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Abstract  

Smart contract platforms have the potential to allow shared automatic control of energy transfer 

within networks in a replicable, secure, verifiable and trustworthy way. Here we present a general 

form of smart contract which captures the elements needed for shared control that will help 

formalise decentralisation. Two mechanisms were defined for agreement of control instructions for 

a Medium Voltage Direct Current (MVDC) link connecting two separately operated 33kV distribution 

networks. These were instantiated as smart contracts and were evaluated in terms of cost and the 

computational requirements for their execution. Real network and converter data from the ANGLE-

DC demonstration project were used to model the MVDC link. We demonstrate that using smart 

contracts to agree control instructions between different parties is feasible. The potential for shared 

control using smart contracts gives operators and regulators a way of defining and decentralising 

operating responsibilities within energy systems. 
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Main 

An energy system can be described as a collection of distinct networks, sources, sinks, their 

corresponding responsible parties, and the associated physical and information flows1,2. The 

information flows come from monitoring physical processes (e.g. voltage and current at a 

transformer) and decisions made by individual actors3. Information exchange interfaces are the 

mechanism by which information is passed between different responsible parties4. 

The complexity of energy networks is forecast to increase with higher volumes of information and 

numbers of controllable components5. When accompanied by decentralisation of responsibilities, 

this will lead to the creation of more information interfaces, or mean that more information must be 

processed at existing interfaces. An example of this, in electricity networks, is the possible 

transformation of Distribution Network Operators (DNOs) to Distribution System Operators (DSOs) 

in Great Britain (GB)6,7. As part of the transition, more localised balancing responsibility would be 

given to DNOs8,9. This would lead to a requirement for more complex agreements at interfaces (e.g. 

between two distribution networks or between a distribution network and a transmission network) 

as neighbouring parties will rely more on the predictable behaviour of adjacent networks10. This 

leads us to ask what standardised rulesets at the interfaces between responsible parties, if any, 

would make the operation and planning of energy systems more secure and lower cost. 

The emergence of smart contract platforms (often under the rubric of Distributed Ledger 

Technology11 or Blockchain Technology12), brings the opportunity to securely automate many of the 

procedures that take place at interfaces and potentially to lower the whole system cost11. The 

concept of smart contracts, self-enforcing agreements in the form of executable programs13, 

originating with Szabo in 199414, provides a means of setting out negotiation and self-enforcing 

settlement rules that operate with a high degree of trust. They are replicable, secure and 

verifiable15–18. A simple smart contract rule might be “if X happens, pay Y to account Z.” A crucial 

innovation is the self-enforcing nature of the “pay” statement. In the example, “X” is a digitally 
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encoded event derived from a sensor reading. Therefore the trustworthiness of any smart contract 

scheme is ultimately dependent on the trustworthiness of sensors, and the encoding and 

transmission of information. Furthermore, the position of smart contracts within existing legal 

systems is the subject of active research and consideration19–21.  Smart contracts are well suited to 

enact agreements for shared control of energy transfer processes, where the decision makers are 

located within different organisations (or sub-divisions of the same organisation). 

Examples of shared energy transfer processes in electricity networks include control of elements 

such as; switches, transformer tap changers, or power electronic converters forming a DC-link.  DC-

links allow the precise control of energy flows between electricity circuits and, combined with smart 

contracts, offer the potential to clearly delineate responsibility for the operation and control of 

distinct segments of electricity networks. The potential for DC-links to reduce network costs, 

through control of active and reactive power set-points is well documented25–31. DC-links also have 

the potential to decouple networks, and therefore clearly define responsibility for system frequency 

and, by extension, system stability26,32,33. In a GB context, this would allow the DNO to DSO transition 

to occur at increased granularity, separated by voltage level and DC links. The use of smart contracts, 

to share control of DC-links or similar elements, therefore has the potential to limit unforeseen 

complex control interactions between energy systems. Furthermore, due to the self-enforcing 

nature of smart contracts, agreed rules for shared control can be instantiated in a way that is less 

susceptible to tampering and less reliant on traditional methods for pursuit of transgressions.  

Alternatives such as control solely using sensor measurements22,23, or single-party control using a 

Distribution Management System (DMS)23,24, are prone to manipulation by one or more participants. 

