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Abstract. This paper investigates the Score-Constrained Strip-Packing
Problem (SCSPP), a combinatorial optimisation problem that gener-
alises the one-dimensional bin-packing problem. In the construction of
cardboard boxes, rectangular items are packed onto strips to be scored
by knives prior to being folded. The order and orientation of the items on
the strips determine whether the knives are able to score the items cor-
rectly. Initially, we detail an exact polynomial-time algorithm for finding
a feasible alignment of items on a single strip. We then integrate this al-
gorithm with a packing heuristic to address the multi-strip problem and
compare with two other greedy heuristics, discussing the circumstances
in which each method is superior.
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1 Introduction

The Constrained Ordering Problem (COP) is defined as follows:

Definition 1. Let M be a multiset of unordered pairs of positive integers
M = {{a1, b1}, {a2, b2}, ..., {an, bn}}, and let T be an ordering of the elements of
M such that each element is a tuple. The Constrained Ordering Problem (COP)
consists of finding a solution T such that, given a fixed value τ ∈ Z+,

rhs(i) + lhs(i+ 1) ≥ τ ∀ i ∈ {1, 2, ..., n− 1}, (1)

where lhs(i) and rhs(i) denote the left- and right-hand values of the ith tuple.
The inequality is referred to as the vicinal sum constraint.

For example, given M = {{1, 2}, {1, 7}, {2, 4}, {3, 5}, {3, 6}, {4, 4}} and τ = 7,
one possible solution is T = 〈(1, 2), (6, 3), (5, 3), (4, 4), (4, 2), (7, 1)〉.

A prominent application of the COP is in a strip-packing problem brought
to light as an open-combinatorial problem by Goulimis [4]. Here, a set I of
rectangular items (where |I| = n) of equal height H made from cardboard are
to be packed onto a strip of height H from left to right. Each item i ∈ I has
width wi ∈ Z+ and possesses two vertical score lines, marked in predetermined
places. A pair of knives mounted onto a bar cuts along the score lines of two
adjacent items simultaneously, which allows the items to be folded with ease (see
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Figure 1). However, by design, the scoring knives cannot be placed too close to
one another and, as such, have a “minimum scoring distance” (around 70mm
in industry). The distances between each score line and the nearest edge on an
item i ∈ I are the score widths, ai, bi ∈ Z+ where ai + bi < wi, assigned such
that ai ≤ bi. Since these score widths are not necessarily equal, an item i can be
positioned in one of two orientations: “regular”, denoted (ai, bi), or “rotated”,
denoted (bi, ai), where the smaller of the two score widths ai is on the left- and
right- hand side respectively.

wi

ai bi

Hi

≥ τ

Fig. 1: Dimensions of an item i ∈ I in a regular orientation (ai, bi), and a feasible
alignment of two items whose adjacent score lines can be scored simultaneously.

Clearly, for two items to be feasibly placed alongside one another on a strip,
the distance between the two score lines must be equal to or exceed the min-
imum scoring distance, else the knives will not be able to score the items in
the correct locations. Thus, the problem consists of finding a suitable ordering
and orientation of the items such that the sum of every pair of adjacent score
widths is greater than or equal to the minimum scoring distance.1 It follows that
there are n!

2 2n distinct arrangements, making complete enumeration infeasible
for non-trivial values of n.

It can be seen that, when using a single strip, this packing problem is equiva-
lent to the COP, where each unordered pair in an instanceM contains the score
widths of an item and τ is the minimum scoring distance. It then follows that
the vicinal sum constraint (1) corresponds to the requirement for the sum of ad-
jacent score widths to exceed τ . Figure 2 shows the same instanceM mentioned
earlier depicted as a packing problem.

Observe that in this particular strip-packing problem the widths of the indi-
vidual items are disregarded, since the aim is to arrange the items onto a single
strip of seemingly infinite width. However, in industrial applications, strips of
material will often be provided in fixed finite widths. Given a large problem in-
stance, multiple strips may therefore be required to feasibly accommodate all of
the items. For this reason, a more generalised problem can also be formulated
as follows:

1 Note that the left-hand score width of the first item and the right-hand score width
of the last item on the strip are not adjacent to any other item, and can therefore
be ignored.
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Fig. 2: Example of a single strip-packing problem and a corresponding solution
with τ = 7.

