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SUMMARY

The mammalian neocortex has undergone remark-
able changes through evolution. A consequence of
such rapid evolutionary events could be a trade-off
that has rendered the brain susceptible to certain
neurodevelopmental and neuropsychiatric condi-
tions. We analyzed the exomes of 65 patients with
the structural brain malformation periventricular
nodular heterotopia (PH). De novo coding variants
were observed in excess in genes defining a tran-
scriptomic signature of basal radial glia, a cell type
linked to brain evolution. In addition, we located
two variants in human isoforms of two genes that
have no ortholog in mice. Modulating the levels of
one of these isoforms for the gene PLEKHG6 demon-
strated its role in regulating neuroprogenitor differ-
entiation and neuronal migration via RhoA, with
phenotypic recapitulation of PH in human cerebral
organoids. This suggests that this PLEKHG6 isoform
is an example of a primate-specific genomic element
supporting brain development.

INTRODUCTION

Largely facilitated by changes in neural stem and progenitor cell

dynamics, themammalian neocortex has undergone remarkable

modifications in size, structure, and neuronal number through

evolution (Lui et al., 2011; Borrell and Reillo, 2012; Betizeau
Cell Repo
This is an open access article under the CC BY-N
et al., 2013; Smart et al., 2002; Lewitus et al., 2014; Borrell and

Götz, 2014; Sun andHevner, 2014; Picco et al., 2018). In the ven-

tricular zone (VZ), apical progenitors, collectively composed of

neuroepithelial cells and apical radial glia (aRG), divide to both

self-renew and generate neurons (via an intermediate cell popu-

lation) that migrate centrifugally to populate the cortical plate

(Rakic, 1988; Malatesta et al., 2000; Noctor et al., 2001, 2004;

Haubensak et al., 2004). Inmost primates and some non-primate

species, neurogenesis also initiates with aRG; however, these

cells can also divide to induce the production of another progen-

itor cell class called basal radial glia (bRG). Unlike their apical

counterparts, bRG cells lose their VZ attachments, delaminate

basally, and locate to an additional germinal layer, the outer sub-

ventricular zone (OSVZ) (Hansen et al., 2010; Fietz et al., 2010;

Reillo et al., 2011). Since a strong correlation exists between

regional cortical expansion and differences in abundance and

properties of neuroprogenitors across species, bRG cells are

proposed to constitute a major cellular substrate facilitating the

evolutionary expansion of the primate cerebral cortex (Hansen

et al., 2010; Fietz et al., 2010; Reillo et al., 2011). A consequence

of these rapid, expansive cortical evolutionary events, particu-

larly in humans, could be a trade-off that has rendered the brain

susceptible to certain neurodevelopmental and neuropsychiatric

conditions (Bae et al., 2014; Doan et al., 2016; Bershteyn et al.,

2017). Data from humans with such disorders could therefore

provide insight into recently evolved genetic substrates for cere-

bral cortical complexification.

Periventricular nodular heterotopia (PH) is a structural malfor-

mation of cortical development, characterized by a failure of

some neurons to locate correctly within the cerebral cortex;

instead, they adopt heterotopic positions close to their sites of
rts 25, 2729–2741, December 4, 2018 ª 2018 The Author(s). 2729
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Table 1. Observed and Expected De Novo Variants Identified in

Patients with PH in Genes that Are Differentially Expressed in

aRG and bRG

Gene Set No. of Genes

PH (n = 65)

Exp Obs p

aRG 33 0.14 1 0.133

bRG 67 0.26 2 0.024*

Exact binomial test (two-tailed). Exp, expected; obs, observed. Asterisk

(*) indicates significant p value.
production, themargins of the lateral ventricles (Guerrini and Do-

byns, 2014). PH has traditionally been viewed as a disorder of

abnormal migration, but recent data have outlined a role for

disorganized neural stem cell dynamics in its causation (Cap-

pello et al., 2013; Kielar et al., 2014). Mouse models often fail

to recapitulate human forms of PH, suggesting that species-spe-

cific differences, including evolutionarily dynamic mechanisms,

could underpin its pathogenesis (Feng et al., 2006; Hart et al.,

2006; Corbo et al., 2002; Johnson et al., 2018).

A recent study in which the coding region of the genome (the

exome) was sequenced in 202 individuals with PH, and their

unaffected parents demonstrated a substantial, albeit highly

heterogeneous, genetic component contributing to the etiology

of the condition (Heinzen et al., 2018). Such heterogeneity

makes the discovery of new loci and cellular processes under-

pinning its cause difficult. In this study, we sought to test the

hypothesis that variants in recently evolved exomic elements

contribute to the pathogenesis of PH. To investigate this, our

hypotheses were 2-fold. First, we hypothesized that genes

defining a differential expression signature for basal progenitors

(specifically bRG), but not their apical counterparts (aRG), are

enriched for genetic variants identified in individuals with PH.

Second, we proposed that rare variants in individuals with PH

would be found in human and/or primate exomic elements

that have no mouse ortholog, representing newly evolved

regions of the human and/or primate coding genome that

have properties that influence neurogenesis. Although the ge-

netic heterogeneity underlying PH would likely preclude such

loci fulfilling criteria for pathogenicity (Heinzen et al., 2018),

demonstration of their cellular functions could nevertheless

implicate them as newly evolved contributors to cortical

development.

To this end, we demonstrate here that de novo coding variants

identified in individuals with PH are located in genes associated

with bRG, but not aRG, function. Furthermore, genetic variants

identified in individuals with PH do occur in isoforms with no or-

tholog in mice. Although falling short of proof of pathogenicity on

genetic grounds, forced expression of one of these isoforms in

PLEKHG6 in the developing mouse cortex promoted defects in

cellular proliferation and neuronal migration via activating

RhoA, a gene whose knockout is associated with neuronal het-

erotopia (Cappello et al., 2012). Furthermore, modulating the

specific isoform of interest in PLEKHG6 phenotypically recapitu-

lates PH in human cerebral organoids. These results indicate a

role for bRG in PH etiology, demonstrate the utility of functional

assays in further investigating the relevance of candidate dis-

ease gene loci in genetically heterogeneous conditions, and
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highlight a primate-specific genomic element in the gene

PLEKHG6 in brain development.

RESULTS

EnhancedBurden ofDeNovoVariants in Individualswith
PH in Genes Associated with Basal Radial Glia Cell
Identity
To determine whether variants detected within the exomes of

individuals with PH localize to recently evolved genomic se-

quences, we independently aligned and variant called exomes

on a cohort of 65 proband-parent trios we recruited and identi-

fied 67 variants (50 de novo, 17 biallelic variants) not observed

within control datasets (Lek et al., 2016; Sherry et al., 2001; Au-

ton et al., 2015) (Tables S1 and S2). This cohort was a subfraction

of a larger collection of individuals with PH that were separately

analyzed on an independent platform as part of a study on the

genetic etiology of PH (Heinzen et al., 2018).

Given that primate brain complexification is linked to basal

radial glia (bRG) expansion, we questioned whether elevated

rates of variants were observed in genes that exhibit expression

signatures linked to bRG cell function. Transcriptional signatures

that can distinguish bRG from their apical counterparts (aRG)

have been defined (Pollen et al., 2015; Florio et al., 2015; Nowa-

kowski et al., 2017). Intersecting this gene set with loci with de

novo variants identified in our exome dataset yielded two genes

as common between the two groups, a significant excess

compared to the expectation on the basis of gene-specific rates

of variation (p = 0.024, exact binomial test; Table 1). In contrast,

when the same loci were intersected across the 33 aRG-associ-

ated genes (Pollen et al., 2015), only one, LRIG3, was shared in

common (p = 0.133, exact binomial test; Table 1). The distribu-

tion of non-synonymous de novo variants per patient also closely

approximated that expected by a Poisson distribution of random

mutational events, and all de novo events were confirmed by an

orthogonal technique. The rate of synonymous variants also did

not significantly deviate from the 0.27 events per exome ex-

pected (p = 0.527, exact binomial test). These data indicate

that the burden associations described here are not driven by

variant over-calling. Previous studies of populations with various

neurodevelopmental and neuropsychiatric disorders have also

observed an enrichment of identified de novo mutations in

various gene sets (Bayés et al., 2011; Darnell et al., 2011; Feld-

man et al., 2008; Iossifov et al., 2012, 2014; Kang et al., 2011;

Voineagu et al., 2011). When compared to the genes with vari-

ants in this study, no enrichment of de novo events was observed

(Table S3), strengthening the specificity of our finding related to

bRG function.

Exomic Variants Detected in Individuals with PH within
Recently Evolved Regions of the Coding Genome
The observation that PH may result from mutations in genes

that have recently acquired adaptive functions in the brain

could be indicative of a more widespread phenomenon—that

PH etiology could be related closely to developmental vulnera-

bilities conferred by recently evolved genetic elements.

Although loci identified using this approach may fall short of

proof of pathogenicity on genetic grounds, such a hypothesis



Figure 1. Biallelic Knockout of a Primate-

Specific Isoform of PLEKHG6 in an Individ-

ual with PH

(A) University of California, Santa Cruz (UCSC)

Genome Browser tracks illustrating the PLEKHG6

locus and the deletion identified in a patient with

PH in an isoform that is present in humans, but not

mice. Top:the entire locus and all of the isoforms

annotated in mice and humans are outlined. Or-

ange box highlights the region shown at higher

resolution at bottom. Red arrow identifies the site

of the frameshift variant in PLEKHG6 isoform 4 for

which the index case is homozygous (Table S2).

