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Abstract 

Smooth muscle cell (SMC)-based tissue engineering provides a promising therapeutic 

strategy for SMC related disorders. It has been demonstrated that human dental pulp 

stem cells (DPSCs) possess the potential to differentiate into mature bladder SMCs by 

induction with condition medium (CM) from bladder SMC culture, in combination with 

the Transforming Growth Factor-β1 (TGF-β1). However, the molecular mechanism of 

SMC differentiation from DPSCs has not been fully uncovered. Canonical Wnt 

signaling (also known as Wnt/β-catenin) pathway plays an essential role in stem cell 

fate decision. The aim of this study is to explore the regulation via GSK3β and 

associated downstream effectors for SMC differentiation from DPSCs. We 

characterized one of our DPSC clones with the best proliferation and differentiation 

abilities. This stem cell clone has shown the capacity to generate a smooth muscle layer-

like phenotype after an extended differentiation duration using the SMCs induction 

protocol we established before. We further found that Wnt-GSK3β/β-catenin signaling 

is involved in the process of SMCs differentiation from DPSCs, as well as a serial of 

growth factors, including TGF-β1, basic fibroblast growth factor (bFGF), epidermal 

growth factor (EGF), hepatocyte growth factor (HGF), platelet-derived growth factor-

homodimer polypeptide of B chain (BB) (PDGF-BB), and vascular endothelial growth 

factor (VEGF). Pharmacological inhibition on canonical Wnt-GSK3β/β-catenin 

pathway significantly down-regulated GSK3β phosphorylation and β-catenin activation, 

which in consequence reduced the augmented expression of the growth factors 

(including TGF-β1, HGF, PDGF-BB, and VEGF) as well as SMC markers (especially 

myosin) at a late stage of SMC differentiation. These results suggest that canonical 

Wnt-GSK3β/β-catenin pathway contributes to DPSC differentiation into mature SMCs 

through the coordination of different growth factors.  

 

 

 



Introduction 

A range of injuries or diseases including cancer, benign bladder contracture and 

congenital anomalies (such as bladder exstrophy and myelomeningocele) can result in 

the damage or loss of bladder [1-3]. Consequently patients with those illnesses require 

bladder augmentation cystoplasty or replacement. However, current cystoplasty using 

gastrointestinal segments cannot completely restore the normal function of Detrusor 

muscle, in some cases even leading to complications, such as metabolic disturbances, 

urolithiasis, infection and malignant diseases [4, 5]. Therefore, bladder smooth muscle 

cell-based tissue engineering becomes one of the most promising remedies for restoring 

bladder organ function of the urinary system [6, 7]. However, due to the limited 

expansion of bladder tissue-derived SMCs and highly potential oncogenic risk, the 

progress of bladder tissue engineering is hampered by lack of a stable SMC source [8, 

9]. Thus search for alternative cell source is essential for bladder tissue engineering, 

which could provide a new way to overcome the shortcomings of the aforementioned 

methods in the future.  

Mesenchymal stem cells (MSCs) are one type of fibroblast-like cell population with 

potential extensive self-renewal and multi-lineage differentiation abilities [10]. 

Compared with other MSCs derived from bone marrow [11], adipose tissue [12], 

peripheral blood [13] and umbilical cord blood [14], MSCs derived from dental pulp 

tissues have marked advantages of easy access with the least invasive procedures and 

capacities of high proliferation, excellent regeneration and multiple-potential of 

differentiation along with little inherent immunogenicity, which make them particularly 

suitable for tissue engineering and gene therapy applications [15, 16]. Dental pulp stem 

cells (DPSCs) are normally isolated using a single colony method as DPSCs from pulp 

tissue are heterogeneous, which are expected to produce complex biological activities 

[17, 18]. For this reason, different clones of DPSCs exhibit different behaviours 

including various capacities of proliferation and differentiation according to the age of 

the donor, method of isolation and conditions of the pulp tissue [19]. DPSCs provide a 

potential source of progenitor cells for tissue engineering. However, the abilities of 



expansion and differentiation in vitro should be fully explored before use. In this study, 

we have isolated three DPSC clones from different patients. The clones were 

investigated by comparing their proliferation rates and potential to differentiate into 

three mesenchymal lineages (namely osteogenic, adipogenic and chondrogenic), to 

determine the best clone as the candidate cell source for further tissue engineering 

research.  

