that minimize the mean square residual (7)

of the equations (6) are found as the result of minimization of the objective
functional (the cost functional) of the problem Φ(Pc, δc)

{P ∗
c , δ

∗
c} = argminΦ(Pc, δc) (8)
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where

Φ(Pc, δc) =
N
∑

i=1

[

F

(

Pi

Pc

,
δi
δc

)]2

. (9)

After the above optimization problem is solved (see e.g., Boyd and Vanden-
berghe (2004); Chong and Zak (2001)), the theoretical curve (5) becomes best
fit to the experimental data in the sense of (9) through the choice Pc = P ∗

c

and δc = δ∗c and the sought material parameters E∗ and w can be evaluated
using (4).

In particular, if the JKR theory of adhesive contact (Johnson et al., 1971)
is used, then the load-displacement dependency can be written as a piece-wise
function of the form



























































(3χ− 1)

(

1 + χ

9

)
1

3

− δ

δc
= 0

for χ ≥ 0,
δ

δc
≥ −3−2/3,

(3χ+ 1)

(

1− χ

9

)
1

3

− δ

δc
= 0

for
2

3
≥ χ ≥ 0, −3−2/3 >

δ

δc
≥ −1

(10)

where χ =
√

1 + P
Pc

(Maugis, 2000). As mentioned earlier, the characteristic

scales Pc and δc are expressed as (3) for spherical indenter.
The experimental data is fitted with the stable part of the above depen-

dency which becomes the function F
(

P
Pc
, δ
δc

)

in the BG method:

F

(

P

Pc

,
δ

δc

)

= (3χ− 1)

(

1 + χ

9

)
1

3

− δ

δc
= 0. (11)

As compared to the fitting approaches used by other researchers, the BG
method (8)-(9) has its own distinctive features: (i) the metric (9) differs
from the one normally introduced in least-squares curve fitting, therefore
producing different optimum point, (ii) the method uses fitting curve writ-
ten in dimensionless form which allows to treat quantities of different orders
of magnitude in the same way, (iii) the fitting process is performed via ad-
justing characteristic scales Pc and δc and not the material properties. Also
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the method successfully allows to estimate E∗ and w using only compres-
sive part of the load-displacement data, thus using only stable measurements
(Borodich et al., 2012a,b).

In the present paper, however, we use a variant of the extended BG
method. This approach is particularly useful for the cases when the theoret-
ical load-displacement curve is represented as a parametric function.

In this approach we first fit the experimental data with an auxiliary curve
P = Ψ(δ) with low number of degrees of freedom. The curve acts as a high-
pass filter, smoothing the data significantly (see Fig. 1,a). In the current
work this smoothing curve was chosen to be a polygonal chain with relatively
small number of segments NS.
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Figure 1: The concept of two-stage fitting the experimental data: (a) smoothing experi-
mental data using a polygonal chain (the preliminary fitting with an auxiliary curve), (b)
fitting the theoretical load-displacement curve to the auxiliary one.

The point of doing so is that the auxiliary curve is supposed to have very
simple mathematical representation. Therefore, some advanced fitting meth-
ods can be used to construct it. In this work the smoothing dimensionless
curve is built as the result of minimization of the sum of squares of orthogonal
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distances from it to the data points (the so-called orthogonal distance fitting
concept, ODF (Ahn, 2004; Boggs et al., 1987)). This approach is useful when
both abscissas and ordinates of the data points are subject to measurement
errors. Since the distance from a point to a straight line can be presented
as a well-known formula, it is possible to explicitly program a function eval-
uating the sum of squared orthoghonal distances and made it the subject of
minimization process. Due to simple mathematical form (piece-wise linear),
fitting with polygonal chain is performed extremely quickly using well-known
computer algebra systems (e.g. Matlab).

It is important to note that the term ”distance” cannot be directly applied
to the space of variables of different physical meaning and of different orders
of magnitude. That is the reason why the preliminary orthogonal distance
fitting is performed using the normalized data:

δn =
δn − 〈δi〉

max (δi)−min (δi)
,

Pn =
Pn − 〈Pi〉

max (Pi)−min (Pi)
,

i, n = 1, . . . , N.

(12)

where 〈· 〉 is the following averaging operator

〈xi〉 =
1

N

N
∑

i=1

xi.

This kind of normalization transforms all dimensionless values of force Pn and
displacement δn into the interval [−1, 1]. When the coordinates of optimal
polygonal chain are found in the space of the dimensionless quantities, they
can be easily recalculated back to the space of dimensional quantities by
inverting the formulae (12).

The particular way of construction of the pre-fitting polygonal chain was
chosen as follows. The polygonal chain is supposed to have NS segments and
NS + 1 vertices. The first vertex is located at δmin, the last one is located at
δmax (see Fig. 1,b for reference). The abscissas of the vertices are uniformly
spaced: the k-th vertex abscissa is δV k = δmin + (δmax − δmin)(k − 1)/NS.
The ordinates of the vertices PV k are subject to optimal fitting the polygonal
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chain to the data by means of the ODF fitting in the space of dimensionless
quantities (12).

On the second step of the extended BG method the theoretical curve (10)
is fitted to the auxiliary one via adjusting Pc and δc. We require minimiza-
tion of the squared norm of the difference between the two functions on the
interval [δmin, δmax] where δmin = min (δi) , δmax = max (δi) , i = 1, . . . , N
(Fig. 1,b):

Φ(Pc, δc) =

δmax
∫

δmin

[P (δ)−Ψ(δ)]2 dδ → min. (13)

Here P = P (δ) is the theoretical load-displacement curve, and P = Ψ(δ) is
the auxiliary one.

