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Thesis Summary  
 
The brain requires a constant supply of glucose and oxygen to meet metabolic 

needs at rest and during increased activity. If blood flow is disrupted, or if tissue 

has difficulty extracting or metabolising nutrients, cell damage or death may 

occur. Vascular and metabolic impairments in Multiple Sclerosis (MS) are 

hypothesised to contribute to disease progression.  This thesis develops 

empirical measures of neurovascular coupling using the relationship between 

magnetoencephalography (MEG) and functional Magnetic Resonance Imaging 

(fMRI). Visual MEG and fMRI  responses were reduced in MS. The relationship 

between them was unchanged suggesting preserved neurovascular coupling. 

Addressing the same questions with a naturalistic movie stimulus in MS, no 

coupling differences were found. In a healthy population, results show 

neurovascular coupling is dependent on brain region and frequency of neural 

oscillations. Under the hypothesis of reduced cerebral metabolic rate of O2 

(CMRO2) contributing to damage in MS, we quantified baseline CMRO2  and 

cerebral blood flow (CBF), amongst other parameters. This is the first application 

of dual-calibrated fMRI in MS, involving biophysical modelling of fMRI signals in 

response to changing inspired CO2 and O2. Reduced baseline CBF and CMRO2 

were found in MS, correlating with lesion and grey matter volumes. Relative 

visual-induced CBF and CMRO2 signals were investigated in MS; a reduction in 

CBF was found in a small visual region but no visual CMRO2  changes were 

found, or differences in CBF-CMRO2 coupling. Baseline CBF and CMRO2 

signals predicted visual stimulus responses, in both groups. As an alternative to 

externally supplied gases, we used a breath-hold design to create a CMRO2 

movie time-series but report no significant relationships between CMRO2 and 

MEG. Quantitative functional imaging can detect impairments in resting and 

stimulus-induced neural oscillations, blood flow and oxygen metabolism in MS, 

which should be explored further to understand their exact role in disease 

progression. 
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Aims of Thesis  
 
This thesis uses non-invasive neuroimaging methods to measure the energy demands 

of neural activity, and the coupling between neural activity and blood flow. The main 

aims of this thesis are to: 

 

1. Investigate neurovascular coupling (NVC) mechanisms using the 
relationship between magnetoencephalography (MEG) and functional 
Magnetic Resonance Imaging (fMRI) signals. The relationship between MEG 

signals (neural activity) and fMRI signals (blood flow response to neural activity) 

in response to the same stimulus is used as an empirical measure of NVC. NVC 

is not fully understood but is crucial to how the brain replenishes energy in active 

areas, as well as underpinning how the fMRI signal is interpreted.  
 

2. Develop more quantifiable and interpretable measures of vascular and 
metabolic brain function. The calibrated fMRI methods used in this thesis aim 

to parcellate out the commonly used Blood Oxygen Level Dependent (BOLD) 

fMRI signal into more quantifiable and interpretable signals, for example blood 

flow and oxygen metabolism. Importantly, blood flow and oxygen metabolism 

signals are quantified at baseline in this thesis, as well as relative signal 

changes to a stimulus. Characterising the baseline state is important for the 

interpretation of stimulus-induced changes, particularly when studying patient 

populations where this baseline state may be altered.  

 

3. Apply these MEG and fMRI methods to the investigation of vascular and 
metabolic impairment in Multiple Sclerosis (MS). Vascular and metabolic 

impairments are present in MS, but it is not clear when and how they contribute 

to the disease. We need more non-invasive ways of investigating these 

mechanisms in MS and therefore the methods described in aims (1) and (2) are 

used. This thesis presents the first application of a dual-calibrated fMRI study in 

MS, allowing baseline oxygen metabolism to be quantified, alongside baseline 

blood flow and many other relevant physiological parameters. Blood flow and 

oxygen metabolism changes are also investigated in response to visual stimuli, 

and the MEG-fMRI relationship is used to assess impairments in NVC. It is 

important to establish the practicality and utility of these methods in MS. 
 

This thesis contributes to the development of these methods, as well as their 

application to disease populations.  
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Structure of Thesis 
 
Introductory Chapters (1-3): Chapter 1 introduces the biological signals and 

mechanisms of interest and Chapter 2 introduces the methods used to investigate these 

signals and mechanisms (see figure below). Chapter 3 gives a background to MS and 

explains the relevance of investigating these mechanisms in this disease. 

 
Research Chapters (4-9) 

SIGNALS METHODS

MagnetoEncephaloGraphy
Magnetic fields, induced by 
electrical currents, which 
reflect networks of post 

synaptic potentials in large 
populations of neurons, 

oscillating at certain 
frequencies. Beamforming 

for source estimation. 

Arterial Spin Labelling MRI
• Cerebral Blood Flow
• Blood Oxygen Level 

Dependent signal

Dual-Calibrated-ASL
Modelling the BOLD and CBF 
responses to hyperoxic and 

hypercapnic stimuli (inspired gases) to 
give quantitative estimates of baseline 

CBF, Oxygen Extraction Fraction, 
CerebroVascular Reactivity, CMRO2 

and Oxygen Diffusivity.

Neural 
Activity

Oxygen and glucose 
consumption

Metabolic changes

Hemodynamic 
Response

Blood Flow
Blood Volume

n

NVC

Calibrated-ASL
Hypercapnia induced with a gas 
challenge or breath-hold design, 

allowing estimation of relative changes 
in Cerebral Metabolic Rate O2

Flow-Metabolism 
Coupling (‘n’)

Neurovascular 
Coupling 
(‘NVC’)

Relationship 
between MEG 
and CBF/BOLD 
signals

DCBF/DCMRO2

Chapter 4. The coupling between visual gamma 
oscillations and BOLD and CBF signals: 
investigating NVC in MS.

Recruited: 
14 MS patients, 

10 controls

Chapter 5. Quantifying blood flow and oxygen 
utilisation at rest, in MS, using dual-calibrated fMRI 

Recruited:
26 MS patients, 

25 controls

Chapter 6. Blood flow and oxygen metabolism 
changes in MS, during visual stimulation, using 
calibrated-fMRI

Chapter 9. Coupling between brain oscillations, 
CBF, and BOLD signals during naturalistic movie 
viewing in MS  

22 MS, 22 Controls

15 MS, 12 Controls
(+3 controls from Ch 7)

Recruited:
19 healthy 

participants
Chapter 7. Coupling between brain oscillations, 
CBF, and BOLD signals during naturalistic movie 
viewing

Chapter 8. Using a breath-hold design to estimate 
the calibration factor M: can we model CMRO2 to a 
movie-stimulus? 14 participants
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1 Introduction to Biological Signals 
 

1.1 Neural Oscillations 
 

1.1.1 What are neural oscillations? 
 
In this thesis, neural activity is studied at the population level, via the oscillating 

electrical activity of large populations of neurons. These oscillations represent 

synchronous rhythmic neural activity. This synchronisation, in time, causes a 

summation of amplitude in space, measured over a certain area of the brain. Neural 

oscillations are typically described by their amplitude, frequency and phase, displayed 

in Figure 1-1. The first observations of neural oscillations in humans were reported by 

Hans Berger in the 1920s (Millett, 2001). He made the  electroencephalography (EEG) 

recording in a human, showing that fluctuations in voltage amplitude, at a frequency of 

~10Hz measured over the occipital cortex, varied with the participant’s attention to their 

visual environment. For example, when participants closed their eyes this produced 

large increases in the amplitude of these oscillations.  To measure these neural 

oscillations non-invasively we can use EEG or MEG. Whereas EEG measures electrical 

currents at scalp level, MEG measures magnetic field fluctuations, produced by 

electrical currents, outside the head. These electrical currents are caused by the flow 

of transmembrane ionic currents in large populations of neurons.  In this thesis, neural 

oscillations are measured non-invasively with MEG (see Chapter 2.1).  

 

 
Figure 1-1. A diagram displaying the amplitude, frequency and phase information of an 
oscillating wave. 

 
1.1.2 Biological origin of neural oscillations  
 

Neural oscillations are thought to represent rhythmic fluctuations of the local field 

potential (LFP). The LFP is a measured signal reflecting the summed electrical current 

over a volume of tissue, generated by transmembrane ionic current flow (Einevoll, 
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Kayser, Logothetis, & Panzeri, 2013). Ionic currents are thought to arise from two main 

types of activity: axonal and post-synaptic. Axonal activity involves the rapid 

depolarisation of the membrane, resulting in an action potential that propagates along 

the axon. Post-synaptic activity is the electrical input at the level of dendrites, 

contributing to an action potential but distinct in space and time. When an action 

potential reaches the presynaptic membrane, this leads to an excitatory (E) or inhibitory 

(I) postsynaptic potential (PSP), dependent on the type of neurotransmitters released 

and the type of receptors present. The summed effect of these EPSPs and IPSPs will 

contribute to whether an action potential is triggered.  

 

It is thought that LFPs, and therefore neural oscillations measured with EEG or MEG,  

predominantly originate from the post-synaptic current flow (Cohen, 2017; Hall, 

Robson, Morris, & Brookes, 2014). This is mainly due to the magnitude of the signal we 

detect. A single axonal or dendritic current flow is not sufficient to detect a signal outside 

the head; for a detectable field, tens of thousands of currents would need to flow in 

synchrony. The temporal duration of dendritic current is greater than an action potential 

and dendrites are also greater in number. As to the type of neuron, it is argued that 

stellate neurons, which have dendritic processes radiating from all around the cell body, 

are unlikely to contribute significantly to the magnetic field measured with MEG as their 

ESPS will not sum cumulatively. Therefore, apical dendrites of pyramidal cells, in 

parallel columns, are the most likely origin of MEG signals. Furthermore, these apical 

dendrites need to be oriented in parallel (tangential orientation) to the cortical surface 

for them to project detectable magnetic field components outside the head; neurons in 

gyri that are perpendicular (radial orientation) to the cortical surface do not project 

outside the head and cannot be measured with MEG (Ahlfors, Han, Belliveau, & 

Hämäläinen, 2010).  

 

Simultaneous measurements of invasive electrophysiology and MEG (Zhu et al., 2009), 

show that LFPs (mostly post-synaptic in origin) better match the MEG signal changes 

than multi-unit activity (largely axonal origin). However, although PSPs make the 

biggest contribution to the LFP, other neural processes also contribute. Importantly, a 

transmembrane current in any excitable membrane (dendrite, soma, axon, axon 

terminal) can contribute to the LFP (Buzsáki, Anastassiou, & Koch, 2012; Einevoll et 

al., 2013) as it is the temporal and spatial accumulation of all ionic processes that is 

being measured. 
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1.1.3 How are neural oscillations typically studied? 
 

When resting activity is examined, the brain exhibits a 1/frequency power spectrum; the 

lower the frequency the higher the amplitude, see part A of Figure 1-2. This remains 

the case when brain networks are activated (Jia & Kohn, 2011) but to a smaller degree, 

as the power of higher frequency oscillations often increases and low frequency 

oscillations decrease. This is why studies of neural oscillations typically look at changes 

relative to baseline, to characterise frequency components that are task-driven (part B 

of Figure 1-2). A wide range of frequencies of neural oscillations have been studied and 

linked to behaviour, typically catergorised into these approximate frequency bands: 

‘delta’ (<4Hz), ‘theta’ (4-8Hz), ‘alpha’ (8-13Hz), ‘beta’ (13-30Hz), and ‘gamma’ (> 30Hz), 

(Buzsáki & Draguhn, 2004; Ward, 2003). The functional significance of each band is 

still an active area of research, but they all have been linked to perception, cognition or 

memory in some way. For example, there is much animal literature, and some human, 

linking theta oscillations to episodic memory processes in the hippocampus, e.g. (Lega, 

Jacobs, & Kahana, 2012). Alpha is typically linked to attentional and inhibitory control 

(Mathewson et al., 2011), beta to sensorimotor control (Kilavik, Zaepffel, Brovelli, 

MacKay, & Riehle, 2013), and gamma to attention, perception, and mediation of 

information transfer across cortical areas (Fries, 2009; Jia & Kohn, 2011).  

 

 
Figure 1-2. Time-frequency spectrogram showing power at rest (A) and during a visual 
stimulus (B). (A) displays the typical 1/f power spectrum at rest, and (B) shows the 
relative change in power, in different frequency bands, elicited by a visual stimulus. 
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Changes in oscillatory frequency rarely happen in one frequency band alone; the 

amplitude of the signal in different frequencies change together in dynamic ways. This 

can be seen in Figure 1-2. In response to a reversing checkerboard (stimulus onset 0) 

a clear power increase in the gamma band is seen (a synchronisation) and a decrease 

in alpha and beta (a desynchronisation).  The slower visual evoked response can also 

be seen as a synchronisation in the delta/theta band. This plot displays both evoked 

and induced oscillatory components; it is therefore useful to explain their distinction. 

For evoked oscillations, the phase of the wave is locked to the stimulus, which is not 

the case for induced oscillations (David, Kilner, & Friston, 2006; Tallon-Baudry & 

Bertrand, 1999). To estimate evoked power only, an E/MEG signal is averaged over 

trials in the experiment, then the time-frequency components are examined. If a power 

increase related to the stimulus is not phase locked, this signal will therefore not remain 

in the average. For induced oscillations, time-frequency decomposition is performed at 

each trial first, then the power is averaged, as is summarised in Figure 1-3. To visualise 

induced activity only, the power of evoked signals can be subtracted (not the case in 

Figure 1-2). 

 

 
Figure 1-3. (A) Distinction between evoked and induced responses. (B) Time-frequency 
power of the evoked response after averaging over each trial. (C) Time-frequency 
power of each trial. (D) Average of each in C to give the induced gamma response. 
Figure from Tallon-Baudry & Bertrand (1999). 
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1.1.4 Functional relevance of neural oscillations  
 

Despite a large variability in brain volume across mammalian species, the intermittent 

and oscillatory patterns of LFPs, and even their behavioural correlates, are very closely 

preserved across species (Buzsáki, Logothetis, & Singer, 2013). Therefore, it seems 

neural oscillations constitute a fundamental biological mechanism in the mammalian 

brain. The features of neural oscillations are determined by the physical architecture of 

neural networks; the frequency of oscillation is constrained by the size of the neural 

population involved, with faster oscillations typically confined to more local networks, 

and slower oscillations reflecting larger spatial networks (Buzsáki & Draguhn, 2004). 

With the evoked response, we assume there is the same brain response at each trial, 

with surrounding fluctuating noise. They are often studied clinically, for example the 

visual evoked field (VEF) is thought to reveal integrity of the afferent visual pathway 

(Kothari, Bokariya, Singh, & Singh, 2016). Induced oscillations are thought to be 

generated by higher-order processes, with synchronisation of ionic current flows 

reflecting functional coherence. There is building evidence for neural oscillations being 

impaired in neurodegenerative diseases (Nimmrich, Draguhn, & Axmacher, 2015), and 

particularly in schizophrenia (Uhlhaas & Singer, 2010).  

 

1.2 Energy demands of neural activity: the response of the cerebrovasculature  
 

1.2.1 Energy demands of neural activity 
 

Neural oscillations, and neural activity in general, are very energy demanding 

processes. Energy is needed to restore ionic gradients to their baseline, after they 

change due to action potentials and PSPs, and also for the uptake and recycling of 

neurotransmitters at the synapse, particularly glutamate (Attwell & Laughlin, 2001; 

Shulman, Rothman, Behar, & Hyder, 2004). In order to do this, neurons, like other cells, 

need a source of free energy in the form Adenosine Triphosphate (ATP), a molecule 

that can store and transport chemical energy. When ATP is consumed due to metabolic 

processes, it converts to either Adenosine Diphosphate (ADP) or adenosine 

monophosphate. In the brain, the most efficient way to convert ADP back to ATP is 

through the oxidative metabolism of glucose (Buxton, 2009). Glucose and oxygen are 

converted to water, carbon dioxide (CO2) and energy; energy that can be used to 

convert ADP molecules to ATP.  First, the process of glycolysis in the cytosol involves 

the breakdown of glucose into pyruvate molecules. These can be further broken down 

in the mitochondria (through the Krebs cycle) to form CO2 and energy, and eventually 

water and energy to convert ADP to ATP. A small amount of ATP is formed during 
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glycolysis in the cytoplasm, without the use of oxygen. However, a much larger amount 

of ATP is produced in the mitochondria with the aid of oxygen (Du et al., 2008). For 

example, breaking down glucose into 2 molecules of pyruvate is coupled to the 

conversion of 2 molecules of ADP to ATP, whereas metabolism of 1 pyruvate and 3 

oxygen molecules is coupled to the conversion of 18 ADP to ATP (Buxton, 2009). 

Therefore, the energy demands of neural activity are greatly dependent on the direct 

supply of oxygen and glucose.  

 

In this thesis, the fMRI methods used do not measure changes in glucose directly but 

changes reflective of oxygen metabolism. Although it is the metabolism of glucose that 

provides the brain with the required ATP, this is strongly aided by the supply of oxygen. 

Therefore, oxygen and glucose metabolism are intrinsically coupled, both reflecting the 

energy demands of neural activity. 

 

1.2.2 Delivery of nutrients by blood flow  
 

Blood flow delivers the required oxygen and glucose to the brain. In proportion to its 

size, the resting metabolic demands of the brain are large; it represents approximately 

2% of body weight but requires 20% of cardiac output to deliver oxygen and glucose 

(Raichle & Gusnard, 2002). The brain does not store glucose and oxygen so requires 

a continuous supply to allow it to produce enough ATP. This makes the brain very 

vulnerable to tissue death if blood flow is disrupted. Both glucose and oxygen are 

carried in the blood first by arteries (large blood vessels) entering the brain, which 

branch into smaller arteries called arterioles, and end up at capillaries, very small blood 

vessels where the oxygen and glucose is exchanged with tissue. Waste products from 

neural activity (such as CO2) also exchange at the capillary level, and are carried away 

by venules, small blood vessels that carry blood to veins, which return the blood and 

waste products to the lungs. This is displayed in Figure 1-4. 
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Glucose, carried in blood plasma, does not easily cross the blood-brain barrier, but 

diffuses down its concentration gradient from the higher blood concentration to the 

lower tissue concentration, through transporters in the capillary wall (Buxton, 2009). 

The oxygen carried in the blood is mostly bound to the protein haemoglobin, although 

a small amount (~2%) is carried as dissolved gas in the plasma. This plasma 

concentration is important, as oxygen diffuses down its concentration gradient from 

dissolved gas in capillary plasma to dissolved gas in the active tissue (Dunn, Mythen, 

& Grocott, 2016), which is then quickly replaced by the release of haemoglobin-bound 

oxygen. We will return to glucose and oxygen metabolism below, but first will focus on 

how blood is delivered to an area of the brain. 

 

Perfusion is a general term for the arrival of arterial blood to the capillary bed. With fMRI 

measures, we refer to cerebral blood flow (CBF), which is expressed as the amount of 

blood volume flowing into a certain mass of tissue, over a given time. Typically, the 

units are expressed as ml per 100g of tissue per minute (ml/100g/min). Despite 

changes in arterial pressure (the pressure of blood on the walls of blood vessels) the 

brain is extremely good at maintaining a constant resting CBF, by a process known as 

autoregulation (Duffin et al., 2018). Autoregulation happens via the control of vascular 

smooth muscle (multiple layers of smooth muscle cells in the large pial arteries and a 

single layer in the arterioles). This smooth muscle can contract to constrict the vessel 

or relax to dilate it, therefore changing the vascular resistance. In general, 

Figure 1-4. Blood vessels within a volume of tissue. Arterial blood delivered 
through the arteries and then the arterioles, ends up at the capillary beds (F1 + 
F2). Once oxygen and glucose are extracted into the tissue, by-products are 
drained away in the venules. Figure from Buxton (2009). 
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autoregulation maintains a constant resting blood flow despite variations in pressure, 

but blood flow also needs to change in response to metabolic demand (Duffin et al., 

2018).  

 

1.2.3 Neurovascular coupling and the neurovascular unit 
 

Neural activity and CBF have a close spatial and temporal relationship; increases in 

oxygen and glucose consumption, due to an increase in neural activity, is followed by 

a local increase in CBF. The processes relating local neural activity and subsequent 

changes in vessel tone, and therefore local CBF, is termed neurovascular coupling 

(NVC). This spatial and temporal coupling is the basis of fMRI, relying on blood flow 

changes to map neural activity.  

 

It was initially thought that NVC was controlled directly by a negative-feedback system, 

with changes in ATP producing a metabolic signal that increased blood flow (Attwell et 

al., 2010; Girouard & Iadecola, 2006). As well as blood replenishing oxygen and 

glucose, a flow increase clears the brain of potentially toxic by-products of neural 

activity, for example lactate and CO2, as well as regulating the brain’s temperature 

(Iadecola, 2017). In fact, both lactate and CO2, as well as other by-products, are potent 

vasodilators (Ainslie & Duffin, 2009; Dienel, 2012). However, this negative-feedback 

mechanism is thought to be an oversimplified account. One reason is that CBF 

response is not altered by experimentally reducing glucose and oxygen (Mintun et al., 

2001; Powers, Hirsch, & Cryer, 1996). Another reason is that the small transient 

reduction in oxygen consumption at the active site cannot account for the sustained 

increases in CBF. This is covered in more detail in Section 2.3.1 but, in brief, the 

increase in CBF is much greater than the increase in oxygen metabolism, in response 

to neural activity. These findings suggest that depletion of these metabolic substrates 

is not the only mechanism causing this increase in CBF after neural activity.  

 

NVC is also mediated by a feed-forward system, supported by what is termed the 

neurovascular unit, see Figure 1-5. The neurovascular unit involves the interaction of 

neuronal, glial, and vascular cells. Neurons can signal directly to blood vessels (Attwell 

& Iadecola, 2002), or signal to astrocytes to release vasoactive agents which then act 

on blood vessels (Petzold & Murthy, 2011). Neurotransmitter signalling is involved in 

both of these routes, particularly glutamate which activates calcium dependent 

signalling pathways and results in the realise of vasoactive components (Iadecola, 

2017). Many by-products of synaptic activity, such as potassium, nitric oxide (NO), and 
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prostanoids (Attwell et al., 2010) are vasoactive, therefore able to trigger vasodilation 

or vasoconstriction of the local blood vessels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5. Synapses between neurons (blue), interneurons (purple) and astrocytes 
(green). Astrocytes signal to blood vessels at the astrocytic end-feet, in direct contact 
with endothelial cells (red), pericytes (yellow) and myocytes/Smc (orange). Figure from 
Muoio et al (2014). 

 

These feed-forward and feed-backward mechanisms are not mutually exclusive; it is 

likely that both may be involved in NVC. Summarised by Iadecola (2017), the relative 

involvement of each mechanism may depend on “the timing, intensity, and duration of 

the activation as well as the brain region and the brain’s developmental stage.” 

Regardless of the direction of signalling, the traditional view of where the regulation of 

blood happens is at the level of the arterioles, but there is an emerging idea that 

regulation can also happen at the level of the capillaries, due to the contractile 

properties of cells called the pericytes, which line the capillary wall (Hamilton, Attwell, 

& Hall, 2010). There is much to still understand about NVC: the contribution of 

feedforward and feedback mechanisms, the cellular basis of the signalling pathways, 

the regional variations across the brain, the upstream propagation of vasoactive signals 

and the exact role of the capillaries (Iadecola, 2017). There is also a lot to learn about 

how sensitive our neuroimaging techniques are to measuring these processes, hence 

why a focus of some of the research questions in this thesis is to investigate NVC 

mechanisms.  
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1.2.4 Functional relevance of neurovascular coupling  
 

The health of the neurovascular unit is extremely important, considering its role in 

replenishing nutrients that have been used up by neural activity, as well as removing 

potentially toxic by-products.  An impaired blood flow response to an area can lead to 

tissue hypoxia, and eventually tissue death. Although this can occur rapidly in cases 

such as stroke or other traumatic brain injury, damage to blood vessels or disruption of 

NVC pathways can also build up over time in many neurodegenerative conditions 

(Girouard & Iadecola, 2006; Phillips, Chan, Zheng, Krassioukov, & Ainslie, 2015; 

Stanimirovic & Friedman, 2012). There also may be cases  where the blood flow 

response to an area is adequate, but mitochondrial impairment leads to the brain being 

unable to metabolise oxygen appropriately (Aboul-Enein & Lassmann, 2005; Lindroos 

et al., 2009). The neuroimaging field is developing metrics to help non-invasively assess 

some of these impairments and help understand their role in the progression of many 

diseases. For example, by quantifying regional blood flow, oxygen metabolism and the 

reactivity of blood vessels. These are all explained in the next section.
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2  Introduction to Methods 
 

2.1 Magnetoencephalography (MEG) 
 

Neural oscillations are measured in this thesis using MEG. Despite being around since 

the late 1960s (Cohen, 1968) it is only in the last two to three decades that MEG has 

started to be fully utilised as a technique to investigate neural activity. This is partly due 

to development of larger arrays of sensors (200+), measuring from the whole cortex. 

An electrical current generated by one neuron is too weak to be measured with MEG; 

tens of thousands of neurons need to synchronously fire to generate a signal large 

enough to be detected (Hansen, Kringelbach, & Salmelin, 2010). Hansen et al (2010) 

describe how 50,000 synchronous firing neurons would correspond to a patch of cortex 

approximately 0.63 mm2, with a diameter of 0.9mm assuming the cortical patch has a 

circular form. These values are based on estimating the diameter of cortical mini-

columns, and the density of neurons contained within. Despite the spatial scale at which 

a signal can be generated estimated at <1mm3, MEG signals are estimated at a much 

coarser spatial resolution due to limitations in source localisation (explained  below and 

in section 2.1).  