We have recently reported the feasibility of using human DPSCs as bladder SMC 

progenitors for the regeneration of SMCs [20]. Although the capacity of DPSCs 

differentiation into SMCs have been demonstrated, whether they can form a smooth 

muscle layer and its underlying molecular mechanisms remains largely unknown. The 

Wnt signaling pathway is an ancient and evolutionarily conserved pathway which 

orchestrates a range of biological processes, such as cell fate determination during 

embryonic development, cell proliferation, cell cycle arrest, differentiation, apoptosis, 

as well as tissue homeostasis [21]. β-catenin is a plasma membrane-associated protein 

that acts as an intracellular signaling transducer in the Wnt signaling pathway [22]. It 

has been demonstrated to induce the myogenic differentiation of rat MSCs through up-

regulation of myogenic regulatory factors [23].Glycogen synthase kinase 3β (GSK3β) 

is a proline-directed serine-threonine kinase and its phosphorylation appears to be a 

critical step in directing β-catenin to the nucleus [22]. Myogenic growth factors, 

including platelet-derived growth factor-homodimer polypeptide of B chain (PDGF-

BB), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor 

(VEGF), as well as hepatocyte growth factor (HGF) have been proven to play a vital 

role in SMC differentiation in vivo [24].Therefore, the aim of this study is to analyse 

the mechanisms of Wnt sigalling pathway and the expression of myogenic growth 

factors involved in the regulation of differentiation of DPSCs toward bladder SMCs 

using the in vitro model we established before.  

 

 



Materials and Methods 

Human DPSCs clones and SMCs isolation 

The pulp tissues were obtained from third molars (donors aged from 17 to 20 years) 

with the patient’s informed consent and ethical approval by the South East Wales 

Research Ethics Committee of the National Research Ethics Service (permission 

number: 07/WESE04/84). The clonal populations of DPSCs were isolated using 

fibronectin based selection protocol as described previously [20, 25] after ethical 

approval and patient consent (permission number: 07/WESE04/84). Following 12 days 

of culture, single cell-derived clones were isolated using cloning rings and accutase 

digestion, and then expanded. Three clones were selected, named as A11, B11 and A32. 

The level of population doublings (PDs) during expansion culture was monitored to 

measure the proliferation rate of three clones [20]. Then three clones were induced to 

differentiate into three mesenchymal lineages (including osteogenic, adipogenic and 

chondrogenic) in appropriate differentiation condition in vitro to compare their 

capacities of differentiation. 

Human SMCs were obtained as reported previously from the bladder of patients who 

underwent open procedures for their bladder, after patient consent and ethical approval 

by the South East Wales Research Ethics Committee of the National Research Ethics 

Service (permission number: 07/WESE04/84) [20]. Briefly, bladder muscle tissue was 

minced into 1 x 1 mm pieces and digested in collagenase type IV enzyme (Sigma- 

Aldrich) for 30 minutes at 37°C. The digested muscle tissues were plated in Dulbecco’s 

modified Eagle’s medium (DMEM) with 10% FBS for establishing primary culture. 

Differentiation of human DPSCs clone A32 and Wnt pathway inhibition assay 



Differentiation of the A32 was induced by using conditioned medium (CM) collected 

from bladder SMCs culture, supplemented with transforming growth factor beta 1 

(TGF-β1), as previously described [20].  

The Wnt pathway was analysed by using the inhibitors including XAV939 (Wnt/β-

catenin signaling inhibitor, Sigma), SB216763 (GSK-3 inhibitor, Sigma) and LiCl 

(GSK-3 inhibitor, Sigma), as previously described [26-28]. Briefly, cells were seeded 

into 6-well plate. At 80% confluence of cells, the culturing medium was changed into 

the bladder SMCs differentiation induction medium with the XAV939 (5μM), 

SB216763 (20μM) or LiCl (2.5mM), respectively. Equivalent amount of 

dimethylsulfoxide was added to the control wells. After 14 days of incubation, the 

mRNA and protein levels were compared to the control group using qPCR and western 

blotting methods, respectively. 

Immunocytochemistry 

The cells were fixed with 4 % PFA for 30 min and then incubated in 0.1% Triton X-

100 for 10 min on ice and then blocked with bovine serum albumin (BSA) for 60 min 

at 37 °C. After the blocking step, the cells were incubated with anti-myosin (1:50), anti-

α-SMA (1:100) and anti-desmin (1:50) at 4 °C, overnight; PBS was used as the negative 

control. The cells were then washed with PBS for 3 times and incubated with anti-

mouse IgG Alexa Fluor-488 or -594 secondary antibodies for 1 h at room temperature. 

The nuclei were counterstained with DAPI (VectorLabs). The protein expressions were 

observed with fluorescent microscope, and analysed with ImageJ software. 