100 Vert. track depicts multiple alignment data

for 100 vertebrate species and measurements

of evolutionary conservation (Rosenbloom et al.,

2015).

(B) Axial brain MRI scan of an individual homozy-

gous for the c.28delG variant in PLEKHG6 isoform

4. White arrowheads mark the presence of

bilateral, posterior-predominant, periventricular

nodular heterotopia.

(C) Sequence traces illustrating the sequence

variant c.28delG, present in a homozygous and

heterozygous state in the index case (bottom

trace) and parents (top two traces), respectively.

(D) Sequence homology observed at the tran-

scriptional start sites of isoforms 1 and 4 in the

indicated species.
could inform the function of newly evolved regions of the hu-

man and/or primate coding genome and represent candidate

disease loci for further investigation, especially if associated

with cellular pathways already implicated in PH. To test this hy-

pothesis, we filtered for variants that are located within vali-

dated human transcripts (the Consensus Coding Sequence

[CCDS] [Pruitt et al., 2009]) that have no ortholog in mice. We

identified two variants in two different genes—one in ABAT

(de novo missense variant c.1426T>G [p.Ser476Ala]; RefSeq

NM_001127448) and PLEKHG6 (homozygosity for c.28delG

[p.Glu10Argfs*40]; RefSeq NM_001144857.1) (Figures 1A and

S1A). Since the variant identified in ABAT is missense and

therefore difficult to a priori assign functional significance to,

we focused on the loss-of-function genotype in PLEKHG6 (Fig-

ure 1C), a gene that encodes the guanine nucleotide exchange

factor (pleckstrin homology domain containing family G mem-

ber 6), as a potential novel locus regulating neurogenesis in hu-

mans. PLEKHG6 is an activator of the small Ras homologous

guanosine triphosphatase (RhoGTPase) RhoA (Asiedu et al.,

2009), the conditional depletion of which within the developing

mouse forebrain is associated with neuronal heterotopia (Cap-

pello et al., 2012).

The proband with the homozygous frameshift variant in

PLEKHG6 was diagnosed as having intellectual disability and

bilateral PH predominantly affecting the trigone, posterior, and

temporal horns of the lateral ventricles (Figure 1B; Table S4).

This patient also had no pathogenic variants identified in known

loci previously implicated in PH, including FLNA. Congruent with

studies that place PLEKHG6 beyond the 90th percentile for

genes exhibiting purifying selection (Huang et al., 2010; Petrov-
ski et al., 2013), only two homozygous loss-of-function (LoF)

events are observed in PLEKHG6 in the Genome Aggregation

Database (gnomAD; representing 123,136 exome and 15,496

genome sequences from unrelated individuals) (Lek et al.,

2016). One of the individuals had the same genotype identified

in the present study, although their phenotypic status is un-

known. It is noteworthy that the individual in this study has

mild cognitive disability but no seizures, and therefore it is

possible that the individual listed in gnomAD may have a similar

or subclinical phenotype. Such instances have been docu-

mented for other loci implicated in the causation of PH (Heinzen

et al., 2018). These findings therefore represent a prima facie

case for this biallelic genotype associated with PH to be of func-

tional significance.

PLEKHG6 Isoforms Are Differentially Expressed in
Neural Progenitors and Neurons of Developing Human
Brains and Organoids
In humans, PLEKHG6 encodes at least five alternate transcripts

(Figure 1A), three of which have initiation codons within exon 2.

Isoforms 4 and 5, however, use unique first exons and conse-

quently encode proteins with novel N termini (Figures 1A and

1D). Transcriptional start sites directing the production of iso-

forms 4 and 5 are confined to primates (Figures 1D and S1B),

indicating that this regulatory innovation arose after the diver-

gence of primates from other mammalian species 65–85 million

years ago. The biallelic frameshift variant observed in the individ-

ual with PH lies in the exon 1-specifying transcript 4

(PLEKHG6_4) of human PLEKHG6 and predicts nullizygosity

for this isoform.
Cell Reports 25, 2729–2741, December 4, 2018 2731



Figure 2. PLEKHG6_4 Knockdown in Hu-

man Cerebral Organoids Changes Cellular

Dynamics

(A and C) Micrograph sections of day 42 human

cerebral organoids electroporated with GFP-

empty vector control or human PLEKHG6 isoform

4 targeting miRNA (miPLEKHG6_4) and analyzed

7 dpe. Sections were then immunostained for

SOX2 (A) or MAP2 (C).

(B and D) Quantification of GFP-expression (GFP+)

cells transfected with GFP-empty vector alone or

miPLEKHG6_4 that also express (B) SOX2+ or (D)

MAP2 (means ± SEMs). Mann-Whitney U test;

*p < 0.05; **p < 0.01. n = 4–6 different organoids

per condition from two separate batches. Scale

bar represents 30 mm.
Given that PLEKHG6 isoforms 1 and 4 (PLEKHG6_1 and _4,

respectively) differ only by their first coding exon and that no ho-

mology to known signal peptides was detected by Signal-BLAST

(Frank and Sippl, 2008) within the N termini encoded by these

unique exons, we hypothesized that differential expression is the

essential distinguishing feature between these two proteins. To

study this, we compared PLEKHG6_1 and PLEKHG6_4 expres-

sion in developing human cortices, specifically in apical and basal

radial glia andmigrating neurons at 12–13weekspost-conception

(pcw) (Florio et al., 2015). Consistent with differential expression

patterns distinguishing the two isoforms, these data recorded

PLEKHG6_1 as being expressed in migrating neurons and

PLEKHG6_4 in apical and basal radial glia cells (Figure S2B). An

overall greater trend for increased PLEKHG6 expression is also

observed in human radial glia compared tomice, further suggest-

ing an evolutionary link (Figure S2A) (Florio et al., 2015). Using vali-

dated polyclonal antibodies that recognize the unique N termini of

PLEKHG6_1 and PLEKHG6_4 (Figure S2C), we further assessed

for differential regulation of these two isoformsby immunostaining

human cerebral organoids. Consistent with the transcriptomic

data, PLEKHG6_1 is expressed in post-mitotic neurons (PCNA�

MAP2+), while PLEKHG6_4 was present in both proliferating neu-

ral progenitors (PCNA+ MAP2�) and neurons (Figures S2D and

S2E). To further assess the potential for differential expression

among the two isoforms, we analyzed histone signatures (histone

H3 lysine 4 tri- and monomethylation) and identified distinct pre-

sumptive promoters for PLEKHG6_1 and PLEKHG6_4 (Rose-

nbloom et al., 2013), which also correlatedwith enhancedDNaseI

hypersensitivity (Figure S3). Chromatin immunoprecipitation

sequencing (ChIP-seq) data (Rosenbloom et al., 2013) define a

mutually exclusive set of transcription factors that also locate

differentially at the two cis-regulatory elements for these isoforms

in non-overlapping cell types (Figure S3). These independent lines

of evidence support the differential regulation and expression of

PLEKHG6_1 and PLEKHG6_4.
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Modulation of PLEKHG6 Levels in
Cerebral Organoids Induces PH and
Is Non-cell Autonomous
PLEKHG6 activates the small GTPase

RhoA (Asiedu et al., 2009), a known

modulator of neuronal migration and
cortical development in mice (Cappello et al., 2012). Conditional

depletion of RhoA within the developing mouse forebrain is

associated with cellular heterotopia; its knockdown in utero

increases the proportion of electroporated cells at more basal

positions along the cortical plate (Cappello et al., 2012). Such dif-

ferences in phenotype have been linked to the number of cells

disrupted using each strategy (Cappello et al., 2012). Thus, while

nullizygosity for the primate-specific isoform of PLEKHG6

(PLEKHG6_4) potentially contributes to the pathogenesis of PH

(and if the mechanism is mediated via RhoA), its knockdown

within developing organoid cultures would not induce heterotop-

ic cells lining the ventricle but instead increase the number of

electroporated cells at the cortical plate. Targeted PLEKHG6_4

knockdown in organoid cultures induced changes in the cellular

composition of GFP+ cells 7 days post-electroporation (dpe),

with an increased fraction of GFP+ cells that were also positive

for the neuronal marker MAP2 and decreased for the progenitor

marker SOX2 (Figures 2 and S4).

The primate-specific isoform of PLEKHG6 (PLEKHG6_4) is

lowly expressed in developing human cortical and cerebral or-

ganoid tissue (Camp et al., 2015; Florio et al., 2015). To further

explore PLEKHG6_4 in human brain development, we next

assessed the consequences of misregulation of PLEKHG6_4

expression by increasing its levels in organoids via electropo-

ration. Here, ectopic neurons (marked by NeuN) were identi-

fied at the ventricular surfaces of organoids at a higher

frequency after PLEKHG6_4 misregulation compared to con-

trols (Figures 3A and 3B). Notably, these ectopic NeuN+ cells

were GFP�, indicating that their heterotopic positioning re-

sulted from a non-cell autonomous mechanism induced by

PLEKHG6_4 overexpression (Figures 3A and 3B). Associated

anomalies observed after electroporation of the PLEKHG6_4

construct also included progressive disruption of the neuroepi-

thelial lining and defective apical junction assembly (Figures

3C, 3D, and S5). Specifically, control organoids had a fine



Figure 3. PLEKHG6_4 Dysregulation in Human Cerebral Organoids Impairs Ventricular Surface Integrity and Induces PH Formation

Micrograph sections of day 42 human cerebral organoids electroporated with GFP-empty vector control or human PLEKHG6 isoform 4 (PLEKHG6_4) and

analyzed 4 or 7 dpe. Sections were then immunostained for NeuN, b-catenin, or SOX2, as indicated.