Since the stable branch of (10) cannot be written as P = P (δ) , we
transform (13) as follows. Firstly, a dimensionless parameter ā along the
theoretical curve is introduced as P = Pcā. Secondly, the stable branch of
the theoretical JKR curve (10) is rewritten in parametric form as











δ = δc

(

3
√
1 + ā− 1

)

(

1 +
√
1 + ā

9

)

1

3

,

P = Pcā

(14)

or

{

δ = δcf (ā) ,

P = Pcā.
(15)

Substitution of (15) into (13) yields:

Φ(Pc, δc) = δc

āmax
∫

āmin

[Pcā−Ψ(δcf (ā))]2
df

dā
dā → min. (16)

The problem (16) is the particular one used in the present study to calcu-
late the optimal values of Pc and δc. It was done for every separate measure-
ment (data set) and the corresponding values of E∗ and w were calculated
using (3).
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In the general case of parametrically-represented load-displacement curve
{

δ = δcf1 (ā, δc, Pc) ,

P = Pcf2 (ā, δc, Pc) ,
(17)

the optimization problem (16) becomes

Φ(Pc, δc) = δc

āmax
∫

āmin

[Pcf2 (...)−Ψ(δcf1 (...))]
2 ∂f1 (...)

∂ā
dā → min (18)

where (...) denotes (ā, δc, Pc).
Remark. The actual distance from the probe surface to the specimen

surface is unknown. The moment when the indenter jumps into contact due
to adhesion forces during loading is rather unclear due to measurement noise.
This means that the origin of the δ axis is in fact unknown. Therefore, in the
light of the above the measured values of δ are supposed to have an unknown
additional shift value δs (separate for each of the DSI data sets) introduced
into the readings. This value is determined as follows. A series of possible
shift values is generated. Each such value is subtracted from the measured
set δi (i = 1, . . . , N) and then minimization of (16) is performed. The correct
shift value is supposed to give the absolute minimum of the functional values
among all trial minimizations. The corresponding values of Pc and δc are
considered to be the true ones.

3. Determination of material propertiess from a DSI experiment
by the extended BG method

Let us describe a DSI-based experiment that was carried out in order to
test the robustness of the modified BG method using real experimental data.

3.1. The experimental set-up and raw data pre-processing. Assumptions val-
idation

The custom made force measurement device Basalt-1 (TETRA GmbH,
Ilmenau, Germany) was used for DSI experiments (Fig. 2). In this set-up,
the PVS specimen was loaded by a spherical indenter (a glass lens of known
radius R = 5.155 mm) attached at the end of a planar cantilever spring with
constant c = 1023.9N/m. The displacement of the other end of the spring
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was set using a piezo drive. Two fiber optical sensors S1 and S2 were used
to control the deflections of both ends of the spring. The readings from the
sensor S2 went to the output file as total displacement δ0 while the difference
in the readings of S1 and S2 was recalculated into the values of applied force
(in device-dependent arbitrary units) which also went to the output file. The
latter values were converted to Newtons using the results of calibration.

To obtain the load-displacement dependency of the indenter, one needs to
subtract the deformation of the spring from the total recorded displacement
applied to the system ”spring-indenter-specimen”. It was done using the
following formula

δ = δ0 −
P

c
(19)

where δ0 is the total displacement applied via piesoelement, δ is the displace-
ment of the indenter (the true displacement), P is the applied force, c is the
spring stiffness.

Since some measurements exhibited drift of zero point in the force value,
the values of force were manually corrected for each measurement by means
of a custom Matlab script. The same script was used to subtract the defor-
mation of the spring which was done using the modified formula (19):

δ = δ0 −
P − Pcorr

c

where Pcorr is zero drift value. The typical processed readings are represented
in Fig. 3.
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(a)

(b)

Figure 2: The DSI setup: (a) the schematic, (b) the photographic image.
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Figure 3: Typical processed DSI data (spring deflection subtracted, force readings rescaled
to Newtons)

The specimen for DSI study consisted of a 35(diameter) x 10(height) mm
Petri dish filled with two-component AFFINIS (R) light body PVS (Coltene,
Switzerland) (Fig. 4,a). After filling the dish the PVS surface was covered
with a clean piece of glass slide (Carl Roth, Karlsruhe, Germany) until the
PVS polymerized in order to produce flat clean surface. Since PVS tends to
form bubbles during moulding process, the top surface of the specimen was
visually examined using optical microscope and 5 indentation locations were
selected far from any visible inhomogeneity. Schematically the specimen is
represented in Fig. 4,b, numbers denote measurement locations. Five DSI
measurement were performed at each location which resulted in 25 data
sets in total. Maximum indentation depth did not exceed 40 μm in each
single experiment. The specimen was tested after approximately 16 h after
polymerization.
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(a) (b)

Figure 4: The PVS specimen for DSI experiment: (a) the photographic image, (b) the
schematic image. Numbers denote locations of individual DSI experiments.

In the present work we model interaction between the indenter and the
specimen as indentation of an elastic half-space. Indeed, many authors
modelled indentation of finite-size specimens by means of the finite element
method (FEM) (see e.g. Sadeghipour et al. (1994)). These studies show that
a large enough finite specimen acts effectively as an elastic half-space. To con-
firm this for the particular geometry of our specimen we use FEM in applica-
tion to the problem of non-adhesive indentation of the finite volume cylindri-
cal specimen of radius r and height h by a rigid sphere (see the model in Fig.
5,a) The modeling was performed by means of ANSYS 18 Mechanical APDL
software (https://www.ansys.com/products/structures/ansys-mechanical-pro)
in axisymmetric formulation using the following finite element types: PLANE183
for PVS; CONTA175 and TARGE169 for contact pair (the description of
these element types can be found in the ANSYS software manual or in in the
SNARCNET academic network https://www.sharcnet.ca/Software/Ansys/17.2/en-
us/help/ans elem/Hlp E ElemTOC.html). The indenter was assumed to be
rigid, the PVS bulk was assumed to have the following properties: E = 2.97
MPa, ν = 0.418. Indentation depth was supposed to be δ = 40µm. The
obtained numerically load-displacement curves for different sizes of the spec-
imen are shown in Fig. 5,b. The reference curve obtained from Hertz contact
theory for a rigid sphere and an elastic half-space is shown as well (thick solid
line).