Flow cytometry 

The cells were washed and re-suspended in PBS supplemented with 3 % FBS that 

contained saturating concentrations (1:100 dilution) of the following reagents: FITC-

conjugated anti-human monoclonal antibodies, anti-CD29-phycoerythrin (PE), anti-

CD90-PE, anti-CD34-PE, anti-CD45-PE, anti-CD146-PE or anti-STRO-1-

allophycocyanin (APC) for 1 h at room temperature in the dark. As a negative control, 



PE- and APC-conjugated nonspecific mouse IgG1 were substituted for the primary 

antibodies. The cell suspensions were washed twice, re-suspended in 3 % FBS/PBS and 

analysed with a flow cytometry cell sorting Vantage cell sorter (Becton & Dickinson). 

The data were analysed with a Mod-Fit 2.0 cell cycle analysis program (Becton & 

Dickinson). 

Real time quantitative PCR (qPCR) 

Total RNA was extracted from the cells using an RNeasy Mini Kit (QIAGEN) 

according to manufacturer’s directions. The total yield of RNA per extraction was 

calculated using a Nanovue spectrophotometer (GE Healthcare) to measure the 

absorbance at 260 nm. A260/A280 ratios of 1.9 -2.1 indicated extraction of high quality 

RNA. cDNA was synthesised with 2000ng RNA using MMLV reverse transcriptase 

(Promega). For qPCR, three separate cDNA samples were used and each measured in 

triplicate. Target specific primers (Table 1) were added to each cDNA sample together 

with Precision MasterMix with ROX and SYBRgreen (PrimerDesign). The PCR 

reaction was run by ABI Prism fast7500 qPCR system (Advanced Biosystems) under 

the following cycling conditions: an initial denaturation step of 95°C for 2 minutes 

followed by 40 cycles of 15 seconds denaturation (95°C) and 1 minute 

annealing/elongation at 60°C. The relative amount or fold change of the target gene 

expression was normalized relative to the level of D-glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and relative to a control sample (non-induced cells). 

Table 1 

Genes Forward and reverse primers Accession number 

GAPDH 5'-GCACCGTCAAGGCTGAGAAC-3' 

5'-TGGTGAAGACGCCAGTGGA-3' 

NM_002046.3 

α-SMA(ACTA2) 5'-CCGGTTGGCCTTGGGGTTCAGGGGTGCC-3' NM_001141945.1 



5'-TCTCTCCAACCGGGGTCCCCCCTCCAGCG-3' 

Myosin(MYH11) 

 

Desmin 

 

Calponin 

 

TGF-β1 

 

HGF 

 

VEGF 

 

PDGF-BB 

 

b-FGF 

 

EGF 

5'-AAGAAAGACACAAGTATCACGGGAGAGC-3' 

5'-TGTCACATTAATTCCCATGAGGTGGCAA-3' 

5'-CACCATGAGCCAGGCCTACTCGTCCA-3' 

5'-GGCAGCCAAATTGTTCTCTGCTTCTTCC-3' 

5'-GGCTCCGTGAAGAAGATCAATGAGTCAA-3' 

5'-CCCTAGGCGGAATTGTAGTAGTTGTGTG-3' 

5'-ATGCCGCCCTCCGGGCTGCGG-3' 

5'-CAGCTGCACTTGCAGGAGCGC-3' 

5'-TACAGGGGCACTGTCAATACC-3' 

5'-GGATACTGAGAATCCCAACGC-3' 

5'-ACGTACTTGCAGATGTGACAAG-3' 

5'-GTGGCGGCCGCTCTA-3' 

5'-ATGAATCGCTGCTGGGCGCTC-3' 

5'-CTAGGCTCCAAGGGTCTCCTTC-3' 

5'-ACGGGGTCCGGGAGAAGAGC-3' 

5'-TGCCCAGTTCGTTTCAGTGCCA-3' 

5'-CTTGTCATGCTGCTCCTCCT-3' 

5'-GAGGGCATATGAAAGCTTCG-3' 

NM_001040113.1 

 

NM_001927.3 

 

NM_001299.4 

 

NM_000660 

 

NM_000601.4 

 

NM_001025366.2 

 

NM_002608.3 

 

NM_002006.4 

 

NM_001963.4 

 

Western blot analysis 



The total protein was extracted from the cells with lysis buffer containing protease 

inhibitors (Roche, UK). The protein concentration was measured by a BCA-200 protein 

assay kit (Pierce, USA). Equal amounts of proteins were separated by 4-12 % sodium 

dodecyl sulfate/polyacrylamide gel electrophoresis and transferred to a polyvinylidene 

fluoride (PVDF) membrane. The membrane was blocked in TRIS-buffered saline with 

Tween (TBST) containing 5 % fat-free milk for 2 h and probed with primary antibodies, 

p-GSK3β (1:1000; Cell signaling), t- GSK3β (1:1000; Cell signaling), active-β-catenin 

(1:1000; Cell signaling), myosin (1:500; Sigma), α-SMA (1:500; Sigma), desmin 

(1:500, Sigma) and GAPDH (1:1000; Cell signaling) overnight at 4 °C and then 

incubated for 2 h with a horseradish-peroxidase-conjugated anti-mouse IgG antibody 

or anti-rabbit IgG diluted 1:20,00 (Cell signaling). Protein bands were visualized on X-

ray film by using an enhance chemiluminescence system (GE Healthcare, 

Buckinghamshire, UK). The relative protein expression intensities were quantified by 

densitometry using Quantity One analysis software. 