(A) White arrowheads indicate NeuN+GFP� cells ectopically located directly adjacent to the ventricular surface within the electroporated zone.

(B) Quantification of the percentage of ventricles with ectopic NeuN+ cells transfected with GFP-empty vector control or human PLEKHG6_4 in (A).

(C) Red and yellow arrowheads indicate the b-catenin profile at the electroporated and adjacent non-electroporated ventricular surfaces, respectively.

(D) White arrows indicate heterotopic cells.

(E and F) Dotted lines indicate heterotopic cells.

Exact binomial test; *p < 0.05. n = 4–6 different organoids per condition from 2 separate batches. Scale bar represents 30 mm.

Cell Reports 25, 2729–2741, December 4, 2018 2733



adherent junction belt along the ventricular surface, staining

strongly for b-catenin, phalloidin, and PALS1. This structure

was significantly disrupted in organoids overexpressing

PLEKHG6_4, with its constituent proteins more diffusely

dispersed (Figures 3C, 3D, and S5). The heterotopic neurons

clustering at the ventricular surface 7 dpe formed PH-like nod-

ules composed of neural progenitors (marked by SOX2) and

NeuN+ neurons (Figures 3E and 3F). Thus, modulation of

PLEKHG6_4 activity within human cerebral organoids demon-

strates a role for this factor in neurogenesis and reproduces

features of PH.

Forced PLEKHG6_4 Expression within Apical
Progenitors of the Developing Mouse Cortex Promotes
Non-cell Autonomous Expansion of Basal Progenitors
Given that PLEKHG6_4 represents a newly evolved feature of

the primate coding genome, we next assessed the effects of

forced expression of this isoform during neurogenesis. To

this end, we overexpressed this isoform in the developing

mouse cortex by in utero electroporation on embryonic day

13 (E13). Analysis 3 dpe (E16) demonstrated that forced

expression of PLEKHG6_4 decreased the proportion of GFP+

cells in the VZ and increased their numbers in the inner cortical

plate (CP1) relative to vector-only control cortices (Figures 4A

and 4B; p < 0.05). The proportion of GFP+ cells expressing

Pax6 in cortices expressing PLEKHG6_4 was reduced relative

to controls (Figures 4C and 4D). However, a significant 4-fold

expansion of basally located (Tbr2+) progenitors relative to

controls was observed after PLEKHG6_4 forced expression

(Figures 4E and 4G). We were surprised to find that

these basal progenitors were not GFP+ (Figures 4E and 4F),

indicating that, as also observed in human cerebral organoids,

a non-cell autonomous mechanism underlies this obser-

vation. Increased numbers of Tbr1+GFP+ neuronal cells were

also observed within developing cortices overexpressing

PLEKHG6_4 (Figures 4H and 4I), although this observation is

unlikely to be due to a direct effect, as PLEKHG6_4 overex-

pression in primary mouse cortices isolated at E13 and

cultured in vitro did not significantly increase the number of

neurons (b-III tubulin+), even after 5 days of differentiation

(data not shown). Similar to the organoid data, we detected

a disruption in the neuroepithelial lining within the electropo-

rated region (Figure 4J). Developing cortices electroporated

with PLEKHG6_4 expressing constructs also induce radial glial

cells to lose their radial morphology (Figure S6). These data

show that forced expression of PLEKHG6_4 in apical progen-

itors enhances the production of neurons and basal progenitor

production, the latter effect most likely through non-cell auton-

omous mechanisms.

Plekhg6 Is a Regulator of Neurogenesis and Neuronal
Migration in the Developing Mouse Brain
To better understand the mechanism leading to the defects

noted after modulation of PLEKHG6_4, we next evaluated

the phenotypic effects induced after knockdown of Plekhg6

in developing mouse cortices. To explore whether reduced

Plekhg6 levels also modulate neurogenesis, as they did in

the organoid model, we introduced a bi-cistronic vector ex-
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pressing GFP and validated microRNAs (miRNAs) directed

against Plekhg6 (Figures S7A–S7C) into the ventricular neuro-

epithelium of E13 embryos using in utero electroporation. As

for PLEKHG6_4 knockdown in organoids (and consistent

with the RhoA knockdown phenotype observed previously

[Cappello et al., 2012]), Plekhg6 knockdown induced changes

in the cellular distribution of GFP+ cells 3 dpe (E16) with an

increased fraction of GFP+ in the outer cortical plate (CP2)

relative to vector-only control cortices (Figures 5C and 5D;

p < 0.01, Figures S7A and S7C). In addition, we observed an

overmigration of neurons that breached the basement mem-

brane in five of the seven developing cortices subject to

Plekhg6 knockdown (Figure 6A). A similar effect was observed

after acute knockdown of RhoA (Cappello et al., 2012). Both

GFP+Pax6+ apical and GFP+Tbr2+ basal progenitors were

correspondingly depleted in miRNA-treated cortices relative

to the vector-only control (Figures 5E, 5G, 5I, and 5K). Mitoti-

cally active phosphorylated histone H3 (pH3+) cells positive for

GFP were also depleted 3 dpe (Figures 5F and 5J), while an

increase in the number of GFP cells positive for the early

neuronal marker Tbr1 was observed (Figures 5H and 5L).

These differences were not evident at an earlier time point

(1 dpe; Figures 5E–5L), despite a significant increase in

GFP+ cells expressing the miRNA within the upper cortical

plate (Figures 5A and 5B). These observations were not ex-

plained by changes in cell death as ascertained by the mea-

surement of activated caspase 3 (Figures S7D and S7E).

These data support a role for Plekhg6 in influencing both neu-

roprogenitor differentiation and neuronal migration.

Knockdown of Plekhg6 Mediates Changes in Neuronal
Migration via RhoA that Can Be Rescued by Human
PLEKHG6_4
To directly test whether modulation of RhoA activity can explain

the redistribution of neurons after knockdown of Plekhg6, we co-

electroporated a constitutively activated (‘‘fast cycling’’)

mutant of RhoA with the miRNA against Plekhg6 (Figures 6B

and 6C). This active form of RhoA rescued the neuronal mispo-

sitioning that was observed after Plekhg6 knockdown (Figures

6B and 6C).

With only 6% of the protein sequence differing between

PLEKHG6_1 and PLEKHG6_4 and no homology to known signal

peptides within the N terminus encoded by the unique first exon

of PLEKHG6_4, we further hypothesized that both isoforms have

the same RhoA catalytic function. Consistent with this scenario,

overexpression of human PLEKHG6_4 within E13 mouse

cortices rescued the altered neuronal distribution observed after

knockdown of Plekhg6 (Figures 6D and 6E). Further confirming

functional equivalence between PLEKHG6_4 and Plekhg6, a

RhoA/Rho kinase-based cell transfection assay demonstrated

comparable RhoGTPase activity between PLEKHG6_1 and

PLEKHG6_4 and a truncated PLEKHG6 isoform (PLEKHG6_744)

containing only the sequence in common between these two

versions (Figures 6F–6H). These data indicate that the different

N termini of each PLEKHG6 isoform do not influence its catalytic

function as a modulator of RhoA activity and suggest that it is the

differential expression patterns of these two isoforms (Figures S2

and S3) that distinguish them from each other.



Figure 4. PLEKHG6_4 Overexpression Disrupts VZ Integrity and Induces Basal Progenitor Cell Expansion in the Developing Mouse Cortex

(A) Coronal micrograph sections of E16 mouse cerebral cortices electroporated at E13 with GFP-empty vector control or human PLEKHG6 isoform 4

(PLEKHG6_4) and analyzed 3 dpe.

(B) Quantification of the distribution of GFP-expressing (GFP+) cells transfected with the various constructs in (A).

(C–I) Coronal micrograph sections of the cerebral cortex electroporated with GFP-empty vector control orPLEKHG6_4 at E13with immunostaining at E16 (3 dpe)

for Pax6 (C), Tbr2 (E), or Tbr1 (H). (D, F, G, and I) Electroporated GFP+ cells co-stained for their respective markers were counted over a representative cross-

sectional area of the cerebral cortex and presented graphically (means ± SEMs). (H) White arrowheads indicate cells staining for the indicated markers and GFP.

(J) Coronal micrograph sections of the cerebral cortex electroporated with GFP-empty vector control or PLEKHG6_4 at E13 with immunostaining at E16 (3 dpe)

for b-catenin. Red and yellow arrowheads indicate the disposition of b-catenin at the electroporated and adjacent non-electroporated ventricular surfaces,

respectively.