Definition 2. Let I be a set of n rectangular items of height H with varying
widths wi ∈ Z+ and score widths ai, bi ∈ Z+ for each item i ∈ I. Given a
minimum scoring distance τ ∈ Z+, the Score-Constrained Strip-Packing Problem
(SCSPP) consists of finding the minimum number of strips of height H and width
W required to pack all items in I such that the sum of every pair of adjacent
score widths is greater than or equal to τ and no strip is overfilled.

Note that in the special case of τ = 0, the SCSPP is equivalent to the classical
one-dimensional bin-packing problem (BPP). When τ > 0, the problem also
involves deciding the order in which the items are packed from left to right, and
whether each item should be placed in a regular or rotated orientation. Thus,
we define the following sub-problem associated with the SCSPP.

Definition 3. Let I ′ ⊆ I be a set of items whose total width is less than or
equal to the capacity of a strip, (i.e.

∑
i∈I′ wi ≤W ). Given a minimum scoring

distance τ , the Score-Constrained Packing Sub-Problem (SCPSP) involves find-
ing an arrangement of the items in I ′ such that the sum of every pair of adjacent
score widths is greater than or equal to τ .

The remainder of this article is structured as follows: In Section 2, we will detail
an exact polynomial-time algorithm for the COP and show how it is applicable
to the SCPSP. Section 3 then introduces three heuristics that can be used to
find feasible solutions to the SCSPP, one of which makes particular use of the
exact algorithm from the previous section, and their associated advantages and
disadvantages. An analysis of results gained from extensive experiments and
a comparison of the heuristics is provided in Section 4, and finally Section 5
concludes the paper and proposes some potential directions for future work.

2 Solving the COP

We now present an exact polynomial-time algorithm for the COP. The underly-
ing algorithm was originally proposed by Becker in [1], and is used to determine
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whether or not a solution exists for a given instance. Here, we extend this al-
gorithm so that, if a solution does indeed exist, it is also able to formulate and
present us with this final solution. This is especially useful for problems such as
the strip-packing problem.

Let M be an instance of the COP of cardinality n. It is useful to model M
as a graph G in which each vertex is associated with a single value inM in non-
decreasing order. A pair of vertices, called “dominating vertices” are also added
to the graph, both of which are assigned values equal to τ . These dominating
vertices aid the solution process and are removed at the end. Thus, the graph G
has 2n+ 2 vertices.

As seen in Definition 1, the values in M are arranged in pairs. This is rep-
resented in G by adding a set of “blue” edges, B, between vertices that are
“partners”, i.e. whose values make up a pair in M. By introducing a bijective
function p : V → V that associates each vertex with its partner, p(vi) = vj ,
we can denote this set of edges as B = {(vi, p(vi)) : vi ∈ V }. Note that B is
a perfect matching in G, with |B| = n + 1. Next, a set of “red” edges R is
added to G that consists of edges between vertices whose sum equals or exceeds
τ , provided they are not partners. It can be seen that the edges in R represent
all possible orderings of values from different pairs in M that fulfil the vicinal
sum constraint (1). Thus, we have a simple, undirected graph G with vertex set
V = {v1, ..., v2n+2} and two distinct edge sets B and R such that B ∩ R = ∅.
Figure 3 illustrates an example construction of G.

v1
(1)

v2
(1)

v3 (2)

v4 (2)
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(3)
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Fig. 3: G = (V,B ∪R) usingM = {{1, 2}, {1, 7}, {2, 4}, {3, 5}, {3, 6}, {4, 4}} and
τ = 7, where the thinner red edges are in R, and the thicker blue edges are in
B. The corresponding values of each vertex are show in parentheses.
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Recall that a Hamiltonian cycle in a graph G is a cycle that visits every vertex
exactly once. Now, consider the following definition describing a variant of the
Hamiltonian cycle problem involving two edge sets.