The motivation behind this work is to establish how system operators, and other participants, should 

conceptualise the application of smart contracts within energy systems. In doing this, consideration 

must to given to the common characteristics such smart contracts have as well as how participants 

interact with them. In general, when two or more energy systems, with different responsible parties, 
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are connected by the same controllable process, the question of what control set-point should be 

selected in any situation is raised. Therefore, the particular research questions we address are, what 

general form could smart contract based shared control agreements take, and can example smart 

contract rules for shared control of an energy transfer process, a DC-link, be defined and 

demonstrated. 

Here we set out a general form of smart contract for shared control of energy transfer processes, 

applicable at any scale of energy system with digital monitoring and control. The general form 

consists of 6 stages; deposit, setting of preferences, negotiation, instruction of process, settlement, 

and withdrawal. We instantiate the general form contract using two defined rulesets for the shared 

control of a modelled MVDC link and, through demonstration using an emulated smart contract 

platform, we show that that using smart contracts to agree control instructions between different 

parties is feasible.  

A general form of smart contract for shared control 

The proposed general form of smart contract for negotiation and settlement of controllable 

processes between two or more responsible parties is shown in Figure 1.  We categorise information 

flows within the responsible parties in 3 layers; data processing, decision support, and decision 

making. The data processing layer is the interface with physical equipment (e.g. metering) and 

procedures (e.g. maintenance schedules). It includes collection, compression and storage of data. 

The decision support layer includes the presentation of information to decision makers after analysis 

of available data. An example is cost minimising optimisation. The decision making layer is where the 

decisions in relation to a controllable process are made. We define agreement interfaces as the 

locations where a decision maker in one responsible party must come to an agreement with a 

decision maker in another responsible party.  
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The presented conceptual framework builds on the Smart Grid Architecture Model’s (SGAM) 

definition of interoperability34. In the SGAM, interoperability is defined as the exchange of 

information between two or more systems to cooperatively perform a specific function. In our 

framework, the information exchange and the control function are integrated by a smart contract 

that instructs a physical process. The proposed framework defines a general form smart contract to 

perform the shared control function. It also categorises the information collection and analysis that 

leads to the presentation of information to the shared control smart contract. 

Model, negotiation rules and scenarios 

Here we instantiate the general form smart contract using the example of an MVDC link connecting 

neighbouring electricity networks with different responsible parties. Shared control of the active 

power setting is achieved using smart contract based negotiation. We use real network and 

converter data, and deploy a smart contract running on an Ethereum35,36 Virtual Machine (EVM), to 

form an overall model (Fig. 2).  

MVDC links are only beginning to be used37,38, so our data was sourced from a demonstration 

project, the ANGLE-DC project, where an MVDC link will connect the Isle of Anglesey to mainland 

North Wales39–41. The proposed link will operate at ±27kV DC and connect two 33kV AC networks, 

with converter ratings of 30MVA. Presently, the island network has a large amount of embedded 

generation; three wind farms with a total capacity of 34.7MW, and two solar farms with a total 

capacity of 28.5MW. Both of the 33kV AC networks are under the jurisdiction of a single responsible 

party, but we model two separate responsible parties, designated Network 1 and Network 2. 

To demonstrate how separate parties can achieve shared control of the MVDC link, both of the 

electricity networks were first modelled using a Newton Raphson based load flow method for three 

scenarios; normal (N), high demand (D), and high generation (G), see Figure 2. A simplified 

operational cost model, based on resistive losses, line utilisation and extent of deviation from 
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nominal voltage, was used to model the costs incurred by each network operator across a range of 

possible MVDC-link active power set-points. These modelled costs were used as the basis for 

choosing the input preferences to a smart contract.  

The problem, of defining the negotiation rules for the MVDC link’s active power set-point, is 

formulated as two questions; what rules should be used to select one of a range of set-points and 

how the network operators should express their preferences for each of the possible set-points. To 

do this, the MVDC-link’s active power operating range is divided into 13 options, formed by twelve 

5MW wide bins and a 0MW option. Two methods for expression of the set-point preferences are 

used. The first has the network operator submit offers (bids) for each of the options. The second 

requires the network operators to rank the options in order from most favourable, to least. As a 

result, two rulesets are created for negotiation of the MVDC link’s active power set-point; “Highest 

Combined Offer” (HCO) and “Ranked Preference Selection” (RPS). The intention behind HCO was to 

approximate the optimal set point for the ensemble of the two networks (assuming both networks 

have complete cost information for each prospective set-point and bid rationally). In contrast the 

intention behind RPS was to find a trade-off set point where the two networks have equal 

negotiation weight. 