For (A), the cortex was subdivided into five equally thick bins approximately corresponding to VZ (bin 1), SVZ (bin 2), IZ (bin 3), and CP (bins 4 and 5). IZ,

intermediate zone; SVZ, subventricular zone. Four to six embryos were analyzed for each condition. n, total number of GFP+ cells counted per condition. Mann-

Whitney U test; *p < 0.05; ns, not significant. Scale bar represents 100 mM (A), (C), (E), (H), and (J); 50 mm (c’), (c’’), (e’), (e’’), (h’), and (h’’).
DISCUSSION

The Emerging Role of bRG Dysfunction in PH and
Neurodevelopmental Disease
This study has outlined a significant link between genes with de

novo variants detected in patients with PH and the transcrip-

tional networks present in human basal progenitor cells, specif-

ically bRG. The paucity of de novo variants in genes correlating

with apical progenitor cell fate suggests that it is the functional

impairment of the basal progenitor population that is important
in the pathogenesis of at least some cases of PH. Dysfunction

of bRG may also be of broad significance for the pathogenesis

of many neurodevelopmental disorders. For example, examina-

tion of a cerebral organoid model for classical lissencephaly, a

structural malformation of cortical development characterized

by the absence of folds (i.e., gyri and sulci), highlighted delayed

mitosis specifically in bRG as one of the critical cellular defects

leading to this condition (Bershteyn et al., 2017). More widely,

an overrepresentation of variants in patients with autism spec-

trum disorders (ASDs) was also observed in loci demonstrating
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Figure 5. Plekhg6 Knockdown Disrupts Neuroprogenitor Differentiation and Neuronal Migration in the Developing Mouse Cortex

(A–D) Coronal micrograph sections of E14 (A) and E16 (C) mouse cerebral cortices electroporated at E13 with GFP-empty vector control or Plekhg6 targeting

miRNAs (miPlekhg6_1). Quantification of the distribution of GFP-expression (GFP+) cells transfected with GFP-empty vector alone or Plekhg6miRNAs 1 dpe (B)

and 3 dpe (D) (means ± SEMs).

(E–H) Coronal micrograph sections of the cerebral cortex electroporated with GFP-empty vector control or Plekhg6 miRNAs (miPlekhg6_1) at E13 with immu-

nostaining at E14 (1 dpe) or E16 (3 dpe) for Pax6 (E), pH3 (F), Tbr2 (G), or Tbr1 (H).

(I–L) Electroporated GFP+ cells co-stained for their respective markers were counted over a representative cross-sectional area of the cerebral cortex and

presented graphically (means ± SEMs).

White arrowheads indicate cells staining for the indicated markers and expressing GFP. For (A) and (C), the cortex was subdivided into five equally thick bins

approximately corresponding to VZ (bin 1), SVZ (bin 2), IZ (bin 3), and CP (bins 4 and 5). Five and seven embryos were analyzed for the 1 and 3 dpe cortices,

respectively. n, total number of GFP+ cells counted per condition. Mann-WhitneyU test; *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. Scale bar represents

(A) 50 mm; (C) 100 mm; (E)–(G) 20 mm; and (F) and (H) 100 mm.
accelerated divergence between humans and other species

(called human accelerated regions) (Doan et al., 2016). Such as-

sociations support the suggestion that an evolutionary trade-off

has occurred between recent primate brain complexification and

a susceptibility of humans to the development of neurodevelop-

mental and neuropsychiatric conditions.

Dysregulation of PLEKHG6 Isoform 4 Regulates
Neurogenesis and Neuronal Migration via RhoA
Extending the hypothesis that variants in genes that have

recently acquired functions in the brain may contribute to the for-

mation of PH, we identified two variants in ABAT and PLEKHG6

as candidates for further functional validation. Focusing on

PLEKHG6, a role for a primate-specific isoform in regulating neu-

rogenesis and neuron positioning within the developing cortex
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was identified. PLEKHG6 activates the small GTPase RhoA

(Asiedu et al., 2009), a known modulator of neuronal migration,

whose conditional depletion within the developing mouse fore-

brain is associated with heterotopically positioned neurons

along the ventricular margin (Cappello et al., 2012). In addition

to variants in PLEKHG6 being under intense purifying selection,

these data place this gene in a cellular context, the dysfunction of

which has been previously implicated in the generation of this

disease phenotype. Patients with deleterious variants in this

gene (or its differential cis-regulatory elements) will further

consolidate this proposed mechanism. In testing this hypothe-

sis, we identified multiple parallels between the consequences

of misregulation of PLEKHG6 with those that are observed after

the modulation of RhoA activity (Cappello et al., 2012). First, in-

creases in both PLEKHG6 and RhoA expression (Cappello



Figure 6. Plekhg6 Regulates RhoA to Facilitate Neuronal Migration in the Developing Mouse Cortex

(A) Coronal micrograph sections of E16mouse cerebral cortices electroporated with GFP-empty vector control or Plekhg6miRNAs (miPlekhg6_1) and stained for

laminin. White arrowheads indicate the overmigration phenotype evident at the pial surface of the cortex.

(B) Coronal micrograph sections of E16mouse cerebral cortices electroporated with GFP-empty vector control, Plekhg6miRNAs (miPlekhg6_1), or miPlekhg6_1,

together with a construct encoding a fast-cycling form of RhoA.

(C) Quantification of the distribution of GFP-expressing (GFP+) cells transfected with the various constructs in (B).

(D) Coronal micrograph sections of E16 mouse cerebral cortices electroporated at E13 with GFP-empty vector control, Plekhg6 miRNA (miPlekhg6_1), or

miPlekhg6_1, together with the miRNA-resistant human PLEKHG6 isoform 4 (PLEKHG6_4).

(E) Quantification of the distribution of GFP-expressing (GFP+) cells transfected with the various constructs in (D).

(F) Domain structure of PLEKHG6_1, truncated PLEKHG6 (PLEKHG6_744), and PLEKHG6_4. Red, common sequence; gray, unique sequences across the two

isoforms.

(G) Immunoblot showing Rho-guanine nucleotide exchange factor (GEF) activity of myc-tagged PLEKHG6 isoform 1 (PLEKHG6_iso1), truncated PLEKHG6

(PLEKHG6_744), and PLEKHG6 isoform 4 (PLEKHG6_iso4), as determined by dephosphorylation of myosin phosphatase target protein 1 (MYPT1-pT853). The

arrowhead denotes MYPT1.

(H) Quantifications representing three biological replicates of (G) summarizing the proportion of phosphorylatedMYPT1 at residue 853 relative to total MYPT1 and

normalized against the loading control glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in HEK293 cells.

For (B) and (D), the cortex was subdivided into five equally thick bins approximately corresponding to VZ (bin 1), SVZ (bin 2), IZ (bin 3), and CP (bins 4 and 5). Five

embryos were analyzed for each condition. n, total number of GFP+ cells counted per condition. One-way ANOVA; *p < 0.05; **p < 0.01; ns, not significant, with

reference to cells in CP2. Scale bar represents 100 mm.
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et al., 2012) within the developing mouse cortex decrease the

number of neurons at the CP2. Second, knockdown of either

Plekhg6 or RhoA within the developing mouse cortex leads to

enhanced neuronal migration and even cellular overmigration

beyond the cortical plate, forming heterotopic clusters of neu-

rons at the pial surface. Alterations in the radial glial scaffold

are also observed after overexpression of RhoA or PLEKHG6_4.

RhoA rescued the altered neuronal distribution induced by

Plekhg6 knockdown, with our studies also indicating that the pri-

mate-specific version of the PLEKHG6_4 gene functionally com-

pensates for a reduction in Plekhg6_1, and that both isoforms

exhibit similar Rho GTPase-activating potential.

Several lines of evidence indicate that RhoA could represent a

major signaling mediator facilitating networks associated with

brain evolution. Recently, studies examining genetic factors

contributing to human cerebral cortex complexification using

comparative mouse and human bRG transcriptomic profiling un-

covered a novel human-specific RhoA regulator, ARHGAP11B

and a further four Rho regulators whose expression was en-

riched in bRG relative to their apical counterparts (Florio et al.,

2015). RhoA is a key determinant for bRG delamination and

OSVZ formation through activation of the Rho effector ROCK

and non-muscle myosin II (Ostrem et al., 2014). PLEKHG6 also

directly binds and regulates non-muscle myosin II activity via

RhoA (Wu et al., 2006). Results from the Rho assay described

here also show that PLEKHG6 is a regulator of the RhoA-

ROCK target protein myosin phosphatase target subunit

(MYPT-1), a known modulator of non-muscle myosin II activity

(Watanabe et al., 2007).

Although both PLEKHG6_1 and PLEKHG6_4 were identified

as having the same RhoA catalytic activity, these isoforms differ

in their spatial expression patterns (Hawrylycz et al., 2012).

Changes in temporal and spatial regulation of RhoA have been

well documented in several developmental contexts (Cappello

et al., 2012; Herzog et al., 2011; Katayama et al., 2011). For

example, conditional depletion of RhoA in the spinal cord or

midbrain of developing mouse embryos affects the maintenance

of adherens junctions but induces hypoproliferation (in spinal

cord) and hyperproliferation (in midbrain) of neural progenitor

cells in each tissue (Katayama et al., 2011; Herzog et al.,

2011). Although alternative promoter use and splicing are ubiqui-

tousmechanisms of gene regulation inmulticellular organisms to

create transcriptional diversity, their functional impact on evolu-

tionary expansion of the cerebral cortex and, in particular, basal

progenitor function is only beginning to emerge (Pollen et al.,

2015, Johnson et al., 2015).