 

MEG is sensitive to neural activity due to the laws of electromagnetism: all electrical 

currents generate a magnetic field perpendicular to their direction (Figure 2-1). 

 
The electrical current induced by the activity of a group of neurons is called the ‘primary 

current’, and this is what the MEG signal is most sensitive to (Senior, Russell, & 

Gazzaniga, 2006, Chapter 12). EEG, in contrast, is sensitive to the secondary currents 

(or ‘volume currents’) generated from this primary current; they flow outside the cell in 

the opposite direction, forming irregular patterns because they take the path of least 

electrical resistance to get to the head surface, where they can be recorded as voltage 

differences (Cheyne & Papanicolaou, 2015). Magnetic fields are not distorted as they 

Figure 2-1. The ‘Right hand rule’ 
shows the direction of the 
magnetic field B (following the 
curvature of the fingers and shown 
by the lines in blue) caused by the 
electrical current I (the direction of 
the thumb and shown by the red 
arrows). Public domain image 
from Wikipedia.  
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pass through different tissue layers. However, volume currents still contribute to the 

externally measured magnetic field (Cheyne & Papanicolaou, 2015) and have to be 

taken into account during forward modelling (estimating the electrical/magnetic fields 

recorded at the sensors given a particular pattern of current sources in the brain).  

 

Magnetic field strength rapidly decreases as distance increases from the source, 

making it challenging to accurately measure activity from sources deep in the brain 

(Hillebrand & Barnes, 2002). However progress is being made to study oscillations in 

areas such as the hippocampus (Pu, Cheyne, Cornwell, & Johnson, 2018). As the 

magnetic field fluctuations measured with MEG are so weak (in the femtotesla range, 

10-15 tesla), modern MEG systems are housed in magnetically shielded rooms, to block 

out magnetic signals from the environment, including the earth’s magnetic field. Super 

Conducting Quantum Interference Devices (SQUIDs) allow such magnetic fields to be 

measured. They are small rings of material that are superconducting when immersed 

in liquid helium (at ~4.2 Kelvin), with the capability of  sensitively measuring tiny 

magnetic fields (Senior, Russell, & Gazzaniga, 2006, Chapter 12). These SQUIDS are 

attached to larger pickup coils (arranged in an array over the participant’s head) which 

funnel the magnetic flux into the smaller SQUID. There are lots of different types of 

pick-up coils, with the broad categories being ‘magnetometers’ and ‘gradiometers’. 

Magnetometers simply measure any orthogonal field, whereas gradiometers (pairs of 

coils that are close together and wound in opposite directions) can measure gradients 

in the magnetic field over space, therefore being able to better separate noise from the 

environment (same effect on each coil from distant sources) and signals from the brain 

(different effect on each coil from the nearby source), (Proudfoot, Woolrich, Nobre, 

Turner, & Turner, 2014). 

 

The biggest strength of MEG is that it measures signals that directly relate to electrical 

brain activity. The temporal resolution of MEG is only limited by the sampling rate, 

allowing magnetic fields to be characterised on the millisecond level, the timescale of 

neural activity. The biggest weakness of MEG is the precision with which it can locate 

the source in space. The goal is to relate the magnetic field fluctuations measured at 

the level of the sensors to the location of the currents in the brain. This is referred to as 

the ‘inverse problem’ and there is no unique solution i.e. there are an infinite number of 

possible current distributions in the brain that could generate one pattern of magnetic 

fields at the sensors. To solve this inverse problem, we introduce prior constraints on 

the solutions, and find the solution that best describes the data. In this thesis, 

beamforming techniques are used to solve the inverse problem, explained below. 
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2.1.1 Beamforming source localisation 
 

The magnetic fields measured with MEG are often modelled as current dipoles which 

have a position, orientation and strength. Estimates of the current dipole at each brain 

location come from some weighted contribution from each sensor. Beamformer 

techniques measure the contribution of a single brain location to the measured field at 

each sensor, by constructing a spatial filter to ‘tune in’ to each location independently. 

First, a volumetric grid of target locations is defined, and for each location an optimum 

set of beamformer weights is determined (Hillebrand, Singh, Holliday, Furlong, & 

Barnes, 2005). This volumetric grid (typically around 5mm in resolution) is based on 

each participant’s anatomical MRI, which is co-registered to the MEG data by recording 

the location of three fiducial coils during MEG scanning, placed at three anatomical 

landmarks. Therefore, if we match these coil positions to the MEG data and the 

anatomical MRI, it follows that we can superimpose the MEG data onto this anatomical 

space. For each location in the brain, the signal is taken from each of the sensors 

multiplied by the beamformer weight, and all of these products summed to give a single 

time-series that represents the estimate of the current dipole at that location (see Figure 

2-2). For each grid location we need to find the weights that maximise the contribution 

of that location to the sensor array and suppress the others. In order to do this, 

beamforming algorithms make the assumption that any two distant cortical areas are 

not perfectly correlated (Hillebrand & Barnes, 2005). i.e. they do not generate coherent 

LFPs over long time scales. Empirical data has shown this to be a reasonable 

assumption (Hillebrand & Barnes, 2005).  

Figure 2-2. MEG beamforming technique for source localisation. Figure taken from 
(Hillebrand & Barnes, 2005). 
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2.2 The physics of MRI: A brief recap 
 

Before a more detailed description of the functional MRI methods, the main focus of 

this thesis, a brief description of MRI physics is given.  

 

Magnetic moments of hydrogen nuclei. MRI relies on the magnetic properties of 

hydrogen nuclei, which are positively charged protons spinning on their axes. These 

properties induce a magnetic moment (Figure 2-3). When placed in a large static 

magnetic field (B0) the magnetic moments of hydrogen go from being randomly 

orientated (part A Figure 2-3) to aligning parallel or antiparallel with B0 (part B Figure 

2-3). A small excess of low-energy nuclei aligning parallel causes a net magnetic 

moment, the net magnetisation vector (NMV) of hydrogen (part C Figure 2-3), 

(Westbrook, Roth, & Talbot, 2011). 

 

 

 

 

 

 

 

 

Figure 2-3. Hydrogen nuclei = coloured circles; magnetic moments = black arrows; B0 
= static field; NMV = net magnetic vector. Blue nuclei aligning parallel to B0 are low 
energy ‘spin-up’. Red nuclei aligning anti-parallel to B0 are high energy ‘spin-down’. 
Figure is my own but based on figures from Westbrook, Roth, & Talbot (2011). 
 

 

Precession. Being placed in B0 causes this magnetic moment 

to precess in a circular path around B0 (direction of small orange 

arrows in Figure 2-4). The Larmor equation explains the 

frequency at which a specific nucleus precesses: ω0 = γ B0. 

Where the precessional frequency of the nucleus (ω0) is related 

to B0 by the constant γ, termed the gyromagnetic ratio. At typical 

MRI field strengths, hydrogen precesses in the radio frequency 

(RF) band.  

 

 

Figure 2-4. B0 = large white arrow. Hydrogen proton = grey circle. 
Magnetic moment = large orange arrow. Figure is my own but 
based on figures from Westbrook, Roth, & Talbot (2011). 
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Resonance. A RF pulse of energy at the larmor frequency must be applied in order for 

energy to be absorbed, a process termed resonance. Resonance has two effects on 

the NMV. Firstly, the energy absorption causes the NMV to no longer align perfectly 

with B0, as more nuclei join the high energy population. The angle of misalignment 

depends on the amplitude and duration of the RF pulse, termed the flip angle. The 

second effect of resonance is related to the phase of the magnetic moments of 

hydrogen (their position along the processional path around B0 at a specific time, for 

example the four small orange arrows on Figure 2-4). Resonance causes all the 

magnetic moments to eventually move to the same position along this processional 

path, referred to as being ‘in phase.’  

 

The MR signal. Magnetic field fluctuations inside an MR receiver coil induce an 

electrical voltage, and this is the MR signal. These magnetic field fluctuations will 

depend on the amount of magnetisation in the transverse plane (i.e. the amount of in-

phase magnetisation) at the larmor frequency. Once perturbed from the longitudinal 

direction, the NMV starts to realign back with B0, as hydrogen nuclei lose energy. This 

is known as relaxation. Magnetization in the longitudinal plane increases (‘recovery’), 

and the amount of magnetisation in the transverse plane decreases (‘decay’). This 

evolution of the signal in the MR receiver coil is referred to as free induction decay 

(FID).  The recovery of the longitudinal magnetization is due to nuclei giving up energy 

to their surrounding environment (lattice) and is termed ‘spin-lattice relaxation’. The 

magnetization recovers exponentially over time, with the T1 relaxation time being the 

time it takes for 63% of the longitudinal magnetization to recover. Decay of coherent 

transverse magnetisation is due to magnetic fields of near-by nuclei interacting, termed 

‘spin-spin relaxation’. This rate of decay is also an exponential process, with the T2 

relaxation time being the time it takes for 63% of transverse magnetization to decay.  

 

The amount of T1 and T2 relaxation allowed is manipulated with the choice of RF pulse 

timing parameters. The repetition time (TR) is the time between one excitation RF pulse 

to the next excitation RF pulse, determining how much T1 relaxation has occurred when 

reading the signal. The echo time (TE) is the time between the RF pulse and the peak 

of the signal in the receiver-coil, determining how much T2 relaxation has occurred 

when reading the signal.  As different tissue types have differing amounts and 

arrangements of hydrogen, this means the magnetic moments of hydrogen nuclei in 

these different tissues take a different amount of time to lose their transverse 

magnetisation, after the RF pulse has been turned off, and therefore induce different 

levels of magnetic field fluctuation. This is the basis of contrast in an MR image.  
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The spin-spin relaxation, characterised by T2 relaxation time, causes dephasing of the 

transverse magnetisation that is irreversible. Dephasing is also caused by macro- and 

mesoscopic magnetic field inhomogeneities and this is termed T2* relaxation. These 

field inhomogeneities mainly occur due to magnetic susceptibility of different tissues, 

(Chavhan, Babyn, Thomas, Shroff, & Haacke, 2009). fMRI, explained below, depends 

on this T2* relaxation as the basis of the signal contrast. When reading out the image 

using gradient-echo (GRE) sequences, transverse magnetisation is based on both spin-

spin relaxation as well as these magnetic field inhomogeneities which cause dephasing 

and increase the transverse relaxation. Therefore, as these sequences are sensitive to 

T2 relaxation and these extra dephasing effects, they are said to have T2*-weighting, 

with T2* always being shorter than T2. Using a different method of image read-out, 

spin-echo sequences, can eliminate these dephasing effects, making the contrast 

dependent on T2 relaxation only, by using a refocusing RF pulse with a flip angle of 

180° (Chavhan et al., 2009).  

 

2.3 Functional MRI (fMRI) 
 

2.3.1 The BOLD signal 
 

The Blood Oxygen Level Dependent (BOLD) signal was discovered in the early 1990s, 

first demonstrated in rat brains then shortly after in humans (Ogawa, Lee, Kay, & Tank, 

1990; Ogawa & Lee, 1990). Since then, a very large number (hundreds of thousands) 

of studies in cognitive neuroscience, clinical psychology, and presurgical planning have 

utilised this technique as a way to localise changes in brain activity (Glover, 2011). The 

principles of the BOLD signal rely on the fact that de-oxyhaemoglobin and 

oxyhaemoglobin have different magnetic susceptibilities. At rest, the arterial blood is 

almost fully saturated with oxygen i.e. the arterial oxygen content (CaO2) is close to 1. 

In the healthy brain, the amount of oxygen extracted from the blood is consistently 

reported to be around 40% at rest, making the Oxygen Extraction Fraction (OEF) 0.4 

(Leithner & Royl, 2014). We can model the Cerebral Metabolic Rate of Oxygen 

(CMRO2) if we know the delivery of oxygen (by oxygenated blood) and the amount 

extracted by the tissue: 

 

CMRO2 = CaO2 x OEF x CBF (Equation 2-1) 

 

During activation, CBF increases from its baseline state in much larger proportions than 

CMRO2 increases from baseline. This is characterised by the coupling ratio ‘n’ normally 

reported to be around 2-4, meaning the relative CBF response is typically 2-4 times 
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larger than the relative CMRO2 response (Buxton, 2009; Leithner & Royl, 2014). 

Assuming CaO2 is the same as it is at rest, it follows that OEF decreases with activation. 

This seems unintuitive, that the fraction of oxygen extracted from the blood goes down 

during activation. This is due to the increased rate of delivery of oxygenated blood, so 

the tissue extracts a lower proportion of oxygen from the blood at a given time.  

 

How does this lead to the BOLD signal? As the capillary and venous blood are more 

oxygenated, less deoxyhaemoglobin is present in the voxel that is being imaged. 

Oxyhaemoglobin is diamagnetic, meaning it is has similar magnetic properties to the 

surrounding tissue. Deoxyhaemoglobin is paramagnetic, meaning it distorts the 

surrounding magnetic field, causing shorter T2 and T2* relaxation times, and making 

the MR signal decay faster. Put another way, when the amount of deoxyhaemoglobin 

decreases in the imaged voxel, as is the case with increases in neural activity, the T2 

and T2* relaxation times become longer and the signal measured with a T2 or T2*-

weighted sequence slightly increases. Due to the most commonly acquired BOLD 

signal contrast being dependent on the T2* relaxation time (from GRE acquisition), it is 

particularly susceptible to signal drop-out in regions that are near air cavities (e.g. 

sinuses) as macroscopic susceptibility-induced magnetic field gradients cause de-

phasing and therefore signal loss. 

 

The BOLD response indexes only relative changes in neural activity, as it does not 

provide information about the concentration of deoxyhaemoglobin in the resting state, 

only the difference between rest and stimulus. The BOLD response not only reflects the 

relative increases in CBF and CMRO2, but also a local increase in cerebral blood 

volume (CBV), see Figure 2-5. The increases in CBV and CMRO2 cause a decrease in 

the BOLD signal, whereas an increase in CBF causes an increase in the BOLD signal; 

this CBF effect is typically dominant causing a net increase. As well as this, the 

maximum BOLD response is dependent on the resting physiological state of the tissue, 

determined by blood haematocrit (ratio of volume of red blood cells to total volume of 

blood), the resting OEF and the resting CBV. The maximum possible BOLD response 

increases when these resting parameters increase. 

 

Due to the BOLD response reflecting all these changes, its utility as a sole marker of 

brain activity in studies investigating diseases and pharmacology has been questioned 

(Iannetti & Wise, 2007). In any circumstance where two populations being compared 

have a different baseline state, the comparison of BOLD signal changes may not be a 

valid reflection of differences in neural activity. Furthermore, if the couplings between 

the CBF, CMRO2 and CBV responses are altered in disease, this could result in a 
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different BOLD response when the neural activity is the same, or no BOLD change 

when the neural activity is different. The focus of this thesis is to partial out these signals 

that contribute to the BOLD response, allowing us to more meaningfully interpret how 

the brain is responding to neural activity. This is the focus of the next sections: using 

Arterial Spin Labelling (ASL) to measure CBF and using calibrated-fMRI to model the 

CMRO2 response, as well as to estimate the baseline tissue physiology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2 Arterial Spin Labelling for CBF measurements 
 

There have been many techniques developed, used in research and clinical practice, 

to measure CBF: perfusion CT-scan, dynamic susceptibility contrast-MRI (DSC-MRI), 

single-photo emission computed tomography and positron emission tomography (PET), 

(Ferré et al., 2013). However, these techniques require the injection of exogenous 

contrast media or ionizing radiation, making them invasive and challenging to use 

repeatedly on the same subject. This thesis focuses on non-invasive ways to study the 

brain, and therefore uses a non-invasive fMRI technique to measure CBF, called 

Arterial Spin Labelling (ASL).  Compared to BOLD-fMRI, ASL directly measures the 

delivery of arterial blood, therefore the signal is more localised to the capillary beds, 

whereas the BOLD signal is more influenced by venous oxygenation changes (Buxton, 

2009). 

 

Imaging techniques such as PET monitor the kinetics of an injected agent as it passes 

through the tissue, therefore reflecting the rate of blood flow. ASL works on similar 

Figure 2-5. Overview of the BOLD response, showing its dependence on changes in 
CBV, CBF and CMRO2, in response to a stimulus. The baseline state (levels of 
haematocrit, resting OEF and resting CBV) affect the maximum possible BOLD 
response. Figure taken from (Blockley et al., 2013).  
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principles but uses an endogenous tracer. With ASL, the blood water is magnetically 

labelled to flip the magnetization of hydrogen protons within  water molecules carried 

by arterial blood. After waiting a certain time to allow the labelled blood to travel to the 

slice of interest, a ‘labelled’ image is acquired. A ‘control’ image is acquired using the 

exact same imaging parameters, but without labelling the blood. The differences 

between the label and control images (repeated many times to get enough signal 

through averaging) is proportional to the blood flow into the slice of interest, under the 

assumption that static signal from the tissue subtracts out, leaving just the signal that 

represents the flow of the magnetically labelled blood into the tissue. The signal decays 

with the T1 relaxation rate; as the relaxation time for water in blood or tissue is 1-2 

seconds only a small amount of labelled water contributes to this ‘difference’ image, 

with the inflowing labelled blood only accounting for  0.5 – 1.5% of the full tissue signal 

(Petcharunpaisan, Ramalho, Castillo, & Carmichael, 2010). Therefore, ASL as a 

technique has a low signal to noise ratio (SNR), and lower temporal resolution than 

standard BOLD-fMRI considering both a label and a control image have to be acquired, 

as well as labelling of the blood. However, this label-control subtraction makes the CBF 

signal robust against slow drifts of the MR signal, making it more suitable for long task-

designs (Wang et al., 2003) than BOLD-fMRI.  

 

There are different options for labelling the blood. Two of the most common, pulsed 

ASL (PASL) and pseudo-continuous (pCASL), are displayed in Figure 2-6. 
 

 
 

Figure 2-6. Figure taken from (Haller et 
al., 2016) showing two different ASL 
labelling schemes. (A) shows pulsed 
ASL and (B) shows pseudo-continuous 
ASL. 
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In this thesis, both PASL and pCASL are used. With PASL, arterial blood water is 

labelled in an inversion slab below the imaging volume, labelling the blood in the arteries 

supplying the brain. All the blood in this slab is inverted simultaneously, in about 10 

milliseconds, and the time from labelling to acquiring the image is termed the inversion 

time (TI), (Haller et al., 2016). With pCASL the magnetisation of the blood water is 

continuously inverted as it flows through a much narrower labelling plane, typically for 

1-2 seconds (Haller et al., 2016), with a train of very short (~1ms) pulses. The post label 

delay (PLD) is the amount of time after the end of the labelling that passes before 

acquiring the image. PASL has lower SNR than pCASL because the arterial blood 

inverted with PASL undergoes T1 relaxation as it travels through the inversion slab and 

to the slice of interest. With pCASL, the blood is continuously inverted, meaning all 

blood that arrives at the tissue has the same amount of T1 decay regardless of when it 

was labelled (Haller et al., 2016), if a constant arrival time is assumed. In terms of the 

labelling inversion efficiency, in pCASL this is affected by the velocity of blood (Wu, 

Fernández-Seara, Detre, Wehrli, & Wang, 2007), whereas this is not a problem with the 

very short labelling duration used in PASL.  

 

Comparing the difference between labelled and control acquisitions during stimulus and 

baseline periods can give relative CBF changes. However, the great advantage of ASL 

techniques is that the signal can be quantified in units of ml/100g/min (Alsop et al., 

2015). Using PCASL as an example, this can be calculated in each voxel by: 

CBF (ml/100g/min) =	 #$$$	.		&	.		'()*+,-.+/0()1234	.5
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 (Equation 2-2) 

 
where 	𝜆 is the brain/blood partition coefficient (typically assumed to be 0.9 ml/g), 

𝑆𝐼GHIJKHL and 𝑆𝐼?MN are the signal intensities of the control and labelled images, 𝑇A,PLHHQ 

is the longitudinal relaxation time of blood in seconds (typically assumed to be 1650ms 

at 3Tesla), 	𝛼 is the labelling efficiency (typically 0.85 for PCASL), 𝑆𝐼ST is the signal 

intensity of water in a proton density image acquired with the same characteristics as 

the CBF images (typically referred to as the M0 image in this thesis), and 𝜏 is the label 

duration. The 6000 simply converts the units from ml/g/s to ml/100g/min, which is how 

CBF is typically reported in the literature.  

 

For both PASL and PCASL CBF quantification, some assumptions are made in order 

to do this CBF quantification step. These assumptions (summarised by (Alsop et al., 

2015)) are: (1) The entire amount of labelled blood is delivered to the target tissue 
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(determined by the important choice of PLD in PCASL and TI in PASL), (2) There is no 

outflow of labelled blood water, and (3) T1 of blood only determines the relaxation of 

labelled spins, which is not likely to be completely true due to the difference between 

the T1 of blood and tissue. This is thought to only introduce small errors.  

 
The ASL scans used in this thesis allow the estimation of both CBF and BOLD weighted 

images. The specifics of each sequence are explained in each chapter but the general 

approach is described here. Using one RF excitation pulse, two read-outs can follow: 

one with a short TE (~3ms) for CBF time series with little BOLD weighing, and a later 

TE (~30ms) for the BOLD-weighted time series. A slightly different approach involves 

using an interleaved acquisition, with two RF excitation pulses. This results in a 

repeating sequence of 4 image volumes: ASL labelled image with short TE, BOLD 

image with long TE, ASL control image with short TE, BOLD image with long TE. Use 

of background suppression and a short TE reduces the BOLD weighted signal in the 

ASL time series (Warnock et al., 2018) and reduces noise contributions from static 

tissue. The dual excitation approach gives less ASL contamination to the BOLD time-

series, compared with the single excitation method. However, in both cases a ‘surround 

average’ processing approach is taken to isolate the BOLD time series, analogous to 

the ‘surround subtraction’ approach used to generate CBF time series (Liu & Wong, 

2005; Warnock et al., 2018). ASL provides a set of n control (C) and label (L) images: 

[C1, L1, C2, L2, C3, L3, Cn, Ln]. With surround subtraction, the perfusion (P) time-series 

can be calculated by taking the difference between the control image and its two 

surrounding label images (except for the first volume where only pair-wise subtraction 

occurs): 

 

[P1, P2, P3, Pn/2] = [C1 - L1, C2 – ((L1 + L2) /2), C3 – ((L2 + L3) /2) …] 

 

A similar approach can be taken for the BOLD-time series using surround averaging, 

where the average between the control image and its two surrounding label images is 

taken, to remove ASL contamination.  

 

2.3.3 Calibrated-fMRI  
 

Acquiring both BOLD and CBF time-series in the same sequence is useful for modelling 

the CMRO2 response, when some physiological manipulations are administered, and 

some assumptions made. Calibrated fMRI refers to measuring BOLD and CBF signals 

during hypercapnia to ‘calibrate’ the BOLD signal, then allowing a change in the relative 

CMRO2 response to a stimulus to be calculated. This approach was introduced by 
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Davis, Kwong, Weisskoff, & Rosen (1998) and later adapted by (Hoge et al., 1999). As 

described in Figure 2-5 the BOLD response can be expressed in terms of changes in 

CBF, CBV and CMRO2 changes: 

∆WXYT
WXYTZ	

= 𝑀\1 −	_GW`
GW Z̀

a	_ GWb
GWbZ

a
0c
	d GefXg
GefXgZ

h
c
i	  (Equation 2-3) 

Here, the ∆ symbol means change from baseline and the 0 subscript refers to the 

baseline state. There is a power-law relationship between BOLD and 

deoxyhaemoglobin concentration, represented by the b parameter. This parameter 

varies with field strength and is dependent on vessel size distribution. It is typically 

assumed to be 1.3 when scanning with 3 Tesla MRI (Kennan, Zhong, & Gore, 1994). 

CBV is not commonly measured directly, as is the case in this thesis. Therefore, CBV 

changes are inferred from changes in CBF assuming the power law relationship  

_GW`
GW Z̀

a = k._GWb
GWbZ

a
>	
		(Equation 2-4) 

where k is a constant and α has typically been assumed to be 0.38, based on early 

animal work (Grubb, Raichle, Eichling, 1974). However, recent studies have started to 

use lower values, based on evidence showing this coupling to be closer to ~0.2 in 

human fMRI calibration studies (Chen & Pike, 2009, 2010; Mark & Pike, 2012).The 

modelled BOLD signal now becomes:  
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	d GefXg
GefXgZ

h
c
i			 (Equation 2-5) 

In order to model CMRO2 the only remaining unknown in this equation is therefore the 

M value. M is a scaling parameter often described as the maximum BOLD signal 

change that would occur if all deoxyhaemoglobin were washed out of the venous blood 

vessels, and therefore reflects the baseline physiological state of the tissue. We do not 

measure M directly like BOLD and CBF signals, but we can estimate it using a gas 

calibration manipulation.  