The HCO smart contract accepts offers (bids) for each option, sums the offers from both networks 

for each option, and selects the option with the highest combined offer. The highest bidder for the 

selected option pays the lowest bidder the difference between the bids for the selected option.  The 

highest bidder then chooses the final operating point within the selected bin (submitted prior to 

negotiation). In the case that two bins receive the same highest combined offer, one of the networks 

is given authority to select the operating point. This selection authority alternates between the 

networks every time it is used. 

The RPS smart contract accepts a ranked preference list from 1 to 13 (1 is most favourable, 13 least) 

from both parties, pairs the preferences, and selects the pairs such that there are no other pairs in 
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which both parties have more favourable options. Where this results in more than one pair, one of 

the networks is given authority to select the operating point. This selection authority alternates 

between the networks every time it is used. The two algorithms are compared in Figure 3 and they 

are formally specified in the Methods section. 

The inputs to the contracts, shown in Figures 4 and 5, are calculated based on a comparison of the 

operating costs at each DC-link power set point for 48 half hour periods for the three scenarios (N, D 

and G). The modelled network operation costs are translated into offers (in the case of HCO) or 

preference rankings (in the case of RPS). These are shown as heat maps in Figures 4 and 5, with each 

network’s preferred operating point represented by the red lines. Using these data, the smart 

contracts were tested with the nine combinations of network loadings (N-N, N-D, N-G, D-N, D-D, D-

G, G-N, G-D and G-G). 

Smart contract execution 

The HCO and RPS smart contracts were written in the Solidity smart contract language, for execution 

on an Ethereum Virtual Machine (EVM). A deposit function was included and two deposit accounts 

were maintained. In the case of the HCO contract, the deposit amounts were adjusted based on the 

payment requirements (the difference between the offers at the selected operating point). The 

testing environment utilised is shown in Figure 6. It includes an emulated Ethereum blockchain 

created with TestRPC. This was interfaced using Python42,43 with Numerical Python44, Pandas45, 

Matplotlib46 and Web3.py.  

The computational cost of running the contract on the public Ethereum smart contract platform was 

calculated as a proportion of the present limit47. The HCO contract would use 0.15% of the total half 

hourly capacity and the RPS ruleset would use 0.09%. There is scope for optimisation of our smart 

contract code, and the pre-input data submission formats. Therefore, in practice, a lower cost of 

computation could be expected. It is well known, however, that blockchain implementations 
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sometimes have relatively high transaction costs. The example was of steady state control of a 

discrete element within a power system. It is therefore possible to create multiple instances (e.g. for 

different DC-links) across different platforms, allowing the parties to select the smart contract 

platform based on transaction, running, or implementation costs. Furthermore, a default operating 

point selection could be added to the smart contract negotiation rules, for the case where 

transaction costs exceed an agreed threshold. 

A sensitivity analysis was conducted to assess how varying the number of possible set-point options 

affects the computational cost, see Figure 7. It was found that the computational cost of the HCO 

algorithm scales linearly with the number of bins. In contrast, the RPS contract’s computational cost 

scales exponentially with the number of bins. This is likely to be due to the nested for loops within 

the RPS implementation. When the number of bins is lower than or equal to 43, the computational 

cost of the HCO contract is higher than the RPS contract.  

The scaling of computational cost with negotiation frequency is more straightforward. Each 

negotiation and settlement period requires two transactions (instructions to run the smart contract 

code, paid for by the originator), one from each network operator. Increasing the rate of set-point 

negotiations therefore requires a further two transactions for each additional negotiation period. It 

might be expected that decreasing the bin width and the negotiation period would result in lower 

network costs due to increased precision in mapping of costs to prospective operating points. In 

practical application, a cost-benefit analysis should be undertaken to estimate the optimum bin-

width and negotiation frequency. 

Performance of the smart contract negotiation algorithms 

Figure 8 shows the active power set-points selected by the HCO and RPS contracts for each of the 

network loading scenarios (N, D, G).  Figure 9 shows the total modelled cost saving across both 

networks with the smart contract algorithms, relative to the situation with no DC-link installed. Note 
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that this does not include the computation cost of running the smart contract and the operational 

cost model does not reflect the true whole system cost. To achieve a whole system cost evaluation, 

an exogenous model evaluation and validation would need to be conducted that establishes the 

validity of the whole system model and its cost data. However, our simplified model is suffice to 

establish the principle of shared control through smart contracts and to compare the performance 

of the two presented algorithms. 