Definition 4. Let G = (V,B∪R) be a simple, undirected graph where each edge
is a member of one of two sets, B or R. G contains an alternating Hamiltonian
cycle if there exists a Hamiltonian cycle such that successive edges alternate
between sets B and R.

It is clear that an alternating Hamiltonian cycle in G, if one exists, correpsonds
to a feasible solution T , as each “blue” edge from B represents a pair of values
in M, and each “red” edge from R indicates the values that meet the vicinal
sum constraint, and thus can be placed alongside one another feasibly. Also, note
that every edge in B must be present in the alternating Hamiltonian cycle. Con-
sequently, the task can also be seen as finding a matching R′ ⊆ R of cardinality
n + 1 such that the edge sets B and R′ form an alternating Hamiltonian cycle
as described in Definition 4.

The problem of finding an alternating Hamiltonian cycle in general graphs is
NP-hard as it generalises the classical Hamiltonian cycle problem [5]. However,
the special structure of graphs derived from instances of the COP allows them
to be solved in polynomial-time using the following method.

To find a suitable matching R′ ⊆ R, a Maximum Cardinality Matching
(MCM) algorithm is executed, which is based on [1] and also the earlier work
of Mahadev and Peled [10]. First, take each vertex v1, v2, ..., v2n+2 in turn and
select the edge in R connecting vi to the highest-indexed vertex vj that is not
already incident to an edge in R′. Now, add this edge (vi, vj) to R′ and proceed
to the next vertex until all the vertices have been assessed. The two vertices
incident to each matching edge in R′ are now referred to as being “matched”.
Similarly to partners, let m : V → V be a bijective function that assigns each
vertex with its match, m(vi) = vj . Then, we can denote this matching set as
R′ = {(vi,m(vi)) : vi ∈ V }.

During MCM, if a vertex vi is not adjacent to any other unmatched vertex
except its partner p(vi) via a blue edge, the preceeding vertex vi−1 can be “re-
matched”, provided that (a) vi is not the first vertex; (b) the previous vertex
vi−1 has been matched; and (c) vi−1 and p(vi) are adjacent via a red edge in R.
Then, vi is matched with the vertex that is currently matched with vi−1, and
vi−1 is rematched with p(vi). Due to the initial order of the vertices, MCM is
guaranteed to produce a maximum cardinality matching.

Clearly, if |R′| < n + 1 after MCM has completed, there are an insufficient
number of red edges to form an alternating Hamiltonian cycle, and therefore
no feasible solution exists for the given instance M. Otherwise, R′ is a perfect
matching of cardinality n+ 1, and the spanning subgraph G′ = (V,B ∪R′) is a
2-regular graph where each vertex vi ∈ V is incident to one blue edge and one
red edge, as can be seen in Figure 4. G′ therefore consists of one or more cyclic
components C1, C2, ..., Cl.
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Fig. 4: Subgraph G′ = (V,B ∪R′) created after MCM. When in planar form, it
is clear that l = 2.

In the case where G′ comprises one component, i.e. l = 1, then this alternat-
ing cycle is in fact Hamiltonian and therefore specifies a solution to the COP.
However, if l > 1, the components of G′ must be combined to form a single al-
ternating Hamiltonian cycle. To do this, a Bridge Recognition (BR) procedure is
executed that selects suitable edges from R\R′ to replace edges in R′ to connect
the components of G′.

BR operates by first ordering the edges in R′ such that the lower-indexed
vertices of each edge are in increasing order and the higher-indexed vertices are
in decreasing order. Any edges that cannot be placed in such an order are then
removed from this list. For instance, in the example in Figure 4, the edges would
be sorted as follows: (v1, v14), (v2, v13), (v3, v12), (v4, v11), (v6, v10), (v7, v8). Note
that, since v5 was not matched with the highest-indexed vertex possible during
MCM, the edge (v5, v9) does not adhere to the required structure of the list and
is therefore omitted.