 

CO2 is a vasoactive stimulus that increases blood flow by dilating the blood vessels, 

normally as a by-product to neural activity. The principles of calibrated-fMRI involves 

administering a hypercapnic (increased CO2) gas mixture to the subject to increase 

CBF (and therefore also increase BOLD), with the assumption that there is no change 

in CMRO2 (Davis et al., 1998), This has been carried out in many research studies with 

healthy volunteers (Liu, De Vis, & Lu, 2018), and shown to be safe, well tolerated and 

feasible in patient populations (Spano et al., 2013).  Typically, a gas mixture of 5% CO2, 

21% oxygen and 74% nitrogen is used. Assuming there is no change in CMRO2, the 



   23 

relative CMRO2 term in Equation 2-5 equates to 1 so the modelled BOLD signal 

becomes: 

∆WXYT
WXYTZ	

= 𝑀d1 −	_GWb
GWbZ

a
j0c

	h  (Equation 2-6) 

As we measure the BOLD and CBF change to the hypercapnic stimulus, and we 

assume values for α and β, we can simply re-arrange Equation 2-6 to get the M value 

in that region. In the same scanning session, in the same subject, if we collect BOLD 

and CBF response to a task or stimulus, we can then re-arrange Equation 2-5 to give 

relative changes in CMRO2 to the stimulus: 
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	(Equation 2-7) 

Another way CO2  inhalation is commonly used in the fMRI literature is to characterise 

the reactivity of the blood vessels. As CO2  is a vasodilator it will increase blood flow all 

across the brain. A response to CO2  therefore gives an indication of the ability of the 

blood vessels to dilate or constrict, informing about vascular health and reserve (Liu et 

al., 2018). This metric is referred to as Cerebrovascular Reactivity (CVR) in the 

literature. Concentrations of the inhaled and exhaled CO2  are recorded through-out the 

experiment via a face-mask or nasal cannula.  As arterial blood gas measurements are 

invasive, end-tidal partial pressure of CO2 (PETCO2), the partial pressure of CO2 at the 

end of the exhalation, is used as a surrogate measure of arterial CO2  (McSwain et al., 

2010). Gas measurements are typically quantified in units of millimetres of mercury 

(mmHg), a unit of pressure. The measured BOLD or CBF response can then be 

expressed in percentage or absolute change in BOLD/CBF per mmHg change in 

PETCO2.  

 

Instead of a gas-paradigm, a breath-hold (BH) task where participants hold their breath 

typically for 10-20 seconds can also act as a hypercapnic stimulus, in order to 

characterise CVR (Urback, MacIntosh, & Goldstein, 2017). An estimate of M can also 

be gained from a BH task, to model CMRO2 the same way as explained above. 

Developing such methodology is the focus of Chapter 8 of this thesis. 

 

2.3.4 Dual Calibrated-fMRI  
 

Calibrated-fMRI gives relative CMRO2 changes to a stimulus, which we expect to offer 

a closer reflection of the metabolic demands of brain activity compared to BOLD-fMRI 

alone. An extension of this technique has been recently developed (Bulte et al., 2012; 

Gauthier, Desjardins-Crépeau, Madjar, Bherer, & Hoge, 2012; Wise, Harris, Stone, & 
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Murphy, 2013) showing that information about baseline CMRO2  can also be estimated, 

by adding a second calibration step. In the original calibrated-fMRI design, the baseline 

physiological state is summarised by the M parameter, and its effect on the BOLD signal 

is considered. With dual-calibrated designs, the models attempt to separate out the 

different physiological contributions to M and estimate the baseline physiological state. 

Characterising baseline CMRO2 measurements, alongside other parameters such as 

baseline CBF, has potential valuable information to help understand the cause of a 

disease, including what mechanisms might relate to disease progression. As with BOLD 

and CBF signals, interpreting relative CMRO2 signal changes still may be confounded 

if baseline CMRO2  is altered in disease (Iannetti & Wise, 2007), therefore it is also 

useful to consider the baseline in the interpretation of any stimulus-induced changes.  

 

The BOLD response modelled by (Davis et al., 1998) and (Hoge et al., 1999) can be 

expressed in terms of CBV (CBV substituted with CBF by Equation 2-4) and venous 

deoxyhaemoglobin concentration [dHb] in response to changes in partial pressure of 

O2 and CO2: 
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where the subscript 0 represents the baseline (normoxic and normocapnic) conditions 

(Wise et al., 2013). As explained in the Calibrated-fMRI section, M can be calculated 

with a hypercapnic stimulus. The aim with dual-calibrated fMRI is to estimate the [dHb0] 

which is not possible with hypercapnia alone. The change in [dHb] concentration, with 

respect to baseline, when arterial oxygen content is increased and/or CBF altered is 

given by:  
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where [Hb] is haemoglobin in g/dL (grams per decilitre of blood), ϕ is the O2 carrying 

capacity of [Hb] in mlO2/gHb, and CaO= is the oxygen content of arterial blood. Subsisting 

Equation 2-9 into 2-8 leaves the only unknown term as [dHb0], therefore this can be 

obtained from measurement and estimation of all the other physiological parameters.  

Full derivation of equations can be found in Wise et al (2013). 

 

This dual-calibrated design includes a hypercapnic stimulus to increase CBF as before, 

and a hyperoxic stimulus to increase the BOLD signal, to first approximation, without a 
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CBF change. As with hypercapnia, the hyperoxia is assumed to be isometabolic (no 

change in CMRO2), just leading to an increase in the BOLD response due to more 

oxygen being bound to haemoglobin in the blood and dissolved in blood plasma on the 

arterial side of the supply. With CBF and CMRO2 constant, this hyperoxia produces an 

increase BOLD signal.  The fraction of inspired O2 is typically increased to 50%, a trade-

off between maximising the BOLD response during hyperoxia and avoiding artefacts  

(Germuska & Wise, 2018). Under the assumption that CMRO2  is the same 

under hypercapnia and hyperoxia, estimates of the baseline venous deoxyhaemoglobin 

concentration can obtained. Once we have an estimate of [dHb0] baseline OEF can be 

estimated as OEF is simply the difference between the 𝐶𝑎𝑂= and the 𝐶𝑣𝑂=	(venous 

blood content), and [dHb0] determines the venous blood oxygen saturation. 𝐶𝑎𝑂= is the 

total amount of oxygen transported in the blood, either bound to haemoglobin or 

dissolved in plasma. The amount of haemoglobin bound to oxygen can be estimated 

with an assumed or measured value of haemoglobin and the amount dissolved in 

plasma is based on the partial pressure of O2 estimated from the end-tidal physiological 

traces. Once we have a value for resting OEF, resting CMRO2 can be calculated using 

Equation 2-1, alongside ASL measurements of CBF and estimates of CaO2.  

 

In the original implementations of this dual-calibrated model (Bulte et al., 2012; Gauthier 

et al., 2012; Wise et al., 2013) the CBF and BOLD data were analysed independently, 

to separately estimate the M and the baseline [dHb]. In later adaptations, and what is 

implemented in this thesis, all physiological parameters are estimated together ( 

Germuska et al., 2016). This helps create more stable solutions due to less error 

propagation along different steps of the analysis pipeline and allows the CBF to inform 

the modelling of the BOLD signal changes and vice versa. This is done by finding the 

set of parameters that minimises the error between a forward model (describing how 

the BOLD and CBF are expected to respond to the CO2 and O2 manipulations) and the 

acquired data (Germuska et al., 2016). This is the implementation used in Chapter 5, 

with a new addition to the modelling which uses the CBF and OEF observations to 

model the exchange of oxygen between the capillaries and the tissue (the effective 

oxygen diffusivity), (Germuska et al., 2019).  

 

2.4 The relationship between MEG and fMRI: an empirical measure of 
neurovascular coupling 
 

In this thesis, the relationship between MEG and fMRI signals is used as an empirical 

measure of NVC. The rationale of why NVC is an important physiological mechanism 
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has already been covered; this section will briefly cover the practicalities of 

characterising it with MEG and fMRI. 

 

NVC is characterised by quantifying how much the fMRI signal changes relative to the 

MEG signal change. The obvious limitation to this approach is the need to carry out two 

scans separated in time. Therefore, an assumption made in order to characterise this 

MEG-fMRI relationship is that the brain is responding in a similar way in both scanning 

modalities. Both MEG and fMRI signals are thought to largely reflect post-synaptic 

(dendritic) rather than axonal activity (Hall et al., 2014; Logothetis, 2002; Logothetis, 

Pauls, Augath, Trinath, & Oeltermann, 2001; Zhu et al., 2009), and literature shows 

good spatial coherence between MEG and fMRI signals (Muthukumaraswamy & Singh, 

2008; Singh, Barnes, Hillebrand, Forde, & Williams, 2002). Most findings show negative 

correlation between BOLD and low frequency neural oscillations (e.g. alpha and beta), 

and a positive correlation with higher frequency bands (e.g. gamma), (Logothetis, 2002; 

Mukamel et al., 2005; Zumer, Brookes, Stevenson, Francis, & Morris, 2010). From 

manipulating stimulus parameters, commonly visual, some have suggested BOLD 

signals are most reflective of gamma oscillations. However, the picture is complex. 

BOLD signals and visual gamma oscillations seem to be tuned similarly by some 

stimulus features (i.e. visual contrast, (Muthukumaraswamy & Singh, 2009; Scheeringa 

et al., 2011)) but some seem to greatly influence the visual gamma response but not 

the BOLD response (i.e. spatial frequency (Muthukumaraswamy & Singh, 2008, 2009) 

and colour (Swettenham, Muthukumaraswamy, & Singh, 2013). It is therefore not clear 

how stable these coupling behaviours are under different stimulus conditions, and 

across different brain areas.  

 

Compared to MEG, and other neuroimaging methods, fMRI has superior spatial 

resolution, providing information about the location of neural activity at millimetre 

resolution.  However, the temporal resolution of BOLD and CBF is limited by the 

restrictions in acquiring the signals but predominantly by low frequency nature of the 

signals themselves: the CBF response to neural activity is typically delayed by 1-2 

seconds, peaks at around 5 seconds, and takes a similar amount of time to return to 

baseline.  This is opposite to MEG, which has superior temporal resolution, at the level 

of milliseconds. However, MEG suffers from the mathematically ill-posed ‘inverse 

problem’, when trying to locate the neural origins of signals measured at scalp, which 

limits spatial resolution. Any choice of stimulus design to investigate common MEG and 

fMRI signals will therefore be a trade-off between these very different temporal and 

spatial resolutions.  
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Previous non-invasive studies have predominantly looked at the relationship between 

BOLD-fMRI signals and neural activity. There are a few studies collecting both MEG 

and CBF data in the same participants, for example resting state dynamics in stroke 

and aging (Kielar et al., 2016; Sakamoto et al., 2016) and in response to LSD (Carhart-

Harris et al., 2016). There is also some work comparing EEG and CBF responses to a 

visual stimulus (Mayhew, Macintosh, Dirckx, Iannetti, & Wise, 2010). There are some 

invasive recordings carried out in somatosensory cortex of rodents showing 

relationships between neural activity and CBF, for example: correlations between the 

LFPs and CBF which depended on frequency of electrical forepaw stimulation (Ureshi, 

Matsuura, & Kanno, 2004), a power law function describing the relationship between 

LFPs and CBF during whisker stimulation (Hewson-Stoate, Jones, Martindale, Berwick, 

& Mayhew, 2005), and findings that show CBF and CMRO2 signals more directly 

correlate with neural activity than BOLD signals during forepaw stimulation (Masamoto, 

Vazquez, Wang, & Kim, 2008). To the best of our knowledge, the coupling between 

MEG and CBF signals have not been compared in the context of NVC, as they are in 

this thesis.  As explained in the earlier sections, CBF directly reflects blood flow to an 

area. The BOLD signal gives better SNR but can be difficult to interpret under any 

conditions where the baseline state may be altered.  Therefore, in this thesis both BOLD 

and CBF signals are compared with MEG signals, with the aim of increasing the 

understanding of NVC mechanisms, in both the healthy brain and in MS (explained in 

Chapter 3). 

 

2.5 Software and statistics 
 
Pre-processing of structural and functional MR images was performed with FSL 

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) or MATLAB (The 

MathWorks Inc), unless otherwise stated.  

 

In FSL: 

• fslmaths function was uses to combine, binarise and threshold images  

• fslstats function used to get descriptive statistics 

• Registration of images were carried out with FLIRT (Jenkinson & Smith, 2001) 

• Non-brain removal with BET (Smith, 2002) 

• Segmentation of tissue performed with FAST (Zhang, Brady, & Smith, 2001) 

• Task-responses were modelled with FEAT Version 6 (Jenkinson et al., 2012). 

 

Statistical analysis was performed with MATLAB (The MathWorks Inc), IBM SPSS 

Statistics (Versions 20-25), or R software (R Core Team, 2017). For Man-Whitney U-
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tests, the non-parametric version of the independent t-test, an exact sampling 

distribution was used for U. For each comparison, if the shape of the distribution 

between the two groups was similar (by visual inspection) medians between groups 

were compared.  

 

Assumptions of statistical tests were met, unless otherwise stated. Outliers were 

classed as 3 standard deviations (SD) above or below the mean. Data was also 

visualised as boxplots and checked for extreme outliers. The use of boxplots to 

visualise the distribution of data (Tukey, 1977) is implemented in SPSS.  The 

interquartile range (IQR) is the upper quartile (Q3, 75th percentile) minus the lower 

quartile (Q1, 25th percentile). Possible outliers are classed as 1.5xIQR below Q1 and 

1.5xIQR above Q3 (outside the ‘inner fence’). Extreme outliers are classed as 3xIQR 

below Q1 and 3xIQR above Q3 (outside the ‘outer fence’). With a normal probability 

distribution, it is estimated that approximately 99.2% of values fall within the inner fence 

(equivalent to ± 2.67 SD from the mean) and 99.99% of values within the outer fence 

(equivalent to ± 4.67 SD from the mean), (Dawson, 2011). In reality, with smaller sample 

sizes, it is reasonable to assume a smaller percentage of values fall within these inner 

and outer fences, as is assumed with the Student’s  t distribution.  

 



   29 

3 Introduction to Multiple Sclerosis 
 

3.1 Overview  
 

3.1.1 Etiology 
 
MS is the leading cause of non-traumatic neurological disability in young adults, 

estimated to affect 2.3 million people worldwide (Aarli et al., 2014). Symptom onset 

peaks between 20-40 years. For common forms of adult MS, higher prevalence rates 

are reported in women compared to men (~2:1 ratio), as well as in people living in higher 

latitudes, although this has decreased over recent decades (Kamm, Uitdehaag, 

Polman, & Kamm, 2014). Smoking, Vitamin D exposure and viral infections  are all risk 

factors, yet the etiology of MS is unknown (Kamm et al., 2014). Although many genetic 

variants have been found, MS is not considered hereditary and there is extensive 

overlap between genetic risk variants for MS and other autoimmune diseases 

(Baranzini & Oksenberg, 2017). 

 
 
 
 
 
 
 
 
 

 
3.1.2 MS pathology 
 

MS is classed as a chronic inflammatory autoimmune disease of the central nervous 

system (CNS), with the hallmark pathological feature being focal demyelination of white 

matter (WM) in the CNS (Noseworthy, Lucchinetti, Rodriguez, & Weinshenker, 2000), 

see Figure 3-1. These areas of demyelination are referred to as WM lesions or 

‘plaques’. It is thought that this damage is caused by autoreactive immune cells from 

the periphery crossing the blood-brain barrier (BBB) into the brain and spinal cord 

(Dendrou, Fugger, & Friese, 2015).  

Figure 3-1. An axial slice from a T2-FLAIR image 
showing widespread white matter hyperintensities. 
This data is an example MS patient from Chapter 5. 
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The BBB separates the blood from neural cells in the CNS; it is a made up of endothelial 

cells that line the micro-vessels to form a physical barrier impermeable to large 

molecules and immune cells, maintaining a regulated environment for neuronal 

signalling (Abbott, Rönnbäck, & Hansson, 2006). There is evidence that immune cells 

(T cells/lymphocytes) react against components within the myelin sheaths (e.g. myelin 

basic protein, proteolipid protein and myelin oligodendrocyte glycoprotein). Once the 

T-cells are activated they rapidly divide and secrete proinflammatory cytokines (small 

signalling proteins) which promote microglia and macrophage activity (Dendrou et al., 

2015). This leads to damage to the myelin sheaths and therefore a slowing of the 

signal propagation along the axon, leading to functional impairments. The exact process 

of how and why the immune cells infiltrate the BBB is still not known although many 

environmental factors have been proposed (O’gorman, Lucas, & Taylor, 2012).   

 

MS has been traditionally viewed as a disease of WM, with myelin loss proposed as the 

key cause of functional impairments, however there is clear evidence that grey matter 

(GM) inflammation, demyelination and degeneration occur. This dysfunction of GM, 

both cortical and subcortical, is present from the early stages of MS and changes with 

disease progression (Crespy et al., 2011; Klaver, De Vries, Schenk, & Geurts, 2013b; 

Lucchinetti et al., 2011). Post-mortem studies show significant GM demyelination and 

microglial activation. However, there is some evidence for less extensive influx of 

immune cells and BBB leakage in GM compared to WM (Bø, Vedeler, Nyland, Trapp, 

& Mørk, 2003; Bø, Vedeler, Nyland, Trapp, & Mørk, 2003; Klaver, De Vries, Schenk, & 

Geurts, 2013). Another challenge to the traditional view of MS pathology is the evidence 

that axonal injury, thought to be responsible for progressive neurological deficits 

(Neumann, 2003), is present at sites of active inflammation and demyelination early in 

the disease (Bitsch, Schuchardt, Bunkowski, Kuhlmann, & Brück, 2000; Ferguson, 

Matyszak, Esiri, & Perry, 1997). Axonal injury and GM atrophy have been typically 

regarded as secondary to myelin damage, however this may not be the case. There is 

much debate over whether one mechanism is solely responsible for initiating MS 

pathology, or whether there are parallel multiple mechanisms, and whether 

autoimmunity leads to cytodegeneration or vice versa (Dendrou et al., 2015; Stys, 

Zamponi, van Minnen, & Geurts, 2012), see Figure 3-2.  
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3.1.3 Symptoms and disease course 
 
Symptoms depend on stage of disease, and the location of damage across the brain or 

spinal cord and are therefore very varied. However, initial symptoms typically include: 

limb weakness, sensory disturbances, monocular visual loss (optic neuritis), double 

vision, gait instability and ataxia (Kamm et al., 2014). Later in the disease, bladder 

dysfunction, fatigue, heat sensitivity, vertigo, weakness or pain and spasms are often 

reported. Cognitive deficits (Guimarães, Sá, & Massano, 2012) and depression 

(Siegert, 2005) are also commonly reported. MS is classified into different disease 

subtypes or courses (Lublin et al., 2014). About 85% of cases are Relapsing Remitting  

MS (RRMS), characterised by periods of increased disability due to an immune attack 

(a relapse), interspersed with periods of functional recovery (a remission), see part A of 

Figure 3-3. 

 

 

 

 

 

 

 

 

Figure 3-2. Traditional theories say 
that dysregulation of the immune 
system is the initial event, eventually 
leading to tissue injury (Outside-In). 
Alternatively, cytodegeneration may 
happen first, promoting an 
autoimmune and inflammatory 
response (Inside-Out). 

Figure 3-3. Disability 
progression for different MS 
subtypes. The height of the 
light blue bars and dark blue 
triangles indicate functional 
disability, and the solid and 
dotted lines mark the course 
of this disability over time. 
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During relapses, peripheral immune cells infiltrate the CNS due to BBB breakdown and 

target myelin proteins, as explained earlier. During a remission, remyelination occurs 

(Franklin & Goldman, 2015). Earlier on in the disease course, this can often lead to full 

functional recovery. For remyelination to occur, oligodendrocyte progenitor cells have 

to migrate to the damaged area then differentiae into mature oligodendrocytes to 

form new myelin sheaths (Brück, Kuhlmann, & Stadelmann, 2003). This 

remyelination process becomes less efficient as the disease progresses (Franklin, 

2002), and functional recovery during remissions lessens. Approximately 75% of 

people with RRMS transition onto Secondary Progressive MS, a steady worsening of 

disability, relapses remaining in 40% of cases, see part B of Figure 3-3. Less common 

types of MS present with progressive disability from onset (15% with Primary 

Progressive MS, of which 40% have relapses), see part C of Figure 3-3. 

 

3.1.4 Diagnosis 
 

The most recently revised McDonald criteria for diagnosis of MS was last updated in 

2017 and is discussed by (Thompson et al., 2018). The key diagnostic criteria for MS 

are the dissemination in space and dissemination in time,  which can apply to lesions 

(i.e. across different areas of the CNS) or to symptoms tracked by clinical assessments. 

A diagnosis of MS will be given based on clinical history being suggestive of MS and 

when there is no better clinical explanation i.e. alternative diagnoses must be ruled out. 

When a patient without an existing diagnosis of MS presents with symptoms alongside 

evidence of inflammatory demyelinating activity (duration of at least 24 hours), the 

diagnosis of Clinically Isolated Syndrome is given. This diagnosis of Clinically Isolated 

Syndrome, without the full criteria being met, is classed as possible MS.   

 

A neurologist will perform physical examinations to check for changes in weakness, 

coordination, balance, and sensation.  Sometimes latency and amplitude of evoked 

potentials are examined, an impairment of which can indicate slowing of signal 

propagation along axons. This can be done for visual, auditory, sensory and motor 

systems. Visual is most common, considering optic neuritis is a common initial symptom 

in MS, as well as broader visual problems (Graham & Klistorner, 2017). The Expanded 

Disability Status Scale (EDSS) (Kurtzke, 1983) is a commonly used clinical metric to 

represent the degree of disability, and monitor changes over time. Scores range from 0 

to 10 (in 0.5 increments) and are based on clinical assessment of 8 systems: pyramidal 

(limb movement), cerebellar (co-ordination or tremor), brainstem, (speed and 

swallowing), sensory (loss or numbness), bowel or bladder function, visual function and 
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cerebral (cognitive) function. EDSS of less than 5 means the patient can walk without 

a walking aid. 

 

Conventional structural MRI can non-invasively detect lesions and therefore plays a big 

role in demonstrating disseminating symptoms in space and time. Typical sequences 

include T2-weighted and pre and post contrast T1-weighted images. Gadolinium-

enhancing lesions indicate BBB breakdown, i.e. areas of active inflammation. 

Importantly for a diagnosis of MS, there needs to be no alternative diagnosis that can 

better explain the clinical presentation, and blood and CSF samples help rule out other 

diagnoses. Analysis of a CSF sample (via a lumbar puncture) can contribute to MS 

diagnosis by looking for the presence of oligoclonal bands (bands of antibodies called 

immunoglobins) in the CSF compared to blood, and higher levels of other proteins 

evident of myelin breakdown (e.g. neurofilaments).   

 

3.1.5 Treatment 
 
There is no cure for MS. Drugs typically prescribed for MS can be divided into relapse, 

disease-modifying and symptomatic treatment (Kamm et al., 2014). Corticosteroids 

(typically methylprednisolone) are used to treat relapses, suppressing the immune 

system and decreasing inflammation. Disease Modifying Treatments (DMTs) are used 

to alter the disease course (mainly CIS, RRMS) by reducing the likelihood of relapses. 

Available first-line therapies include Interferon beta, Glatiramer acetate, Teriflunomide 

and Dimethyl fumarate. Some patients transition onto second-line therapies (or start on 

this, if the MS is very active), if disease activity remains, which 

include Fingolimod, Natalizumab, Ocrelizumab and Alemtuzumab  (Torkildsen, Myhr, & 

Bø, 2016). In general, these drugs work to inhibit the proliferation and migration of 

inflammatory cells into the CNS, and to shift the cytokine response from an 

inflammatory response to an anti-inflammatory profile, although many of the drug 

mechanisms are not completely known (Torkildsen et al., 2016). There are also many 

drug treatments prescribed based on specific symptoms experienced, for example for 

depression or spasticity. Symptomatic treatments are particularly important for people 

with progressive forms of MS, to limit the impact of disability on daily activities.  

 
3.2 Neurovascular and metabolic dysfunction in MS 
 

GM damage undeniably plays a role in MS pathology. In fact, as GM damage is not 

typically a part of the diagnostic process, this may go some way to explain the clinic-

radiological paradox  (Barkhof, 2002; Chard & Trip, 2017), i.e., the observation that the 



   34 

number and volume of WM lesions only explain a small amount of variability in clinical 

outcomes. However, despite recent advances in characterising GM damage with MRI, 

challenges with the sensitivity of these techniques remain (reviewed by Amiri et al., 

2018). Further, the mechanism that leads to GM damage, and the cause of MS 

pathology in general, is not fully known. Therefore, it is important that neuroimaging 

research also studies functional signals, as well as structural tissue characteristics, to 

try to further the understanding of causal mechanisms. Below, the evidence for 

neurovascular and metabolic dysfunction in MS is summarised, followed by a 

discussion of the mechanisms.  

 

3.2.1 Neuroimaging Evidence 
 

Vascular and metabolic impairments are acknowledged to be a pathological feature of 

MS (D’haeseleer et al., 2015; Lapointe, Li, Traboulsee, & Rauscher, 2018; Paling, 

Golay, Wheeler-Kingshott, Kapoor, & Miller, 2011; Spencer, Bell, & DeLuca, 2018). 

Perfusion alterations within lesions, normal appearing WM (NAWM) and GM have been 

widely reported and some key findings are summarised below. In the studies below, 

perfusion and oxygen metabolism have mostly been measured with ASL-MRI imaging 

or with DSC-MRI (where an intravenous paramagnetic contrast agent is administered, 

and the brain is scanned with a rapid T2-weighted imaging technique). There are a few 

studies using PET imaging and Dynamic Contrast-Enhanced MRI, which uses T1-

shortening due to a contrast agent to detect area of BBB disruption (Lapointe et al., 

2018). 