In comparing the HCO and RPS rulesets, we observe that the HCO contract always selects the active 

power settings with the lowest total modelled operational costs for the networks. In contrast, the 

RPS contract often deviates from the lowest total modelled cost, especially where the preferences 

are different, such as the case when Network 1 has high loading. This is reflected in the 

disagreement in selected operating points in Figure 8 and is particularly noticeable when Network 1 

experiences high loading (central column in Figure 8).  

The benefit from reducing the total modelled costs of the two networks was not evenly shared. With 

the HCO contract, Network 1 would incur a relatively large cost for a non-preferred operating point, 

therefore it puts in relatively high bids to avoid the possible selection of the non-preferred option.  

This means that it always pays the less sensitive network (Network 2). Consequently, in the test 

scenarios, Network 1 often has higher modelled costs than if no DC-link were installed (with its 

counterpart, Network 2, being the beneficiary of the reduction in the total modelled operational 

costs). We suggest that, in practice, Network 1 would assess that the risk, of its neighbour making a 

competitive offer for its preferred operating point, is low, and that it could therefore reduce its 

offers significantly. In contrast to the HCO ruleset, the RPS ruleset gives equal weighting to the 

preferences of both network operators. No payment is made between the parties. Therefore, whilst 

both networks have lower modelled costs than in the case with no DC link, Network 2 can inflict 

costs on Network 1 with little risk when the RPS contract is used.  
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Discussion 

We foresee a growing research field around the concept of shared control through smart contracts. 

Areas for further development include smart contract algorithm design and implementation as well 

as methods and techniques for integration with control and metering hardware. Here, shared 

control of a power electronic based DC-link was chosen as the control element, but the presented 

algorithms could also be applied to AC control elements with direct control over the active power 

settings. Furthermore, the general approach could be used to share control of any element that has 

influence over two or more networks with different responsible parties; transformer tap changers, 

for example. The approach could also be applied where there are more than two parties (n>2). A 

realistic case would be multi-terminal DC-links located at the intersection of three or more distinct 

networks.  

Further analysis, including with the network operators adopting co-operative, adversarial and 

indifferent strategies (for the input of preferences to the shared control smart contract) should be 

undertaken. This analysis must also account for the operation of the physical networks. For instance, 

if one network operator does not like the selected MVDC link operating point, what stops it from 

isolating the busbar and making power transfer impossible? This could be solved through inclusion 

of a meter-linked penalty function in the smart contract. For example, if one network does not allow 

power transfer this would be detected at the DC link and a pre-agreed penalty fee automatically 

transferred.  

The two presented smart contract algorithms have been shown to function. In the presented 

arrangement, each network operator has incentive to ensure that their preferences reflect the 

constraints of their network. With the HCO algorithm for example, this would result in relatively high 

bids for set-points that do not cause constraints to be exceeded. If an undesirable set-point (e.g. one 

that would, without intervention, result in a costly voltage excursion) did get selected (through the 

other operator bidding highly for it), then it would be the duty of the first network operator to 
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accommodate the selected setting. In our example, the cost of this is simulated using a simplified 

electricity network operation cost model. A potentially beneficial effect of the arrangement is to 

increase the incentive for the network operators to accurately predict their prospective costs and to 

map them to the prospective shared control set-points.  This should result in responsible parties 

seeking things that improve the predictability of their network (e.g. active network management, 

advanced prediction software, energy storage, co-operative relationships with neighbours) and, 

ultimately, lead to a more resilient system.  

Regulatory or system governance intervention will likely be required to make use of smart contracts 

for shared control of interconnecting processes, such as the DC-link example presented here. In our 

example, Network 1 sometimes had higher costs than it would have had with no DC-link (with 

Network 2 being the beneficiary). Whilst, in practice, this may result in one network reducing its 

offers over time, it may also dissuade network operators from creating such links (despite the 

potential for overall operational cost reduction) in the first place. Therefore, given energy networks 

are natural monopolies, regulatory intervention may be required to stimulate the interconnection of 

networks in the way set out here.  