In these results the dashed line corresponds to measurement point No.2 on
the specimen (r=17 mm, h=10 mm), while the thin solid line represents the
case which is worse than any of the points No. 1,3,4 and 5 (r=7 mm, h=10
mm). Comparison the latter two simulations at the maximum indentation
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depth and the Hertzian model give the relative error in force value of 4.6%
and 6.6% correspondingly. Since FEM also introduces some inaccuracy in
comparison to the analytical Hertzian curve, the above results are compared
with the results of FEM simulation of a very large specimen ( r=68 mm,
h=40 mm, dots in Fig. 5) which gives the relative error of 3.9% and 5.8%,
correspondingly.

Thus, modeling the actual specimen as an infinite elastic half-space pro-
vides acceptable level of accuracy. Therefore, the mathematical apparatus of
the JKR theory of adhesive contact can be applied here.

Based on the above justification, the BG method was applied to the
unloading parts of the P−δ curves using the classic JKR contact theory as the
framework for the problem. The theoretical load-displacement dependency
was supposed to have the form (10) and the BG method was used in the
extended formulation (16).

The results of application of the BG method to the obtained experimental
data are described below.
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Figure 5: Numerical modelling of indentation of a finite size specimen : (a) FEM model
(axisymmetric, the right part of the axial cross-section is shown), (b) comparison of load-
displacement curves obtained for different r and h: thick solid line (red) is the reference
Hertzian curve for half-space; thin solid line (blue) corresponds to h=10 mm (h/r = 1.43);
dashed line to h=10 mm (h/r = 0.59); circles to h=20 mm (h/r = 0.59); and dots to
h=40 mm (h/r = 0.59).
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3.2. The results of the DSI experiment

As it is mentioned above, 25 data sets representing unloading branches of
the DSI curves were obtained in the experiment. Each of these data sets was
pre-fitted with a polygonal chain. These lines were used as the pre-fitting
function P = Ψ(δ) in (16). Since the number of segments in the pre-fitting
polygonal chain has some influence on the identified values of E∗ and w, the
number of segments was varied from 4 to 10. Every time the values of E∗ and
w were identified separately for each of the 25 data sets. Then the averaged
values < E∗ > and < w > as well as the standard deviations σE∗ and σw

were computed.
As an example, in Fig. 6 the results of identification are shown for pre-

fitting with 7-segment line. The complete result set is shown in the Appendix
in Fig. A.19-A.21. It can be seen that the points on the (w,E∗) plane
obtained using the modified BG method build very compact groups which
shows that the approach (16) is robust against the measurement noise and
fluctuations in data.
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Figure 6: An example of a set of identified values of material properties extracted using
pre-fitting with polygonal chain. Number of segments in chain: 7.

The dependency of the averaged values of the reduced elastic contact
modulus and the work of adhesion on the number of segments is shown in
Fig. 7,a. According to the presented results the averaged values of E∗ vary
from 4.2959 to 4.3419 MPa, the averaged values of w vary from 0.116 to 0.136
J/m2. Clearly, these values do not vary much which shows that the proposed
method is stable and robust with respect to chosen number of segments NS.
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The dependency of the values of standard deviation of the reduced elastic
contact modulus and the work of adhesion on the number of segments is
shown in Fig. 7,b.
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Figure 7: The experimental results: (a) identified averaged PVS properties values versus
the number of segments in the pre-fitting curve (the reduced elastic contact modulus and
the work of adhesion), (b) standard deviations of the identified PVS properties values
versus the number of segments in the pre-fitting curve.
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4. The tensile experiment

The purpose of the tensile test was to validate accuracy of the BG method
by evaluation of the reduced elastic contact modulus E∗ of the very same
PVS material using a completely different experiment, namely a standard
tensile test. Since the BG method provided us with the estimated values of
the reduced elastic modulus, one needs to evaluate both the elastic modulus
and Poisson’s ratio from the results of tensile testing, in order to be able to
compare the results of these two experiments.

Hence, this Section consists of two independent parts. In the first part
we describe the experimental evaluation of the elastic modulus of the PVS,
while the second part is devoted to description of the process of estimation of
the Poisson’s ratio of the same material using methods of photogrammetry.

4.1. Experimental set-up and the measurements

The conventional tensile testing of dumbbell specimens was carried out
as an alternative way to determine the properties of PVS (Davis, 2004). The
specimens were manufactured as close as possible to the requirements of ISO
37 type 3 specifications and made of exactly the same PVS charge which was
used in the DSI testing. The Zwick Roell zwickiLine tensile machine and
testXpert II software were employed. A schematic of the specimen is shown
in Fig. 8,a. The brown shaded area corresponds to the part of the specimen
being gripped by the tensile equipment. Nominal specimen thickness is 2
mm. The five actual specimens had the following dimensions of the cross-
sections of the gage sections (thin parts) (thickness x width): 1) 2.2 x 4.35
mm, 2) 2.1 x 4.1 mm, 3) 2.15 x 4.1 mm, 4) 2.2 x 4.15 mm 5) 2.05 x 4.5
mm. The photographic image of the specimens is shown in Fig. 8,b. The
specimens were tested approximately 18 h after moulding.