 

MS Perfusion changes in Normal Appearing Brain Tissue 

 

Grey matter. In GM, a reduction in CBF and CBV is seen in both cortical and deep GM 

structures, mostly reported for RRMS subtypes but also for Secondary Progressive MS 

and PPMS (Aviv et al., 2012; Brooks et al., 1984; D’haeseleer et al., 2013; Debernard 

et al., 2014; Hojjat et al., 2016; Inglese et al., 2007, 2008; Lycke, Wikkelsö, Bergh, 

Jacobsson, & Andersen, 1993; Ota et al., 2013; Papadaki et al., 2012; Rashid et al., 

2004; Steen et al., 2013; Sun, Tanaka, Kondo, Okamoto, & Hirai, 1998; Vitorino et al., 

2016). There is some evidence, in RRMS, that reduced CBF in many GM regions is 

seen in the absence of atrophy (Debernard et al., 2014). In support of this, another 

study reported decreases in CBF and CBV in frontal regions for cognitively impaired 

patients compared to unimpaired patients, after adjusting for volumetric differences 

(Vitorino et al., 2016).  
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White matter. In NAWM, DSC and PET studies have mostly reported decreases in 

CBF and CBV, and increases in mean transit time (MTT), in MS patients (Adhya et al., 

2006; Debernard et al., 2014; Ge et al., 2005; Guo, Jewells, & Provenzale, 2001; 

Inglese et al., 2008; Narayana et al., 2014; Papadaki et al., 2012; Steen et al., 2013; 

Sun et al., 1998). However, these CBF and CBV reductions in NAWM appear less 

consistent in the literature compared to the GM findings. A study by  Rashid et al (2004) 

reported an increased CBF in 60 patients with mixed subtypes, and Paling et al (2013) 

reported increased CBF in NAWM of RRMS patients. This inconsistency could be due 

to varying levels of inflammation in these patients populations; Bester et al (2015) 

characterised RRMS into a high or low inflammatory group depending on the number 

of new contrast enhancing lesions and found that the high inflammatory group had 

higher CBV and CBF values in NAWM. There is also evidence that patients with CIS 

have higher CBV, CBF and MTT values in deep GM and NAWM, compared to RRMS 

patients (Papadaki et al., 2012). 

 

These reductions of CBF and CBV have been shown to correlate with neurological 

disability (Lycke et al., 1993), fatigue (Inglese et al., 2007), cognition (Inglese et al., 

2008) and memory (Debernard et al., 2014). However, in the review by Lapointe et al 

(2018), they argue that “Despite compelling and reproducible perfusion abnormalities 

in MS, their relation to clinical measures of disability and disease severity has not been 

strongly established”, giving an overview of the studies that have addressed this. 

 

Perfusion changes in MS Lesions 

 

In active WM lesions, evidence points towards increased perfusion, mostly likely due to 

increased metabolic activity at the site of active inflammation. This increase was 

demonstrated in a longitudinal study by Wuerfel et al (2004). In 20 RRMS patients, they 

tracked the formation and progression of gadolinium-enhancing lesions. They showed 

regional increases in CBF and CBV 3 weeks before gadolinium enhancement. They 

saw a further increase at the time of gadolinium enhancement, and a decline to baseline 

during the 20 weeks after. Their study provides evidence for the role of the vasculature 

preceding BBB breakdown (or at least before this is measured with gadolinium 

enhancement). Other DSC or DCE studies also found CBV and CBF increased in 

contrast-enhancing lesions compared with NAWM (Ge et al., 2005; Haselhorst et al., 

2000; Ingrisch et al., 2012). For chronic WM lesions, looking at T1-hypointense, there 

is evidence for a reduction in CBF (Haselhorst et al., 2000; Li et al., 2014) presumably 

due to axonal loss therefore having less metabolic activity. There are very few studies 

looking at perfusion in cortical lesions, due to the technical challenges, however one 
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DSC study reports lower CBF and CBV in cortical lesions, in RRMS patients, compared 

to normal appearing GM (Peruzzo et al., 2013). A small subset of cortical lesions did 

show increased CBF and CBV, as with WM, suggestive of acute inflammation. A very 

recent ASL study (Dury et al., 2018) was the first to quantify CBF in cortical lesions 

using 7 Tesla MRI, showing the majority of cortical lesions to be hypoperfused 

compared to normal appearing GM.   

 

Cerebrovascular Reactivity in MS 

 

There is some evidence for impaired reactivity of blood vessels to a CO2 stimulus in 

MS, termed CVR, introduced in Chapter 2.3.3. PASL was used to measure the CBF 

response to hypercapnia, compared to normocapnia, finding decreased global GM CVR 

in patients in multiple brain regions, and a negative correlation between GM CVR and 

lesion load (Marshall et al., 2014). No baseline CBF differences between groups were 

reported in this study. The same research group reported, in a different MS cohort, 

decreases in CVR in different functional networks (default mode, frontoparietal, 

somatomotor, and ventral attentional), and again correlations with lesion load and GM 

atrophy (Marshall, Chawla, Lu, Pape, & Ge, 2016). A study by a different research group 

reported no significant difference in CVR in patients with RRMS across three different 

time points (first two days after a relapses but pre-treatment, just after steroid treatment, 

and one month later), as well no differences with healthy controls at one time point 

(Uzuner, Ozkan, & Cinar, 2007). This study used transcranial Doppler imaging to asses 

vasomotion in response to a BH task, so there are many methodological factors that 

could explain their different findings to Marshall et al (2014; 2016).  

 

Oxygen Utilisation in MS 

 

Many studies have used the BOLD-fMRI contrast to demonstrate functional connectivity 

deficits in MS (e.g. Sbardella, Petsas, Tona, & Pantano, 2015), altered task responses 

which relate to disability or structural damage (Hubbard et al., 2016; Rocca & Filippi, 

2007) and as a way to assess functional reorganisation of the cortex (Tomassini et al., 

2012). This research contributes to the evidence that there is a strong hemodynamic 

impairment in MS. However, as explained in Chapter 2.3.1, the BOLD response alone 

can be hard to interpret in a patient group; despite it reflecting changes in oxygen usage, 

it is a relative composite signal that depends on CBF, CBV, oxygen metabolism 

changes, and the baseline tissue activity. Therefore, research is needed to measure 

and quantify more specific and interpretable signals, such as the fraction of oxygen 

extracted from the blood (OEF) or rate of oxygen metabolism in the tissue (CMRO2). 
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Very few studies have characterised such signals in an MS group. Some early papers 

using PET and MRI did show reductions in CMRO2 and CBF in both WM and GM, with 

correlations with atrophy, cognition, vision, EDSS and number of relapses (Brooks et 

al., 1984; Lycke et al., 1993; Sun et al., 1998). One MRI studying characterised CMRO2 

at rest in an MS population using a T2-relaxation-under-spin-tagging (TRUST) 

technique, which gives a global estimate of oxygen consumption (Ge et al., 2012).  They 

found increased global venous oxygen saturation, decreased OEF and decreased 

CMRO2, which significantly correlated with EDSS and lesion load. 

 

3.2.2 Discussion of the mechanisms 
 

Finding both increases and decreases in perfusion within lesioned tissue can be partly 

explained by the levels of inflammation and metabolic activity at that stage of the 

lesion’s development. What is less clear is why there are alterations in BOLD, CBF, 

CBV and CMRO2 in normal appearing WM and GM. It is thought that this reduced 

perfusion and oxygen metabolism may contribute to the progressive neurodegeneration 

seen in MS, due to tissue hypoxia (Trapp & Stys, 2009), yet the mechanisms are 

unclear. 

 

It is possible that perfusion to the active tissue is restricted in some way, as there is 

increased cardiovascular risk reported in MS, but this increased risk appears to be small 

(Christiansen et al., 2010; D’haeseleer, Cambron, Vanopdenbosch, & De Keyser, 

2011). A simple explanation for reduced perfusion is reduced metabolic demand: if 

there is neuronal loss, less blood will need to flow to the area as less energy is being 

used. However, as discussed in section 2.7.1, there is evidence for perfusion changes 

before neuronal loss. Furthermore, reduced blood flow and oxygen metabolic changes 

are often reported as widespread changes across the brain, and not just localised near 

lesioned areas. Some studies report increases in CBF and CBV in NAWM and 

decreases in GM in the same patients (e.g. Rashid et al., 2004), as well as correlations 

between T2 lesion load and global cortical CBF (e.g. Amann et al., 2012) and CVR (e.g. 

Marshall et al., 2014). It is of course possible that there is more extensive damage 

across the GM and WM that is not being measured, however it still appears that focal 

BBB disruption occurs alongside widespread functional perfusion changes. 

 

Another proposed mechanism is the increase of different vasoactive agents circulating 

in the blood, released from reactive astrocytes near lesions, or upregulated due to the 

presence of many proinflammatory cytokines. NO has been shown to be elevated in 

MS lesions (Smith & Lassmann, 2002a), and has been proposed as a potential mediator 
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leading to hypoperfusion.  It is a strong vasodilator, and therefore its overproduction 

could desensitise smooth muscle function over time, resulting in decreased vascular 

capacity (Marshall et al., 2014). Furthermore, NO is synthesized by endothelial cells 

(which make up the BBB), and one study showed patients with endothelial dysfunction 

to have decreased cerebrovascular reactivity (Lavi, Gaitini, Milloul, & Jacob, 2006). A 

different vasoactive agent, Endothelin-1 (ET-1), has also been proposed as a potential 

mediator (D’haeseleer et al., 2013). ET-1 is a vasoconstrictor secreted by endothelial 

cells.  D’haeseleer et al (2013) reported higher plasma ET-1 levels in patients, from 

both the internal jugular vein and a peripheral vein, and only in patients was the internal 

jugular ET-1 plasma levels higher than the ET-1 levels in the peripheral vein. They 

interpreted this as evidence that ET-1 is released from the brain into circulation. They 

also reported, with data from an ASL acquisition, that CBF was lower in MS patients, 

but increased to control levels after an ET-1 antagonist administration. They included 

post-mortem immunohistochemistry analysis of  WM tissue, from different patients, 

suggesting reactive astrocytes to be the likely source of ET-1 increase. Increased NO 

and ET-1 are just two examples of ways in which the inflamed environment can have a 

direct effect on blood vessels, potentially changing how they respond to metabolic 

demands of neural activity. 

 

There is evidence for mitochondrial dysfunction in MS (Paling et al., 2011) and this has 

been proposed as a potential mechanism leading to the neurodegeneration seen, with 

the mitochondria not able to make sufficient ATP in response to energy demands. Ge 

et al (2012) explain how NO may also play a role in this, as NO inhibits oxygen binding 

to mitochondria, affecting ATP synthesis. They explain how this is termed ‘metabolic 

hypoxia’ – even if there is enough blood flow to an area, the cells and tissue may be 

unable to use it properly.  

 

3.2.3 MS and MEG literature 
 

Compared to fMRI, there is a small amount of literature using MEG imaging to 

investigate neural oscillations in MS, as done in this thesis. Studies have mostly focused 

on MEG connectivity, from resting state paradigms. For theta band, there are reports of 

increased connectivity in MS (Schoonheim et al., 2013; Tewarie et al., 2014). For the 

alpha band, there are reports of decreased connectivity in MS (Cover et al., 2006; 

Tewarie et al., 2013, 2014), but some studies split their analysis into smaller frequency 

bands and show increased connectivity in lower (8-10Hz) alpha bands and decreased 

connectivity in upper (10-13Hz) alpha bands, (Schoonheim et al., 2013; Van der Meer 

et al., 2013).  For beta bands, increased network strength has been reported 
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(Schoonheim et al., 2013; Tewarie et al., 2013) and decreased functional connectivity 

(Tewarie et al., 2014). Thalamic volumes have been linked to network disruption in MS 

(Tewarie et al., 2013, 2015). Although it is difficult to pull out consistent directional 

trends, there is clear evidence showing abnormal functional network connectivity in MS, 

and many of these alterations in connectivity where shown to correlate with impaired 

cognition or disease severity. There are a few recent studies showing impaired visual 

and motor task-based MEG responses (Arpin et al., 2017; Barratt et al., 2017a) and 

these are discussed in Chapter 4.  

 
As explained earlier, one explanation for reduced CBF or CMRO2 in MS is simply 

reduced demand from the tissue. However, in these studies that looked at flow or 

oxygen metabolic changes in MS, neural activity was not directly measured.  In order 

to address this mechanism more directly, we need to establish if there is a decrease in 

flow or oxygen metabolism above and beyond any decrease in neuronal activity. This 

is the rationale for measuring MEG signals in MS, in order to correlate with fMRI signals 

as a measure of NVC. Studying the amplitude and frequency of brain oscillations with 

MEG can also be informative for understanding disease mechanisms in MS.   
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4 The coupling between visual gamma oscillations and BOLD 
and CBF signals: investigating neurovascular coupling in 
Multiple Sclerosis 

 

The work presented in this chapter has been published as a part of a peer-reviewed 

journal article:  

 

Stickland, R., Allen, M., Magazzini, L., Singh, K. D., Wise, R.G., Tomassini, V. (2018). 

Neurovascular Coupling During Visual Stimulation in Multiple Sclerosis: A MEG-fMRI 

Study. Neuroscience (in press). Available online from 23rd March 2010.  

DOI: doi.org/10.1016/j.neuroscience.2018.03.018 

 

4.1 INTRODUCTION 
 

There is abundant evidence showing vascular and metabolic impairments in MS and 

this was covered in detail in Chapter 3.2. In summary, there is evidence for reduced 

blood flow, less reactive blood vessels, altered levels of vasoactive compounds, and 

reductions in oxygen metabolism in MS. NVC, the mechanism responsible for ensuring 

local blood flow increases to an area with increased neural activity, is affected by many 

of these processes. Therefore, NVC may be altered in MS, which would likely contribute 

to tissue dysfunction and damage. 

 

In this chapter, we investigated NVC in MS using two complementary non-invasive 

imaging modalities: MEG and fMRI. Commonly, when cortical networks are activated 

there is an increase in the signal power of faster oscillations, i.e. in the gamma band 

(Demanuele, James, & Sonuga-Barke, 2007; Jia & Kohn, 2011). Most findings show a 

positive correlation between changes in gamma band activity (typically >30Hz) and 

haemodynamic responses (Mukamel et al., 2005; Niessing et al., 2005; Zumer et al., 

2010), as well as good spatial coherence between these signals (Muthukumaraswamy 

& Singh, 2008; Singh et al., 2002). By displaying the same reversing checkerboard 

stimulus at five levels of contrast, we probed neural oscillations, BOLD and CBF 

responses in the visual cortex, expecting them to increase monotonically with 

increasing contrast (Goodyear & Menon, 1998; Hall et al., 2005; Henrie & Shapley, 

2005; Muthukumaraswamy & Singh, 2009; Perry, Randle, Koelewijn, Routley, & Singh, 

2015). We used the positive relationship between gamma power (30 – 80Hz) and fMRI 

signals as an empirical measure of NVC. This design addresses the question of whether 

there are vascular and metabolic alterations in MS above and beyond alterations in 
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neural activity.  

 

At the time of this research, no studies had reported on gamma oscillatory changes in 

MS. Given possible GM dysfunction and damage, we predicted a reduction in gamma 

power in the MS group. Based on the vascular and metabolic impairments reported in 

MS, we predicted that the MS group would have a reduced haemodynamic response 

to stimulation, and that NVC in the visual cortex would be altered.  

 

4.2 METHODS 
 

Participants 
 

Patients with a diagnosis of MS (Polman et al., 2011) were recruited at the University 

Hospital Wales, Cardiff. Patients were treatment naïve, but eligible to start first line 

disease-modifying treatment and had not experienced a relapse in the last 3 months. 

Age and gender matched healthy controls were recruited. Written consent was obtained 

according to the protocol approved by Research Ethics Committee, Wales, UK.  

 

Data Collection 
 

All participants had a behavioural session, a MEG and a MRI scan performed on the 

same day, except for one control who returned on a different day for the MRI scan.  

 

Behavioural Testing. Patients’ disability was assessed using the EDSS score 

(Kurtzke, 1983). Tests from the MS Functional Composite (Cutter et al., 1999) were 

carried out on the patients and controls: 9 Hole Peg Test (9-HPT) for upper limb motor 

function, the Timed 25-Foot Walk (T25-FW) for mobility and walking, and the Paced 

Auditory Serial Addition Test (PASAT) 2 and 3 seconds as a measure of sustained 

attention. Visual acuity was assessed, in each eye separately, with a SLOAN letter chart 

(Precision Vison) at 100%, 25%, 10%, 2.5%, 1.25% and 0.6% contrast, expressed as 

a decimal that represented viewing distance divided by the letter size (in M-units). All 

participants except five required corrective lenses for daily use and wore them 

throughout the testing sessions.  

 

Visual paradigm during scanning. Identical stimulation parameters were used for 

fMRI and MEG. The visual stimulus consisted of a black and white checkerboard, 

polarity reversing every 250ms. Checks were squares, with a spatial frequency of 1 

cycle per degree. The checkerboard was displayed on a mean luminance background, 



   42 

with a small red fixation circle in the centre. The rest conditions consisted only of this 

background and fixation. For both scanning modalities, the entire stimulus field was 

16x16° of visual angle and the stimulus was projected on screens with a 1024 x 768 

resolution and 60 Hz refresh rate. The checkerboard was displayed at 5 Michelson 

contrast levels: 6.25%, 12.5%, 25%, 50% and 100%. Stimuli were displayed in 30 s 

blocks and each contrast level was presented 4 times. The rest blocks were also 30 s 

long and were presented 8 times. The block order was pseudorandomised across 

participants, but for each participant the same block order was used for both MEG and 

fMRI. The task lasted for 14 minutes and was repeated twice, once for each eye, with 

the untested eye covered with a cotton pad. We tested separate eyes because a 

common initial presentation of MS is optic neuritis, an acute, often unilateral, visual 

impairment characterised by a reduction in visual acuity and connectivity in visual 

pathways (Polman et al., 2011; Toosy, Mason, & Miller, 2014) The experiments were 

programmed in MATLAB, using the Psychophysics Toolbox extensions.  

 

MEG data acquisition. A 275-channel CTF axial gradiometer system was used to 

obtain whole-head MEG recordings, sampled at 1200 Hz (0-300 Hz band-pass). An 

additional 29 reference channels were recorded for noise cancellation, and 3 of the 275 

channels were turned off due to excessive sensor noise. Fiduciary coils were placed at 

fixed distances from three anatomical landmarks (nasion, left, and right pre-auricular) 

and the positions of the coils were monitored continuously. For co-registration, these 

landmarks were later identified on the subject’s structural MRI and also verified with 

digital photographs. The MEG data were acquired continuously and epoched offline. 

 

MRI data acquisition. MRI data were acquired on a 3T GE HDx MRI system using an 

eight-channel receiver head coil. A 3D T1-weighted structural scan was obtained for 

each participant: fast-spoiled gradient recalled echo (FSPGR): acquisition matrix = 256 

x 256 x172, 1x1x1 mm voxels, TE = 2.9ms, TR = 7.8ms.  

 

During the visual task, a PASL scan sequence was acquired with a dual GRE spiral k-

space readout (TR/TE1/TE2 = 2200/3/29ms, 64 x 64 x 12 slices, voxels 3.4 x 3.4 x 7 

mm, 1mm inter-slice gap, ascending order, 22cm field of view in-plane, flip angle 90°), 

the first echo being used to estimate CBF changes and the second echo being used for 

BOLD time series analysis. The proximal inversion and control for off-resonance effects 

(PICORE) labelling scheme was used, with a label thickness of 20cm (TI1 = 700ms, 

TI2 = 1600ms for most proximal slice) and 10mm gap between labelling slab and bottom 

slice. An adiabatic hyperbolic secant inversion pulse was used with quantitative imaging 

of perfusion using a single subtraction (QUIPSS II), with a 10cm saturation band 
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thickness (Wong, Buxton, & Frank, 1998). 191 tag-control pairs resulted in 382 volumes 

being acquired over the 14-minute task. Whilst the participant was at rest, two single 

echo multi TI PASL scans (Chappell et al., 2010) were acquired in order to estimate 

baseline perfusion (scan 1, TIs: 400, 500, 600, 700ms, scan 2, TIs: 1000, 1100, 1400, 

1700 and 2000ms). The same PICORE labelling sequence was used as explained 

above, with a QUIPSS II cut of at 700ms for TIs > 700ms. A variable TR was used in 

order to minimise scan time. 16 tag-control pairs for each TI were acquired.  

 

Before both PASL scans, a calibration scan was acquired in order to obtain the 

equilibrium magnetisation (M0) of cerebrospinal fluid for the purposes of perfusion 

quantification: a single volume with the same acquisition parameters but without the 

ASL preparation and with an effectively infinite TR (so magnetization fully relaxed). 

Additionally, a minimum contrast scan was acquired to correct for received image 

intensity variation with the same previous parameters, except TE = 11ms, TR = 2s, and 

8 interleaves.  

 

Data analysis  
 

Behavioural data analysis. The 9-HPT, T25-FW, PASAT-2, and PASAT-3 were all 

scored with the ‘Brief Repeatable Battery of Neuropsychological Tests in Multiple 

Sclerosis’ manual. Responses from 9-HPT and the T25-FW were measured in seconds 

to complete, and the PASAT in number of correct trials. For visual acuity, the MAR value 

(MAgnification Requirement – the inverse of the visual acuity score) was calculated. 

Values were then expressed in log(MAR) units, which indicate “visual acuity loss”. A 

value of 0 indicates no loss so is equivalent to visual acuity at the reference standard 

(20/20), and an increment increase of 0.1 log(MAR) indicates one line of loss.  

 

MEG data analysis. The analysis of MEG data was performed in MATLAB using the 

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). First, data segments 

including large muscle artefacts were identified semi-automatically (by applying 

individual z-value thresholds to the z-transformed sensor time-series, band-pass filtered 

between 110-140 Hz) and excluded. Second, eye-movement artefacts and cardiac 

signals were projected out of the data using independent component analysis. The 30 

s stimulus blocks were then epoched into 1 s long trials (4 reversals within one trial) 

and the 30 s rest blocks were also epoched into 1 s trials.  

 

For source localisation, each participant’s anatomical MRI was divided into an irregular 

grid by warping the individual MRI to the MNI template brain and then applying the 
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inverse transformation matrix to the regular MNI template grid (5mm isotropic voxel 

resolution), allowing source estimates at brain locations directly comparable across 

participants. For each grid location inside the brain, the forward model (i.e. the lead 

field) was calculated for a single dipole orientation by singular value decomposition, 

using a single-shell volume conduction model (Nolte, 2003). Source power at each 

location was estimated using an LCMV (linearly constrained minimum variance) 

beamformer (Van Veen, Van Drongelen, Yuchtman, & Suzuki, 1997). The weights were 

computed using a covariance matrix calculated after band-pass filtering the data 

between 30 and 80 Hz, combining trials from all conditions. For each participant, the 

voxel of greatest increase in gamma power (30-80 Hz) was located within either the 

Calcarine sulcus (primary visual cortex) or two adjacent regions (cuneus and lingual 

gyrus), found by contrasting the 1 s stimulus epochs with the 1 s baseline epochs (as a 

percentage change from baseline). Anatomical masks were created using the AAL atlas 

(Tzourio-Mazoyer et al., 2002). At this peak location, the source-level time-series were 

reconstructed by multiplying the sensor-level data by the beamformer weights. Trials 

were represented in the time-frequency domain by calculating the amplitude envelope 

of analytic signal obtained with the Hilbert transform. Stimulus-induced peak gamma 

power was extracted, separately for each visual contrast condition. This analysis was 

performed separately for the left and right eye acquisitions. The analysis steps are 

summarised in Figure 4-1. 
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To assess potential alterations in transmission to the visual cortex, latencies of VEFs 

were characterised, for the left and right eyes separately, and across all five contrast 

conditions together. The trials were first re-epoched around the time of reversal (0 s), 

with the baseline period defined as -0.04 to 0 s, and the stimulus period as 0 to 0.21 s. 

The data were then low-pass filtered at 15 Hz and baseline corrected. The VEFs were 

first investigated at the sensor level (mirroring methods used clinically for VEPs) by 

Figure 4-1. Summary of the analysis steps used in order to characterise the peak 
gamma power response, for each participant. 
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averaging over trials for five posterior occipital sensors. The VEFs were subsequently 

also characterized in source space (more comparable with the analysis of the gamma 

power changes) by multiplying the pre-processed sensor level data with the 

beamformer weights for the location found to be the peak gamma response to the 

checkerboard stimuli. For both types of analysis, the latency of the peak amplitude 

between 0 and 0.21 s was then extracted for each participant. 

 

MRI data analysis 
 

Lesion filling. Lesion filling was carried out with the FSL function lesion_filling, 

following the protocol by Battaglini, Jenkinson, & De Stefano (2012), to improve 

registration, segmentation and volumetric measures of brain tissue. In brief, a lesion 

mask was manually created by drawing around any visible lesions on the patient's T1-

weighted image. At least one lesion was visible for 11 out of the 14 patients. For these 

11 patients, the lesion mask, their T1-weighted image, and a WM mask (FAST 

segmentation) was used in order to “fill” the lesion area in the T1-weighted image with 

intensities that are similar to those in the non-lesioned neighbourhood (WM only). 

 

Tissue volumes. Brain tissue volume, normalised for subject head size, was estimated 

with SIENAX in FSL (Smith, De Stefano, Jenkinson, & Matthews, 2001; Smith et al., 

2002). For patients with visible lesions, their T1-weighted images with filled lesions 

where inputted. Brain and skull images were extracted from the single whole-head input 

data. The brain image was then affine-registered to MNI152 space, using the skull 

image to determine the registration scaling, and to obtain the volumetric scaling factor. 

Next, tissue-type segmentation with PVE was carried out in order to calculate total 

volume of brain tissue (and volume of GM and WM separately), normalised for head 

size using the volumetric scaling factor.  

 

Regional GM tissue volumes from the visual cortex were calculated for each subject. 

These visual ROIs were defined functionally, based on significant group activation to 

the visual checkerboard stimulus (explained below). The group visual ROI for the left 

and right eye stimulation were transformed from standard space to T1 subject space 

and multiplied with the GM partial volume estimate (PVE) image to give visual GM ROIs 

for each subject. Estimates of volume within these ROI were then normalised with the 

volumetric scaling factor outputted from the SIENAX analysis.  