PLEKHG6 Influences VZ Integrity
Forced expression of PLEKHG6_4 within the developing mouse

forebrain disrupted the integrity of the ventricular surface, a

mechanism that has an established precedent in the pathogen-

esis of PH (Sheen et al., 2001; Ferland et al., 2009; Carabalona

et al., 2012). Recently, a role for adhesion junction belt downre-

gulation at the VZ surface during basal progenitor delamination

(Tavano et al., 2018) was shown to be facilitated by Plekha7, a

paralog of Plekhg6, which also exhibits differential isoform

expression. Furthermore, non-cell autonomous basal progenitor

expansion was also recently reported upon knockdown of the
2738 Cell Reports 25, 2729–2741, December 4, 2018
chromatin remodeling factor BAF155 (Narayanan et al., 2018).

Thus, although the exact underlying mechanism resulting in

basal progenitor expansion after PLEKHG6_4 overexpression

has yet to be fully elucidated, a wider role for this family of pro-

teins and the non-cell autonomous features associated with

such events in cortical neurogenesis may be emerging.

Non-cell autonomous mechanisms are increasingly being re-

ported in the context of cortical malformations as experimental

model systems emerge that are capable of exploring these

functions. For example, in Miller-Dieker syndrome (a severe

form of lissencephaly), a recent organoid model identified im-

pairments to apical polarity machinery formation that then

disrupt cell-cell N-cadherin/b-catenin signaling within the VZ

niche, with resultant defects in cell fate control exerted in a

non-cell autonomous fashion (Iefremova et al., 2017). Such

changes were also associated with disrupted ventricular

surface integrity and a switch from symmetric to asymmetric

divisions of aRG that increased the proportion of basal interme-

diate progenitors, a phenotype comparable to that outlined in

the present study. Furthermore, a recent report showed that

ASPM (a gene whose dysregulation is linked to microcephaly)

can regulate aRG cell affinity to the ventricular surface, with

contingent effects on the expansion of basal progenitors

(bRG and basal intermediate progenitors) (Johnson et al.,

2018). This growing body of evidence links ventricular surface

integrity and apical cell dynamics with neurodevelopmental dis-

ease phenotypes and cortical complexification.

Since bRG cells are proposed to represent the cellular sub-

strate for recent primate neocortical expansion (Fietz et al.,

2010; Hansen et al., 2010), a susceptibility to develop PH could

be conferred bymutations in recently evolved genomic elements

regulating this cell type. The biallelic loss of function of a primate-

specificPLEKHG6 isoform leading to the disruption of neurogen-

esis in pathways already linked to cellular heterotopia, although

present in a single case, could also be illustrative of a wider

theme of variants in recently evolved genomic elements leading

to developmental disorders (Doan et al., 2016). Such a result has

significant implications for the functional study of this and other

neurodevelopmental disorders and could explain why mice

models frequently do not recapitulate phenotypes relating to

basal progenitor cellular dysfunction (Feng et al., 2006; Hart

et al., 2006; Corbo et al., 2002). We anticipate that evolutionarily

dynamic non-coding sequences (Vermunt et al., 2016) will har-

bor similar genomic innovations that can be linked to neurodeve-

lopmental disease in humans. Where the genetic substrate for

such functions is not present in the genome of mammals typi-

cally used to model neurodevelopmental conditions (e.g.,

mice), studies of individuals with neurodevelopmental disorders

such as PH can direct attention to key regions of the genome that

may contribute to cortical complexification in humans.
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Marsoner, F., Brändl, B., M€uller, F.J., Koch, P., and Ladewig, J. (2017). An or-

ganoid-based model of cortical development identifies non-cell-autonomous

defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep.

19, 50–59.

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yam-

rom, B., Lee, Y.H., Narzisi, G., Leotta, A., et al. (2012). De novo gene disrup-

tions in children on the autistic spectrum. Neuron 74, 285–299.

Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D.,

Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al. (2014).

The contribution of de novo coding mutations to autism spectrum disorder.

Nature 515, 216–221.

Johnson, M.B., Wang, P.P., Atabay, K.D., Murphy, E.A., Doan, R.N., Hecht,

J.L., andWalsh, C.A. (2015). Single-cell analysis reveals transcriptional hetero-

geneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–646.

Johnson, M.B., Sun, X., Kodani, A., Borges-Monroy, R., Girskis, K.M., Ryu,

S.C., Wang, P.P., Patel, K., Gonzalez, D.M., Woo, Y.M., et al. (2018). Aspm

knockout ferret reveals an evolutionary mechanism governing cerebral cortical

size. Nature 556, 370–375.

Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A.M.,

Pletikos, M., Meyer, K.A., Sedmak, G., et al. (2011). Spatio-temporal transcrip-

tome of the human brain. Nature 478, 483–489.

Katayama, K., Melendez, J., Baumann, J.M., Leslie, J.R., Chauhan, B.K., Nem-

kul, N., Lang, R.A., Kuan, C.Y., Zheng, Y., and Yoshida, Y. (2011). Loss of RhoA

in neural progenitor cells causes the disruption of adherens junctions and hy-

perproliferation. Proc. Natl. Acad. Sci. USA 108, 7607–7612.

Kielar, M., Tuy, F.P., Bizzotto, S., Lebrand, C., de Juan Romero, C., Poirier, K.,

Oegema, R., Mancini, G.M., Bahi-Buisson, N., Olaso, R., et al. (2014). Muta-

tions in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse

and human. Nat. Neurosci. 17, 923–933.
2740 Cell Reports 25, 2729–2741, December 4, 2018
Lancaster, M.A., and Knoblich, J.A. (2014). Generation of cerebral organoids

from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340.

Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T.,

O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al.; Exome

Aggregation Consortium (2016). Analysis of protein-coding genetic variation

in 60,706 humans. Nature 536, 285–291.

Letunic, I., and Bork, P. (2011). Interactive Tree Of Life v2: online annotation

and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–

W478.

Lewitus, E., Kelava, I., Kalinka, A.T., Tomancak, P., and Huttner, W.B. (2014).

An adaptive threshold in mammalian neocortical evolution. PLoS Biol. 12,

e1002000.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Bur-

rows-Wheeler transform. Bioinformatics 25, 1754–1760.

Lui, J.H., Hansen, D.V., and Kriegstein, A.R. (2011). Development and evolu-

tion of the human neocortex. Cell 146, 18–36.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-SOX2 Cell Signaling Technology Cat# 2748SS; RRID: AB_823640

Mouse monoclonal anti-MAP2 Sigma Aldrich Cat# M4403; RRID: AB_477193

Mouse monoclonal anti-NeuN Millipore Cat# MAB377; RRID: AB_2298772

Mouse monoclonal b-catenin Proteintech Cat# 610154; RRID: AB_397555

Mouse monoclonal anti-PCNA DAKO Cat# M0879; RRID: AB_2160651

Rabbit polyclonal anti-PALS1 Sigma Aldrich Cat# 07-708; RRID: AB_441951

Phalloidin (Alexa Fluor 488-conjugated PHALLOIDIN Thermo Fisher Cat# A12381; RRID: AB_2315147

Chick polyclonal anti-GFP Aves Lab Cat# GFP-1020; RRID: AB_10000240

Rabbit polyclonal anti-Pax6 Millipore Cat# AB2237; RRID: AB_1587367

Rabbit polyclonal anti-Tbr2 Millipore Cat# AB2283; RRID: AB_10806889

Rabbit polyclonal anti-Tbr1 Abcam Cat# ab31940; RRID: AB_2200219

Rabbit polyclonal anti-pH3 Millipore Cat# 06-570; RRID: AB_310177

Rabbit polyclonal anti-laminin Abcam Cat# ab11575; RRID: AB_298179

Rabbit (clonality unknown) anti-MYPT1-pT853 Cell Signaling Technology Cat# 4563; RRID: AB_1031185

Rabbit polyclonal anti-MYPT1 Cell Signaling Technology Cat# 2634; RRID: AB_915965

Mouse monoclonal anti-Ac-tubulin Sigma Aldrich Cat# T6793; RRID: AB_477585

Rabbit monoclonal anti-active caspase 3 Abcam Cat# ab32042; RRID: AB_725947

Rabbit polyclonal anti-GAPDH Sigma Aldrich Cat# G9545; RRID: AB_796208

Mouse monoclonal anti-V5 Thermo Fisher Scientific Cat# R96025; RRID: AB_2556564

Rabbit polyclonal anti-PLEKHG6_1 This paper N/A

Rabbit polyclonal anti-PLEKHG6_4 This paper N/A

Chemicals, Peptides, and Recombinant Proteins

DMEM, GlutaMAX supplement Thermo Fisher Scientific Cat# 61965026

Complete Protease Inhibitor Roche Cat# 11697498001

HyClone Fetal Bovine Serum GE Healthcare Cat# SV30160.03HI

DMEM:F12 Thermo Fisher Scientific Cat# 11320033

Pluriton Reprogramming Medium Stemgent Cat# 00-0070

Carrier-free B18R Recombinant Protein Stemgent Cat# 03-0017

Lipofectamin RNAiMAX Transfection Reagent Thermo Fisher Scientific Cat# 31985062

Lipofectamin 2000 Transfection Reagent Thermo Fisher Scientific Cat# 11668027

STEMPRO hESC SFM Thermo Fisher Scientific Cat# A1000701

Collagenase Type IV Thermo Fisher Scientific Cat# 17104019

StemPro Accutase Cell Dissociation Reagent Life Technologies Cat#A1110501

mTeSR1 StemCell Technologies Cat# 05850

LDEV-Free Geltrex Thermo Fisher Scientific Cat# A1413302

Geltrex Thermo Fisher Scientific Cat# A1413302

Matrigel Corning Cat# 354234

Rock inhibitor Y-27632(2HCL) StemCell Technologies Cat# 72304

Critical Commercial Assays

RNeasy mini kit QIAGEN Cat# 74106

Maxima First Strand cDNA Synthesis Kit Thermo Fisher Scientific Cat# K1641

Fast SYBR Green Master Mix Life Technologies Cat# 4385612

Wizard Genome DNA Purification Kit Promega Cat# A1620

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Human embryonic kidney 293T ATCC Cat# CRL-3216; RRID: CVCL_0063