The testing was performed up to 3% of overall grip-to-grip elongation.
Each specimen was tested 10 times. The recorded strain-stress curves showed
that the specimens 1,3,5 produced very similar results while the two other
specimens (2, 4) did not (the two lower sets of lines in Fig. 9,a). These two
specimens were considered to have internal defects (most likely these defects
were air bubbles inside the material) and were excluded from the further data
analysis.

The tests showed that the material behavior may be well described as
linearly elastic up to few percent deformation.
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(a)

(b)

Figure 8: ISO37 type 3 specimens: (a) the schematic, (b) the actual specimens tested.

The specimens stretching during tensile test was recorded using a HD
camera for evaluation of the Poison’s ratio. The methods of photogrammetry
were applied to the captured images of the specimens.

The photographic image of the whole set-up is shown in Fig. 9,b.

4.2. Evaluation of elastic modulus. Correction factors for the compliance of
the specimens.

Normally, in the tensile experiment the deformation of the thin part (gage
section) of the specimen is measured. This allows one to evaluate the elastic
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modulus using simplest theory of a rod under uniaxial tension.
Indeed, consider a rod of length L0 and constant rectangular cross-section

of area A = b0 · h where b0 is its width and h is the thickness, under tensile
load P . Assuming homogeneous uniaxial stress condition inside the rod, the
elastic modulus of the material can be determined as

E =
dσ

dε
=

d
(

P
A

)

d
(

∆L0

L0

) =
L0

A

dP

d∆L0

=
L0

b0h

dP

d∆L0

(20)

where ∆L0 is the elongation of the rod. Assuming linear behaviour of the
material, one can also write

E =
L0

b0h

P

∆L0

. (21)
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(a)

(b)

Figure 9: (a) the stress-strain curves for specimens 1-5 (screenshot of the testXpert soft-
ware), (b) the experimental set-up for the tensile experiment.
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Because our experimental set-up was not equipped with an extensometer
to control the deformation of the gage section of the specimens, the defor-
mation of the whole specimen was controlled (the grip-to-grip elongation).
If the grip-to-grip distance is denoted as L and the grip-to-grip elongation is
denoted as ∆L, then simple substitution L as L0 and elongation of the whole
specimen ∆L as ∆L0 into (21) clearly introduces some amount of inaccuracy
because the grip-to-grip elongation is influenced by the compliance of the
non-gage parts of the specimen and the machine compliance as well.

It should be noted that many authors argue that shape of specimens and
the compliance of the load cell of the tensile machine can influence the results
significantly. For example, Jia and Kagan (1999) provide evidences that the
results may differ drastically from the expected ones due to the compliance
of the dumbbell parts of the specimens and machine compliance. Further,
Sergueeva et al. (2009) found that the calculated values of elastic modulus
depended on the specimen geometry, in particular, on the gage length of the
specimen. Thus, because the specimens were made of rather soft material,
the influence of the compliance of the dumbbell parts of the specimens must
be assessed and the method for computation of the results corrected.

Load-cell compliance was taken into account during the factory calibra-
tion of the Zwick/Roell material testing machine. Therefore, this factor was
not considered, only the compliance of the specimen has to be analyzed.

Consider a dumbbell specimen of the length L and constant thickness h
which is subjected to tensile load by the force P . The width of the cross-
section is the function of the picked location b(x). Let us consider the gage
section of the specimen subjected to uniaxial stress. This part has length
L0 and cross-section width b0 (Fig. 10). In our experiment the grip-to-grip
distance was L = 33.16mm and the gage length was L0 = 10mm for ISO37
type 3 specimens. Let us follow the ideas expressed in Jia and Kagan (1999)
for estimation of the error introduced into the evaluated value of E when one
substitutes L as L0 and elongation of the whole specimen ∆L as ∆L0 into
(21).
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Figure 10: A dumbbell specimen under tension.

Let us denote here by E the true value of elastic modulus and by Ea the
apparent elastic modulus, where

E =
L0

b0h

P

∆L0

, Ea =
L

b0h

P

∆L
. (22)

Consider the value of ∆L in (22) under the hypothesis of uniform stress
across the section of the specimen

∆L (P ) = 2

L/2
∫

0

ε (x) dx = 2

L/2
∫

0

σ (x)

E
dx =

= 2

L/2
∫

0

P

A (x)E
dx = 2

L/2
∫

0

P

Ehb (x)
dx =

=
2P

Eh

L/2
∫

0

dx

b (x)
.

(23)

Substitution of (23) into (22) yields

Ea =
L

b0h

P

∆L
=

LP

b0h
2P

Eh

L/2
∫

0

dx

b (x)

=
LE

2b0

L/2
∫

0

dx
b(x)

. (24)

The latter gives the value of the correction factor k which is the ratio of
apparent to the real elastic moduli:
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k =
Ea

E
=

L

2b0

L/2
∫

0

dx
b(x)

. (25)

Using the standard dimensions of the ISO37 specimens, the cross-section
width b (x) can be expressed (in millimeters) as the following piece-wise func-
tion

b (x) = 2







































2 for x ∈ [0; 8) ,

9.5−
√

7.52 − (x− 8)2

for x ∈ [8; 11.679) ,

−5.75 +
√

102 − (x− 16.585)2

for x ∈ [11.679; 16.585) ,
4.25 for x ≥ 16.585.

(26)

Substitution of this function into (25) gives the value of correction factor as
k = 1.2002. One can see that according to this rough analytical model, the
real elastic modulus may be 20% lower than the apparent one which is rather
a significant correction. Therefore, more thorough study is performed below.