 
BOLD and CBF response to the visual checkerboard stimulus. The BOLD signal 

was isolated by surround averaging the second echo to remove the tag-control signal. 
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Registration of functional data to individual T1 structural data (linear, 6 degrees of 

freedom - DOF) and then to MNI standard space (linear, 12 DOF) was carried out using 

FSL FLIRT. Motion correction of time series data was performed using MCFLIRT, non-

brain removal using BET spatial smoothing using a Gaussian kernel of FWHM 5mm, 

and a high-pass temporal filter applied with a cut off of 90s. Using FEAT, perfusion time 

courses were modelled from the first echo data with the inclusion of regressors explicitly 

describing the tag-control signal differences. Five stimulus conditions, and an average 

across the conditions, were specified as six output contrasts relative to the rest 

conditions.  

 

A higher-level analysis was performed with FEAT using a mixed effects model (FLAME 

1+2) to model the effect of group membership. Z statistic images were thresholded 

using clusters determined by Z>2.3 and a (corrected) cluster significance threshold of 

p = 0.05. A group region of interest (ROI) was generated from the output of this group 

analyses. The group ROI was determined as common significant voxels in the BOLD 

and CBF thresholded z-statistic images (for the contrast averaged across conditions 

and groups). After binarising this group ROI and transforming to subject space for each 

participant, a percentage signal increase in BOLD and percentage increase in CBF was 

calculated for each participant within that region. This higher-level analysis and group 

ROI creation was done separately for the left and right eye acquisitions. The final BOLD 

and CBF values were then averaged across eyes for each participant.  

 

Baseline perfusion. As patients with MS are reported to be hypoperfused at rest a 

measure of resting CBF in ml/per/100g per min was quantified to establish if there were 

any differences in baseline perfusion. Baseline perfusion was estimated following a 

protocol described by (Warnert et al., 2014), using in-house scripts that used AFNI 

software (Analysis of Functional NeuroImages) and FSL-BASIL (Chappell, Groves, 

Whitcher, & Woolrich, 2009). In brief, ASL scans were first motion corrected using AFNI. 

All TIs (from both scans) were merged into one 4D dataset which included a single 

mean difference image per TI, averaged over the 16 volumes. The M0 image was 

registered to this perfusion series and a mask of the lateral ventricles was created, and 

this was used in the subsequent model to calculate the equilibrium magnetization of 

blood (M0). A two-compartment kinetic model was fitted to the multi-TI data to calculate 

baseline perfusion, in native space, in ml/100g/min along with mean arrival time 

(Chappell et al., 2010). Individual subject GM masks (from partial-volume tissue-

segmentation, see Tissue Volumes above) were transformed to native space in order 

to estimate the baseline blood flow over GM. The standard-space ROI used in the 

checkerboard analysis was also transformed to native space, and the baseline 
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perfusion in this region was used to convert fractional estimates of task-induced change 

in blood flow to changes in absolute blood flow units.  

 

Characterising Neurovascular Coupling 

 

We characterised NVC by fitting a linear model that reflected the relationship between 

the electrophysiological response and the haemodynamic response to the visual 

checkerboard stimulus. Three coupling models were fitted for each subject: the 

relationship between gamma oscillations and the relative BOLD signal, the relative CBF 

signal, and the quantified CBF signal. We used BOLD signal changes, dependent on 

both metabolism and flow, as this has been the focus of most previous studies relating 

MEG and fMRI signals. We also quantified this CBF signal change in ml/100g/min, due 

to evidence showing baseline CBF can affect BOLD and CBF responses to stimulus 

(e.g. Cohen, Ugurbil, & Kim, 2002), and that absolute changes in CBF may more closely 

represent the neuronal response to a stimulus (Whittaker, Driver, Bright, & Murphy, 

2016).  

 

For each subject, there were 10 data points: one point for each visual contrast and for 

each eye. We chose not to average across eyes in order to retain useful variance in the 

responses between eyes, therefore helping us to better model the relationship between 

MEG and fMRI signals. The gradient of the line, extracted for each participant, was 

taken to be our coupling measure, indicating the strength of the relationship between 

these signals.  

 

Statistical analysis of group differences and stimulus responses 

 
Statistical analysis was carried out using IBM SPSS Statistics (Version 20) and R 

software packages (R Core Team, 2017). Independent t-tests assessed differences 

between MS patients and controls on age, behavioural measures, tissue volumes and 

baseline signals. Mann-Whitney U-tests were used to assess differences between MS 

patients and controls on the visual acuity scores, for each contrast level tested. Mixed 

ANOVAs were used to assess the effect of group membership and eye on the latency 

of the peak (of the VEFs), and the effect of group membership and contrast level on 

peak gamma power, BOLD and CBF metrics. For the NVC measure, gradients and 

intercepts were extracted from the linear model that was fitted separately for each 

person, and Mann-Whitney U-tests were used to test the differences in medians 

between MS patients and controls.   
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For the Mann-Whitney U-tests, an exact sampling distribution was used for U. For each 

comparison, the shape of the distribution was similar between groups, as assessed by 

visual inspection, so medians were compared. GG in the results refers to the 

Greenhouse-Geisser correction used when the assumption of homogeneity of 

variances is violated. In these statistical analyses, all hypothesis testing was two-tailed. 

The family wise error rate was controlled for dependent tests with the Holm-Bonferroni 

correction, a popular variant of the Bonferroni correction that is less conservative (Holm, 

1979). 

 

4.3 RESULTS 
 
Demographics and Clinical Profile 

 
The demographic and clinical characteristics of the 14 patients and 10 healthy controls 

are reported in Table 4-1. One patient did not complete the T25-FW. Patients were 

significantly slower than controls when completing the 9-HPT task and showed a trend 

towards being significantly slower in the T25-FW task.  

 

 
Patients (14) Controls (10) P-value 

Age 43.46 ± 3.50 42.40 ± 3.73 0.69 

Sex (M/F) 5/9 1/9 0.34 

Disease Duration (Years) 7.31 ± 2.06 - - 

EDSS (Median, Range) 3.0, 0 - 4.5 - - 

History of Optic Neuritis 6/14 - - 

9-HPT (seconds) 25.65 ± 0.82 22.41 ± 0.95 0.02 

T25-FW (seconds) 13.08 ± 1.58 9.63 ± 0.19 0.05 

PASAT-3s (no. correct responses) 46.54 ± 2.57 48.10 ± 3.37 0.71 

PASAT-2s (no. correct responses) 31.92 ± 1.86 36.20 ± 2.95 0.21 

Normalised Brain Volume (mm3) 

(lesion-filled images for patients)  
1,492,761.57 

± 26644.57 

1,523,284.20 

± 25006.90 
0.43 

Table 4-1. Demographic and clinical characteristics. Values are Mean ± SEM. 9-HPT is 
a mean of two trails for each hand. T25-FW is a mean of two trials. P-values from two-
tailed unpaired t-tests (except for Fisher's Exact Test used to test sex differences). 
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Visual acuity and VEFs  

 
One patient was not included in the right eye group analysis due to blindness of the 

right eye. The log(MAR) values were extremely non-normal in their distribution across 

eyes and groups, and different cells of the design (group vs. eye vs. contrast level) had 

different variances. Therefore, as the group difference was the focus, separate Mann-

Whitney U tests were used to test the group difference in the visual acuity at each 

contrast level, and the p values were corrected for multiple comparisons with the Holm-

Bonferroni correction. Group differences were assessed at each contrast (100%, 25%, 

10%, 5%, 2.5%, 1.25%, 0.6%) and for each eye (left, right). There were no significant 

group differences between MS patients and controls in visual acuity scores (Table 4-2). 

We investigated the effect of group (controls, patient) and eye (left, right) on the latency 

of the peak amplitudes of the VEFs, for the sensor and source space analyses. The 

data were normally distributed, with no outliers. Results reported here are Mean ± 

Standard Error of the Mean(SEM), expressed in milliseconds. For latencies calculated 

in sensor space, MS patients (146 ± 9) and controls (147 ± 10) did not have significantly 

different latencies (F(1,21) = 0.001, p = 0.98), and the left eye (156 ± 9) and the right 

eye (137 ± 8) also did not differ (F(1,21) = 3.04, p = 0.10), for both groups. The results 

were similar for latencies calculated in source space: there was no main effect of group 

(MS patients: 137 ± 5, controls: 142 ± 6, F(1,21) = 0.38, p = 0.55) and no main effect of 

eye (left: 145 ± 6, right: 134 ± 6, F(1,21) = 1.83, p = 0.19). There was no significant 

interaction between group and eye for the latencies calculated in sensor space, (F(1,21) 

= 0.001, p = 0.98), or source space (F(1,21) = 0.16, p = 0.70).  
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Table 4-2. Median log(MAR) visual acuity scores, for each contrast level and eye. 
Higher scores indicate greater visual acuity loss. Mann-Whitney U-tests, with holm-
bonferroni correction (last row shows the threshold at which the p-value is significant.

Eye 
Visual 

Contrast 
(%) 

MEDIAN 
Mann-

Whitney U 
P 

value 
Significant 
if less than: 

Controls Patients 

Left 

100 0.10 0.00 52.5 0.63 0.016 

25 0.10 0.10 62 0.92 0.05 

10 0.20 0.20 69 0.58 0.01 

5 0.40 0.49 72.5 0.38 0.006 

2.50 0.85 1.00 80 0.20 0.004 

1.25 1.65 2.00 73 0.42 0.006 

0.60 2.00 2.00 69 0.58 0.01 

Right 

100 0.00 0.05 79.5 0.20 0.004 

25 0.10 0.10 79 0.23 0.005 

10 0.20 0.25 71 0.50 0.007 

5 0.40 0.49 75 0.35 0.005 

2.50 0.80 1.30 82.5 0.14 0.004 

1.25 2.00 2.00 71 0.47 0.007 

0.60 2.00 2.00 66 0.72 0.025 



   52 

MEG and fMRI responses to reversing checkerboard stimuli 

 
There were no significant differences in GM volume, baseline CBF or baseline gamma 

power between MS patients and controls, across the whole brain and within the regions 

of interest used to characterise the visual response to the checkerboard stimulus (Table 

4-3).  

 

  Group N Mean Std. Dev P value 

GM Volume (Total) 
(mm3) 

Controls 10 788328.70 55506.80 
0.29 a 

Patients 14 755677.88 66346.84 

GM Volume (L) 
(mm3) 

Controls 10 5514.29 673.20 
1.00 c 

Patients 14 5515.19 768.02 

GM Volume (R) 
(mm3) 

Controls 10 4154.44 530.05 
0.90 b 

Patients 14 4184.46 585.56 

Baseline CBF GM  
ml/100g/min 

Controls 10 36.91 10.17 
0.90 c 

Patients 13 37.34 6.32 

Baseline CBF GM 
(L ROI) ml/100g/min 

Controls 9 57.73 21.18 
0.45 a 

Patients 13 51.96 15.16 

Baseline CBF GM 
(R ROI) ml/100g/min 

Controls 9 57.30 21.00 
0.48 b 

Patients 13 51.70 16.81 

Baseline Gamma  
(L ROI) *10 -14 Tesla 

Controls 10 6.10 0.83 
0.10 b 

Patients 13 7.07 1.63 

Baseline Gamma  
(R ROI) *10 -14 Tesla 

Controls 10 6.80 1.19 
0.94 c 

Patients 13 6.80 1.29 

 
L refers to left and R refers to right: the ROIs refer to the location used to extract 
the stimulus response to the checkerboard. Gamma power is a mean of the 
power at each frequency between 30-80 Hz, averaged over the 30-s rest block. 
 

Table 4-3. Tissue volumes, and baseline signals compared between groups. P-values 
for GM Volume (3), Baseline CBF (3) and Baseline Gamma Power (2) were corrected 
separately with Holm-Bonferroni: a is significant at p<0.017, b at p<0.05, c at p<0.025. 

 

Spatial comparison of MEG and fMRI results 

 
One control’s fMRI data was not useable due to a corrupted image file. Figure 4-2 

shows the location of the ROI used in the BOLD and CBF analyses, for all participants, 

overlaid onto the primary visual cortex. Included in Figure 4-2 are the locations of the 

peak gamma responses for each patient and control, where the time-frequency analysis 

was performed. Figure 4-3 explores the whole-brain MEG source localisation plots for 
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each group. Figure 4-4  shows the whole-brain CBF activity for each group, and Figure 

4-5 the whole-brain BOLD activity. Patients showed significantly higher CBF activity in 

a small cluster located in the intracalcarine and supracalcarine cortex, as well as the 

cuneus. Patients showed significantly higher BOLD activity in lingual gyrus, 

intracalcarine cortex, pre-cuneus and cuneus. These were localised using the Harvard-

Oxford Cortical Structural Atlas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. BOLD and CBF responses extracted over a group ROI (yellow), overlaid 
onto V1 (red). Top plot = left eye, bottom plot = right. Dots indicate location of the peak 
gamma response (% change) for each individual (blue = 10 controls, green = 13 
patients). 
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Figure 4-3. Beamformer contrast images (30-80 Hz), projected onto a template brain. 
Negative t-stats indicate lower amplitude for patients compared to controls. T-values 
are plotted here at the uncorrected level. Data averaged over both eyes. 
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Figure 4-4. Significant CBF voxels at the group level in response to the checkerboard. 
Data is averaged over both eyes. Significant activity shown is the average activity 
across all visual contrasts. Voxel clusters thresholded at Z>2.3 and p<0.05. Right side 
of the image corresponds to the left side of the brain. No voxels showing greater activity 
for the control group compared to the patients. 
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Figure 4-5. Significant BOLD voxels at the group level in response to the checkerboard. 
Data is averaged over both eyes. Significant activity shown is the average activity 
across all visual contrasts. Voxel clusters thresholded at Z>2.3 and p<0.05. Right side 
of the image corresponds to the left side of the brain. No voxels showing greater activity 
for the control group compared to the patients 
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Effect of group and stimuli contrast on BOLD, CBF and gamma power change 

 
Given the absence of significant differences in the visual acuity scores and latency of 

the peak amplitudes between groups, the effect of group and stimuli contrast was 

statistically tested on data averaged across the two eyes. Figure 4-6 displays the effect 

of group and stimuli contrast on BOLD, CBF and peak gamma power signal changes.  

 

BOLD, CBF quantified and CBF percent signals increased significantly as stimuli 

contrast increased: F (1.75,33.17) = 46.59, p < 0.001 GG; F (4,76) = 35.41, p<0.001; F 

(4,76) = 35.63, p<0.001, respectively. MS patients had significantly lower signal 

responses, compare with controls, for BOLD and CBF quantified signals, but this was 

not significant for CBF percent: F (1,19) = 7.97, p = 0.01; F (1,19) = 6.62, p = 0.02; F 

(1,19) = 2.76, p = 0.11, respectively. All pairwise comparisons between contrast levels 

were significant. There was no significant interaction between the effect of contrast and 

group on BOLD changes (F (1.75, 33.17) = 0.86, p = 0.42, GG) CBF quantified changes 

(F (4, 76) = 1.25, p = 0.30), or CBF percent changes (F (4, 76) = 0.70, p = 0.59).  

 

For the MEG results, there was a significant interaction between the effect of contrast 

and group on the peak gamma power changes (F (1.50,31.54) = 7.87, p = 0.01, GG). 

Therefore, simple main effects were investigated. There was no significant group 

difference at the 6.25% or 12.5% contrast levels (F (1,21) = 1.13, p = 0.30; F (1,21) = 

1.99, p = 0.17, respectively), but MS patients showed significantly lower peak gamma 

power changes at 25%, 50%, and 100% (F (1,21) = 6.28, p = 0.02; F (1,21) = 12.13, p 

< 0.01; F (1,21) = 10.71, p < 0.01, respectively). Peak gamma power signals increased 

significantly as stimuli contrast increased, for both the control group (F (1.59,14.29) = 

46.03, p<0.001, GG) and the patient group (F (1.12, 15.99) = 22.46, p < 0.001, GG). All 

pairwise comparisons between contrast levels were significant, except between 6.25% 

and 12.5%, and 12.5% and 25% in the patient group.  
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Figure 4-6. Effect of group and visual contrast on peak gamma power, BOLD, CBF 
(percentage change) and CBF quantified (ml/100g/min change).  Values are Mean ± 
SEM. *p<0.05, **p<0.001. Pairwise comparisons significant at p<0.05, with Holm-
Bonferroni correction. 
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Neurovascular coupling in MS patients and controls   
 

The relationship between peak gamma power and BOLD and CBF signals was 

compared between groups. Figure 4-7 visually displays these coupling relationships, 

and Table 4-4 shows the statistical testing between groups.  

 

Figure 4-7A displays the coupling relationships using the median values across each 

group. At this group averaged level, there is a good fit between the MEG and fMRI 

signals. The MS patients appear to have higher gradients on average (i.e. for the same 

peak gamma power change, higher BOLD and CBF change), as well as lower 

intercepts on average. Figure 4-7B shows what the coupling relationship looks like for 

every participant separately, showing that the patient group displays more variability in 

the coupling between peak gamma power and BOLD change compared to the controls. 

CBF coupling results for each participant (not shown) showed similar trends.  

 

To statistically test these coupling differences, the median gradients and intercepts 

were extracted for each person and compared between groups. In general, higher 

gradients and lower intercepts are seen in the patient group, but no significant 

differences are found between groups (Table 4-4). 
 

Table 4-4. Median gradients and intercepts compared between groups, using peak 
gamma power to predict BOLD and CBF. q refers to quantified. Mann-Whitney U-tests 
performed; p values corrected with Holm-Bonferroni, for two dependent tests (gradient 
and intercepts).  

Outcome measure 
MEDIAN Mann-

Whitney U 
P 

value 
Significant 
if less than: Controls Patients 

Gradient 
BOLD  0.03 0.04 66 0.42 0.050 

CBF  1.03 1.30 65 0.46 0.050 

CBF(q) 0.67 0.58 58 0.81 0.050 

Intercept 
BOLD  0.31 0.04 24 0.03 0.025 

CBF  5.08 1.97 38 0.28 0.025 

CBF(q) 3.91 1.16 35 0.19 0.025 
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Figure 4-7.  (A) relationship between gamma power and BOLD/CBF change in 
response to the checkerboard, using group median values. Each point represents a 
different contrast level for each eye. (B) BOLD relationship shown for each control (n=9) 
and patient (n=12). Colours represent each participant and the black line shows the 
linear fit.  
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4.4 DISCUSSION   
 

We investigated the neuronal and haemodynamic responses to a reversing 

checkerboard visual stimulus in relapsing-remitting MS, observing smaller peak gamma 

power changes and BOLD and CBF responses. While the range of electrophysiological 

and haemodynamic responses were altered in MS, we found no significant group 

difference in the coupling relationship between these responses, indicating that NVC 

may remain intact in MS. Whilst the lack of significant differences between groups may 

be due to the limited statistical power of this study, due to relatively small samples sizes, 

it may also reflect the complexity and heterogeneity of MS as a disease, and NVC as a 

biological process.  

 

Source localisation of gamma oscillations, BOLD and CBF  

 
The group ROI used to extract the BOLD and CBF signals for all participants was 

located clearly in the primary visual cortex (Figure 4-4). For characterising the gamma 

response, we searched for the peak gamma power change within the calcarine sulcus 

and two adjacent regions: the cuneus and lingual gyrus. This was because previous 

studies suggest visual gamma, in response to this type of stimulus, to be located in the 

primary visual cortex. This method also ensured that the area was comparable to the 

fMRI source whilst allowing for some error in MEG signal localisation. Although we took 

a ROI approach to characterising the peak gamma, CBF and BOLD responses, we also 

visualised these responses across the whole brain. At the whole-brain group-averaged 

level, we saw a reduction in gamma power responses in visual areas for the MS patients 

(Figure 4-3). A reduction was also seen in sub-cortical and temporal regions; this 

possibly indicates activity differences more extensively along visual processing 

pathways, yet this was not further explored. For the CBF and BOLD group-average 

plots, a similar pattern of activity in the early visual cortex was seen for both groups 

(Figure 4-4 and Figure 4-5). There were voxels within the intra/supra-calcarine cortex 

and cuneus (for CBF) and the lingual gyrus, intracalcarine cortex, and cuneus (for 

BOLD) showing significantly greater activity in the MS group compared to the controls. 

A possible explanation of this result is compensatory functional reorganization of the 

cortex in MS patients (Tomassini et al., 2012; Werring et al., 2000).  

 

Reduction of peak visual gamma, BOLD and CBF responses in MS 
 

Here we used the oscillatory activity in the gamma band (30-80 Hz) to characterise the 

neuronal response. Broadly, the gamma rhythm is theorised to reflect the balance 
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between excitatory and inhibitory signalling; networks of fast-spiking, parvalbumin-

expressing, GABAergic interneurons act on pyramidal cells to bring about synchronous 

inhibitory post synaptic potentials (Bartos, Vida, & Jonas, 2007; Buzsáki & Wang, 2012; 

Cardin et al., 2009). A large body of research shows an increase in gamma power when 

functional networks are engaged, widely across the brain and for many different 

processes e.g. (Jensen, Kaiser, & Lachaux, 2007; Jia & Kohn, 2011; Nyhus & Curran, 

2010). Specifically, gamma oscillations are thought to have a functional role in attention, 

perception and mediation of information transfer across different cortical areas (Fries, 

2009).  

 

Disruptions in gamma oscillations have been reported in many brain disorders (Uhlhaas 

& Singer, 2006). In MS, task-induced changes have remained largely unexplored until 

recently (Arpin et al., 2017; Barratt et al., 2017b). Barret et al (2017) reported 

significantly reduced visual gamma amplitudes in a similar MS population, the only 

other study, to our knowledge, that has investigated task-induced gamma oscillatory 

changes in MS. There is evidence that parvalbumin-expressing GABAergic 

interneurons, thought to contribute to gamma oscillations, are reduced in normal 

appearing GM of the motor cortex in MS (Clements, McDonough, & Freeman, 2008), 

and that secondary progressive MS patients have significantly lower GABA levels in the 

hippocampus and sensorimotor cortex (Cawley et al., 2015).  

 

GABA concentration has also been related to visual gamma oscillations and BOLD 

signals in healthy participants in the visual cortex (Magazzini et al., 2016; 

Muthukumaraswamy & Singh, 2009). Therefore, a possible interpretation of our results 

is that these gamma power reductions in the visual cortex of MS patients could be an 

indicator of early GM dysfunction, mediated by GABAergic changes. However, more 

conclusive empirical evidence is needed to fully understand the role of gamma 

oscillations in neural communication, and their relationship with GABA, therefore 

making any interpretation of their alteration in MS a tentative one at this stage. 

Furthermore, we did not see a significant reduction in whole brain or visual GM volumes 

in the MS group when compared to the healthy control group. A lack of volumetric 

differences may simply result from the small sample size, but a contributing factor may 

also be ongoing inflammation as these patients were treatment naïve. The contribution 

of inflammation to an increase in brain volume (and thus to an apparent normalisation 

despite MS pathology) has been indirectly demonstrated by showing that the onset of 

DMT leads to the occurrence of brain volume reduction, a phenomenon called “pseudo-

atrophy” (Gasperini et al., 2002; Vidal-Jordana et al., 2016; Zivadinov et al., 2008).  
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Although they presented with preserved visual acuity and latency of VEFs, the MS 

patients showed significant haemodynamic alterations, in the form of reduced BOLD 

and CBF responses to the visual checkerboard, in the primary visual cortex. In the 

context of largely preserved NVC, the reduced haemodynamic response is consistent 

with the reduced electrophysiological response. Changes in the BOLD response to 

visuomotor tasks have been previously demonstrated, showing that inflammation and 

WM structural damage play a role in altering haemodynamic responses in MS (Hubbard 

et al., 2016; Tomassini et al., 2016). Our alterations in BOLD and CBF responses 

support these findings, as well as altered responses to visual stimuli at different 

contrasts (Faro et al., 2002).  Uzuner & Uzuner (2016), also using a 2Hz reversing 

checkerboard stimulus, found blood flow velocities in the posterior cerebral arteries to 

be higher in a large MS patient group in the state of relapse. Although a different 

measure, this is in contrast to the reduced blood flow responses we reported in this MS 

group, but highlights the potential impact of testing MS participants at different states 

of the disease.  

 

No significant alteration of neurovascular coupling in MS  

 
The relationship between the peak gamma power change and the BOLD/CBF response 

(using the variance given by the visual contrast manipulation) was our empirical 

measure of NVC. While this is intuitive, assuming that the blood flow response only 

reflects a coupling with gamma oscillatory activity is simplistic. The amplitude of gamma 

oscillations can be modulated by the phase of slower oscillations, termed cross-

frequency phase-amplitude coupling (Buzsáki & Wang, 2012), and an increase in 

gamma power is often accompanied by a decrease in power of lower frequencies. 

BOLD and gamma oscillations are also known to be decoupled in some circumstances. 

For example, in the visual cortex, gamma amplitudes are altered with changes in the 

spatial frequency and colour of the stimuli, but BOLD signals are not ( 

Muthukumaraswamy & Singh, 2008, 2009; Swettenham et al., 2013). Despite these 

limitations, and although the temporal relationship of MEG and fMRI signals is complex, 

they are generally thought to originate from the same electrophysiological source and 

have reasonable spatial overlap. Gamma oscillations have high test-retest reliability, 

with stable features within the same participants for at least 4 weeks 

(Muthukumaraswamy, Singh, Swettenham, & Jones, 2010; Tan, Gross, & Uhlhaas, 

2016), which is important considering the practical limitation of doing the MEG and fMRI 

scanning sessions separately.  