Statistical analysis 

Each experiment was performed at least three times, unless otherwise indicated. Data 

are reported as the mean ±SD (standard deviation) deviation from three independent 

experiments. The significance of the differences between the experimental and the 

control groups was determined by using one-way analysis of variance; P<0.05 indicated 

statistical significance. 

 

Results 

The proliferation and differentiation ability of three clones of human dental pulp stem 

cells (DPSCs) (A11, B11 and A32) and characterization of A32 

Dental pulp cells were isolated from pulp tissue of extracted third molars from patients. 

Three clones of cells that adhered to fibronectin were selected, noted as A11, B11 and 

A32, respectively. The proliferation rate and differentiation potential of the three clones 



were analysed. A32 demonstrated a high proliferation capacity extending beyond 

80PDs, whilst the other two clones (A11 and B11) exhibited less than 36PDs (Fig 1A). 

Compared to A11 and B11 clones, A32 showed the best differentiation capacity into 

three mesenchymal lineages including osteogenic, adipogenic and chondrogenic 

competency (Fig 1B. b. f. j). The clone A32 was further characterized by flow 

cytometric analysis, which revealed that A32 was negative for CD34 and CD45. The 

culture population contained 99.8% CD29-positive cells, 100% CD90-positive cells, 

64.4% CD146-positive cells and 27.2% STRO-1-positive cells (Fig 1C). 

The smooth muscle layer-like phenotype generated by DPSCs clone A32 after SMC-

induction. 

Our previous study proved that the DPSC clone A32 displayed the potential to 

differentiate into SMCs by induction of CM from bladder SMCs in combination with 

TGF-β1. In this study, we evaluate whether DPSCs can generate a smooth muscle layer 

after an extended differentiation duration. Noninduced A32 were found to express 𝛼-

SMA (Fig 2A) and desmin (Fig 2I) already, but none of these cells stained positive for 

myosin (Fig 2E). The induced cells from clone A32 formed monolayer structure and 

also generated the smooth muscle-like phenotype which were shown to be positive for 

the SMC markers such as α-SMA (Fig 2B-D), myosin (Fig 2F-H) and desmin (Fig 2J-

L) after a longer period of differentiation (up to 20 days). 

The involvement of Wnt mediated GSK3β/β-catenin in the SMCs-differentiation from 

DPSCs clone A32 

The Wnt-GSK3β/β-catenin signaling pathway has been previously reported to play an 

important role in TGF-β1 induced MSC differentiation. To investigate whether this 

canonical Wnt signaling is also involved in the bladder SMC differentiation from 

DPSCs, we evaluated the protein level of phosphorylation GSK3β (p-GSK3β), total 

GSK3β (t-GSK3β) and active β-catenin in A32 in response to the induction of 

differentiation medium by western blotting. The protein level of p-GSK3β increased 

and maintained at the peak through 11 to 14 days (Fig 3A and B). While, the protein 



level of t-GSK3β did not change (Fig 3A). As for the expression of active β-catenin, a 

significant up-regulation was detected since day 8 of induction, which reached to the 

peak expression at day 11 (Fig 3C and D). 

Inhibition of Wnt-GSK3β/β-catenin signaling pathway prohibits the SMC specific 

markers in DPSCs clone A32 following SMC-induction. 

To further investigate whether canonical Wnt signaling is required for the SMC-

differentiation of cell clone A32, we assessed the SMC specific markers, including α-

SMA, myosin and desmin, in the presence or absence of Wnt/β-catenin specific 

inhibitor, XAV939 and GSK3 inhibitors, SB216763 and LiCl. Pharmacological 

inhibition of Wnt and GSK3 significantly down-regulated the protein expression of p-

GSK3β (Fig 4A and C) and active β-catenin (Fig 4B and D), but had no effect on t-

GSK3β (Fig 4A). The inhibition triggered a further reduction on the expression of SMC 

specific markers including α-SMA, myosin and desmin, at both gene and protein levels 

(Fig 4E-L), compared to those of the non-inhibitor treated control group of A32 

following an SMC-induction protocol for 14 days.  