Starting from the first edge in the list, BR then searches through the list to
find an edge that meets the following conditions: (a) the lower-indexed vertex
of the current edge and the higher-indexed vertex of the next edge in the list
are adjacent via an edge in R; and (b) the current edge and the next edge are
members of different components of G′. If these conditions are met, BR adds the
current edge to a set R1, and continues to add all succeeding edges in the list to
R1 provided that, for each edge, both conditions hold and the succeeding edge is
not a member of a component of G′ that already has an edge in R1. Once there
are no more valid edges available to add to R1, BR resumes its search through
the remaining edges in the list to find another edge that meets the conditions,
and can begin a new set R2. The procedure terminates once the penultimate
edge in the list has been assessed.

Now, one of the following three cases occurs:

1. In the event that BR has produced no sets, there are no suitable edges that
can combine the components of G′, and therefore an alternating Hamiltonian
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cycle in G cannot be created. Consequently, no feasible solution exists for
the corresponding COP.

2. If there exists a set Ri such that |Ri| = l, then all components of G′ can
be merged together to form a single alternating Hamiltonian cycle. This is
achieved by adding the red edge from R\R′ connecting the lower-indexed
vertex of each edge in Ri to the higher-indexed vertex of the next edge to R′

(for the final edge in Ri, add the red edge connecting its lower-indexed vertex
to the higher-indexed vertex of the first edge). Edges that appear in both
Ri and R′ are then removed from R′ so that R′ remains a perfect matching
and Ri ∩R′ = ∅. G′ then consists of a single alternating Hamiltonian cycle;
hence a solution has been found.

3. It may be that multiple sets need to be used to connect the components of
G′. For two edge sets Ri and Rj to “overlap”, each set must have exactly
one edge from the same component in G′, with the other edges in each set
being from different components. A collection of sets R∗ therefore needs to
be found such that each set in R∗ overlaps with at least one other set, and
each component of G′ has at least one edge in one of the sets.

In the final case above, a Modified Bridge Recognition (MBR) algorithm is used
to find suitable overlapping sets. Firstly, a copy of the set Ri with the highest
cardinality2 generated by BR is created, called R∗1, and added toR∗. Then, MBR
takes the sorted list used in BR and removes edges from the list that are in R∗.
Similarly to BR, MBR proceeds through the list to find an edge that meets the
following conditions: (a) the lower-indexed vertex of the current edge and the
higher-indexed vertex of the next edge in the list are adjacent via an edge in R;
and (b) the current edge and an edge in R∗ are members of the same component
of G′ and the next edge is a member of a component that does not have an edge
in R∗, or vice versa. If both conditions hold, the current edge is added to a new
set R∗2 which is then added to R∗. MBR continues to add succeeding edges to
R∗2, provided (a) holds and the succeeding edge is a member of a component
that does not have an edge in R∗. Then, if every component of G′ has an edge
in one of the sets in R∗, these sets are able to connect all the components of G′

together, and so MBR terminates. Otherwise, the edges in R∗2 are removed from
the sorted list, and MBR repeats the search for suitable edges to start a new
set R∗3. This procedure continues until either R∗ contains overlapping sets that
cover all components of G′, or until there are no more suitable edges in the list
to start a new set. If MBR has produced a feasible collection of sets then the
components of G′ can be merged to create an alternating Hamiltonian cycle by
applying the connecting procedure above to every set in R∗.

Using the instance illustrated in Figure 5 as an example, the edges (v3, v12)
and (v4, v11) are in the set R1 formed by BR, as (a) (v3, v11) ∈ R, i.e. the low-
er-indexed vertex of the first edge is adjacent to the higher-indexed vertex of the
next edge; and (b) the edges are members of different components ((v3, v12) ∈ C1

and (v4, v11) ∈ C2). Note that since v4 and v11 are adjacent, v4 must also be
adjacent to v12, i.e. (v4, v12) ∈ R, since the value associated with v12 is greater

2 In the event of a tie, MBR selects the set with the lowest index.
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than or equal to the value associated with v11. Then, because |R1| = l, the edges
(v3, v12) and (v4, v11) are removed from R′ and replaced by the edges (v3, v11)
and (v4, v12) from R1. Removing the dominating vertices and any incident edges
results in an alternating Hamiltonian path, which corresponds to a feasible so-
lution T .
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Fig. 5: Specific edges found using BR merge the components of G′ together,
forming an alternating Hamiltonian cycle which corresponds to a solution.