 

In this study, we could not demonstrate significant differences in NVC between the MS 
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patients and controls. While this may be related to the power of the study, it may also 

reflect the complexity of the biology underlying the relationship between neuronal 

activity and the haemodynamic response, which in MS is affected by the inflammatory 

milieu. Indeed, the response of blood vessels to neuronal activity is not only mediated 

by reactivity of the smooth muscle cells, but also by neuronal and glial signalling, 

involving many chemical mediators. Increased levels of both vasodilators (e.g., NO, 

(Smith & Lassmann, 2002) and vasoconstrictors (e.g., ET-1, D’haeseleer et al., 2013) 

have been reported in MS, due to the proliferation of glial cells to damaged areas, which 

could interfere with NVC pathways in contrasting ways. In line with the hypothesis that 

inflammation affects NVC, there is the evidence that the MS group appeared to display 

more variance in their coupling relationships, suggesting a greater inter-individual 

variability.  

 

While not significantly different from healthy volunteers, the analysis of the NVC showed 

a trend for the MS group to have lower intercepts and higher gradients, when predicting 

the BOLD and CBF changes from the peak gamma power changes. An increased blood 

flow response, for same gamma power change, may seem counterintuitive considering 

the reports of blood vessels being less reactive in MS (Marshall et al., 2014, 2016). 

However, an increased blood flow response could reflect the need to deliver more 

oxygen or nutrients to tissue, if there is inefficiency in their use to support a given level 

of electrophysiological activity. 

 

Conclusion 

 
We found evidence for reduced neuronal and haemodynamic responses in the early 

visual cortex in MS in response to visual stimulation, in the absence of substantial 

functional impairments to visual acuity or delayed VEFs, or baseline CBF. Despite 

altered neuronal and vascular responses, NVC appears to be preserved in MS, at least 

within the range of damage and disability studied here. 
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5 Quantifying blood flow and oxygen utilisation at rest, in 
Multiple Sclerosis, using dual-calibrated fMRI  

 

5.1 INTRODUCTION 
 
In MS, the directionality of damage is not clear; the classic theory is a dysregulation of 

the immune system leading to tissue injury, but some have proposed that 

cytodegeneration happens first, which promotes an autoimmune and inflammatory 

response (Stys et al., 2012). As covered in Chapter 3.2, there is evidence that 

individuals with MS present with clear vascular and metabolic impairments, within 

normal-appearing GM and WM, and within lesioned tissue. The extent of these vascular 

and metabolic impairments, and how and when they contribute to the disease 

progression, is still not fully known. The consistently reported finding of hypoperfusion 

in MS has many biological interpretations. It could simply be due to a reduced demand 

because of neurodegeneration, or due to the vasculature not responding adequately to 

demand because of a reduction in reactivity of blood vessels. Further to this, tissue 

hypoxia could occur due to restricted CBF or restricted diffusion of oxygen into the 

tissue, possibly mediated by the proposed mitochondrial dysfunction in MS. These 

disease mechanisms could happen in parallel, and also include compensatory 

mechanisms. It is therefore important to develop non-invasive methods of separating 

out these physiological signals, to inform about the state of the vasculature, and 

metabolic activity, in MS. This chapter extends the work of Chapter 4, studying a larger 

sample, and characterising multiple quantitative physiological measurements related to 

oxygen utilisation, as opposed to the relative BOLD signal in response to a visual 

stimulus which has restrictions to its interpretation.  

 

This chapter presents a dual-calibrated fMRI method, the background to which was 

explained in Chapter 2.3.4. This refers to a modulation of blood flow, blood volume, and 

venous blood oxygenation using both hypercapnic and hyperoxic gas challenges during 

MRI. In this chapter, measurement and physiological modelling allows quantitative 

estimates of CBF, OEF, CMRO2, CVR, and Effective Oxygen Diffusivity of the capillary 

network  (Dc) at rest. Dual-calibrated fMRI modelling has, until now, not been used to 

estimate Dc, which, alongside CBF, determines the direct transport of oxygen into the 

neural tissue (Hayashi et al., 2003; Hyder, Shulman, & Rothman, 1998; Vafaee & 

Gjedde, 2000a). In the model we apply here (Germuska et al., 2019) , the exchange of 

oxygen between the capillaries and the tissue (Dc )  is modelled from the observations 

of CBF and OEF. Despite Dc largely reflecting capillary density (Gjedde, Poulsen, & 

Ostergaard, 1999), it also been shown to change according to metabolic demand 
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(Hayashi et al., 2003; Fahmeed Hyder et al., 1998) therefore potentially playing an 

important role in NVC mechanisms.  

 

Dual-calibrated fMRI techniques are still being actively developed and there are only a 

few examples in the literature of applications of this method to patient populations, for 

example in Alzheimer’s Disease (Lajoie et al., 2017) and internal carotid artery 

occlusion (De Vis et al., 2015). Lajoie et al (2017) report decreases in CBF and CMRO2, 

particularly in parietal and temporal regions, in the Alzheimer’s group. A small number 

of PET studies have estimated regional quantitative oxygen metabolism in MS, showing 

reductions in CMRO2 and CBF in both WM and GM, with correlations with atrophy, 

cognition, vision, EDSS and number of relapses (Brooks et al., 1984; Lycke et al., 1993; 

Sun et al., 1998). One MRI study has characterised global venous oxygen saturation 

and CMRO2 at rest in an MS population (Ge et al., 2012) finding increased venous 

oxygen saturation and decreased CMRO2, which significantly correlated with EDSS and 

lesion load. Calibrated-fMRI has also been used in MS to show reduced task-induced 

regional changes in relative CMRO2 (Hubbard, Araujo, et al., 2017; Hubbard, Turner, 

et al., 2017). However, this chapter presents the first study using a dual-calibrated fMRI 

method in a MS population, to non-invasively quantify blood flow and oxygen utilisation 

at rest, across the whole GM. Based on the previous literature, we predicted a reduced 

CBF and CVR in the MS group. We also expected to see reduced CMRO2 in the MS 

group and a relationship between CMRO2 and disease burden. 

 

5.2 METHODS 
 

Participants 

 
26 patients and 25 age and gender matched controls were recruited. In total, complete 

calibrated-fMRI datasets were collected for 22 patients and 22 controls, due to 3 in each 

group either having gas screening contraindications or data acquisition errors. Figure 

5-1 gives an overview of the patient recruitment process. Extensive screening 

questionnaires were carried out for patients and controls to ensure no MRI 

contraindications, and to ensure that it was safe for them to experience the respiratory 

gas modulations. None of the participants were current, or previous, smokers. The list 

of inclusion and exclusion criteria can found in Supplementary Figure 5-1. Written 

consent was obtained according to the protocol approved by Research Ethics 

Committee, Wales, UK. All participants received £10 per hour for taking part.  
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Patients had a diagnosis of relapsing-remitting MS (Polman et al., 2011) and were 

recruited at the University Hospital Wales, Cardiff. Patients had been medication stable 

and relapse-free for at least 3 months. One participant used a unilateral walking aid. 

 

 
Figure 5-1. MS patient recruitment overview, showing numbers at each recruitment 
stage.  This took place over approximately 14 months, alongside recruiting and testing 
25 matched controls. Patients were approached in person within MS clinics or through 
neurologist referrals, but mostly contacted directly via phone, email or letter with contact 
details obtained from the MS research database. Out of the 27 patients recruited and 
booked in for a testing session, one was not able to be scanned due MRI 
contraindications that became apparent on the day of testing.  3 patients were scanned 
but without the gas-paradigm due to gas contraindications, discomfort, or technical 
problems.  *No follow-up refers to when the patient initially replied expressing interest 
but did not reply to further contact. **Patients were not eligible to take part due to not 
meeting eligibility criteria, normally MRI or gas-paradigm contraindications. 
 

Data Collection 
 

The same controls and patients were used in Chapter 5 (this chapter), Chapter 6 and 

Chapter 9; an overview of this data collection is displayed in  Supplementary Figure 5-

2. Patients and controls all completed questionnaires and behavioural testing, a 

haemoglobin (finger prick) blood sample, and an MRI session (explained in detail 

below). Before the MRI scanning, the participant’s tolerance of hypercapnic periods and 

breathing through a face-mask was tested outside the MRI scanner, and the 

researchers ensured the participant was comfortable and happy to continue before 

proceeding to the MRI scanning.  

 

Questionnaires and behavioural testing. All participants completed a socio-

demographic and lifestyle questionnaire. This included age, height, weight, alcohol 
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consumption (if yes: ‘how many units per week?’), caffeine intake (if yes: ‘Do you drink 

more than 3 cups of coffee, tea and cola 

 drinks combined per day?’), and years of education (from start of school onwards). 

Tests from the MS Functional Composite (Cutter et al., 1999) were carried out on all 

participants: 9-HPT for arm/hand function, the T25-FW for leg function/ambulation, and 

the PASAT 2 and 3 seconds as a measure of cognitive function. The Symbol Digit 

Modalities Test (SDMT) was also used to assess cognitive function (Benedict et al., 

2017). Visual acuity was assessed, in each eye separately, with a SLOAN letter chart 

(Precision Vision) at 100% contrast and scored in two ways: (1) the smallest letter size 

(in M-units) where 3 out of 5 letters were correctly read, and (2) a cumulative score of 

total letters read correctly, out of 60. Participants were tested with corrected-vision; 

matched to the correction that they had during the MRI scans.  

 

For patients only, disability and disease impact was assessed with the self-reported 

Multiple Sclerosis Impact Scale (MSIS-29) (Hobart, Lamping, Fitzpatrick, Riazi, & 

Thompson, 2001) and the Fatigue Scale for Motor and Cognitive Functions (FSMC) 

(Penner et al., 2009). Clinical records and a short interview on disease history and 

impact gave information on: disease onset, EDSS (Kurtzke, 1983), relapse history and 

impact of MS on occupation.  

 

Haemoglobin blood concentration. A blood sample was drawn via a finger pick with 

a 1.8mm lancet and analysed with the HemoCue® Hb 301+ system as per the 

manufacturer’s guidelines (Hemo Ängelholm, Sweden). This gave a reading of systemic 

haemoglobin concentration, in grams per litre. This was done within one hour of the 

start of the MRI scan. A measure of haemoglobin represents the oxygen carrying 

capacity of blood and is used in the modelling of the dual-calibrated fMRI data. 

 

MRI Scanning. Data were acquired on Siemens Prisma 3T MRI scanner 

(Siemens  Healthineers, Erlangen, Germany), using a 32-channel head coil. All of the 

scans described below were acquired during one scanning session. A magnetization-

prepared rapid acquisition with gradient echo (MPRAGE), T1-weighted scan was 

acquired for registration and brain segmentation purposes (1mm isotropic resolution, 

200 slices, TR/TE = 2100/3.24ms). A 3D T2-weighted Fluid Attenuated Inversion 

Recovery (FLAIR) image (1mm isotropic resolution, 256 slices, slice thickness = 1mm, 

TR/TE = 5000/388ms) and T2/Proton Density dual-echo image (41 slices, slice 

thickness = 3mm, 0.8 x 0.8 x 3.9 mm, TR/TE1/TE2= 4050/11/90ms) were acquired for 

lesion identification.  
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Whilst participants were at rest, a dual-calibrated fMRI scan including interleaved 

periods of hypercapnia, hyperoxia and medical air were delivered through a facemask 

worn by the participant, following the protocol previously described by (Germuska et 

al., 2016; Merola, Germuska, Murphy, & Wise, 2018). This gas delivery circuit is shown 

in Supplementary Figure 5-3. Three periods of hypercapnia were given, interleaved with 

two periods of hyperoxia (see Figure 5-3.A). During the hypercapnic blocks, 5% CO2 in 

air was given. During the hyperoxic blocks 50% O2 in air was given, with short period 

of 100% O2 and 10% O2 delivered to accelerate the transitions to the hyperoxic state 

and back to baseline. Participant’s heart rate and oxygen saturation were monitored 

with a pulse oximeter constantly throughout the scanning session. PETCO2  and PETO2 

(partial pressure of end-tidal carbon dioxide or oxygen) were sampled from the 

facemask, using a rapidly responding gas analyser (AEI Technologies, Pittsburgh, PA, 

USA). An example breathing trace is shown in Figure 5-3.B. 

 

During this gas protocol, a pCASL acquisition was run, using pre-saturation and 

background suppression (Okell, Chappell, Kelly, & Jezzard, 2013), with a dual-

excitation (DEXI) readout (Schmithorst et al., 2014). The labelling duration and PLD 

were both 1.5s, GRAPPA acceleration (factor of 3) was used with TE1=10ms and 

TE2=30ms. An effective TR (the total TR including labelling and both readouts) of 4.4 

seconds was used to acquire 16 slices, in-plane resolution 3.4 x 3.4 mm and slice 

thickness 7mm with a 20% slice gap. A diagram of this sequence is shown in Figure 

5-2. Before this scan, an M0 image was acquired for ASL quantification with TR of 6 

seconds, TE=10ms.  
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Figure 5-3. Inspired gas fractions used during the respiratory protocol, and (B) Example 
trace of one subject. The design is 18 minutes in total and consisted of three blocks of 
hypercapnia (fixed inspired fractions of 5% CO2 in air), interleaved with two periods of 
hyperoxia (fixed inspired fractions of 50% O2 

in air). A short period (14 seconds) of 
100% O2 is delivered before each hyperoxic block, to aid the fast transition from 
baseline to stable hyperoxia. A short period of hypoxic gas mixture (10% O2, 90% N2) 
was delivered to ensure fast transition back to baseline. These periods were not 
included in the modelling. Oxygen saturation levels were constantly monitored with a 
pulse oximeter, and the hypoxic gas delivery did not induce arterial hypoxia due its short 
duration and because it follows a longer hyperoxic block. 

 

Figure 5-2. Pulse sequence timing diagram for the DEXI-pCASL acquisition. 
Sequence timings are in milliseconds (ms) to the nearest 5ms. This figure is produced 
by Michael Germuska and used here with permission. 
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Data Analysis 
 

Normalised Whole Brain Volume. Whole brain tissue volume, normalized for subject 

head size, was estimated with SIENAX (Smith, De Stefano, Jenkinson, & Matthews, 

2001; Smith et al., 2002)  in FSL. Brain and skull images were extracted from the single 

whole-head input data (T1-weighted image, lesion-filled for the patients). The brain 

image was then affine-registered to MNI152 space using the skull image to determine 

the registration scaling, and to obtain the volumetric scaling factor. Three-class 

segmentation was carried out and whole brain volumes, normalized for head size, were 

calculated using the volumetric scaling factor. 

 

Lesion Volumes, Lesion Filling and GM mask. Figure 5-4 describes the protocol 

followed to calculate lesion volumes, and improve the accuracy of the segmentation 

(Battaglini et al., 2012; Gelineau-Morel et al., 2012). First, the T2, PD, and T2-FLAIR 

images were brain extracted. The T2-FLAIR image was transformed to the same space 

as T2-PD image (linear, 6 DOF). Using JIM (Version 6.0) lesions were drawn around 

manually using the contour ROI tool, without 3D propagation. All three image contrasts 

were used to locate the lesions, and if in doubt a lesion was not drawn around. This 

lesion map was exported as a NIFTI file, with a pixel area threshold of 50% threshold, 

and a lesion volume was calculated for each patient. 

 

For the lesion filling of the T1 image, the PD image was registered to the T1 image, and 

the lesion map was binarised and transformed to T1-space. The lesion map was 

thresholded at 0.4, to approximately preserve the size of the original lesion map but 

also allow a small amount of inflation so that that the lesion map better overlapped the 

lesions on the T1-image, in case of registration errors. The lesion map was then 

binarised. The function lesion_filling (Battaglini et al., 2012) was used; this fills the 

lesion area with intensities similar to those in the non-lesion neighbourhood (restricted 

to WM only – a WM PVE map was created with FAST previous to this). Using the lesion-

filled T1-image, FSL-FAST was run again to produce a new  PVE of GM.  
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Dual-calibrated fMRI pre-processing. Motion correction was performed with FSL-

MCFLIRT and spatial smoothing (FWHM=4.5mm) of the BOLD data (surround average 

of echo 2) was performed with SUSAN (Smith & Brady, 1997). ASL data (surround 

subtraction of echo 1) and the M0 acquisitions were spatially smoothed using a 3D 

Gaussian kernel (FWHM 4.5mm). Functional DEXI data was registered to the structural 

T1-weighted image using FSL’s epi-reg tool, which also creates and outputs GM, WM 

and CSF PVE through FAST segmentation of the T1-weighted image. Using the inverse 

of this matrix, the T1-image and the GM-PVE image were transformed to DEXI space. 

The GM-PVE image was thresholded at 0.5 and binarised and used as a GM mask for 

the parameter estimates. The GM-PVE was also used for regularisation of the Dc 

estimates (non-lesion filled for the patients), explained below. 
 

Dual-calibrated fMRI modelling. Code for the pre-processing of physiological traces 

was written by Michael Germuska (Germuska, 2018b), alongside the code for 

physiological modelling of the dual-calibrated fMRI data (Germuska, 2018a). The model 

development was not the focus of this chapter but the application of this model to the 

patient-control comparison. For details, see (Germuska et al., 2016) and (Germuska et 

al., 2019).  

Figure 5-4. Summary of the pipeline used to calculate lesion volumes, and perform 
lesion filling, on each patient’s T1-weighted image, to improve tissue segmentation. 



   73 

In brief, a compartmental model of oxygen exchange is used to model the relationship 

between CBF, Dc and OEF. Quantification of resting OEF and CBF (and therefore 

CMRO2) is calculated using a dual-calibrated fMRI method (Bulte et al., 2012; Gauthier 

et al., 2012; Wise et al., 2013), within a forward modelling framework (Germuska et al., 

2016). A simplified calibration model is used (Merola et al., 2016), assuming 

isometabolic alteration of flow during hypercapnia, and isometabolic alterations of 

venous oxygenation during hyperoxia. End-tidal traces were aligned with the DEXI data 

via a cross-correlation between PaCO2 (partial pressure of CO2) and the mean GM ASL 

signal. Measured haemoglobin concentration helped inform the relationship between 

baseline CBF and Dc to OEF in the fitting. A non-linear least squares minimisation 

routine was used to optimise voxel-wise estimates of baseline Dc, OEF, CBF and CVR. 

Regularisation was applied to Dc and OEF to reduce instability in fitting a non-linear 

model to the data and reduce sensitivity to noise variation across voxels and 

participants. The regularisation parameter for OEF was assumed to be uniform, with a 

nominal baseline OEF of 0.4. As Dc nominally scales with CBV, GM-PVE were used to 

impose spatial variation on the Dc regularisation, with a PVE of 1 corresponding to a 

nominal diffusivity of 0.12 ml/100g/mmHg/min. See Figure 5-5 for a brief overview of 

how the data collected is used in this modelling framework. 

 
Figure 5-5. Diagram explaining how the different data acquired during DEXI-pCASL 
scan (and the Hg measurement) is modelled to estimate the multiple physiological 
parameters that are compared between patients and controls. 
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GM voxel-wise comparison. A  GM voxel-wise comparison between groups was 

carried out by another researcher in the lab and therefore the results are included in 

this chapter, in order to aid the interpretation of the average GM parameter results. With 

FSL-FLIRT, two transformation matrices were created and combined into one: a 

registration from the individual’s functional DEXI space to their T1-anatomical space, 

and from T1-anatomical space to MNI (2mm) template space. All parameter maps, 

including the GM-mask, were then transformed to MNI-space. In MNI space, each 

parameter map was masked with their MNI GM-mask. After merging all participants into 

one 4D file, FSL’s randomise function was used to perform nonparametric t-tests to test 

the difference between patients and controls, for each parameter. Two t-statistic 

contrasts were produced (Patients > Controls, and Controls > Patients), thresholded at 

p<0.05, with Threshold-Free Cluster Enhancement correction. 

 

Statistics 
 

Group-comparisons. For each participant a map of CBF, CMRO2, OEF, CVR and Dc 

was outputted in native space, from the physiological modelling. An average value 

(median) across voxels in the GM mask was outputted for each parameter. In SPSS, 

independent sample t-tests were used to test differences between patients and controls 

for each parameter. When the assumption of normality was violated (tested with 

Kolmogorov-Smirnov test) Man-Whitney U tests were performed (with an exact 

sampling distribution for U). When distributions of scores were similar for patients and 

controls, determined by visual inspection, medians were compared.  For comparison of 

categorical variables, between groups, Pearson’s Chi-square tests were run. Outliers 

were defined as being 3xSD above or below the mean, or 3xIQR above or below the 

lower or upper quartile, respectively. All p-values reported are two-tailed. Group means 

and standard errors are presented in brackets as Mean ± SEM, and errors bars display 

± SEM unless stated otherwise. 

 

Patient regressions. In SPSS, Multiple linear regressions were performed to 

investigate what disease characteristics could predict the variability of CBF and CMRO2 

GM averages. Unless stated in the results, the assumptions of multiple linear regression 

were met: normality of residuals, predictor variables linearly related to the outcome 

variable, homoscedasticity (residuals are equal for all values of the outcome variable), 

multicollinearity (high correlations between predictor variables), and no significant 

outliers or highly influential points. For outliers, standardized and studentized deleted 

residuals were examined, and outliers were classed as ± 3. Cook’s distance was 
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calculated, with a typical cut-off of greater that 1 being used to indicate highly influential 

points.  

 

5.3 RESULTS 
 
For the group comparisons, 2 controls and 1 patient were left out of the analysis due to 

bad quality data. These three participants did not return to a stable PETCO2 baseline 

during the periods of medical air delivery; this was judged to be a deviation of greater 

than 5mmHg with reference to the first baseline block. This was alongside lower quality 

physiological and imaging data in general for these participants, due to noticeable 

motion artifacts. This left 20 controls and 22 patients. Patient disease characteristics 

are displayed in Table 5-1 and demographics and behavioural tests scores for both 

groups are displayed in Table 5-2. An example of all the parameter maps is shown for 

one control and one patient in Figure 5-6. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-1. Patient disease characteristics. a refers to Mean ± SD. Some data were not 
normally distributed and therefore b refers to Medians (IQR). FSMC (total scores for 
each domain); MSIS-29 (total scores for each domain), and Job change refers to 
whether their job had changed due to MS 

 

 

 

    
Patients 

Min – Max 

(Outliers) 

  

Lesion Vol (mm3)b 7253.64 

(7392.75) 

 2062 – 35963 

(P1 =35963; 

P2 = 33850).  

 

Disability: EDSS a 2.23 ± 1.38  0 - 6  

D
is

ea
se

 

H
is

to
ry

 Months since onset a 95.54 ± 59.37  20 - 253 

Months since relapse a 33.95 ± 20.25  5 - 78 

Se
lf-

re
po

rt 

D
is

ea
se

 Im
pa

ct
 FSMC-Motor 25.73 ± 11.31 10 - 45 

FSMC-Cognitive 24.59 ± 9.91 10 - 43 

MSIS-29-P b 31 (21.5)  20 - 76 

MSIS-29-C a 16.91 ±  6.57  9 - 32 

Job change? Y/N 4/18 / 
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Table 5-2. Demographics and behavioural data compared between groups. a refers to 
Mean ± SD, alongside Independent Sample T-tests, and b refers to Medians (IQR), 
alongside Mann-Whitney U Tests. For the categorical variables, Pearson’s Chi-square 
tests were run. [BMI = Body Mass Index; Caffeine >3 = drink more than 3 caffeinated 
drinks per day; Visual Acuity is based on the cumulative score across all letter sizes; 
dom = dominant  hand, ndom = non-dominant hand; Brain Vol  = whole brain volume 
normalised for skull size. 

 

 

 

 

 

 

 

 

 

  
 Patients Controls Test Statistic P 

D
em

s 
& 

Li
fe

st
yl

e  

Gender (M/F) 5 / 17 6 / 14 χ(1) = 0.29 0.592 

Age (Yrs) a 35.45 ± 7.15 34.15 ± 5.69 t(40) = -0.65 0.519 

Education (Yrs) b 18 (2) 18 (5) U = 148 0.182 

BMI a 26.81 ± 4.95 24.67 ± 4.02 t(40) = -1.53 0.133 

Caffeine >3 Y/N 11 / 11 5 / 15 χ(1) = 2.78 0.096 

Alcohol (Units/wk) b 2 (2.5) 2 (3.75) U = 148 0.362 

Vi
su

al
 Visual Acuity-L b 45 (9.5) 48 (7) U = 162 0.223 

Visual Acuity-R b 44 (8) 47 (8) U = 134 0.045 

M
ot

or
 T25-FW (sec) a 4.66 ± 0.63 3.98 ± 0.63 t(39) = -3.50 0.001 

9HPT-dom (sec) a 19.76 ± 2.53 20.18 ± 2.28 t(38) = 0.594 0.556 

9HPT-ndom(sec) a 22.86 ± 2.56 21.25 ± 2.97 t(40) = -1.891 0.066 

C
og

ni
tiv

e PASAT3 (/60) a 50 (21) 54 (16) U = 187 0.398 

PASAT-2 (/60) a 34.90 ± 12.16 35.9 ± 12.21 t(39) = 0.80 0.795 

SDMT a 59.90 ± 7.14 62.40 ± 9.75 t(40) = 0.95 0.348 

 
Brain Vol (mm3) a 

1508183 

± 76523 

15488667 

± 59496 
t(40) = 1.91 0.063 

Outliers (C = Control, P = Patient) 

Alcohol (C1 = 24 units, C1 = 18 units, P1 = 15), Visual Acuity-L (C1 = 8 score), 

Visual Acuity-R (P1 = 0), T25-FW (P1 =11.03), 9HPT-dom (P1 = 30.53, P2 = 

38.07).  
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Model fit 
 

 For each patient and each control, the average of the residuals and the SD of residuals 

across voxels was calculated, to broadly estimate how well the model fit for each 

participant.  Median residual estimates for patients (0.64) and controls (0.63) were not 

significantly different, U = 252, z = 0.81, p = 0.420.  Median residual SD estimates were 

higher in patients (0.30) compared to controls (0.26), suggesting more variance in the 

model fit across voxels for the patient group, however this was not a significant 

difference, U = 294, z = 1.86, p = 0.062. 