Growth factor analysis in SMC-differentiation from A32 

The mRNA expression of growth factors, including bFGF, EGF, TGF-β1, HGF, VEGF 

and PDGF-BB in the process of SMC-differentiation from DPSC clone A32 were 

detected by qPCR. The mRNA expression of TGF-β1 was notably increased through 5 

to 14 days of differentiation (Fig 5A); the HGF and VEGF expression both increased 

since day 8 of differentiation, and reached its peak level at day 14 (Fig 5B and C); the 

PDGF-BB expression appeared to go up after 11 day differentiation and reached the 

highest level at day 14 (Fig 5D); the bFGF expression rose to its peak at day 5, but 

subsequently dropped with 14-day induction (Fig 5E)；the EGF expression level was 

increased and maintained through 11 days of differentiation, and then down-regulated 

by day 14 (Fig 5F).  



Wnt-GSK3β/β-catenin signaling pathway promotes DPSCs clone A32 differentiate into 

mature SMC via regulating the expression of growth factors. 

We have demonstrated that Wnt-GSK3β/β-catenin signaling as well as several key 

growth factors were required in the process of human DPSCs differentiating into human 

bladder SMCs. To further confirm the involvement of Wnt signaling in the process of 

SMCs-differentiation from clone A32 by regulating the expression of growth factors, 

pharmacological inhibitors of Wnt pathway were used to evaluate the change of gene 

expression of several key growth factors at the later stage of SMC differentiation. After 

14 days of differentiation, the gene expression of several growth factors including TGF-

β1, HGF, PDGF-BB, HGF and VEGF markedly up-regulated (Fig 6A-D). Whilst either 

Wnt/β-catenin specific inhibitor (XAV939) or GSK-3 inhibitors (SB216763 and LiCl) 

significantly down-regulated the expression levels of these growth factors (Fig 6A-D), 

which suggests a promoting effect of Wnt-mediated GSK-3β/β-catenin signaling on 

SMC-differentiation of clone A32 by regulating the release of growth factors including 

TGF-β1, HGF, PDGF-BB and VEGF. 

 

Discussion 

SMC-based tissue engineering provides a potential therapy for SMC pathology, 

including cardiovascular diseases, gastrointestinal diseases, urinary incontinence and 

bladder dysfunction [29-31]. A reliable cell source of healthy SMCs that can be easily 

obtained and safely expanded plays a vital role in promoting the progress of smooth 

muscle tissue engineering. DPSCs have demonstrated the advantages of easy access 

with the least invasive procedures and little inherent immunogenicity but without any 

ethical issues, which make them a promising cell population for developing tissue 

engineering and regenerative medicine [16]. In order to use DPSCs for clinical therapy, 

in vitro expansion and differentiation ability should be taken into account for the 

success of clinical applications in tissue engineering. In this study, three clones of 

DPSCs from two patients were isolated, which were named as A11, A32 (from patient 



A), and B11 (from patient B). Investigation of the proliferation rate using PDs as an 

indicator demonstrated that two of clones (A11 and B11) showed less than 36PDs and 

senesced within 85 days, while A32 had a high proliferation rate with over 85PDs that 

only started senescing after more than 300 days. Compared with the previous studies 

about the analysis of proliferation rate of MSCs from bone marrow [32-34], stem cell 

clone A32 displayed a better proliferation capacity, giving this clone a potential 

advantage. It has been reported that only a small percentage of the overall clonal 

population of DPSCs, which is less than 5% of the total population, have the ability to 

differentiate into three mesenchymal lineages, including osteoblast, chondrocytes and 

adipocytes [35-37]. Whilst our data demonstrated that all the three clones (A32, A11, 

B11) displayed good ability to differentiate into the osteogenic phenotype, among 

which A32 was able to differentiate into three different lineages. This result is 

consistent with data presented by Halleux et al (2001), in which 24 designated clones 

differentiated into osteogenic lines, while 17/24 and 18/24 clones differentiated into 

chondrogenic and adipogenic lineages, respectively [35]. The niche of these clones 

located and different stages of their development may be accountable for their different 

growth kinetic profiles and differentiation abilities. Therefore, DPSCs clone A32 which 

has the best proliferation and differentiation ability was selected for further bladder 

tissue engineering research. We characterized clone A32 by using flow cytometric 

analysis. The cell populations were positive for a range of mesenchymal stem cells 

markers including CD29, CD90, CD146 and STRO-1, but negative for hematopoietic 

stem cells markers, such as CD34 and CD45, which demonstrated that the clone A32 

are sourced from the mesenchymal stem cells, not hematopoietic stem cells. 