In order to obtain more accurate value of the correction factor k, finite
element modeling of the tensile experiment was performed using ANSYS 18
Mechanical APDL software in symmetric formulation (particularly, only the
half of the model was built) using the SOLID186 finite element type. The
FE model is depicted in Fig. 11,a. The shaded areas were the subject to
nodal constraint loading: the nodal displacements UY and UZ were assigned
zero values while the nodal displacements UX were assigned the value UX =
∆L/2 = 0.03L/2 = 1.33 mm which is 1.5% of initial grip-to-grip distance. As
it was mentioned earlier, the real testing was performed up to the elongation
of 3% of the grip-to-grip distance.

Analysis of the stress distribution (Fig. 11,b) shows that this model
is more accurate than the previous one since the stress distribution across
the cross-section is homogeneous only in the central part of the specimen
while the previousanalytical model (23) model assumed this across the whole
specimen.

Since the stress distribution in the middle part of the specimen can be
considered uniaxial, the total applied force was evaluated as P = σx0 · h · b0,
where σx0 is the stress in the center of symmetry of the whole FE-modeled
specimen (point O in Fig. 10).
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(a)

(b)

Figure 11: FE modeling of the tensile experiment: (a) the FE model, (b) the distribution
of the σx stresses in the specimen.

Since ANSYS applies loads gradually via several sub-steps, it was possible
to evaluate the apparent elastic modulus using differential formula as

Ea =
L

b0h

dP

d∆L
. (27)

Differential formula allowed us to track changes in Ea with respect to model
deformation (if any). Differentiation was performed numerically by means of
ANSYS itself. Since the ”true” value of E was set in the beginning of the
simulation, the correction factor was computed as k = Ea/E.
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Multiple trial runs under different parameter values showed that in linear
formulation the coefficient k: (i) does not depend on the values of E in the
wide range of applied stresses (1-6 MPa), (ii) slightly depends on Poisson’s
ratio (for a large interval of the ratio values ν = 0.2...0.49, it may change ap-
proximately by 0.017), (iii) depends on specimen geometry and, in particular,
for the standard ISO37 type 3 specimen made of a material with ν = 0.417
it is equal to k = 1.16977, (iv) does not depend on specimen deformation in
linear FE formulation.

Individual values of the correction coefficients k obtained by means of
ANSYS for the specimens No. 1,3 and 5 were the following: k1 = 1.15294,
k3 = 1.16338, k5 = 1.14864.

The latter coefficients allowed us to evaluate the values of E from ex-
perimental data using the following strategy. First, for each of the three
specimens and each of 10 tests per specimen, the force-elongation depen-

dency was fitted with straight line in the interval
∆L

L
∈ [0.0005; 0.0025] and

the value
dP

d∆L
was found. Note that fitting by means of linear regression

was needed because the data was rather noisy when deformations were very
small (Fig. 12,a).

Then the apparent value of elastic modulus was evaluated using (27). The

true values of E were calculated as E =
Ea

k
using individual correction coef-

ficients. Finally, the whole 30 values of E were statistically post-processed.
The raw force-elongation dependencies obtained during the experiment

in the interval
∆L

L
∈ [0.0005; 0.0025] are shown in Fig. 12,b.

The computed values of the elastic modulus versus the test number for
all the three specimens are presented in Fig. 13. The averaged value across
all 30 data sets is < E >= 2.9723 MPa. Standard deviation of the obtained
data is 7.3833e-2 MPa.
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Figure 12: Force-elongation dependencies obtained during the experiment in the interval
∆L

L
∈ [0.0005; 0.0025] (raw data): (a) fitting the raw data with a straight line, (b) the

raw force-elongation data for all 3 valid specimens (10 measurements per specimen).
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Figure 13: The computed values of the elastic modulus versus the test number. Dots:
specimen 1, asterisks: specimen 3, triangles: specimen 5.

Obtaining the value of elastic modulus is not enough to validate the re-
sults of the DSI experiment in this study. In order to do so, evaluation of
the Poisson’s ratio of the PVS is required. The corresponding method is
discussed below.

4.3. Estimation of Poisson’s ratio

In order to estimate Poisson’s ratio of the PVS, the photogrammetry
approach was used that alowed us to capture the necessary data from the
tensile experiments. In particular, video recording of the stretching process
of the specimens was performed using a camera with HD resolution in the
macro mode using different magnification factors. By extracting the photo-
graphic image of the specimen before and after stretching, it is possible to
estimate the deformations in axial direction εx and in orthogonal direction

εy. Poisson’s ratio may be then evaluated as ν = −εy
εx
.

In the beginning all recorded videos were subject to temporal denoising
and then pairs of images (before/after stretching) were extracted. These im-
ages were converted to HSV colour system and only the “Value” (V) channel
was kept producing grayscale pairs of specimens’ photographs. Using Mat-
lab the contrast of these pairs of grayscale images was enhanced using the
imadjust routine and the images were also sharpened using the imsharpen
routine. The examples of such pairs of post-processed images are shown in
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Fig. 14. In total, 17 image pairs of this kind were produced. Two of such
image pairs are shown in the Fig. 14. In each pair, the top/left image corre-
sponds to the undeformed specimen, while the bottom/right one corresponds
to the stretched specimen.

(a)

(b)

Figure 14: Examples of post-processed images used for identification of the specimens’
deformations (in each pair: the top/left one is before and the bottom/right one is after
stretching): (a) the images taken at low magnification, (b) images taken at high magnifi-
cation.

Next, the Matlab routine imregtform was applied to each pair of images
producing a global affine transform necessary to fit the image of the stretched
specimen into the initial photograph of that specimen. For this purpose, in
each pair one of the images was kept unchanged while the second one was
deformed (including shift, shear, stretching and rotation) so that finally it
became a part of the first image (or they had some parts in common). This
is the so-called image registration process.