Mouse embryo teratocarcinoma P19 ATCC Cat# CRL-1825; RRID: CVCL_2153

Human induced pluripotent stem cells (hiPSCs) ATCC Cat# CRL-2522, RRID: CVCL_3653

NuFF3-RQ IRR Human newborn foreskin feeder fibroblast GlobalStem GSC-3404

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratory Cat# 000664; RRID: SCR_004633;

https://www.jax.org/

Oligonucleotides

miRNA targeting sequence: Plekhg6 #1: CTAACCAGCAATC

TGTCACCT

This paper N/A

miRNA targeting sequence: Plekhg6 #2: TGCACCTGAACTA

ACCAGCAA

This paper N/A

miRNA targeting sequence: Plekhg6 #3: TACTGTGGAAATC

TGGGTCGT

This paper N/A

miRNA targeting sequence: PLEKHG6_4: CCACAGGCAAAT

GAAGGAATG

This paper N/A

Recombinant DNA

Expression plasmid: pCAGGS (Cappello et al., 2013) N/A

Expression plasmid: pcDNA6.2-GW/miR Invitrogen Cat# K493600

Expression plasmid: RhoA*GFP (fast-cycling) C. Brakebush gift (Cappello

et al., 2012)

N/A

Expression plasmid: p3xFLAG-CMV/PLEKHG6_4 This paper N/A

Expression plasmid: p3xFLAG-CMV/PLEKHG6_1 This paper N/A

Expression plasmid: p3xFLAG-CMV/PLEKHG6_744 This paper N/A

Expression plasmid: pcDNA3.1V5/His-PLEKHG6_4 This paper N/A

Software and Algorithms

Burrows-Wheeler Aligner (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

Genome Analysis Toolkit (GATK) (DePristo et al., 2011; McKenna

et al., 2010; Van Der Auwera

et al., 2013)

https://www.broadinstitute.org/gatk/

Picard Tools Broad Institute http://broadinstitute.github.io/picard/

Other

Exome Aggregation Consortium (ExAC), Cambridge, MA, N/A http://exac.broadinstitute.org

Online Mendelian Inheritance in Man (OMIM) N/A http://www.omim.org/

Allen Brain Atlas BrainSpan project N/A http://www.brainspan.org/

Encode Project N/A https://www.encodeproject.org/

UCSC Genome Browser N/A https://genome.ucsc.edu/

1000 Genomes N/A http://www.internationalgenome.org/

Ensembl Genome Browser N/A http://www.ensembl.org/index.html

NHLBI Exome Sequencing Project (ESP) Exome Variant

Server, ESP6500

N/A http://evs.gs.washington.edu/EVS/

GenBank N/A https://www.ncbi.nlm.gov/genbank/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Silvia

Cappello (silvia_cappello@psych.mpg.de).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

PH Trios
We utilized 65 trios (affected child and both parents) characterized and contributed by us in a previous study (Heinzen et al., 2018).

Study participants can be identified here through the prefix ‘pvhnz’ in the cohort identifier table, were data describing the sex of these

participants can also be identified. All study participants were ascertained by physician referral, presumed sporadic disease based

on patient and family interview, and consented to participate under the University of Otago consent protocol. Ethical approval was

obtained from the Southern regional Ethics Committee O03/016 and the NewZealand Ethics CommitteeMEC08/08/094. Specifically

this ethical approval does not allow for the general sharing of individual exome sequences on confidentiality grounds.

iPSC generation and human organoids
Male human iPSCs were reprogrammed from human newborn foreskin fibroblasts (CRL-2522, ATCC). iPSCs were authenticated af-

ter reprogramming by karyotyping. The use of iPSCs to generate cerebral organoids was approved by the Ethics Commission of LMU

(Ludwig-Maximilians-Universität M€unchen), with the association number 115-16. iPSCs and human organoids were cultured at 37�C,
5% CO2 and ambient oxygen level on Geltrex coated plates in mTeSR1 medium with daily medium change. Electroporations were

performed in cerebral organoids at 42 days stages after the initial plating of the cells and fixed 4 or 7 days post electroporation.

Mice
All the animals used in this work were kept in the animal facility of the Helmholtz Zentrum M€unchen. All the experimental procedures

were performed in accordance with German and European Union guidelines. Animals were maintained on a 12 hour light-dark cycle.

The day of vaginal plug was considered as embryonic day 0 (E0). In this study the C57BL/6Jmouse linewas used. All animals used for

in utero electroporation were female between 4 – 6 months of age.

METHOD DETAILS

Whole-exome sequencing
Whole-exome sequencing was carried out by Otogenetics Corporation (Norcross, GA, USA). Sequencing libraries were prepared

from genomic DNA extracted from leukocytes of parents and patients using Wizard� Genomic DNA Purification Kit (Promega,

Cat. A1620) following the manufacturer’s instructions. Library DNA was exome enriched using the Agilent SureSelect Human All

Exon V4+UTRs capture kit, and sequenced on an Illumina Hiseq2000, Illumina, San Diego, CA using 100 bp paired-end reads. Align-

ment of the sequenced DNA fragments to the Ensembl Genome Browser human genome assembly (GRCh37) was carried out using

the Burrows-Wheeler Aligner (MEM algorithm) v.0.7.12. After alignments were produced for each individual separately, the data was

locally realigned around indels followed by base quality score recalibration using Genome Analysis Tool Kit (GATK) Best Practices

IndelRealigner (version 3.4-46; Broad Institute). Duplicate reads were removed using PICARD (version 1.140; Broad Institute). Indi-

vidual variant calling was undertaken using the GATK HaplotypeCaller, followed bymultisample genotyping and variant quality score

recalibration. Variant call format file (VCF) gene context annotation was added using SnpEff v.4.1L. Allele frequencies were obtained

from 1000 Genomes Project phase 1, NHLBI GO Exome Sequencing Project ESP6500 and the Exome Aggregation Consortium

(ExAC) via the GATK VariantAnnotator.

Whole-exome sequencing variant calling
All alignments with loci bearing putative de novomutations were extracted from themultisample VCF using GATK SelectVariants and

SnpSift v.4.1L (SnpEff) that met the following criteria: (1) the read depth should beR 8 within the patient; (2) at least 20% of the reads

should carry the alternate allele; (3) < 5% of the reads in either parent should carry the alternative allele; (4) at least two alleles must be

observed in the proband; (5) the genotype quality (GQ) score for the offspring’s alternate allele should be 99; (6) the normalized,

phred-scaled genotype likelihood (PL) scores in both parents for the three possible genotypes 0/0, 0/1 and 1/1, where 0 is the refer-

ence allele and 1 is the alternative allele, should be > 0, > 20 and > 20, respectively. Candidate de novomutations were also absent

from population controls, including a set of 107 internally sequenced controls and the 60,706 individuals whose single nucleotide

variant data are reported in ExAC. All candidate de novomutations were Sanger sequenced using the relevant proband and parents

for confirmation. Using our filtering approach across the entire cohort of 65 individuals we identified 177 potential de novomutations,

of which, 50 were independently validated by Sanger sequencing (28% validation rate). Of the 127 variants that did not validate, 21

were false negatives in parents while 106 were false positives in the probands, implying this analysis overall had high sensitivity to

detect de novo variants at the cost of lower specificity.

Loci bearing putative recessive variants were extracted from the VCF that met the following criteria: (1) the read depth should beR

8 or 20 for compound heterozygous or homozygous recessive genotype calls in the patient, respectively; (2) at least 20% and 90%of

the reads in the patient should carry the alternate allele for candidate compound heterozygous and homozygous genotypes, respec-

tively; (3) in the parents, at least one individual requires a read depthR 30; (4) candidate recessive variants should not be present in
e3 Cell Reports 25, 2729–2741.e1–e6, December 4, 2018



population controls, including a set of 107 internally sequenced controls and the 60,706 individuals whose single nucleotide variant

data are reported in ExAC. All candidate recessive variants were Sanger sequenced using the relevant proband and parents for

confirmation.