This entire algorithm that has been described will be referred to as the Alternat-
ing Hamiltonian Construction (AHC) algorithm. The time complexity of AHC
is quadratic, as stated in the following theorem:

Theorem 1. Let G = (V,B ∪ R) be a graph created from an instance M of
cardinality n of the COP. Then, AHC terminates in at most O(n2) time.

Proof. We assess each subprocedure of AHC in turn. Firstly, MCM produces a
matching set R′ ⊆ R in at most O(n lg n) time due to the sorting of the vertices
in lexicographical order. In BR, sorting the n + 1 edges of R′ and removing
unsuitable edges also requires O(n lg n) time. The sets Ri can be created in
O(n) time, as each edge in the list is considered once. As each set Ri contains



Heuristics for the Score-Constrained Strip-Packing Problem 9

at least two edges, BR can produce up to n+1
2 sets. Thus, examining each set to

find one such that |Ri| = l takes at most O(n) time. The same method is also
used to find the set with the highest cardinality in MBR. Since G′ comprises
a maximum of n+1

2 components, it follows that the number of edge sets in R∗
needed to connect all the components is bounded by n+1

2 − 1. The initial sorted
list consists of at most n−1 edges, and therefore MBR is of quadratic complexity
O(n2). Finally, the connecting procedure replaces up to n+1 edges, and so can be
executed in O(n) time. Consequently, AHC has an overall worst case complexity
of O(n2). ut

3 Heuristics for the SCSPP

In this section, we now turn our attention to the multi-strip version of the prob-
lem. As mentioned in the introduction, the SCSPP is a generalisation of the
one-dimensional BPP in that we also require the sum of every pair of adjacent
score widths to be greater than or equal to a minimum scoring distance τ . It
follows that the SCSPP is at least as hard as the BPP, which is known to be
NP-hard [3], and so (under the assumption that P 6= NP ) there is no known
algorithm that is able to find an optimal solution for every instance of the SC-
SPP in polynomial time. Instead, heuristics can be used to find near-optimal
solutions in a shorter amount of time.

For an instance of the SCSPP, a feasible solution is represented by the set
S = {S1, S2, ..., Sk} such that⋃|S|

i=1
Si = I, (2a)

Si ∩ Sj = ∅ ∀ i, j ∈ {1, 2, ..., |S|}, i 6= j, (2b)∑|Sj |

i=1
wi ≤W ∀ Sj ∈ S, (2c)

rhs(i) + lhs(i+ 1) ≥ τ ∀ i ∈ {1, 2, ..., |Sj | − 1}, ∀ Sj ∈ S. (2d)

That is, all items must be packed onto a strip (2a), each item can only be placed
on one strip (2b), the strips cannot be overfilled (2c), and the items on each
strip Sj in the solution must be arranged such that the vicinal sum constraint
is fulfilled (2d). Note that constraints (2a)–(2c) are the necessary conditions
for the BPP. An optimal solution S for the SCSPP is a solution that consists
of the fewest number of strips k needed to feasibly contain the n items in the
given problem instance. A simple lower bound for k is the theoretical minimum
t = d

∑n
i=1 wi/W e which can be computed in O(n) time [12].

Perhaps the simplest and most well-known heuristic for one-dimensional bin
packing problems is First-Fit (FF), a greedy online algorithm that places each
item, presented in some arbitrary order, onto the lowest-indexed strip such that
the capacity of the strip is not exceeded. It is known that there always exists
at least one ordering of the items such that FF produces an optimal solution
[8]. A minor modification to FF yields the First-Fit Decreasing (FFD) heuristic,



10 A. L. Hawa et al.

which sorts the items in non-increasing order of size prior to performing FF. In
1973, Johnson [7] showed that FFD is guaranteed to return a solution that uses
no more than 11

9 k + 4 strips. More recently, Dosa [2] has proven that the worst
case for FFD is in fact 11

9 k + 6
9 , and that this bound is tight. Due to the initial

sorting of the items in non-increasing order of sizes, the time complexity of FFD
is O(n log n).