The urinary bladder wall is mainly composed of Detrusor smooth muscle layer which 

is made of smooth muscle fibers arranged in spiral, longitudinal, and circular bundles 

[38]. Detrusor smooth muscle is mainly responsible for storing urine under low pressure 

and contraction for voiding, lined by a layer of transitional cells that provide a barrier 

to absorption. Therefore, it is a crucial step to regenerate Detrusor smooth muscle layer 

as a tissue specific effort for the tissue engineering of the urinary bladder. Previous 



study in our lab has demonstrated that 𝛼-SMA and desmin were already present in 

noninduced human DPSCs clone A32 at a low basal level, which indicates A32 may be 

more suitable to be induced into SMCs for bladder tissue regeneration. Additionally, 

this clone has the potential to differentiate into bladder SMC by the CM from cultured 

bladder SMC in combination with TGF-β1 [20]. In this study, we further proved that 

A32 could generate a smooth muscle layer-like phenotype after an extended 

differentiation duration. Further functional analysis would be required using 3D cell 

culture by seeding the DPSCs-derived smooth muscle layer-like structure into synthetic 

bladder composites and transplanting them into nude rats which underwent removal of 

half bladder, in order to evaluate its regeneration capacity of the Detrusor smooth cells 

in vivo. 

Canonical Wnt/β-catenin signaling plays a primary role in the regulation of 

proliferation and differentiation of stem cells [21, 39]. GSK3 exists as two highly 

homologous isoforms encoded by distinct genes known as GSK3α and GSK3β.  

GSK3β originally isolated from muscles as a kinase promotes glycogen assimilation by 

phosphorylating and inactivating glycogen synthase. It is also involved in the 

maintenance and plasticity of skeletal muscle mass, as well as plays an important role 

in skeletal muscle atrophy in vivo [40, 41]. β-catenin is a multifunctional protein which 

is located in both the nucleus and cytoplasm. It leads to myogenic specification and 

prevents adipogenic differentiation in adult stem cells [42-44]. GSK3β and β-catenin 

are key factors in the canonical Wnt pathway. Activation of the Wnt signaling promotes 

the stabilization and accumulation of β-catenin in the cytoplasm by triggering GSK3β 

phosphorylation which prevents subsequent GSK3β mediated β-catenin 

phosphorylationin association with axin and adenomatous polyplsis coli (APC) [21]. 

The stabilized β-catenin enters the nucleus and induces activation of target genes by 

binding with members of the T-cell factor (TCF) and lymphoid enhancer factor (LEF) 

transcription factor family [45]. It has been reported that Wnt-GSK3β/β-catenin 

contribute to the progressive nature of smooth muscle tissue remodelling [22] and also 

acts as an indispensable regulator for myogenesis in embryogenesis and postnatal 



muscle regeneration [46], as well as induces myogenic differentiation in stem cells 

during muscle regeneration [42]. In this study, we found that Wnt-GSK3β/β-catenin 

signaling is involved in regulating the process of bladder SMC differentiation from 

human DPSCs by the SMC induction protocol. To confirm the effect of Wnt/β-catenin 

signaling and GSK3β on the SMCs differentiation, two types of pharmacological 

inhibitors were used. One is XAV939 which is a Tankyrase inhibitor for inhibiting 

Wnt/β-catenin signaling [28]. The others are SB216763 and LiCl which block GSK3 

activation [26, 27]. SB-216763 is a small molecule that competes with ATP and 

potently inhibits the activity α and β isozymes of GSK3. Considering the high degree 

of sequence similarity, GSK3α and GSK3β share some similar functions. For example, 

the single loss of either GSK3α or GSK3β in mouse embryonic stem cells (ESC) did 

not negatively alter Wnt/β-catenin signaling, whereas GSK3α/β double knockout ESCs 

displayed hyperactivated Wnt/β-catenin signaling, resulting in dramatically skewed cell 

differentiation [47]. Nevertheless, the two isoforms were shown to have opposite effects 

on the transcriptional activation of certain transcription factors [48]. GSK3α or GSK3β 

play distinct roles in cardiomyocyte differentiation and cardiovascular development in 

mice [49-51]. Therefore, it appears that GSK3α and GSK3β have both common and 

non-overlapping cellular functions, largely depending on the physiological context and 

the cell type studied. It has been reported GSK3β protein expression in human and 

mouse muscle was found to be three to four times higher than GSK3α, suggesting that 

GSK3β, rather than GSK3α may be the predominant GSK3 isoform in muscle [6]. Two 

types of inhibitors significantly suppressed the activation of p-GSK3β as well as active 

β-catenin, and also down-regulated the expression of SMCs markers (especially myosin 

which is only expressed in contractile SMCs) at the later stage of differentiation at both 

mRNA and protein levels. It suggests that Wnt-GSK3β/β-catenin signaling promotes 

the human DPSCs differentiate into bladder SMCs. Further analysis would be required 

by down-regulation of GSK3α or GSK3β to investigate the role of GSK3α in regulating 

the process of DPSCs differentiation into SMC. 