Burden analysis
Modeling apical and basal progenitor gene mutation rates

To assess whether there is an excess of de novo variants identified specifically within gene sets that define apical and basal radial glia

(aRG and bRG, respectively) we used loci that define these functional classes for each cell type as outlined by others (Pollen

et al., 2015). The expected rate for each gene set was calculated by establishing the gene-specific mutation rates [presented as

log10(prob)] provided in (Samocha et al., 2014). These gene-specific mutation rates are based primarily on estimated triplet-specific

mutations rates, thus taking into account sequence context and gene size, by way of validation, they accurately predict the amount of

synonymous variation seen in coding sequences. Thus, for genes defining a bRG transcriptomic signature the expected number of de

novo variants was 0.26 for a denominator of 67 genes (defined in (Pollen et al., 2015)) in a cohort of 65 patients using the approach

devised by (Samocha et al., 2014). Similarly, for the aRG transcriptomic signature the expected number of de novo variants was 0.13

for a denominator of 33 genes (defined in (Pollen et al., 2015)) in a cohort of 65 patients using the approach of (Samocha et al., 2014).

Assessing for gene set enrichment

For determining overlap with de novomutations, functional gene classes were defined as follows. ‘FMRP’ are genes encoding tran-

scripts that bind to FMRP (Darnell et al., 2011). ‘Chromatin’ indicates chromatin modifiers as defined by GO (http://www.

geneontology.org/). ‘PSD’ is a set of genes encoding proteins that have been identified in postsynaptic densities (Bayés et al.,

2011). ‘Mendelian’ represent positionally identified human disease genes (Feldman et al., 2008), and ‘Essential’ genes are human

orthologs of mouse genes associated with lethality in the Mouse Genome Database (Blake et al., 2011). ‘Embryonic’ genes are those

expressed in post-mortem human embryonic brains (Voineagu et al., 2011), derived from downloaded expression data (Kang et al.,

2011). All gene lists have also been used elsewhere (Iossifov et al., 2014). Tests assessing excess were carried out using the Exact

binomial test (two-tailed) with the expected rate for each gene set being calculated using the approach described above and of

(Samocha et al., 2014).

Analysis of PLEKHG6 evolutionary conservation

Ensembl, NCBI and USCS genome bioinformatics data were assessed for the first exon coding sequence orthologs of PLEKHG6

isoform 1 and 4 across species. The evolutionary tree was generated using iTOL (Letunic and Bork, 2011).

Reprogramming of human fibroblasts to induced pluripotent stem cells (iPSCs)

Male human iPSCs were reprogrammed from human newborn foreskin fibroblasts (CRL-2522, ATCC). 2.5x105 NuFF3-RQ IRR hu-

man newborn foreskin feeder fibroblasts (GSC-3404, GlobalStem) were seeded per well of a 6-well tissue culture dish with advanced

MEM (12491015, Thermo Fisher Scientific) supplemented with 5%HyClone Fetal Bovine Serum (SV30160.03HI, GE Healthcare), 1%

MEM NEAA and GlutaMAX (11140050; 35050061 Thermo Fisher Scientific). On day 1, 70%–80% confluent CRL-2522 fibroblasts

were dissociated using 0.25% Trypsin-EDTA (25200056, Life Technologies), counted and seeded on the NuFF3-RQ cells at two

different densities: 2x104 cells/well and 4x104 cells/well. On day 2, the medium was changed to Pluriton Reprogramming Medium

(00-0070, Stemgent) supplemented with 500 ng/ml carrier-free B18R Recombinant Protein (03-0017, Stemgent). On days 3-18, a

cocktail of modifiedmRNAs (mmRNAs) containing OCT4, SOX2, LIN28, C-MYC, and KLFmmRNAs at a 3:1:1:1:1 stoichiometric ratio

was transfected daily. For that purpose, the mmRNAs were mixed in a total volume of 105ml and were combined with a mix of 92ml

Opti-MEM I Reduced Serum Medium and 13ml Lipofectamine RNAiMAX Transfection Reagent (31985062, Thermo Fisher Scientific)

after separate incubation at RT for 15 min. Cells were transfected for 4hrs, washed and fresh reprogramming medium supplemented

with B18R was added to the cultures. The mmRNAs with the following modifications: 5-Methyl CTP, a 150 nt poly-A tail, ARCA cap

and Pseudo-UTP were obtained from the RNA CORE unit of the Houston Methodist Hospital. 5 days after the first transfection, the

firstmorphological changeswere noticed, while the first induced pluripotent stem cell (iPSC) colonies appeared by day 12-15. On day

16, the medium was changed to STEMPRO hESC SFM (A1000701, Thermo Fisher Scientific) for five days. Harvesting of the iPSC

colonies was performed after 40min incubation at 37�C with 2mg/ml Collagenase Type IV (17104019, Thermo Fisher Scientific) so-

lution in DMEM/F12 (31331093, Thermo Fisher Scientific). The iPSCs were plated on g-irradiated mouse embryonic fibroblasts

(MEFs) and grown in STEMPRO hESC SFM for 10 additional passages. After that the iPSCs were further cultured in a feeder-free

culture system, using mTeSR1 (05850, StemCell Technologies) on plates coated with LDEV-Free Geltrex (A1413302, Thermo Fisher

Scientific). iPSCs were authenticated after reprogramming by karyotyping.

iPSC culture

IPSCs were cultured at 37�C, 5% CO2 and ambient oxygen level on Geltrex coated plates in mTeSR1 medium with daily medium

change. For passaging, iPSC colonies were incubated with StemPro Accutase Cell Dissociation Reagent (A1110501, Life Technol-

ogies) diluted 1:4 in PBS for 4 minutes. Pieces of colonies were washed off with DMEM/F12, centrifuged for 5 min. at 300 x g and

resuspended in mTeSR1 supplemented with 10 mM Rock inhibitor Y-27632(2HCl) (72304, StemCell Technologies) for the first day.

Cerebral organoid generation

Cerebral organoids were generated as previously described (Lancaster and Knoblich, 2014). Briefly iPSCswere dissociated in to sin-

gle cells using StemPro Accutase Cell Dissociation Reagent (A1110501, Life Technologies) and plated in the concentration of 9000

single iPSCs/well into low attachment 96-well tissue culture plates in hES medium (DMEM/F12GlutaMAX supplemented with 20%
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Knockout Serum Replacement, 3% ES grade FBS, 1% Non-essential amino acids, 0.1mM 2-mercaptoethanol, 4ng/ml bFGF and

50 mM Rock inhibitor Y27632) for 6 days in order to form embryoid bodies (EBs). Rock inhibitor Y27632 and bFGF were removed

on the 4thday. On day 6 EBs were transferred into low attachment 24-well plates in NIM medium (DMEM/F12GlutaMAX supple-

mented with 1:100 N2 supplement, 1% Non-essential amino acids and 5 mg/ml Heparin) and cultured for additional 6 days. On

day 12 EBs were embedded in Matrigel (Corning, 354234) drops and then they were transfer in 10cm tissue culture plates in

NDM minus A medium (DMEM/F12GlutaMAX and Neurobasal in ratio 1:1 supplemented with 1:100 N2 supplement 1:100 B27

without Vitamin A, 0.5% Non-essential amino acids, insulin 2.5 mg/ml, 1:100 Antibiotic-Antimycotic and 50mM 2-mercaptoethanol)

in order to form organoids. 4 days after Matrigel embedding cerebral organoids were transfer into an orbital shaker and cultured until

electroporation in NDM plus A medium (DMEM/F12GlutaMAX and Neurobasal in ratio 1:1 supplemented with 1:100 N2 supplement

1:100 B27 with Vitamin A, 0.5% Non-essential amino acids, insulin 2.5 mg/ml, 1:100 Antibiotic-Antimycotic and 50 mM 2-mercaptoe-

thanol). During the whole period of cerebral organoid generation, cells were kept at 37�C, 5% CO2 and ambient oxygen level with

medium changes every other day. After transferring the cerebral organoids onto the shaker medium was changed twice per week.

Assessing PLEKHG6_4 knockdown efficiencies

Efficiency of miRNA knockdown targeted by PLEKHG6_4 (miPLEKHG_4) was determined by transient co-transfection with a

PLEKHG6_4 expression plasmid (pcDNA3.1V5/His-PLEKHG6_4), and data expressed as relative PLEKHG6_4 expression. Specif-

ically, HEK293FT cells were transfected with miPLEKHG_4 (400ng and 800ng), and a mock transfected control followed by growth

for 22 hours before secondary transfection with pcDNA3.1V5/His-PLEKHG6_4 (400ng). After a further 22 hours of growth total cell

lysates were prepared and subjected to western blot analysis using anti-V5 antibody (mouse, Thermo Fisher Scientific Cat # R96025,

1:2500) to detect tagged PLEKHG6_4 expression. Relative expression of PLEKHG6_4 was calculated for eachmiPLEKHG_4 sample

as the ratio of PLEKHG6_4 expression to mock transfected control. Data presented as mean (±SEM). Mann-Whitney U test;

* p < 0.05.

Electroporation of cerebral organoids

Cerebral organoids were kept in antibiotics-free conditions prior to electroporation. Electroporations were performed in cerebral or-

ganoids at 42 days stages after the initial plating of the cells and fixed 4 or 7 days post electroporation. During the electroporation

cerebral organoids were placed in an electroporation chamber (Harvard Apparatus, Holliston, MA, USA) under a stereoscope and

using a glass microcapillary 1-2 mL of plasmid DNAs at final concentration of 1 mg/ml was injected together with Fast Green

(0.1%, Sigma) into different ventricles of the organoids. Cerebral organoids were subsequently electroporated with 5 pulses applied

at 80V for 50ms each at intervals of 500ms using the Electroportator ECM830 (Harvard Apparatus). Following electroporation cere-

bral organoids were kept for additional 24 hours in antibiotics-free media, and then changed into the normal media until fixation.