As mentioned in the introduction, the SCSPP shares many similarities with
the BPP, however the addition of (2d) brings complications. One obvious differ-
ence is the order in which the items appear on the strips. The order of the items
in the BPP is unimportant; however in the SCSPP the items must be ordered
in a way that meets the vicinal sum constraint. In addition, removing an item
from a bin in the BPP retains the feasibility of the bin, whereas in the SCSPP
this is not guaranteed, as it may leave a subset of items for which the vicinal
sum constraint is not satisfied. Furthermore, the theoretical minimum t has the
potential to be less accurate for the SCSPP, as the minimum scoring distance
τ is not considered. For example, if the minimum scoring distance is greater
than twice the largest score width, then it is clear that n strips will be required,
regardless of the items’ widths.

To gain an understanding of this problem, three heuristics for the SCSPP
have been developed: a basic FFD heuristic with a simple modification; a heuris-
tic that packs strips individually and prioritises score widths; and a more ad-
vanced version of FFD that incorporates the polynomial-time AHC algorithm.

The first heuristic is the Modified First-Fit Decreasing (MFFD) heuristic
which acts in the same manner as the original FFD, attempting to place each
item onto the end of the lowest-indexed strip. If an item is able to be packed
onto a strip without exceeding the strip’s capacity, MFFD then checks to see
if the vicinal sum constraint is met between the right-most score on the strip
and one of the score widths on the current item. If the constraint is met, MFFD
places the item on the end of the strip in the appropriate orientation, otherwise
the next strip is considered. The most prominent issue with this heuristic is
due to the items being placed on the end of the strips. Although an item could
potentially be packed in a different location on the strip other than the end, it
may end up being placed on another strip, or perhaps even begin a new strip,
thus increasing the number of strips in the final solution.

The next heuristic is the Pair-Smallest (PS) heuristic, which is an extension
of an inexact procedure defined by Lewis et al. [9]. Unlike MFFD, which packs
each item in turn, PS focusses on packing one strip at a time, only starting a new
strip once the current strip is unable to accommodate any further items. Each
strip is initialised by choosing the item from I with the smallest score width, and
packing it in a regular orientation. PS then continues to fill the strip by selecting
the item with the smallest score width that meets the vicinal sum constraint
with the right-most score width on the strip, and whose width will not cause
the strip to be overfilled. This heuristic aligns the smallest score widths with the
largest ones, eliminating the possibility of placing larger score widths together
unecessarily. Note that PS therefore prioritises the vicinal sum constraint over



Heuristics for the Score-Constrained Strip-Packing Problem 11

the item widths, choosing to fulfil this constraint first before considering whether
the item can actually be accommodated. Consequently, there is no use for a
procedure such as AHC to find a feasible arrangement of the items.

The last heuristic, Modified First-Fit Decreasing with AHC (MFFD+), in-
corporates the AHC algorithm from Section 2. It operates in a similar fashion
to the MFFD, placing items sorted in decreasing order onto the lowest-indexed
strip. However, rather than attempting to place the item onto the right-most
side of the strip, MFFD+ executes AHC on all items on the strip. If AHC finds
a feasible solution, the items are placed on the strip in the order of the solution,
which includes the current item, else MFFD+ attempts to pack the current item
on the next strip. Using AHC means that if a feasible alignment of the items
exists, there is a guarantee that it will be found. Unlike MFFD, where the cur-
rent item can only be placed on the end of the strip, MFFD+ allows the items
to be entirely rearranged (see Figure 6). This reduces the possibility of having
to start a new strip for an item, thus preventing increasing the number of strips
in the final solution.