 

Model outcome parameters 
 

The following data refer to Means ± SEM and are displayed in Figure 5-7. For GM CBF 

averages, patients (46.64 ± 1.29 ml/100g/min) displayed significantly lower values than 

controls (51.53 ± 1.44 ml/100g/min), t(40) = 2.53, p = 0.015. For GM CMRO2 averages, 

patients (131.55 ± 4.81 µmol/100g/min) also showed significantly lower values 

compared to controls (145.51 ± 4.28 µmol/100g/min), t(40) = 2.15, p = 0.038. There 

were no significant differences between patients and controls for GM OEF (Patients: 

0.41 ± 0.14, Controls: 0.40 ± 0.14, t(40) = -0.493, p = 0.625), GM CVR (Patients: 2.27 

± 0.14 %CBF change/mmHg CO2, Controls: 2.51 ± 0.15 %CBF change/mmHg CO2, 

t(40) = 1.17, p = 0.249) or GM Dc (Patients: 0.081 ± 0.004 ml/100g/mmHg/min, Controls: 

0.087 ± 0.003 ml/100g/mmHg/min, t(40) = 1.211, p = 0.233). GM volume (the area used 

to extract these average values) was significantly lower in patients (489273.31 ± 

13881.48 mm3), compared to controls (528354 ± 13622.62 mm3), t(40) = 2.00, p = 0.05. 

The hemoglobin measurement, used in the modelling of capillary oxygen content, was 

not significantly different between patients (135.7 ± 3.29 g/L) and controls (136.5 ± 2.83 

g/L), t(39) = 0.19, p = 0.849.  
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Figure 5-6. Example  baseline parameter maps for one control (top) and one patient 
(bottom), showing  CBF (ml/100g/min), CMR02 (µmol/ml/min), OEF, Dc 
(ml/100g/mmHg/min), CVR (%CBF change/mmHg CO2), GM-PVE (probability 
estimate) in individual subject space, the GM mask (binarised) which is the GM-pve 
thresholded at 0.5, and the residuals of the model fit. 
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Are partial volume estimates different in the patient group, and how does this 

affect the GM averages? 
 

If patients have different partial volume characteristics than controls this has the 

potential to introduce bias in our parameter estimates from GM.  Studies have reported 

a relationship between lesion load and GM volume estimation, when segmentation 

involves modelling intensity distributions of different classes of tissue (Battaglini et al., 

2012; Popescu et al., 2016).  By performing the tissue segmentation of lesion-filled T1 

images we hoped to mitigate this effect, however some biases may still remain. To 

investigate this, a mean across voxels in the unbinarised GM PVE image, thresholded 

at 0.5, was calculated for each participant. This gives an estimate of the amount of GM 

in each voxel, on average, after thresholding. This GM PVE voxel-average for patients 
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Figure 5-7. Comparing patient (n=22) and control (n=20) group means for CBF 
(ml/100g/min), CMR02 (µmol/ml/min), OEF, Dc (ml/100g/mmHg/min), CVR (%CBF 
change/mmHg CO2) and volume of the GM mask (mm3) used to extract average 
(median) parameter values for each participant. Differences between means are 
tested with independent t-tests. *p≤0.05, ns = p>0.05. Errors bars display ± SEM. 
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(Group median = 0.61) and controls (Group median = 0.62) were not significantly 

different, U = 160.52, z = -1.157, p = 0.116. Furthermore, we compared all parameters 

after thresholding the GM PVE at 0.75, a more conservative value. The results were 

unchanged compared to the 0.5 thresholded results, except for no significant difference 

in volume of the GM mask (when thresholding at 0.75).  Only CBF and CMRO2 were 

significant different between groups, as before. The mean difference between patients 

and controls actually increased with the threshold of 0.75. For CBF,  the mean 

difference between groups for the 0.5 threshold was 4.89 (t(40) = 2.53, p = 0.015), and 

for the 0.75 threshold it was 6.411 (t(40) = 2.66, p = 0.011).  For CMRO2, the mean 

difference between groups for the 0.5 threshold was 13.96 (t(40) = 2.15, p = 0.038), 

and for the 0.75 threshold it was 16.55 (t(40) = 2.26, p = 0.029).  

 

What disease characteristic can explain the reduced CBF and CMRO2 in 

patients? 
 

As CBF and CMRO2 were significantly different between groups, we investigated what 

patient disease characteristics could predict variability in these scores. As the CBF and 

CMRO2  are averages across the whole GM, we did not include behavioural data 

specific to one functional system (e.g. SDMT for cognition, or 25FW for motor function).  

As an indication of recent and general disease impact, across functional systems, we 

used the MSIS-19 and FSMC questionnaire data, in physical and cognitive domains. 

Higher scores indicated higher impact of cognitive and physical symptoms on everyday 

life. As a general indictor of whole brain disease activity, we included lesion volume and 

GM volume (used to extract the CBF and CMRO2 averages).  

 

Scores from the four questionnaire subsections all strongly correlated with each other: 

MSIS-19 physical and cognitive (r = 0.73, p <0.001), FSMC cognitive and FSMC 

physical (r = 0.88, p <0.001), MSIS-19 physical and FSMC physical (r = 0.75, p <0.001), 

MSIS-19 cognitive and FSMC cognitive (r = 0.80, p <0.001), MSIS-19 cognitive and 

FSMC physical (r = 0.84, p <0.001),  MSIS-19 physical and FSMC cognitive (r = 0.57, 

p <0.01).  Therefore a 'total disease impact' scores was included in the model instead, 

which was simply the sum of each questionnaire domain. Therefore, the models to 

predict CBF and CMRO2 included these predictors: total disease impact, GM volume, 

and lesion volume. 

 

For predicting CBF, the overall model was significant, with an R2 of 35.7% and an 

adjusted R2 of 25.0% (F (3, 18) = 3.33, p = 0.043). Lesion volume significantly 

contributed to this model (β = -0.64, p = 0.008), but GM volume (β = -0.17, p = 0.483) 
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and composite disease impact score (β = 0.036, p = 0.827) did not. CBF decreased by 

0.000432 ml/100g/min for every 1mm3  increase in lesion volume.  For the CMRO2 

regression, one patient had studentized deleted residual of -3.25, and also a cook's 

distance of 1.1, suggesting it has a large effect on the regression. Therefore, this patient 

was removed from the regression. The overall model was significant, with an R2 of 

37.3% and an adjusted R2 of 26.3% (F (3, 17) = 3.37, p = 0.043. GM volume significantly 

contributed to the model (β = 0.62, p = 0.038), but lesion volume (β = -0.13, p = 0.596) 

and composite disease impact score (β = -0.447, p = 0.116) did not. CMRO2 increased 

by 0.0002 µmol/100g/min for every 1mm3 increase in GM volume. The relationship 

between CBF, CMRO2, GM volume and lesion volume are displayed in Figure 5-8. To 

establish whether the  relationship between GM volume and CMRO2 was specific to 

patients, this was also explored in the controls. No significant relationship between GM 

volume and CBF or GM volume and CMRO2 was seen for the controls (Supplementary 

Figure 5-4).  

 

 
Figure 5-8. The relationship between lesion volume and GM CBF (top left), lesion 
volume and GM CMRO2 (top right), GM volume and CBF (bottom left) and GM volume 
and CMRO2 (bottom right). These results are for the patient group only. Lesion volume 
was the only significant predictor of CBF, and GM volume the only significant predictor 
of CMRO2. The p-values refer to the significance of the beta coefficients in the multiple 
regression model. 
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Voxel-wise differences between groups 
 

Four small significant clusters, showing higher values for controls compared to patients, 

were found for both the CBF and for CMRO2 voxel-wise comparisons (Figure 5-9). No 

significant voxel-wise differences were found for CVR, OEF or Dc. The following p-

values refer to the maximum corrected p-value in that cluster, with the corresponding 

MNI coordinates [x,y,z]. The brain regions refer to the peak location, referencing the 

Harvard-Oxford Cortical Structural Atlas in FSL. The peak locations of common 

significant clusters for both CBF and CMRO2 were located in the Subcallosal Cortex 

(CBF: p-value = 0.024, 54 voxels; CMRO2: p-value = 0.025, 27 voxels, both located at 

[45 73 40]), and medial/orbital frontal regions (CBF: p-value = 0.047, [50 77 24], 14 

voxels; CMRO2: p-value = 0.037, [49 79 23], 39 voxels). For CBF, the peak location of 

the other two significant clusters were located in the occipital pole (p-value = 0.031, [44 

16 41], 41 voxels), and the para-hippocampal gyrus  (p-value = 0.046, [55 42 28], 6 

voxels). For CMRO2, it was the nucleus accumbens (p-value = 0.033, [40 70 34], 39 

voxels) and the paracingulate gyrus (p-value = 0.048, [51 85 42], 2 voxels).  

 

 
Figure 5-9. Clusters of  voxels showing significantly higher CBF and CMRO2 in the 
control group compared to the patient group. Red displays voxels with significantly 
higher CBF and CMRO2, green displays voxels with significantly higher CBF only and 
blue displays voxels with significantly higher CMRO2 only. 
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5.4 DISCUSSION  
 

This chapter presents the first application of a dual-calibrated fMRI protocol in a MS 

population, allowing simultaneous baseline quantification of many important 

physiological parameters reflecting vascular and metabolic function. The patients and 

controls were age and gender matched and did not differ on years of education, BMI 

and self-reported caffeine and alcohol intake. Behaviourally, patients showed 

significant impairments in visual acuity (right eye only) and the 25-foot walk, suggesting 

impaired mobility and leg function in this group. For the GM parameter averages, CBF 

and CMRO2 were significantly lower in patients, but no significant differences were seen 

for CVR, OEF or Dc. In the patient group, self-reported disease impact did not 

significantly predict CBF or CMRO2, however lesion volume did significantly predict 

variability in CBF, and GM volume predicted variability in CMRO2. Consistent with the 

GM-average analysis, the voxel-wise analysis only showed significant group 

differences for CBF and CMRO2 signals, in a few small clusters. Firstly, the GM 

parameter comparisons will be discussed, followed by modelling limitations and lastly 

practical considerations. 

 

A reduction in CBF and CMRO2, over the GM, is consistent with previous literature in 

MS, as summarised in Chapter 3.2. In the introduction of this chapter, some potential 

mechanisms were proposed: a reduced CBF reflecting a reduced metabolic demand 

due to neurodegeneration; a reduced CBF due to an impaired CVR which could lead to 

hypoxic tissue; a restricted CBF or alterations in the diffusion of oxygen into the tissue 

also leading to hypoxia. As we only report reductions in CBF and CMRO2, but no 

differences in OEF, CVR or Dc, this suggests that the reduced CMRO2 and CBF most 

likely reflect a reduced demand from the tissue, with little evidence for a hypoxic state. 

The lack of difference in oxygen diffusivity supports this interpretation, considering there 

is evidence suggesting diffusivity can increase with increasing demand (Hayashi et al., 

2003; Hyder et al., 1998). 

 

Two previous studies reported widespread CVR decreases in MS (Marshall et al., 2014, 

2016), in contrast to our results. These studies used a pCASL sequence, as done here, 

so their units of measurement for CVR were the same (%CBF change/mmHg CO2). 

The cause of this discrepancy is not clear, and they report similar disease durations 

and EDSS scores for their patients. In the calculation of their CBF-CVR maps they 

implemented GM partial volume correction, and their GM tissue mask was defined at 

70%. We defined ours at 50%, however also showed no significant differences in CVR 

when exploring the results with a threshold of 75%. In contrast, a study by a different 
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lab used transcranial doppler imaging with a BH task, and report no CVR differences in 

MS across three time points (Uzuner et al., 2007). Therefore, more research is needed 

to understand how relevant CVR deficits are to MS pathology. Nevertheless, in this MS 

group, normal CVR suggests that the blood vessels were dilating appropriately when 

stimulated. There are very few studies applying dual-calibrated fMRI to study a patient 

population. One of them is by Lajoie et al (2017); they carried out a dual-calibrated 

study in Alzheimer’s Disease (AD) and had similar aims: to assess the extent of 

vascular and metabolic impairments in AD, as well as to assess the feasibility and 

practicality of these types of methods. They highlight some key methodological 

challenges to overcome (choice of post-labelling delay, presence of susceptibly 

artefacts, and challenges administering hypercapnia to elderly participants). 

Nevertheless, they report similar results to us: decreased CBF and CMRO2 in GM 

parietal, precuneus and temporal regions in AD patients, with no differences in OEF, 

CVR and M values in their ROI analysis. However, they do find some reductions in OEF 

and M in their voxel-wise analysis, in a small parietal-precuneus cluster. They state that 

these results tend to rule out chronic global cerebral ischemia at this stage of AD. 

 

The reasons for the lower CBF and CMRO2 GM signals in MS is not fully clear. The 

volumes of the GM mask, used to extract these parameter averages, were significantly 

lower in patients compared to controls, suggesting GM atrophy in this patient group. 

However, as the parameter estimates are averages over each voxel in the remaining 

GM, the CBF and CMRO2 reductions cannot simply be attributed to a lower GM volume. 

However, the density of GM in each voxel (the PVE) could still have been different in 

the patient group (Battaglini et al., 2012; Popescu et al., 2016), biasing the overall 

averages. We report no significant group differences in the average PVE across voxels, 

above 0.5, and no difference in the parameter comparisons when thresholding at 0.75. 

This suggests that partial volume effects of the GM mask did not contribute significantly 

to the group differences report. However, the regression analyses showed a positive 

association between GM volume and CMRO2 GM averages, in the patient group only. 

This suggests GM atrophy may reflect some disease activity that is also affecting the 

metabolism of oxygen specifically, as there was no significant relationship between 

CBF and GM volume. A significant relationship between lesion volume and GM CBF 

averages was reported, showing patients with higher lesion volume to have lower CBF 

values. Similar relationships have been reported previously, including negative 

correlations between T2-lesion load and global GM CBF (Amann et al., 2012) and GM 

CVR (Marshall et al., 2014, 2016). Lesion volume was not significantly related to GM 

CMRO2  averages but the trend appeared very similar. In fact, Ge et al (2012) report a 

significant negative correlation between their whole-brain CMRO2  measure and lesion 
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load. These findings are interesting, as the majority of these lesions were not identified 

within GM, meaning the level of WM damage relates to the level of GM CBF impairment. 

It could be assumed that  a higher WM lesion load simply reflects a higher GM lesion 

load; GM lesions that are likely present in this MS group based on previous literature 

(Klaver, De Vries, Schenk, & Geurts, 2013a) but not measured in our study. However, 

it is not clear from the literature whether this assumption can be made: some literature 

reports no correlations between WM and GM damage (Bö, Geurts, van der Valk, 

Polman, & Barkhof, 2007), whereas others show that they are related (Mühlau et al., 

2013). The GM masks for the patients likely included both healthy and damaged GM; 

we cannot separate these with the data collected. For future studies, it would be 

valuable to include other scans more sensitive to GM damage, to report alongside these 

GM physiological measurements, for example double inversion recovery FLAIR 

sequences to characterise GM lesions (Abidi, Faeghi, Mardanshahi, & Mortazavi, 2017) 

and techniques using quantitative mapping of MR parameters to characterise 

myelination within GM (Lutti, Dick, Sereno, & Weiskopf, 2014). 

 

The voxel-wise analysis showed multiple small clusters that had significant decreases 

in the patient group, for CBF and CMRO2 only. Both CBF and CMRO2 were decreased 

in the subcallosal cortex and medial frontal regions, just CBF in the occipital pole and 

the para-hippocampal gyrus, and just CMRO2 in the nucleus accumbens and the 

paracingulate gyrus. Considering the wide-spread nature of the damage reported in MS 

we did not have any clear predictions of certain regions showing vascular or metabolic 

differences at the group level, and it must be noted that these clusters are very small. 

However, it is interesting that some of the regions we report are areas where new 

lesions appear more frequently. For example Calabrese et al (2015) tracked the 

distribution and evolution of GM lesions over 5 years and showed new lesions appeared 

more frequently in the hippocampus, parahippocampal gyri, insula, cingulate cortex, 

superior frontal gyrus and cerebellum. The corpus callosum, subcortical regions and 

visual pathways are also common regions (Ge, 2006), which are close to the regions  

we observe these voxel-wise differences. We can therefore speculate that these 

differences in GM CBF and CMRO2  are driven by existing or developing lesions in these 

areas, however this link has not been directly tested. 

 

Patients reported lower GM volumes on average, lower CMRO2 signals on average, 

and GM volumes positively correlated with CMRO2 signals. Therefore, this is consistent 

with the idea that CMRO2 is modelling tissue oxygen demand and that this demand is 

decreasing as GM volume decreases. It is difficult to say whether this relates simply to 

GM atrophy, or if there is a more generalised metabolic dysfunction in the GM of MS, 
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as has been proposed (Paling et al., 2011). Nevertheless, it adds to the evidence for a 

clear GM dysfunction in MS, mediated by metabolic and vascular impairments.  

 

Model Assumptions  

 

In order to estimate all these physiological parameters, there are many assumptions 

made about the underlying biology. It is important to consider whether the same 

assumptions would hold for a patient group, and also consider assumptions specific to 

this model. Future research should investigate these model assumptions to maximise 

the applicability of this method to an MS population, and disease populations in general. 

 

We did not measure CBV but estimate the CBV changes within our model by assuming 

a power law relationship with CBF changes. This CBF-CBV coupling constant is based 

on animal data which was later confirmed with human data (Chen & Pike, 2010). 

However, this coupling relationship has not been explicitly studied in disease, and it 

may be that the assumptions are not valid for an MS population. The coupling may 

spatially vary with the variation in GM or WM tissue integrity. Indeed, DSC MRI studies 

have typically reported CBV reductions in an MS group (Aviv et al., 2012; Inglese et al., 

2007, 2008; Papadaki et al., 2012; Vitorino et al., 2017), although often in the deep GM. 

In this literature, CBF and CBV reductions, in the same participants, have been reported 

in different regions (Vitorino et al., 2017), and significant regional changes in GM CBV 

have been reported without changes in GM CBF, after controlling for confounds (Aviv 

et al., 2012).  The modelling of the dual-calibrated data (Germuska et al., 2019) included 

priors to stabilise the fitting process, as has been done previously (Germuska et al., 

2016; Wise et al., 2013). This was in the form of a non-linear least squares fit, with 

regularisation. This regularisation procedure gives the model additional information, to 

help prevent overfitting, and therefore minimise the effect of random noise on the model 

fit. Germuska et al (2019) carried out digital phantom simulations to optimise the 

amount of regularisation, which was applied to the OEF and Dc parameters only. For 

OEF, an expected value of 0.4 was set for all voxels, and Dc was assumed to be linearly 

related to the voxel-wise GM PVE. The noise variance was estimated for each voxel 

separately, therefore this regularisation technique was spatially adaptive. Considering 

the use of this OEF prior, it is possible that the lack of difference between patients and 

controls for OEF could be driven by underfitting or overfitting of the data, if this is not 

an appropriate assumption to make about the MS physiology in general. If there was a 

true difference in OEF in the MS group that is not being measured, this would also affect 

the CMRO2  group comparisons.  As mentioned in the introduction, Ge et al (2012) 

report decreased global OEF and decreased global CMRO2 using the T2-relaxation-
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under-spin-tagging (TRUST) sequence. Another study (Fan et al., 2015) showed a 

3.4% difference in OEF between MS patients and controls, using a phase-based MRI 

method at 7T. This is a very different method than our dual-calibrated approach: 

selected veins parallel to the magnetic field were modelled as long cylinders to quantify 

the susceptibility difference between the vessel and the tissue, in order to model OEF. 

However, it gives some evidence there may be OEF difference in MS. In contrast to 

this, MR susceptometry-based oximetry data (Jain, Langham, & Wehrli, 2010)  we 

collected on a subset of the same participants (14 controls and 18 patients), in the same 

session as the dual-calibrated data, showed no differences in OEF between groups 

(Supplementary Table 5-1). These results are whole-brain measurements, with no 

priors informing the estimates of CBF, CMRO2 and OEF. Lastly, parameter maps 

looked physiological plausible, and there were no significant differences in model fit (as 

characterised by the average and SD of residuals over voxels) between patients and 

controls.  

 

Practical considerations and applications  
  

We did not find any relationships between the composite disease impact scores 

(cognitive and physical general disease impact and experience of fatigue) and CBF or 

CMRO2. The four sub-scores from the two questionnaires strongly correlated with each 

other, so it was important not to include them in the model as separate predictor 

variables.  Absence of correlation between perfusion abnormalities in MS and clinical 

measures of disability is a common finding in the literature (Lapointe et al., 2018). The 

dual-calibrated study in Alzheimer’s patient’s (Lajoie et al., 2017) also reported no 

significant correlations between the physiological parameters and cognitive 

assessments. Larger samples and further investigation is needed to understand the 

clinical relevance of vascular and metabolic impairments we report. However, as can 

be seen in Figure 5-1 recruitment for this type of study is challenging considering the 

long list of eligibility criteria, and the commitment required from each participant. 

Furthermore, two researchers are required to be both MRI trained and trained to 

administer gases, and in this study an anaesthetist was also present to ensure 

participant safety, and to respond in the case of an adverse reaction to the gas delivery. 

However, compared to the dual-calibrated Alzheimer’s study by Lajoie et al (2017) we 

did not have as many issues with patient drop-out. Lajoie et al (2017) go from n=64 

patients recruited to n=34 datasets due to: 10 dropping out during the hypercapnia 

testing, 4 due to equipment malfunction, 6 due to the presence of mask leakage and 5 

during the gas inhalation. Although we report some similar issues (Figure 5-1) we had 

a lower drop-out rate. One likely contributing factor to this is the age of our participants: 
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the average age our MS sample was 35 years, and for their Alzheimer’s cohort it was 

77 years. Furthermore, individuals with MS are often familiar with the MRI environment 

considering it is used within the diagnostic and treatment monitoring process. 

Therefore, application of these methods to an MS population is likely to be practical 

feasible.  

 

Finally, these vascular and metabolic impairments may differ at different stages of MS.  

In this sample, the MS patients were of the RRMS type, they had no changes in 

medication for at least 3 months, and no relapse in the last 3 months. In actively 

inflamed WM tissue, there are reports of higher CBF and CBV, not lower (Ge et al., 

2005; Haselhorst et al., 2000; Ingrisch et al., 2012; Wuerfel et al., 2004). These CBF 

and CBV increases presumably reflect a higher metabolic demand, but this had not 

been tested directly. For chronic WM lesions, looking T1-hypointense, there is evidence 

for a reduction in CBF (Haselhorst et al., 2000; L. Li et al., 2014).  One study reports 

lower CBF and CBV in cortical lesions, in RRMS patients, compared to normal 

appearing GM (Peruzzo et al., 2013), however, a small subset show increased CBF 

and CBV, suggestive of acute inflammation.   

 

Conclusions  

 

This chapter displayed the first application of a dual-calibrated fMRI method in an MS 

population, showing evidence for reduced blood flow and oxygen metabolism across 

the GM, in the absence of changes in reactivity of blood vessels, OEF and effective 

oxygen diffusivity. As CMRO2 was positively correlated with total GM volume, and GM 

volume was reduced in these patients, this may suggest there is a reduced demand for 

oxygen in the GM. The development of these methods are ongoing, but these results 

demonstrate the feasibility of measuring and estimating many important physiological 

parameters relevant to MS pathology.   
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5.5 SUPPLEMENTARY 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELIGIBILITY CRITERIA 
[Patient only] 

 
Inclusion 

• Aged between 18 and 45 years  
• Speak fluent English  
• Diagnosis of MS (no other neurological/psychiatric conditions) 
• Medications and rehab stable for at least 3 months 

 

Exclusion  
• MRI contraindications 
• Current smoker 
• History of diabetes, blood-borne disease, haemophilia, rest angina, 

asthma (in past 2 years), shortness of breath at rest, regular dizziness, 
epilepsy, head trauma  

• Pregnant or have given birth in the last 6 weeks 
• Been involved in any drug trials in the last 4 weeks 
• History of drug dependency or have taken any illicit drugs in the last 4 

weeks 
• Have experienced a relapse in the 3 months prior to taking part  
• Have been prescribed steroid drugs in the 3 months prior to taking 

part 
 
Information on any medications the participant was currently taking 
(prescribed and unprescribed) was asked about to ensure that they did not 
interfere with breathing, and therefore interact with the gas protocol. An 
anaesthetist reviewed all reported  medications before proceeding with the 
practise gas protocol. 

 
Supplementary Figure 5-1. Eligibility criteria for controls and patients, for the 
dual-calibrated fMRI study. 
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Supplementary Figure 5.2. A typical testing session for one participant, showing 
which data contributed to Chapters 5, 6 and 9.  

Data presented in Chapter 5 and 6.
Data presented in Chapter 6.
⍟⍟ Presented as Supplementary

(Table 5-1)

⍟ Not presented in this thesis

Data presented in Chapter 9. 10

patients and 10 controls carried out

the movie scans within the full

session, shown in orange. 5 patients

and 2 controls did not, but were

invited back on a separate day to

complete the MEG session and a

short MRI session involving the

movie and T1-scan. 3 other control

datasets from Chapter 7 were

included in the Chapter 9 analysis, to

get a matched control sample of 15.