Previous studies have identified that a variety of stem cells, including those from 

embryo [52, 53], bone morrow [54], adipose tissue [55] and dental pulp tissue [20] can 

be induced to differentiate into bladder SMCs by using differentiation agents, such as 

CM from SMC culture in addition to myogenic growth factors, or by indirectly co-

culturing with the target cells. The CM or indirect co-culture system contain cytokine 

growth factors secreted by the target cells that can be used to induce cell differentiation 

[56]. Here, we showed that several growth factors, including TGF-β1, HGF, VEGF, 

PDGF-BB, bFGF and EGF play different roles in the process of SMC differentiation. 

It has been demonstrated that TGF-β1 evokes an important signal that induces 

expression of vascular SMC markers in a range of non-smooth muscle precursor cell 

types, including multipotent embryonic fibroblast [57], neural crest cells [58], and 

MSCs [54]. We here found that the expression of TGF-β1 up-regulated during the 

whole process of SMC differentiation, indicating that TGF-β1 also play an important 

role in the bladder SMC differentiation from DPSCs. It has been shown previously that 

an increased expression of bFGF was associated consistently with SMC proliferation 

of the neointima formation [59] and atheromatous lesions [60] in vivo. Additionally, 

experimental inhibition of bFGF activation leads to the SMC markers expression in the 

model of BMMSC differentiation into SMC [8]. As one of the most important 

mitogenic growth factors, bFGF is known to promote proliferation of marrow cells [61], 

which is consistent with our data. Because the phenomenon of DPSC proliferation was 

observed when the expression of bFGF was up-regulated during 5 days of SMC-

differentiation (data not shown). PDGF-BB, which is previously associated with 

proliferation and differentiation of SMCs [62, 63], was up-regulated after 11 days 

differentiation in our study, indicating that this growth factor is mainly for promoting 

bladder SMC differentiation from DPSCs. As for the expression of myogenic growth 

factors, such as HGF and VEGF, they were both up-regulated after 8 days 

differentiation, which is consistent with the previous study of BMMSC differentiation 

into bladder SMCs [54]. The expression levels of the growth factors, including TGF-

β1, HGF, VEGF and PDGF-BB, were all up-regulated at 14 days differentiation, 

indicating that these growth factors may induce the mature of SMCs at the later stage 



of bladder SMC differentiation from DPSCs. In order to further investigate whether 

Wnt-GSK3β/β-catenin signaling is involved in the mature process of SMC 

differentiation, we evaluated the expression of growth factors above with or without 

two types of inhibitors at a late stage of SMC differentiation. We noticed that the 

expression of these growth factors was significantly down-regulated with the Wnt/β-

catenin inhibitor and GSK3β inhibitors at that stage, indicating that the Wnt-GSK3β/β-

catenin signaling promotes the human DPSCs differentiate into mature bladder SMCs 

by regulating the expression of these myogenic growth factors.  

As summarized in Figure 7, we hypothesize that the canonical Wnt which is activated 

by CM from SMCs in combination with TGF-β1 triggers phosphorylation of GSK3β, 

thus disrupts the APC/Axin/GSK3β/β-catenin complex. The stabilization and 

accumulation of β-catenin in cytoplasm translocates into the nucleus and enhances the 

expression of growth factors, including TGF-β1, HGF, VEGF and PDGF-BB, which 

subsequently promote the SMC differentiation from DPSCs, for instance, clone A32.   

Conclusion 

In this study we characterized one of our DPSCs clones (clone A32) with the best 

proliferation and differentiation abilities, and demonstrated that the clone A32 

possesses a potential to differentiate into bladder smooth muscle cell layer-like 

phenotype in vitro using the bladder SMCs induction protocol we established before. 

Additionally, we have found that the Wnt-GSK3β/β-catenin signaling is involved in the 

SMC differentiation. Several growth factors (including TGF-β1, HGF, VEGF, PDGF-

BB and bFGF) regulated by Wnt-GSK3β/β-catenin signaling promote the 

proliferation/differentiation during the process of bladder SMC differentiation from 

human DPSCs.  
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Fig. 1 The ability of proliferation and differentiation analysis for three clones of human 

dental pulp stem cells (DPSCs) (A11, B11 and A32) and characterization of A32 

Population doublings (PDs) of three clones (A11, B11 and A32) from different patients 

(A). The differentiating potential of the three clones into osteogenic (alizarin red 

staining) (B. b-d), adipogenic (oil-red-o staining) (B. f-h) and chondrogenic lineages 

(safranin o staining) (B. j-l) when cultured in differentiation condition compared to 

control groups, respectively (B. a, c, i). A32 had the potential to differentiate into 



osteogenic (B. b), adipogenic (B. f), and chondrogenic lineages (B. j). A11 and B11 

had the potential to differentiate into osteogenic lineages (B. c and d). Analysis of 

molecular surface antigen markers in A32 by flow cytometry (P2 positive zone of 

antigen) indicated that A32 were negative for CD34 and CD45, whereas they were 

positive for CD29 and CD90; of cells 64.4% were CD146-positive and 27.2% STRO-

1-positive (C). PE- and APC- conjugated non-specific mouse IgG1 served as negative 

controls. 