In order to assure the quality of performed image registration, the differ-
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ence between the images was computed for each pair. In a pair of grayscale
images each one is essentially a matrix with integer values in 0..255 range.
Hence, the difference image is a matrix containing the absolute values of the
result of their subtraction. If some features in the two images coincide, the
dark area on the difference image is produced. Only the features that do not
coincide are highlighted because they have a non-zero difference in the lumi-
nosity values. Examples of such difference images corresponding to Fig. 14
are shown in Fig. 15. It can be noted that the difference images contain only
noise and do not contain the features of the original images which is a good
evidence of successful registration. That is, the affine transform allowing to
fit the right image into the left one was computed with high accuracy. More
on digital image processing methods can be found in Gonzalez and Woods
(2018) and the corresponding sections of Matlab manual.
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(a)

(b)

Figure 15: Examples of difference images produced for image pairs after registration.
There are no features of the original images in the regions where subtraction was performed
which is the sign of successful registration. The brightness is increased for illustrative
purpose.

Next, the above mentioned affine transform was inverted producing the
transform from initial to stretched state. The produced affine transform
contains information about translation, rotation, axial and shear deforma-
tions necessary to fit one image into another. Since image registration via
imregtform was performed iteratively as the result of Matlab’s internal op-
timization algorithm, the obtained transforms did not purely contain axial
deformations but also small amount of the other types of transformation.
In order to extract the information about axial deformations in vertical and
horizontal directions it was decided to apply the obtained transform to a set
of points with known coordinates initially forming a square (Fig.16,a). Let
a be the side length of this square.
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(a) (b)

Figure 16: Set of four points forming a quadrangle before and after application of the
identified affine transform: (a) initial state, (b) deformed state. The amount of shear
deformation is increased for illustrative purpose.

After evaluation of the coordinates of the vertices of the deformed square
the absolute values of axial deformations were estimated as follows

εx =
|xA−xD|+|xB−xC |

2
− a

a
,

εy =
|yA−yB |+|yD−yC |

2
− a

a
.

(28)

Finally, Poisson’s ratio was computed as

ν = −εy
εx
. (29)

The results of evaluation of Poisson’s ratio values for all 17 image pairs
is represented in Fig. 17. The averaged value is ν = 0.41758, the standard
deviation is σν = 0.0147.
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Figure 17: The computed values of the Poisson’s ratio for different captured images.

5. Comparison of the results of two experiments

Now the results of the two different experiments can be compared. As it
has been discussed above, the experimental results are influenced by many
factors related to the used equipment, mathematical algorithms, and assump-
tions of different kinds. Let us analyse briefly some of these factors.

Two types of noise were present in the measured DSI data: high-frequency
noise and small low-frequency fluctuations that influenced the overall trend of
load-displacement curves. The noise was produced mostly from the electronic
circuits of the DSI sensors and was effectively eliminated by the pre-fitting
curve. Slow fluctuations in the data can be caused by small inhomogeneities
of properties of the surface of the specimen. Influence of these factors was
minimized by multiple repeated testing at different locations. A pre-fitting
curve with the low number of degrees of freedom may also smooth away
’bumps’ in the measured load-displacement sequence.

The experimental results showed in Fig. A.19-A.20 are packed in rather
tight clouds of points which demonstrate the robustness and accuracy of
the tested BG approach. However, the optimal number of segments in the
pre-fitting polygonal chain may be the matter of discussion because the ob-
tained results do not exhibit a clearly visible optimum, e.g. global minimum
in standard deviation etc., and low number of segments leads to unreason-
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able increase in the identified values of the work of adhesion. In any case,
the results corresponding to different numbers of segments in the pre-fitting
polygonal chain do not differ significantly.

In the DSI experiment we used the JKR theory of adhesive contact as the
theoretical background. This theory requires the tested elastic medium to be
a half-space. Using numerical simulations, we showed in the corresponding
Section that the thick PVS specimen effectively models properties of an elas-
tic half-space, given that indentation depth is small. However, the finite size
specimen is stiffer than a half-space which means that the actual measured
values of indentation force were slightly higher than it would be expected.
The same effect may also be caused by non-linearity of the constitutive law
for PVS. As PVS is a hyperelastic material, it means that non-linear compo-
nents of stresses - however small they might be - make the specimen material
appear stiffer during compression in comparison to purely linear case or in
comparison to tensile load.

Altogether, the above means that the values of the reduced elastic contact
modulus E∗ obtained by means of the BG method using that particular
specimen are slightly higher than they could be if the BG method was applied
to a data obtained using a linearly elastic half-space.

On the other hand, the tensile experiment has its own sources of possible
inaccuracies. It can be seen that at small deformation range (at which elas-
tic modulus is usually identified) the obtained force-elongation data is rather
noisy (Fig. 12). This issue has been overcome by means of fitting the data
with straight line. Normally, the obtained values of both the force and elon-
gation are used in conventional formulae of the materials science describing
a rod under tension which allows to estimate the value of the elastic modulus
quite easily.

Clearly, it was not the case in our experiment because the elongation
of the gage section of the specimens could not be measured directly and
the deformation of the whole specimen was measured instead. Therefore, we
studied how the identified values of elastic modulus depend on the compliance
of the non-gage parts of the sample. Both analytical and numerical modeling
provided similar values of the correction factor k (the ratio of the apparent to
the real elastic moduli). Similarity of these results obtained in different ways
indicates that the obtained value of the correction factor is rather correct.

Finite element model indeed provided more accurate values of k since it
better reproduced stress distribution in the specimen. However, the presence
of grip force was not taken into account in it. It is expected that if grip
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pressure is applied to the grip area in the FE model (shaded areas in Fig.
8,a and Fig. 11,a) instead of zero normal displacements, it causes reduction
in the tension of the gage section as material is ”squeezed” out of the grip.
In turn, this should reduce the computed correction factors k. Thus, the
real identified values of the elastic modulus of the PVS are likely to be a
little higher then the presented in the previous Section because they were
calculated as E = Ea/k.