3 57 13 36 41 53 21 48 34 8

3 3 5 4 2MFFD+

41 53 21 48 36 13 57 3 8 34

5 4 3 3 2MFFD

Fig. 6: Example instance of the sub-problem, with W = 20 and τ = 70. In MFFD
the constraint is not fulfilled in either orientation, however MFFD+ is able find
a feasible arrangement.

4 Experimental Results

Benchmark instances currently do not exist for the SCSPP, and so artificial prob-
lem instances were produced to compare the performance of the three heuristics.
For our experiments, we generated 1000 problem instances for |I| ∈ {500, 1000}.
In each problem instance the items have varying widths wi ∈ [150, 1000] and
score widths ai, bi ∈ [1, 70] to ensure that each item has exactly two score lines,
all selected randomly from a uniform distribution. Strips of widths W = 5000,
2500 and 1250 were used to influence the number of items per strip. As the
width of the strips decrease, the average number of items per strip also de-
creases, making the problem more constrained. Both the items and the strips
have equal height of H = 1. Similarly to experiments performed in [9], we also
introduced a parameter δ to denote the proportion of pairs of score widths from
different items that meet the vicinal sum constraint, i.e. whose sum is greater
than or equal to τ . Values of δ from 0.0 to 1.0 were created by changing the
value of τ . Clearly, when δ = 0.0, there are no items that can be packed together
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feasibly, and so n strips will be required (one for each item), whereas if δ = 1.0
all pairs of score widths meet the constraint, and the problem is equivalent to
the BPP.

The heuristics were implemented in C++ and executed on a computer with
an Intel Core i3-2120 3.30GHz processor. Our source code and all data is provided
at [6]. Since optimal solutions are not available, in our case solution quality q is
estimated by comparing each solution to the theoretical minimum, q = |S|/t. For
each heuristic, we calculated the average solution quality for every combination
of n, δ, and W from 1000 instances. All individual trials were seen to complete
in under 160ms.

Table 1: Average solution quality q for n = 500.

W = 5000, t = 58.039 W = 2500, t = 115.571 W = 1250, t = 230.648

δ MFFD PS MFFD+ MFFD PS MFFD+ MFFD PS MFFD+

0.0 8.618 8.618 8.618 4.328 4.328 4.327 2.169 2.169 2.169
0.1 5.214 4.842 5.161 2.659 2.477 2.657 1.515 1.479 1.515
0.2 4.031 3.459 3.976 2.121 1.847 2.118 1.326 1.318 1.326
0.3 3.111 2.348 3.038 1.730 1.397 1.708 1.195 1.229 1.194
0.4 2.436 1.529 2.297 1.460 1.128 1.410 1.110 1.181 1.108
0.5 1.911 1.041 1.691 1.263 1.033 1.196 1.058 1.154 1.053
0.6 1.491 1.013 1.246 1.124 1.030 1.069 1.029 1.135 1.024
0.7 1.196 1.013 1.045 1.049 1.028 1.019 1.017 1.114 1.014
0.8 1.050 1.012 1.008 1.016 1.027 1.008 1.013 1.091 1.012
0.9 1.009 1.012 1.005 1.007 1.026 1.006 1.012 1.073 1.011
1.0 1.004 1.012 1.004 1.006 1.026 1.006 1.011 1.065 1.011

Table 2: Average solution quality q for n = 1000.