We conclude that smart contract based shared control of energy infrastructure is feasible. The 

general conceptual framework that was presented captures the elements needed in smart contracts 

for shared control. The work demonstrates two algorithms for smart contract based shared control 

of DC-link active power between two electricity networks. The conceptual framework, and the 

demonstrated operation with a DC-link example, show a way to share control of energy network 

assets and establish a means for system operators, and other participants, to conceptualise the 

application of smart contracts within energy systems. The use of smart contracts for shared control 

gives participants and regulators a tool for the delineation of responsibilities in energy systems. 
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Methods 

Selection based on the highest combined offer  

In this ruleset, both the network operators are required to submit offers for each active power set-

point bin for a given time window. The offers are in monetary units, denoted as 

 , ,{ | 1,2,...,| |} ,i t i t
b

O b i t    O B I T , (1) 

where O  represents an offer and O  is the set of offers; i  is the index of a network operator, and I  

is the set of all the participating network operators (in this paper = 2| I | ); t  is the index of a time 

window, and T  is the set of all the time windows considered; b  is the index of the active power set-

point bin, and B  is the set of all the bins. The network operators are free to make any offer for any 

bin, provided that adequate deposit has been made.  

Once the offers have been received, the bin with the highest summed offer is selected, i.e. 

 * ,arg max i t
b

b i

b O
 

 
B I

 (2) 

where *
b  represents the set-point bin finally selected. The consideration behind this design is to 

maximize the overall benefits of interconnected networks. *
b  is found using the following 

algorithm:  

 

Algorithm 1: Selection based on the highest combined offer (HCO) 

 

INPUT: ,i tO , B  

OUTPUT: *
b  

 

START 
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1: max 0c   // max
c  stores the maximum value of the summed offers 

2: for 1 | |b to B do 

3:  1, 2,t t
b b

c O O   // c  is a temporary variable to store the summed offers at a setpoint bin 

4:  if max
c c  do 

5:   max
c c  

6:   *
b b  

7:  end if 

8: end for 

9: return *
b  

END 

 

 

After *
b  is selected, the network operator with the higher offer at *

b  is required to pay the other 

network operator the difference of the offers at *
b , and gets the right to decide the exact operating 

point within the bin, i.e. to instruct the DC link controller during operation. Finally, note that the 

network operators are free to pick the reactive power operating points, as long as they are within 

converter constraints. 

Ranked Preference Selection  

In this ruleset, each network operator is required to submit a preference list for active power set-

point bins for a given time window. The list consists of ordered preferences, denoted as 

 , ,{ | 1,2,...,| |} ,i t i t
b

P b i t    P B I T , (3) 

where ,i t
b

P  represents the preference of the network operator i  for the set-point bin b  for the time 

window t . Note that ,i t
b

P  is an ordinal number, for which the lower value represents higher 

preference.  
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Once the preference lists have been received, the preferences for each bin are paired (e.g. 1,t
b

P  and 

2,t
b

P  are paired as < 1,t
b

P , 2,t
b

P >). Then the Pareto subset of all the pairs, consisting of all the non-

dominated pairs, is identified, and the bins corresponding to the elements of the Pareto set are 

taken as the candidates for the final set-point bin. The consideration behind this design is that the 

preferences of both the network operators are equally important, so only the undesirable bins, 

where there exists a possible set-point that is preferable (more highly ranked in their preference list) 

to both network operators, are ruled out. Formally, the candidate bins, denoted as , are the 

solutions (i.e. Pareto optima) of a two-objective optimization problem: 

 

 *
1 2

1,
1

2,
2

arg min ( ), ( )

( )

( )

b

t
b

t
b

f b f b

f b P

f b P








B

b

, (4) 

where 1( )f b  and 2 ( )f b  are the two objectives, i.e. the mapping between the set-point bins and 

preferences. 

*b  is determined by comparing each pair of preferences, < 1,t
b

P , 2,t
b

P >, with all the others; if the pair 

is lower ranked than some other pair for both the operators, it is dominated and should be ruled 

out. In contrast, if the pair is not lower ranked than any other pair for both the operators, it is a non-

dominated pair and should be added as an element of *b . The following algorithm is used to find 

*b : 

 

Algorithm 2: Ranked Preference Selection  

 

INPUT: 
,i tP , B  

OUTPUT: *b  

 

*b
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START 

1: for 1 | |b to B do 

2:  0s   // s  is a flag indicating whether the bin b  is dominated: “1” for dominated; “0” for non-dominated 

3:  for ' 1 | { }|b to b \B do 

4:   if 1, 1, 2, 2,
' '&t t t t

b b b b
P P P P   do // &  represents the logical operator “and” 

5:    1s   

6:    break // Exit the current “for” loop 

7:   end if 

8:  end for 

9:  if 0s   do 

10:   *
bb  //   is the operator that puts the right-side element into the left-side array 

11:  end if 

12: end for 

13: return *b  

END 

 

 