Cerebral organoids were fixed using 4% PFA for 1h at 4�C, cryopreserved with 30% sucrose and then stored in �20�C. For immu-

nofluorescence, 16 mm cryosections were prepared. For each experiment, many independent ventricles per organoid from 4-6

different organoids per condition were analyzed. pCAGGS was used as the control plasmid. Human PLEKHG6 isoform 4 targeting

miRNA-expressing constructs [miPLEKHG6_4 (50- ccacaggcaaatgaaggaatg �30)] were cloned into the pcDNA6.2-GW/miR vector

(Blockit, Invitrogen) according to themanufacturer’s instructions. Plasmidswere subsequently recombined into pCAGGSdestination

vector.

Immunofluorescence of human cerebral organoid cells

Tissues were processed as per mouse cortical tissue. Before sections were blocked they were boiled in calcium chloride (1% solu-

tion) for 5minutes. Sections were blocked and permeabilized in 0.25%Triton X-100, 4% normal donkey serum in PBS. Sections were

then incubated with primary antibodies in 0.1% Triton X-100, 4% normal donkey serum at the following dilutions: PCNA

(mouse IgG2a, DAKO, Cat. # M0879, 1:40), MAP2 (mouse IgG1, Sigma, Cat. # M4403, 1:300), PLEKHG6 isoform one and isoform

four (rabbit, MIMOTOPES, 1:1000, each). Sections were incubated overnight at 4�C. The next day slides were washed in three times

in PBS and then treated as per the manufacturer’s instructions for the Thyramid kit (ThermoFisher, Cat. # T20922) to amplify the

detection of PLEKHG6 isoforms one and four, separately. The appropriate secondary fluorophore antibodies were used for PCNA

and MAP2 as per the manufacturer’s instructions. PLEKHG6 isoform one and four antibodies were generated, specifically, from

MIMOTOPES (Clayton, Australia). The peptides used to establish immunogenicity were N-MKAFGPPHEGPLQGL-C and

N-MGCRLHAPGEKAAH-C for isoform one and four, respectively. Both peptides were conjugated to KLH through Cys coupling at

their C-termini. For all the other immunostainings which were performed in human cerebral organoids the following protocol was

used. Sections were post-fixed with 4% PFA for 10 mins, permeabilized in 0.3% Triton X-100 and then blocked with 0.1% Tween,

3%BSA and 10%normal goat serum. Sections then incubated with primary antibodies diluted in blocking solution. GFP (chick, Aves

Lab, Cat # GFP-1020, 1:1000), Sox2 (rabbit, Cell Signaling Cat # 2748S, 1:500), b-catenin (mouse, Proteintech Cat # 610154, 1:500),

NeuN (mouse, Millipore Cat # MAB377, 1:500), Phalloidin (Alexa Fluor 488-conjugated PHALLOIDIN, Thermo Fisher Cat # A12379,

1:80), PALS1 (rabbit, Sigma Aldrich Cat # 07-708, 1:500).

Anesthesia

To perform in utero operations, mice were anaesthetised by subcutaneous injection of a solution containing: Fentanyl (0.05 mg/kg),

Midazolam (5 mg/kg) and Medetomidine (0.5 mg/kg). The anesthesia was terminated with a subcutaneous injection of a solution

composed of Buprenorphine (0.1 mg/kg), Atipamezol (1.5 mg/kg) and Flumazenil (0.5 mg/kg).
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In utero electroporation

Surgery was performed on animals in accordance with the guidelines of Government of Upper Bavaria under license number 55.2-1-

54-2532-79-2016. E13 pregnant dams were anesthetized and operated on as previously described (Saito, 2006). In brief, the shaved

abdomen was opened by caesarean section in order to expose the uterine horns. These were kept wet and warm by continuous

application of pre-warmed saline. Endotoxin free vectors – diluted to 1.5 mg/mL – were mixed in Fast green (2.5 mg/mL, Sigma).

1 mL of mix was injected into the ventricle with the aid of glass capillaries (self-made with a micropipette puller). DNA was electro-

porated into the telencephalon with five pulses of 38mV for 100ms each. At the end of the entire electroporation procedure, the uter-

ine horns were repositioned into the abdominal cavity, which was then filled with pre-warmed saline. The abdominal wall was closed

by surgical sutures (Ethicon, Cat. # K832H). Anaesthesia is reversed as described above and animals were monitored appropriately.

At E14 (one day post electroporation) or E16 (three days post electroporation) operated animals were sacrificed by cervical disloca-

tion. Embryos were placed in HBSS (Hank’s Balanced Salt Solution – GIBCO, Life Technologies) supplemented with 10 mM

HEPES (GIBCO, Life Technologies). Embryos were dissected and brains fixed. pCAGGS was used as the control plasmid. Plekhg6

targeting miRNA-expressing constructs [miRNA1 (50- ctaaccagcaatctgtcacct �30), miRNA2 (50- tgcacctgaactaaccagcaa �30),
miRNA3 (50- tactgtggaaatctgggtcgt �30)] were cloned into the pcDNA6.2-GW/miR vector (Blockit, Invitrogen) according to the man-

ufacturer’s instructions. Plasmids were subsequently recombined into pCAGGS destination vector.

Immunofluorescence of mouse cortical tissue

Mouse cortical tissues were fixed in 4% paraformaldehyde for 20 min at 4�C followed by washing in PBS three times 10 min. Tissues

were allowed to sink in 30% sucrose overnight and then embedded into molds (Polysciences, Cat. # 18646A-1) using Tissue-Tek

(Hartenstein, Cat. # TTEK) and frozen on dry ice. Tissue was then stored at �20�C until it was cryosectioned in 20 mm sections

with a Cryostat (Leica). Sections were blocked and permeabilized in 0.25% Triton X-100, 4% normal donkey serum in PBS. Sections

were then incubated with primary antibodies in 0.1% Triton X-100, 4% normal donkey serum at the following dilutions: GFP (chick,

Aves Lab, Cat. # GFP-1020, 1:500), Pax6 (rabbit, Merck-Millipore, Cat. # AB2237, 1:500), pHistone H3 mitosis MKR (pH3) (rabbit,

Merck-Millipore, Cat. # 06-570, 1:1000), Tbr2 (rabbit, Merck-Millipore, Cat. # AB2283, 1:500), Tbr1 (rabbit, Abcam, Cat. #

ab31940, 1:500), laminin (rabbit, Abcam, Cat. # ab11575, 1:500), ac-tubulin (mouse, Sigma, Cat # T6793, 1:800 and active

caspase-3 (rabbit, Abcam, Cat. # ab32042, 1:500). Sections were incubated overnight at 4�C. The next day slides were washed three

times in PBS and then treated as per the manufacturer’s instructions with the appropriate secondary fluorophore antibodies.

RhoGAP activity assay

DNA constructs expressing full-length and truncated version of human PLEKHG6 isoform 1 and 4 were generated by standard clon-

ing techniques. Expression constructs were transiently transfected into HEK293 cells with Lipofectamine 2000 (Invirogen, Cat. #

11668-019) according to the manufacturer’s instructions. Cells were lysed 20 hours post transfection in 1x tris buffered saline

(TBS), 1% (v/v) Triton X-100 and Complete Protease Inhibitor (Roche) on ice for 20 min. Cell debris was then pelleted through centri-

fugation at 13,000 rpm 4�C for 10min. 20 mL of protein lysate was combined with protein loading dye (final concentration: 50 mM Tris

pH 6.8, 10% glycerol, 2% SDS, 6% 2-mercaptoethanol and 1%w/v Bromo blue) and denatured at 95�C for 5 min, before being sub-

jected to SDS-PAGE. Immunoblot analysis was performed using anti-myosin phosphate target protein 1 (MYPT1; rabbit, Cell

Signaling Technology, Cat. # 2634, 1:1000), anti-MYPT1-pT853 (rabbit, Cell Signaling Technology, Cat. # 4563, 1:1000) and anti-

GAPDH (rabbit, Sigma-Aldrich, Cat. # G9545, 1:3000).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed using the R statistical sorftware in the case of the burden analyses, with all other tests analyzed in Graph-

pad Prism 7.0 software. To compare the statistical difference between two experimental groups we used an unpairedMann-Whitney

U test. For assessing the statistical difference between at least three experimental groups, Oneway-ANOVAwas used. Fisher’s exact

test was used for assessing categorical data in Table 1, Figure 3 and Table S4. Data are represented as mean ± s.e.m. In the case of

categorical data, we did not correct p values for multiple comparisons because our primary hypotheses focused on de novo variants

with all subsidiary tests not being part of the primary examination of the hypothesis. Experimental repeat numbers and statistical test

performed for each dataset are described in themain text within each respective figure legend. For each experiment, embryos fromat

least two different females were used with the total number of cells counted shown below each treatment bar in each graph of the

figure. Significance was set at p = 0.05. For in utero electroporations, all quantifications weremade in at least 5 embryos. For electro-

porations performed in cerebral organoids, several independent ventricles were analyzed from 4-6 different organoids per condition

from two independent batches.
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