 

 

Fig. 2 The smooth muscle layer-like phenotype generated by dental pulp stem cells 

(DPSCs) clone A32 after SMC-induction. 

After a long period of differentiation (20 days), the induced A32 formed monolayer and 

generated the smooth muscle-like phenotype which were positive for expression of the 



SMC markers, α-SMA (B-D), myosin (F-H) and desmin (J-L). Noninduced A32 as the 

negative control (A, E, I). The green staining indicates a positive result. Nuclei were 

stained with DAPI. Bars 50 μm. 

 

Fig.3 The involvement of Wnt mediated GSK3β/β-catenin in SMCs-differentiation 

from DPSCs clone A32. The A32 clone was induced according to the SMCs induction 

protocol, 20% conditioned medium and 2.5ng/mL TGF-β1 for the indicated time (0d, 

5d, 8d, 11d and 14d). The protein levels of p-GSK3β, t-GSK3β and β-catenin were 

analysed with western blotting (A and C). The relative band intensities were determined 

by dentitometry (B and D). Statistical analysis was performed by using one-way 

ANOVA. Date are shown as means ± SEM. *P<0.05 when compared with the 0d group. 

 



 

Fig. 4 Inhibition of Wnt-GSK3β/β-catenin prohibits the SMC-differentiation from 

DPSCs clone A32. The A32 clone was induced following the SMCs induction protocol 

with or without Wnt/β-catenin specific pharmacological inhibitor, XAV939, as well as 

the GSK3 inhibitors, SB216763 and LiCl for 14d. The mRNA expression of α-SMA, 

myosin, desmin and calponin were analysed with qPCR (E-H); the protein levels of p-

GSK3β, t-GSK3β, active β-catenin, α-SMA, myosin, and desmin were analysed with 

western blotting (A, B and I). The relative band intensities were determined by 

dentitometry (C, D and J-L). Statistical analysis was performed by using one-way 

ANOVA. Date are shown as means ± SEM. *P<0.05 when compared with the control 

group. 

 



 

Fig. 5 Growth factor analysis in SMC-differentiation from DPSCs clone A32. The A32 

clone was induced following the SMCs induction protocol for the indicated time (0d, 

5d, 8d, 11d and 14d). The mRNA expression of TGF-β1 (A), HGF (B), VEGF (C), 

PDGF-BB (D), bFGF (E) and EGF (F) were analysed with qPCR. Statistical analysis 

was performed by using one-way ANOVA. Date are shown as means ± SEM. *P<0.05 

when compared with the 0D group. 



 

Fig. 6 Wnt/GSK3β/β-catenin is involved in the process of SMC-differentiation from 

DPSCs clone A32 through regulating on growth factors.  

The A32 clone was induced following the SMCs induction protocol with or without the 

Wnt/β-catenin specific inhibitor, XAV939, as well as GSK3 inhibitors, SB216763 and 

LiCl for 14d. The mRNA expression of TGF-β1 (A), HGF (B), PDGF-BB (C) and 

VEGF (D) were analysed with qPCR. Statistical analysis was performed by using one-

way ANOVA. Data are shown as means ± SEM. *P<0.05 when compared with the 

control group. 



 

Fig. 7 Wnt/GSK3β/β-catenin activation. 1. In the absence of canonical Wnt signaling, 

β-catenin is complexed with GSK3β, APC and Axin, which facilitate the 
phosphorylation and subsequent degradation of β-catenin. 2. Activation of canonical 

Wnt signaling by the growth factor, TGF-β1 and CM from SMCs triggers 

phosphorylation of GSK3β, thereby disrupting the APC/Axin/GSK3β/β-catenin 

complex. 3. β-catenin which dissociates from the APC–Axin–GSK3β complex escapes 
from degradation and accumulates in the cytoplasm. 4. The stabilization and 

accumulation of β-catenin translocates into the nucleus and enhances the expression of 

growth factors, including TGF-β1, HGF, VEGF, PDGF-BB, thus promoting the SMCs 

differentiation from DPSCs clone A32. 5. Wnt/β-catenin signaling inhibitor, XAV939 

and GSK3 inhibitor, SB216763 and LiCl were used to block the Wnt/GSK3β/β-catenin 

signaling. 
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