W = 5000, t = 115.534 W = 2500, t = 230.563 W = 1250, t = 460.623

δ MFFD PS MFFD+ MFFD PS MFFD+ MFFD PS MFFD+

0.0 8.657 8.657 8.657 4.338 4.338 4.338 2.171 2.171 2.171
0.1 5.173 4.842 5.140 2.636 2.481 2.643 1.511 1.467 1.511
0.2 3.976 3.462 3.952 2.093 1.858 2.102 1.318 1.311 1.319
0.3 3.047 2.350 3.013 1.698 1.409 1.688 1.183 1.221 1.183
0.4 2.374 1.520 2.266 1.426 1.131 1.384 1.097 1.171 1.096
0.5 1.847 1.026 1.642 1.230 1.030 1.170 1.044 1.144 1.040
0.6 1.433 1.012 1.203 1.099 1.027 1.050 1.020 1.124 1.015
0.7 1.155 1.012 1.026 1.034 1.026 1.012 1.012 1.102 1.009
0.8 1.032 1.012 1.006 1.011 1.025 1.007 1.009 1.078 1.008
0.9 1.007 1.012 1.004 1.007 1.024 1.006 1.008 1.059 1.008
1.0 1.004 1.012 1.004 1.006 1.024 1.006 1.008 1.054 1.008
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Tables 1 and 2 compare the results obtained from the three heuristics using the
different values of δ and W , for n = 500 and 1000 respectively. Figures in bold
indicate the best average solution quality for the given combination of parame-
ters. We see that q tends towards 1 as δ increases since the proportion of score
widths meeting the vicinal sum constraint increases, consequently permissing
more items to be packed on each individual strip3, thus reducing the number
of strips required. Note that when δ = 1.0 MFFD and MFFD+ have identical
solution qualities, as the instances are equivalent to the original BPP (τ = 0);
hence they operate in the same fashion as the original FFD heuristic.

Looking at results for both n = 500 and 1000, we see there is a clear pattern
with respect to q across all widths and proportion levels. PS has the best solution
quality for a wider range of δ when the strips are wider, and a much smaller range
when the strip width decreases. Conversely, MFFD+ obtains better solution
qualities for a wider range of δ when W = 1250. Although PS does have the best
solution quality of the three heuristics for δ = 0.1 and 0.2 using the smallest strip
width, we can see that it only marginally superior to MFFD+. For example, take
δ = 0.2 in Table 1 for W = 1250. The difference between q for PS and MFFD+

is 0.008, which translates to fewer than 2 strips difference between the average
number of strips generated by each heuristic. In this particular instance, PS and
MFFD+ produced 303 and 305 strips on average, respectively.

Although using the average solution quality from 1000 instances provides a
useful overview of the efficiency of a heuristic, there are other characteristics that
we can consider. Take, for example, the results obtained with parameters δ = 0.7
and W = 5000 in Table 2. Clearly PS obtains solutions with the fewest strips on
average, however, we noted that out of the 1000 instances, PS did not produce a
single solution containing t strips. On the other hand, there were 152 instances
in which MFFD+ was able to generate a solution S such that |S| = t, thus
implying that there are at least 152 instances that can be solved to optimality.
Despite this, MFFD+ has a higher average solution quality than PS, suggesting
that the variance in the number of strips required is higher.

5 Conclusions and Further Work

This paper has investigated the Score-Constrained Strip-Packing Problem (SC-
SPP), a packing problem in which the order and orientation of the items is crucial
to the feasibility of the solution. We begun by introducing the Constrained Or-
dering Problem (COP), and described the Alternating Hamiltonian Construction
(AHC) algorithm, an exact polynomial-time algorithm that operates by mod-
elling the problem graphically and using the concept of Hamiltonian cycles. We
then showed how AHC can be used to find a solution for the Score-Constrained
Packing Sub-Problem (SCPSP), the single-strip version of the SCSPP. Thus,
the main problem was to tackle the multi-strip problem. Three heuristics, one

3 The average number of items per strip when n = 500 for W = 5000, 2500 and 1250
are 8.475, 4.310, and 2.165 respectively, and the average number of items per strip
when n = 1000 for W = 5000, 2500 and 1250 are 8.621, 4.329, and 2.169 respectively.
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of which included the exact AHC algorithm, were described, and thorough ex-
periments using a variety of parameters were executed.

A potential avenue for further research would be to produce an evolutionary
algorithm (EA) for the SCSPP which incorporates AHC during local search.
One possible addition would be to introduce an approach similar to one used in
[11]. During each iteration of the evolutionary algorithm, high quality strips are
chosen from each offspring solution and stored in separate set. On completion
of the EA, a postoptimisation procedure based on the exact cover problem is
executed. The procedure aims to find the fewest number of strips from the set
of high quality strips that contains every item exactly once.
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