Poisson’s ratio of the PVS in this work was not determined from a sep-
arate dedicated experiment but rather estimated using photogrammetry ap-
proaches. Simple determination of deformations using changes in distance
between features in specimens’ photographs might be an unreliable approach
when processing images containing noise. Hence, we applied ready-to-use
Matlab routines for image registration which computed a global transform
needed to fit the photograph of the stretched specimen into the photograph
of the unstretched one. In this case the entire image was used as the source
of metric calculation for image fitting algorithm. As the result, the obtained
estimated values of Poisson’s ratio looked pretty stable with respect to differ-
ent zoom factors used and different amounts of noise present in the processed
images. This is an implicit evidence of the correctness of the obtained results.
It also should be noted here that PVS is a rubber-like material. So we expect
that in case of any inaccuracies the real values of Poisson’s ration should not
be less than the identified value ν = 0.41758 but even higher than that. In
that case, the value of E∗ identified in the tensile experiment should also be
higher.

Applying the extended BG method to the results of the DSI tests, the
values of the reduced elastic contact modulus E∗ and the work of adhesion
w of the tested material were obtained. The averaged values of E∗ varied
from 4.2959 to 4.3419 MPa, while the averaged values of w varied from 0.116
to 0.136 J/m2 depending on the number of segments in the pre-fitting line.
Indeed, the identified values of the reduced contact modulus and the work of
adhesion depend on the theory of adhesive contact used as the mathematical
model for the indentation experiment. Hence, the use of the JKR theory as
the framework for the problem must be justified.

In their papers Tabor (1977) and Muller et al. (1980) (see also Maugis
(2000)) introduced a dimensionless parameter suitable for clear distinction
of applicability range between the JKR and the DMT theories of adhesive
contact:
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µ =

(

Rw2

E∗2z30

)1/3

(30)

where R is the effective curvature radius of contacting bodies (if a sphere is in
contact with a plane, R is equal to the radius of the sphere, that is R = 5.155
mm); z0 is the equilibrium distance between atoms of the contacting bodies,
usually assumed to be 0.3...0.5 nm.

Values µ ≫ 1 indicate that the experiment is in the applicability range
of the JKR theory, while values µ ≪ 1 suggest that the DMT theory should
be used. Assuming z0 = 0.4 nm and using the total maximum and minimum
identified values of E∗ and w among all calculations (see Table 1 and 2 below)
one can estimate the range of values of the parameter µ as follows:

µmin =

(

Rw2
min

E∗2
maxz

3
0

)1/3

and

µmax =

(

Rw2
max

E∗2
minz

3
0

)1/3

where the subscripts ”max” and ”min” denote the maximum and the mini-
mum identified values of the corresponding physical quantities.

The calculated values of the Tabor-Muller parameters were: µmin =
2930.2, µmax = 5014.1. Thus, the DSI tests in the present work fall within
the range of applicability of the JKR theory.

In the second experiment, tensile testing of dumbbell PVS specimens was
performed. The obtained data allowed us to evaluate the values of elastic
modulus and Poisson’s ratio of the material of the specimens. The corre-
sponding values were E = 2.9723 MPa (averaged across the set of 30 val-
ues with minimum identified value of 2.8687 MPa and maximum identified
value of 3.1121 MPa) and ν = 0.41758 (averaged across the set of 17 values
with minimum identified value of 0.37999 and maximum identified value of
0.43827) which gave us the value of the estimate value of the reduced elastic
contact modulus as E∗ = E/(1− ν2) = 3.60005 MPa. Using the above min-
imum and maximum values of E and ν one can find that the lowest and the
highest individual identified values of the reduced elastic contact modulus
E∗ in the tensile experiment were 3.353 MPa and 3.852 MPa respectively.

Table 1 contains minimum, maximum, and averaged values of the reduced
elastic contact modulus E∗ identified by means of the BG method from the
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DSI experiment (depending on the number of segmentsNS in pre-fitting line).
The relative differences with the tensile experiment (based on mean values)
are shown as well. The relative differences ∆rel in the identified values were
computed as

∆rel =
|E∗

TENS − E∗
DSI |

E∗
DSI

(31)

where E∗
TENS and E∗

DSI are the values identified from the tensile experiment
and in the DSI experiment (by means of the BG method) respectively.

Graphical comparison of the results of the two experiments (identification
of E∗) is shown in Fig. 18. Filled rectangles denote total ranges of individual
identified values of E∗ in all calculations. Dots denote averaged values of E∗.
Percentages denote relative difference in values calculated according to (31).
In case of the DSI experiment the BG method was used. Hence, multiple
dots correspond to different values of NS in pre-fitting.

Detailed comparison of the values of E∗ calculated in the two experiments
(Fig. 18) showed that the relative difference (31) between total maximum
in the tensile experiment and the total minimum in the DSI experiment
was 3.80%. The relative difference between total minimum in the tensile
experiment and the total maximum in the DSI experiment was 27.38%. The
relative difference in averaged values of E∗ varied between 16.20% and 17.09%
depending on the number of segments NS used during pre-fitting. This can
be considered as a good result.

Summarizing all the above considerations, we note that due to the sample
size effect and the material properties the values of E∗ identified by means
of the BG method were slightly higher than they could have been. At the
same time, due to shortcomings in the processing of the data of the tensile
experiment the identified values of E∗ were lower than they could be. Thus,
the difference in results of the two experiments could be even smaller than the
figures of 16.20 ... 17.09% stated above. Thus, the accuracy of the extended
BG method in formulation (16) has been directly confirmed.
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Figure 18: Graphical comparison of the results of the two experiments (identification of
E∗). Filled rectangles: total ranges of individual identified values of E∗ in all calculations;
dots: averaged values; percentages denote relative differences (31). In case of the DSI
experiment the BG method was used. Hence, multiple dots correspond to different values
of NS in pre-fitting.