If the candidate setpoint bin, *b , includes only one element, then the sole element is naturally the 

final set-point bin; but if *b  includes multiple elements, the final set-point bin is selected by one of 

the networks. The authority to make this final selection alternates between the networks every time 

it is used. It may be preferable to select the final set point through random selection from the Pareto 

optimal set, as opposed to alternating selection authority. However, due to the relative expense of 

random number generation using smart contracts, this was not used.  Finally, both the operators are 

free to pick the reactive power operating points, within converter constraints. 
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Simplified model of Network Operator costs 

The MVDC link was modelled using a steady state approach. The two networks were modelled using 

a fast-decoupled Newton Raphson based load flow method (IPSA software was used), the network 

models have been described in prior work37. This was then used to calculate cost of operation for 

each of the networks at each active power set-point. These costs were then converted into offers, or 

ordered preferences, for use as inputs for the smart contracts. 

MVDC link model 

Voltage control mode was selected for the MVDC link. This allows the active power of the MVDC link 

to be determined by instruction from the smart contract and for the reactive power at both 

terminals to be automatically adjusted (e.g. at the tertiary control level) to maintain the voltage at a 

specified value, 1 p.u. A mathematical model of the MVDC link was developed by considering the 

constraints of the VSCs: 

Active power constraints: 

𝑃𝑉𝑆𝐶1 + 𝑃𝑉𝑆𝐶2 + 𝑃𝐷𝐶−𝑙𝑜𝑠𝑠 = 0                                                                                                                     (5) 

where 𝑃𝑉𝑆𝐶1 and 𝑃𝑉𝑆𝐶2 are the active power flow through each VSC. 𝑃𝐷𝐶−𝑙𝑜𝑠𝑠 is the loss within the 

DC link, which is relatively low (approximately 1 ~ 2% of the active power flowing through the DC 

link) compared to the total losses within the network. Therefore, 𝑃𝐷𝐶−𝑙𝑜𝑠𝑠 is neglected, and Equation 

(5) is simplified as: 

𝑃𝑉𝑆𝐶1 = −𝑃𝑉𝑆𝐶2                                                                                                                                           (6) 

Reactive power constraints: 

The reactive power is considered as it influences the modelled operational cost of the networks. 

After the active power set-point has been selected by the smart contract, each network operator is 

able to select the reactive power, within the capacity constraints of its connected converter. The 

reactive power constraints are defined by: 
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𝑄𝑉𝑆𝐶,𝑛𝑚𝑖𝑛 ≤ 𝑄𝑉𝑆𝐶,𝑛 ≤ 𝑄𝑉𝑆𝐶,𝑛𝑚𝑎𝑥    (𝑛 = 1,2)                                                                                                         (7) 

where 𝑄𝑉𝑆𝐶,𝑛 is the reactive power at 𝑛𝑡ℎ terminal of the DC link. 𝑄𝑉𝑆𝐶,𝑛𝑚𝑖𝑛  and 𝑄𝑉𝑆𝐶,𝑛𝑚𝑎𝑥  are the lower 

and upper limits of reactive power provided by the VSC at terminal 𝑛, the modelled MVDC link is two 

terminal so 𝑛 is no greater than 2. 𝑄𝑉𝑆𝐶,𝑛𝑚𝑎𝑥  is positive, indicating that reactive power is injected to the 

network, and 𝑄𝑉𝑆𝐶,𝑛𝑚𝑖𝑛  is negative, indicating that reactive power is absorbed from the network. 

Capacity constraints: 

The converter capacity constraints are defined by: 

√𝑃𝑉𝑆𝐶,𝑛2 + 𝑄𝑉𝑆𝐶,𝑛2 ≤ 𝑆𝑉𝑆𝐶,𝑛 (𝑛 = 1,2)                                                                                                         (8) 

where 𝑆𝑉𝑆𝐶,𝑛 is the rated capacity of the VSC at 𝑛𝑡ℎ terminal of the DC link, the modelled MVDC link 

is two terminal so 𝑛 is no greater than 2. 

Network operation cost function 

The operational costs of the network at each end of the MVDC link include the energy losses, as well 

as the equivalent cost from overloading and voltage violations. Here, a cost to maintain a relatively 

balanced loading between branches is assigned to the line utilization index, and a cost to maintain a 

relatively consistent voltage profile (voltages close to the nominal values) is assigned to the voltage 

profile index. A weighting factor is used for each of the three elements in order to calculate the total 

cost for operating the network. As the MVDC-link active power set-points vary, the line currents and 

node voltages are affected. The voltages and currents are used within the power loss, line utilisation 

and voltage profile index calculations. 