Table 1: Minimum, maximum, averaged values of the reduced elastic contact modulus
E∗ identified by means of the BG method, and the relative difference from the results of
the tensile experiment ∆rel.avg for averaged values versus the number of segments NS in
pre-fitting line.

NS min E∗, MPa max E∗, MPa avg E∗, MPa ∆rel.avg, %
4 4.004 4.544 4.342 17.09
5 4.131 4.558 4.336 16.97
6 4.027 4.541 4.329 16.84
7 4.099 4.599 4.334 16.93
8 4.051 4.586 4.325 16.76
9 4.065 4.609 4.296 16.20
10 4.064 4.617 4.302 16.32
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Table 2: Minimum, maximum, averaged values of the work of adhesion w identified by
means of the BG method versus the number of segments NS in pre-fitting line.

NS min w, J/m2 max w, J/m2 avg w, J/m2

4 0.1042 0.1584 0.1360
5 0.1022 0.1536 0.1264
6 0.0832 0.1468 0.1252
7 0.0981 0.1479 0.1226
8 0.0816 0.1555 0.1207
9 0.0879 0.1489 0.1182
10 0.0966 0.1476 0.1168

Conclusions

In this work a concept of a model-based approach to simultaneous identi-
fication of elastic (the reduced elastic contact modulus E∗) and adhesive (the
work of adhesion w) properties of materials and structures from experimen-
tal results of depth sensing indentation (DSI) has been presented. This new
approach is an extended version of the BG method developed by Borodich
and Galanov (2008) which uses different objective functional and the idea of
preliminary smoothing the data.

The extended BG method uses the concept of two-stage fitting of the
theoretical DSI dependency to the experimental data points. Firstly, the
data is fitted with an auxiliary curve which acts as a filter in certain sense.
The mathematical representation of this pre-fitting curve is supposed to be as
simple as possible. This allows us to use some advanced fitting/filtering tech-
niques to reduce measurement noise and fluctuations in the data. Secondly,
the theoretical load-displacement curve (the expected DSI dependency which
may be a complex expression) is fitted to the auxiliary one via minimization
of the squared norm of the difference of the two functions (the objective func-
tional). The sought material properties are determined from the optimal set
of characteristic parameters that give minimum to the objective functional.

The accuracy and robustness of the above approach has been directly
validated by means of two independent experiments in which the properties
of specimens made of polyvinyl siloxane (PVS) were determined. Both ex-
periments allowed us to evaluate the values of the reduced elastic modulus
E∗ of the PVS and compare these values.

In the first experiment a DSI equipment was used and the BG method
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was applied to the obtained data as described above using the JKR theory
of adhesive contact as the theoretical background for the problem. The
pre-fitting curve was chosen to be a polygonal chain. It was fitted to the
normalized (dimensionless) data using orthogonal distance fitting approach
which has advantage over conventional least-squares fitting when both force
and displacement readings are supposed to have measurement errors.

In the second experiment we performed tensile testing of dumbbell PVS
specimens while taking video recording of the stretching process. The ob-
tained data allowed us to separately evaluate the values of elastic modulus
and Poisson’s ratio of the material of the specimens and then calculate the
value of the reduced elastic modulus of the material.

Comparison of the of the results of the two experiments showed that the
absolute minimum in relative difference between individual identified values
of the reduced elastic modulus E∗ in the two experiments was 3.80%; the
absolute maximum of the same quantity was 27.38%; the relative difference
in averaged values of E∗ varied between 16.20% and 17.09% depending on
the number of segments NS used during pre-fitting. The above can be con-
sidered as a good result. Our analysis showed that unaccounted factors and
phenomena tend to decrease the differences in the results of the two experi-
ments. Therefore, the results obtained by means of the two different methods
in this work should differ even less.

However, since the results of the two experiments coincide well enough,
it can be concluded that the methods used in both experiments are rather
effective and well justified as well as the used assumptions. Thus, the ro-
bustness and accuracy of the proposed extension of the BG method has been
directly validated.
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Appendix A. The results of application of the BG method (com-
plete set)

In the following figures the results of identification of the PVS properties
are shown as the number of segments in the pre-fitting polygonal chain varies
from 4 to 10. The values of E∗ and w were identified separately for each of
the 25 data sets. The result of each identification is represented as a dot in
the figures.

50



0

1

2

3

4

5

6

7

8

0 50 100 150 200

re
d
u
ce
d
Y
ou

n
g’
s
m
o
d
u
lu
s
E

∗
,
M
P
a

work of adhesion w, mJ/m2

pre-fitting with 4 segment line used

the identified material properties

(a)

0

1

2

3

4

5

6

7

8

0 50 100 150 200

re
d
u
ce
d
Y
ou

n
g’
s
m
o
d
u
lu
s
E

∗
,
M
P
a

work of adhesion w, mJ/m2

pre-fitting with 5 segment line used

the identified material properties

(b)

0

1

2

3

4

5

6

7

8

0 50 100 150 200

re
d
u
ce
d
Y
ou

n
g’
s
m
o
d
u
lu
s
E

∗
,
M
P
a

work of adhesion w, mJ/m2

pre-fitting with 6 segment line used

the identified material properties

(c)

Figure A.19: Material properties extracted using pre-fitting with polygonal chain. Number
of segments in chain are correspondingly 4 (a), 5 (b), 6 (c).
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Figure A.20: Material properties extracted using pre-fitting with polygonal chain. Number
of segments in chain are correspondingly 7 (a), 8 (b), 9 (c).
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Figure A.21: Material properties extracted using pre-fitting with polygonal chain. Number
of segments in chain: 10.
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