𝑓 =  𝑓1,t × 𝑃𝑟1 × 𝑤1 + 𝑓2,t × 𝑃𝑟2 × 𝑤2 + 𝑓3,t × 𝑃𝑟3 × 𝑤3            (9) 

where  𝑓1,t is the power losses at time t, 𝑓2,t is the line utilization index, and 𝑓3,t is the voltage profile 

index. 𝑃𝑟1, 𝑃𝑟2 and 𝑃𝑟3 are the prices for power losses, loading and voltage profiles respectively 
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and 𝑤1, 𝑤2, and 𝑤3 are the weighting factors of the three elements considered. The detailed 

expression of 𝑓1, 𝑓2 and 𝑓3 are: 

𝑓1,𝑡 = ∑ 𝐼𝑘,𝑡2 × 𝑟𝑘,𝑡 𝑁𝑏𝑟𝑎𝑛𝑐ℎ𝑘=1                                                                              (10) 

where the active power losses in feeder lines and transformers of a network were considered. 𝐼𝑘,𝑡 is 

the current flowing through branch 𝑘. 𝑟𝑘,𝑡 is the resistance of that branch, and 𝑁𝑏𝑟𝑎𝑛𝑐ℎ is the total 

number of branches including lines and transformers. 

𝑓2,𝑡 = √∑ ( 𝐼𝑘,𝑡𝐼𝑘,𝑟𝑎𝑡𝑒𝑑)2𝑁𝑏𝑟𝑎𝑛𝑐ℎ𝑘=1 𝑁𝑏𝑟𝑎𝑛𝑐ℎ                                                                                                                            (11) 

where 𝐼𝑘,𝑡 is the apparent power flow in branch 𝑘 at time t, and 𝐼𝑘,𝑟𝑎𝑡𝑒𝑑  is the rated current of the 

branch. 𝑁𝑏𝑟𝑎𝑛𝑐ℎ is the total number of branches. The line utilization index reflects the average 

degree of utilization of all feeder lines in a network, it reflects the costs associated with a network 

with limited available capacity. These costs arise from the requirement to perform costly actions 

(e.g. curtailment of generation or load) where line utilisation is high. 

𝑓3,𝑡 = √∑ (𝑉𝑖,𝑡−𝑉𝑖,𝑟𝑎𝑡𝑒𝑑)2𝑁𝑏𝑢𝑠𝑖=1 𝑁𝑏𝑢𝑠                                                                                                                         (12) 

where the improvement of voltage profiles can be achieved by minimizing the voltage profile index. 𝑉𝑖,𝑡 and 𝑉𝑖,𝑟𝑎𝑡𝑒𝑑  are the real and nominal voltages at bus 𝑖. 𝑁𝑏𝑢𝑠 is the total number of buses. The 

voltage profile index reflects the mean deviation of all bus voltages from the nominal value (1 p.u.). 

Translation of modelled costs into smart contract inputs 

The modelled costs were translated into inputs for the HCO and RPS smart contracts. For the HCO 

smart contract, the offer made by a network operator for any given operating point range (bin), is 

the difference between its modelled cost for that bin and its highest modelled cost found in the 

entire range of prospective operating points. The bin with the highest modelled costs therefore has 
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an offer of zero. For the RPS smart contract, the costs for operation in each bin were ranked from 

least costly to most costly.  

Smart contract EVM computation cost  

The accumulated GAS (the unit for computational work on the EVM) was recorded for each of the 

transactions (sending the offers to the contract and instructing it to calculate the active power set 

point) and used as the measure of proportional computing cost, relative to the block GAS limit 

(presently47  8,000,000) of the public Ethereum platform. The mean computational cost for a 

transaction used with the HCO ruleset (selecting from 13 active power bins) was 19.6% of an 

individual block limit. The mean computational cost for a transaction used with the RPS ruleset was 

11.7% of the individual block limit. The contracts used 2 transactions per half hourly period, and, 

assuming a 14 second period between blocks, the HCO ruleset would use 0.15% of the total public 

Ethereum platform’s present EVM computation capacity over each half hour; the RPS ruleset would 

use 0.09%.  

Sensitivity Analysis 

To assess the scaling complexity of the HCO and RPS algorithms, the test procedure was repeated 

with increasing numbers of bins (set-point options). The total computational cost of all of the 

transactions was assessed against the number of bins. The results are shown in Figure 7. 

Code Availability 

Information about the code used in this research, including how to access it, can be found in the 

Cardiff University data catalogue at http://doi.org/10.17035/d.2018.0064088749. 

Data Availability 

The data that support the plots within this paper and other findings of this study are available from 

the corresponding author upon reasonable request. Provision of the underlying electricity network 

http://doi.org/10.17035/d.2018.0064088749
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data is subject to the permission of Scottish Power Energy Networks. However, the modelled power 

network cost data are provided as supplementary data, allowing the results to be recreated.  
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Figure legends 

Fig. 1 | General form of smart contract for shared control of an energy transfer process. The deposit stage requires both 

parties to prove that they have adequate currency to cover the negotiation outcome. If one party does not, then control of 

the shared process reverts to the other party. The setting of preferences includes the communication of how much each 

operating point is desired. Following this, in the negotiation stage, the contract runs a pre-agreed set of rules on the 

preferences and delivers a selected operating point. This is used to instruct the physical hardware in the instruction of 

process stage. In the settlement stage, the contract runs a set of rules to calculate any peer to peer payments, based on 

the negotiation and actual operation. Finally, the smart contract includes a means of withdrawing the deposit and, if 

included in the rules, any peer to peer payments 

Fig. 2 | Model architecture for the simulated smart contracts. The normal scenario combines the source demand data 

(red dash-dot) and generation data (green dash). The high demand scenario was created by multiplying the demand in the 

normal scenario by three. The high generation scenario was created by multiplying the generation in the normal scenario 

by three. 

Fig. 3 | A simplified example of the implemented rulesets for a given time window. The middle bin at 0MW is shown as 

5MW wide for clarity. A “zero width” bin (a single 0MW option) was actually used, bringing the converter range to ±30MW. 

The HCO algorithm selects the bin with the highest combined bid from both network operators. The RPS algorithm first 

selects the bin with the lowest summed rank from the options where there are no other ranked set-point preference pairs 

in which both parties have more favourable options. If there is more than one option in this “pre-selection” set, the final 

selection is made by the network operator with selection authority (which alternates between the operators). Brackets 

indicate the ranking of each network’s set point preferences in the RPS contract.  

Fig. 4 |Offers (bids) sent to the HCO smart contract. The y-axes indicate the prospective operating point of the MVDC-link 

(divided into bins). The x-axes indicate the time of day (half hour number). The colour indicates the size of the bid for a 

particular operating point for a given half-hour period. The colours are normalised (made proportional to the maximum 
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offer for the day). The red line is the lowest cost operation.  N, D, and G refer to the normal, high demand, and high 

generation scenarios. 

Fig. 5 | Ranked set-point preferences sent to the RPS smart contract. The y-axes indicate the prospective operating point 

of the MVDC-link (divided into bins). The x-axes indicate the time of day (half hour number). The colour indicates the 

preference order for each operating point for a given half-hour period. The colours are normalised (made proportional to 

the maximum offer for the day). The red line is the lowest cost operation.  N, D, and G refer to the normal, high demand, 

and high generation scenarios. 

Fig. 6 | Overview of smart contract development and testing tools. The modelled smart contracts were executed on the 

TestRPC based EVM. The smart contracts, written in the Solidity language, were compiled using the Remix development 

environment. Contract deployment, deposits, and the communication of network operator preferences were done with 

transactions prepared using the Web3.py client. Modelling of the electricity networks was done using IPSA.  

Fig. 7 | Scaling of computational cost against number of bins for the HCO and RPS algorithms. The total computational 

cost of all transactions across all of the tested scenarios, half-hourly negotiation, with an increasing number of set-point 

options (number of bins).  

Fig. 8 | The MVDC link operating points selected by the smart contracts. The y-axes are the selected active power setting 

of the DC-link (positive is from Network 1 to Network 2) and the x-axes are the time of day (half hour number). N, D, and G 

refer to the normal, high demand, and high generation scenarios. HCO and RPS indicate the output from the Highest 

Combined Offer and Ranked Preference Selection smart contract algorithms. “RPS pre-selection” indicates those active 

power set-points with the lowest summed rank where there are no other ranked set-point preference pairs in which both 

parties have more favourable options.  

Fig. 9 | Modelled total network operation costs with shared control (relative to the case with no DC-Link). The y-axes are 

the modelled operational cost for the selected DC-link active power as a proportion of the modelled operation cost for the 

case with no DC-link. The x-axes are the time of day (half hour number). N, D, and G refer to the normal, high demand, and 

high generation scenarios. 

 