Consent & Screening
(~ 15 mins)

MEG
Set-up & Movie Scan

(~ 1 hour)

Clinical and behavioural 
data

Demographics; Disease 

history; Questionnaires; 

SLOAN letter chart; 25-FW; 

9HPT; SDMT; PASAT; 

Hemoglobin Sample 
(~ 1 hour)

Break (~30 mins)

Prep participant for MRI  
(~15mins)

Gas Familiarisation 
(~30 mins)

MRI (1.5 - 2 hours)

• Phase-Contrast (for location of pCASL tagging) 

• pCASL scan with gases  (M0 preceding)

Replace mask with nasal cannula
• Phase-Contrast (for location of pCASL tagging)

• Time of Flight, and OxFlow ⍟⍟
• pCASL scan during visual task (M0 preceding)

• pCASL scan during motor task (M0 preceding) ⍟
• pCASL scan during movie (M0 preceding)

• Structural scans:  FLAIR, PD/T2, MPRAGE (T1)

Recruited 26 MS; 25 controls

26 MS; 25 C

26 MS; 25 C

10 MS; 10 C

26 MS; 25 C

26 MS; 25 C

10 MS; 10 C

22 MS; 22 C

22 MS; 22 C

26 MS; 25 C

26 MS; 25 C

26 MS; 25 C
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 Supplementary Figure 5-3. Gas delivery circuit set-up for the calibrated fMRI study.  
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Patients  

(n=18) Controls (n=14) 

P-value  

(2-tailed) 

CBF 49.22 ± 8.93 51.95 ± 6.46 0.343 

OEF 0.25 ± 0.08 0.24 ± 0.07 0.591 

CMRO2 107.14 ± 35.12 106.10 ± 20.27 0.922 

Supplementary Figure 5.4. Relationship between GM volume and CBF (top), 
and between GM volume and CMRO2 (bottom), for the control group only. p 
values refer to testing the beta coefficients against zero (uncorrected).  

Supplementary Table 5-1. Results from an OxFlow sequence in a sub-set of 
the same participants presented in this chapter. OxFlow calculates SvO2 in 
the superior sagittal sinus (SSS) through susceptometry-based oximetry. 
Scan duration of 1.17 minutes. A time of flight sequence is also acquired to 
localised the SSS, and a phase-contrast scan to localise the neck vessels.  
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6 Blood flow and oxygen metabolism changes in Multiple 
Sclerosis, during visual stimulation, using calibrated-fMRI  

 
6.1 INTRODUCTION 
 
Chapter 5 provided evidence for reduced CBF and CMRO2 in MS, when the brain is at 

rest. It is also important to understand how blood flow and oxygen usage change when 

there is a change in demand (i.e. in response to a functional task) as this may be more 

directly related to functional impairments and therefore disease impact. By measuring 

CMRO2 signals, we are getting closer to measuring the metabolic demand of neural 

activity (Buxton, 2010; Du et al., 2008; Hyder, 2010). If this metabolic demand is altered 

in MS, it may indicate neural or metabolic dysfunction or atrophy in these areas. 

Furthermore, if we characterise the coupling between CBF and CMRO2 signals to the 

same task or stimulus, this will inform whether the vascular system is responding 

appropriately to the level of demand. If it isn’t, this may be a factor contributing to longer 

term damage in the MS brain.  

 

There is evidence to suggest that investigating the visual system may help probe MS 

pathology both when functional impairments are present and when they are not. A 

common initial presentation of MS is optic neuritis, an acute visual impairment 

characterised by a reduction in visual acuity and connectivity in visual pathways 

(Polman et al., 2011; Toosy et al., 2014). However, abnormalities of visual pathways, 

in the absence of optic neuritis and visual symptoms, have also been reported in MS 

(Alshowaeir et al., 2014; Graham & Klistorner, 2017; Sisto et al., 2005), mostly 

attributed to post-chiasmal damage along the visual WM pathways, but could also be 

related to the more widespread vascular and metabolic alterations (discussed in 

Chapter 3.2). Only one research group have previously investigated task-induced 

CMRO2 in an MS population (Hubbard, Araujo, et al., 2017; Hubbard, Turner, et al., 

2017). They demonstrated significant lower CBF and CMRO2 visual evoked changes in 

MS patients compared to controls, and report that the CMRO2 change was one of the 

top measures to accurately classify MS status (Hubbard, Araujo, et al., 2017).  

 

For these reasons, and due to the visual fMRI recordings being easy to implement in 

patient groups, we investigated BOLD, CBF and CMRO2 changes to a visual-

checkerboard stimulus in MS. Based on the findings by Hubbard et al, on the lower 

baseline CBF and CMRO2 signals we report in Chapter 5, and on the reductions in 

BOLD and CBF to a visual stimulus in Chapter 4, we hypothesised reduced visual 
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BOLD, CBF and CMRO2 responses in the MS group, and correlations with disability. 

Unlike the previous work, this chapter also considers the effect of baseline CBF and 

CMRO2 on the task-induced visual BOLD, CBF and CMRO2 changes.  

 

6.2 METHOD 
 

Participants 
 

The same controls and patients were used in Chapter 5, Chapter 6 (this chapter) and 

Chapter 9; an overview of this data collection is displayed in  Supplementary Figure 5-

2. 26 patients and 23 controls completed the visual checkerboard task after the dual-

calibrated acquisition. Of these, 22 patients and 20 controls had corresponding dual-

calibrated fMRI data, allowing us to model the CMRO2 response.  

 

Data Collection 

 
Data collected from questionnaires and behavioural testing is explained in Chapter 5. 

For the imaging, the same DEXI pCASL acquisition, as explained in Chapter 5, was 

acquired during a visual task. The visual stimulus consisted of a reversing checkerboard 

(total size 8x8 degrees of visual angle, checks 3 cycles per degree, 100% contrast, 

checkerboard polarity reversing every 250ms). The design included a 30 second rest 

block followed by a 30 second stimulus block, repeated 8 times, then ending on rest 

block (total time 8.5 minutes). Participants were asked to focus on a red fixation square 

in the centre of the image, present during rest blocks and stimulus blocks.  
 

Data Analysis 

 

Pre-processing. The first and second echo from the visual DEXI-pCASL data were 

motion corrected (McFLIRT) and brain extracted (BET). Spatial smoothing was carried 

out with a Gaussian kernel of FWHM 4.3mm, with a high-pass temporal filter applied 

with a cut off of 90s. Registration of CBF data (first echo) and BOLD data (surround 

average of second echo) to individual T1-structural data (linear, 6 DOF) and then to 

MNI standard space (linear, 12 DOF) was carried out using FSL FLIRT. Using FSL-

FEAT, perfusion time courses were modelled from the first echo data, and BOLD time 

courses from the second echo data (in a separate FEAT design), with the inclusion of 

regressors explicitly describing the tag-control signal differences. A higher-level 

analysis was performed with FEAT using a mixed effects model (FLAME 1+2) to model 

the effect of the checkerboard stimulus across all participants (regardless of group), 
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and to model any ‘Control-Patient’ or ‘Patient-Control’ significant differences. Z statistic 

images were thresholded using clusters determined by Z>2.3 and a (corrected) cluster 

significance threshold of p = 0.05 (Worsley, 2001). Diagrams of the FEAT models can 

be seen in Supplementary Figure 6.1.  

 

BOLD, CBF, M and CMRO2 over group ROIs. For each subject, BOLD and CBF 

signals (and therefore the modelling of CMRO2) were characterised as change from 

baseline, averaged over two ROIs. The first ROI consisted of common significant voxels 

between the BOLD group contrast and the CBF group contrast (average contrast 

across patients and controls). The second ROI consisted of common significant voxels 

between the BOLD ‘Control-Patient’ contrast and the CBF ‘Control-Patient’ contrast. 

There were no significant voxels in the ‘Patient-Control’ contrast for BOLD or CBF. 

These two ROIs, in MNI space, where transformed to subject space, binarised, and a 

mean BOLD and CBF percentage signal change to the visual stimulus was calculated 

over each ROI. 
 
In order to model CMRO2 we need an estimate of the calibration factor M over the same 

ROI, to input into: 

𝐶𝑀𝑅𝑂2
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This equation, based on (Davis et al., 1998), was introduced and explained as Equation 

2-7 in Chapter 2. In Chapter 5, the baseline data was quantified using a simplified BOLD 

model (Merola et al., 2016), so for consistency the standard calibration model (Davis, 

Kwong, Weisskoff, & Rosen, 1998) was modified to: 

 

GefX=
GefX=Z

= 	_ GWb
GWbZ

a
A0�		

. \	1 −	
∆op78
op78Z

?�		∙	�∙[���]Z	
i										(Equation 6-1) 

 
TE is the echo time of the acquisition, κ is a composite calibration parameter that 

represents the combination of the venous weighted blood volume and water diffusion 

effects, [dHb] is the de-oxyhemoglobin concentration and is equal to Hemoglobin x (1-

SvO2) and θ (assigned a value of 0.06, previously represented by both a and b) is an 

empirical parameter combining contributions from venous blood volume changes and 

extra-vascular water diffusion effects. 
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Therefore, maps of M (specifically: 𝑇𝐸		 ∙ 	κ ∙ [dHb]$) where made from the baseline 

(resting) pCASL data in Chapter 5 for each participant. Example M-maps, for 2 patients 

and 2 controls, are showed in  Figure 6-1. The group visual ROIs (in MNI space) were 

transformed to T1-space, then to the subject’s M-map space, to obtain an average M 

over this region, as with BOLD and CBF response to the visual stimulus. Then the 

relative CMRO2 response to the stimulus was modelled as per Equation 6-1. Baseline 

CBF and CMRO2 were also averaged over these ROIs, in order to include in the 

statistical modelling. The coupling between CBF and CMRO2 to the visual response 

was calculated (CBF/ CMRO2) and represented by the parameter n.    

 

 
Figure 6-1. Maps of the M parameter (𝑇𝐸		 ∙ 	𝜅 ∙ [𝑑𝐻𝑏]$) outputted from the dual-calibrated 
fMRI modelling in Chapter 5. Examples are shown for two controls and two patients. 

 

Statistics 

 
To test the difference between groups for the M and n parameters independent sample 

t-tests were carried out.  If assumptions of normality were violated, Mann Whitney U 

tests were carried out to test medians. In the difference ROI (explained below), variance 

in BOLD, CBF and CMRO2 visual responses were predicted with group membership, 

visual acuity and baseline CBF/CMRO2 over the same ROI, using multiple linear 

regressions. In the patient group only, a linear multiple regression was performed to 

predict the patient’s CBF and CMRO2 visual responses in the difference ROI using the 

composite disease impact score and lesion volume.  All assumptions were met unless 
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other otherwise stated Outliers were defined as being 3xSD above or below the mean, 

or 3xIQR above or below the lower or upper quartile, respectively. 

 

6.3 RESULTS 
 

BOLD and CBF responses to the visual stimulus  

 
Figure 6-2 (A-C) display the BOLD and CBF results from the group FEAT analysis. Four 

significant clusters were found for the BOLD response to the visual stimulus:  an 

occipital cluster (Z-MAX = 8.6, [26,-96,4]), a right precentral gyrus/middle frontal gyrus 

cluster (Z-MAX = 4.82, [-46 0 30]), a left precentral gyrus cluster (Z-MAX =4.33, [52,-

6,50]), and a frontal pole cluster (Z-MAX  =4.06, [-20, 62, 24]). Significant voxels, in 

response to the stimulus, common to BOLD and CBF (across both groups) were found 

in the posterior occipital cortex (occipital pole) and lateral occipital cortex, and this is 

referred to as the ‘Group ROI’ from now on. This region was the only significant cluster 

in the CBF group analysis. A small region (localised centrally, overlapping with the 

occipital pole and posterior areas of lingual gyrus, central voxel: [2,-90,-12]) was found 

to have significantly greater activity for controls than patients, in both BOLD and CBF 

contrasts, and this is referred to as the ‘Difference ROI’ from now on. 
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Figure 6-2. A & C: Red displays significant voxels in response to visual stimulus, 
common to BOLD and CBF (based on Z>2.3 thresholded clusters, p=0.05), across 
both groups. The small blue region displays voxels with significantly greater activity 
for controls compared to patients, common to BOLD and CBF. B: Significant 
clusters in the BOLD analysis, across groups. Yellow shows an occipital cluster, 
light orange a right precentral gyrus/middle frontal gyrus cluster, dark orange a left 
precentral gyrus cluster and red a frontal pole cluster. There were no further 
significant voxels in the CBF analyses, than the one common to BOLD shown in 
Figure A.  D and E: Comparing percentage change BOLD and CBF signals 
between patient and controls, averaged over the Joint ROI (red, A & C) and the 
Difference ROI (blue, A & C) to display the magnitude of the signal changes, on 
average. 
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Modelling the CMRO2 response to the visual stimulus  

 
Group averages for the visual BOLD, CBF and CMRO2  responses for both ROIs are 

displayed in Table 6-1. The Difference ROI (Figure 6-2C) was only made up of 39 voxels 

and therefore averaging M over this ROI for each subject separately, in order to model 

CMRO2, was unreliable. Many participants, in both groups, had very physiologically 

unrealistic M value estimates over this ROI. For example,  the minimum M value was 

6%, the maximum was 62% and the mean ± SD was 15% ± 12, presumably because 

there were not enough voxels to average out noise. Therefore, the subsequent CMRO2 

modelling in the Difference ROI was based on M values averaged over the Group ROI 

(Figure 6-2A) for each subject. For M values in the Group ROI, one patient was an 

extreme outlier (with a z-score of 3.87 and an average M value of 20.03%) so was left 

out of the subsequent CMRO2 group comparison. The remaining 20 controls (7.57% ± 

0.31) and 21 patients (8.01% ± 0.30) did not have significantly different M values, (t(39) 

= 1.01, p = 0.315).  The CMRO2 responses from the Group ROI were not significantly 

different between patients and controls, t(38) = 0.125, p = 0.901. Statistical 

comparisons are not reported for the Difference ROI here, as group comparisons are 

carried out within a regression model later in the results, alongside other predictor 

variables.  

 

 
Table 6-1. BOLD, CBF and CMRO2 visual response, expressed as percentage change 
from baseline,  for each ROI. Extreme outliers were removed from these means: one 
patient for Group ROI CMRO2 and one control for Diff ROI BOLD.  
 
 

Group ROI Diff ROI Group ROI Diff ROI Group ROI Diff ROI
Controls Mean 0.46 1.33 15.79 33.76 7.63 5.05
Patients Mean 0.46 0.87 16.39 21.98 7.44 5.66
Controls SD 0.23 0.57 7.93 15.71 4.51 9.97
Patients SD 0.24 0.64 9.71 16.56 4.91 8.72

BOLD (% change) CBF (% change) CMRO2 (% change)
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Is Flow-Metabolism coupling altered in patients? 
 

The coupling between task-induced change in CBF and CMRO2 was compared 

between patients and controls in each ROI, and this is shown in Table 6-2. A coupling 

of around n=2 is consistent with previous work, however there were no significant 

differences between patients and controls. In the Group ROI, there was a trend for 

patients to have lower n values on average (p=0.07).  

 
 

 

Table 6-2. Comparison of the coupling parameter n (CBF/CMRO2) between patients 
and controls, to the visual stimulus. For the group ROI comparison, two patients and 
one control where removed as they were extreme outliers. For the difference ROI, one 
patient was removed as they were an extreme outlier. The n values for the difference 
ROI were not normally distributed for both groups, so a non-parametric test of medians 
was run.  
 

 

What factors can explain the differences between patients and controls? 
 

We investigated factors that may explain the BOLD, CBF and CMRO2 differences 

between patients and controls in the region where there was significantly reduced 

activity (Difference ROI). As this regression analysis is based on average signals in the 

region where the group FEAT analysis showed significant group differences, we expect 

group membership to make a significant contribution to this model. Including this 

variable also allows us to consider interactions between group and other predictor 

variables. Visual acuity in the right eye (shown in Chapter 5) was significantly worse for 

the patient group, therefore visual acuity (averaged across both eyes, as the stimulus 

was shown bilaterally) was included as a predictor. Visual acuity was included, instead 

of history of optic neuritis, as this data existed for both patients and controls and was 

reflective of the patient’s visual function on the same day of scanning. Ten patients had 

no history of optic neuritis, five patients reported one previous episode, four patients 

reported two and one patient reported three episodes. As baseline CBF and CMRO2 

differences were demonstrated in Chapter 5 their effect on the visual stimulus response 

was also modelled. The relationship between baseline signals and group membership 

with visual stimuli responses is displayed in Figure 6-3.  

 

n  (Mean ± SD) p-value n  (Median, IQR) p-value
Controls 2.07 ± 0.38 1.50, 3.73
Patients 1.82 ± 0.49 2.56, 6.480.07 0.35

Group ROI Difference ROI
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For predicting visual CBF responses, the overall model was significant, R2 of 29.3% (F 

(3, 36) = 4.98, p = 0.005. Baseline CBF (β = -0.362, p = 0.021) and group membership 

(β  = 0.552, p = 0.001) significantly contributed to the model predicting visual CBF. 

Visual acuity did not make a significant contribution to the model (β = -0.193, p = 0.186). 

Including an interaction term in the model between baseline CBF and group 

membership did not make a significant contribution to the model (p = 0.902). For 

predicting visual BOLD responses, the overall model was significant R2 of 29.3% (F (3, 

36) = 4.98, p = 0.005). Baseline CMRO2 (β = -0.377, p = 0.012) and group membership 

(β = 0.387, p = 0.011) significantly contributed to the model predicating visual BOLD, 

but visual acuity did not (p = 0.962). Including an interaction term in the model between 

baseline CMRO2 and group membership did not make a significant contribution to the 

model (p = 0.342). For predicting visual CMRO2 responses, the overall model was not 

significant, R2 of 12.0% (F (3, 36) = 1.63, p = 0.199). Baseline CMRO2 (β = 0.146, p = 

0.361), group membership (β = 0.021, p = 0.898), or visual acuity (β = -0.297, p = 

0.074), did not display beta coefficients significantly different to zero.  

 

What factors can explain variability in the patient group? 
 

As Hubbard et al (2017) showed a relationship between visual CMRO2 and disease 

impact scores (fatigue) and WM damage, we examined whether the composite disease 

impact score and lesion volume could predict  BOLD, CBF or CMRO2  visual responses 

in the patient group only, in this Difference ROI. Lesion volume and disease impact did 

not significant predict BOLD (R2 of 8.3% (F (2, 18) = 0.81, p = 0.459), CBF (R2 of 8.1% 

(F (2, 18) = 0.79, p = 0.468), or CMRO2 (R2 of 8.1% (F (2, 18) = 0.79, p = 0.468) visual 

responses in the patient group.  

 

 

  

 

 

 

 

 

 

 

 

 



   102 

 

 

Figure 6-3. Top: relationship between baseline CBF (ml/100g/min) and visual 
stimulus CBF (percentage change). Middle: relationship between baseline CMRO2 
(µmol/100g/min) and visual stimulus BOLD (percentage change). Bottom: 
relationship between baseline CMRO2 (µmol/100g/min) and visual stimulus 
CMRO2 (percentage change). Patients are shown in blue and controls in black. 
Signals are modelled in the Difference ROI from the group FEAT analysis 
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6.4 DISCUSSION 
 
As has been done previously in calibrated-fMRI studies, here we characterised the 

relative CMRO2 response to a visual stimulus, based on a simplified BOLD model 

(Merola et al., 2016), combined with the standard calibration model (Davis, Kwong, 

Weisskoff, & Rosen, 1998). We created the calibration factor M using sequence 

parameters and parameter outputs from the dual-calibrated modelling in Chapter 5, in 

order to model the relative CMRO2 response. As we had quantified baseline CBF and 

CMRO2 responses in the same participants, from Chapter 5, we considered the effect 

of these signals in the same brain region when looking at stimulus responses. In 

response to the visual stimulus, a small region in the visual cortex showed significantly 

lower CBF and BOLD stimulus responses in the patient group compared to the controls. 

However, no significant differences were found between patients and controls for visual 

CMRO2 responses, and disease characteristics did not predict BOLD, CBF or CMRO2 

responses in the patient group. There were no significant differences for flow-

metabolism coupling between groups. For both patients and controls, we found that 

baseline CBF and CMRO2 values significantly predicted stimulus CBF and stimulus 

BOLD responses, respectively. 

 

Changes in the BOLD response to visuomotor tasks have been previously 

demonstrated, showing that inflammation and WM structural damage play a role in 

altering haemodynamic responses in MS (Hubbard et al., 2016; Tomassini et al., 2016). 

Consistent with this, we found a significantly reduced BOLD and CBF response in the 

visual cortex of MS patients, although this could not be predicted by their visual acuity 

scores. It was surprising to not find more wide-spread differences in BOLD, CBF or 

CMRO2 signals in the patient group, except for this small ROI in occipital pole/posterior 

lingual gyrus, considering previous literature, and our results presented in Chapter 4. 

In Chapter 4, we do not report CMRO2 responses to a visual stimulus, but do show clear 

BOLD, CBF and gamma power reductions in the MS group. In fact, the biggest 

difference in gamma power change (directly reflecting neural activity) was seen at 100% 

visual contrast. This is not consistent with the lack of differences we report here with 

the visual checkerboard also at 100% contrast. In Chapter 4, the patients and controls 

were older on average (around 43 years), compared to the cohort presented in this 

chapter, and were treatment naive. This may have meant they had higher levels of 

inflammation, which is one explanation for greater impairments reported. In Chapter 4, 

the visual stimulus was shown to each eye separately; considering optic neuritis and 

visual abnormalities are common in MS, this may have given more sensitivity to 
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measure abnormalities. In this study, we chose to display to both eyes together due to 

time constraints but also to better reflect natural visual processing.  

 

Visual CMRO2 responses and the coupling between CMRO2 and CBF (Blockley, 

Griffeth, Simon, & Buxton, 2013) were in expected ranges. Despite the M values being 

calculated from the dual-calibrated fMRI data in Chapter 5, they are in good agreement 

with the values from studies using only hypercapnia to calibrated the BOLD signals, 

which is more typical. We reported an average of 7.57% for controls and 8.01% for 

patients, which is in good agreement with previous single and dual calibrated studies 

(Driver, Wise, & Murphy, 2017; Gauthier & Hoge, 2013; Wise et al., 2013). Ideally, a 

voxel-wise approach to characterising CMRO2 would be taken, allowing for more spatial 

sensitivity to functional changes. However, here we took an ROI approach, considering 

the level of noise in the M maps, which was particularly noticeable when trying to 

average M values over the small Difference ROI. In order to model CMRO2 changes in 

this area, an average M value from the larger Group ROI was used, unfortunately 

reducing the spatial specificity of the M estimate. 

 

Consistent with our results, Hubbard, Araujo, et al (2017) also report no differences 

between patients and controls for coupling between CBF and CMRO2 to a visual 

stimulus.  They also report no changes in visual BOLD responses. Their study had a 

specific focus on the predictive ability of visual evoked CMRO2 responses in classifying 

MS status; alongside this they report large reductions in visual CBF responses (~45% 

reduced CBF response) and CMRO2  response (~8% reduction) in their MS cohort, 

contrary to our results. Differences in characteristics of their MS cohort may be one 

factor to explain this. For example, their sample of 10 patients and 13 controls were 

much older on average (around 50 years) compared to our sample of 22 patients and 

20 controls (around 35 years). Their patient group therefore had a longer average 

disease duration (119 months) compared to ours (95 months), and less time had 

passed since their last relapse, on average. It is therefore possible that these patients 

had more GM dysfunction due to more disease progression (Klaver et al., 2013a). Their 

visual task was different and more complex than the one used here; they controlled the 

participant’s attention by changing the luminance of the fixation and requiring a button 

press response, they altered the orientation to avoid neural adaptation, and they had a 

flicker rate of 8Hz. Although fMRI studies typically report a peak response at 8Hz (Li, 

Chen, & Chen, 2011; Sun et al., 2014) thereby potentially giving the greatest signal-to-

noise estimate, we wanted to keep our reversal rate (4Hz) consistent with what was 

used in Chapter 4, which was chosen in order to compare with MEG responses. 

Furthermore, as this chapter aimed to characterise CMRO2 to a visual stimulus, there 
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is some evidence that the electrophysiological response, and the CMRO2 response in 

accordance, peaks at 4Hz and not at 8Hz (see data in 11. Appendix 1). 

 

In this chapter, we report no significant relationship between visual BOLD, CBF or 

CMRO2 and disease impact scores (fatigue) and WM damage (lesion volume), in the 

patient group. This in contrary to the study by Hubbard, Turner, et al (2017), a different 

study to the one discussed earlier, which reported positive correlations between visual 

CMRO2 responses and neurological disability and fatigue scores, in a study involving 

MS patients only. The direction of this relationship appears contrary to the results of the 

reduced CMRO2 response in patients, compared to controls, reported in their other 

work. Further to this, they report that radial diffusivity of the occipital tract to be 

significantly positively correlated with visual CMRO2 and negatively correlated with 

visual BOLD. The mechanisms for this are not clear, but they discuss neurovascular 

uncoupling in MS as a potential explanation for these different relationships. It is clear 

that more research needs to be done to characterise task-induced CMRO2 changes in 

MS, particularly if they can show such different relationships with structural damage 

compared with BOLD signals.  

 

In this chapter, baseline CBF (ml/100g/min) predicted CBF visual stimulus responses 

(%), and baseline CMRO2 (µmol/100g/min) predicted BOLD visual stimulus responses 

(%), in the same brain region. These relationships were not significantly different for 

patients and controls, although it is interesting to note that one of the regions showing 

significantly lower CBF values in the voxel-wise analysis of Chapter 5 appears to be in 

a very similar location to the Difference ROI  reported here, so it is likely this may have 

had some effect on the functional patient control differences reported here. Here we 

report that the lower the baseline CBF or CMRO2 a participant has the higher their 

relative stimulus response. This has been reported previously in many fMRI studies 

(Hyder, Rothman, & Shulman, 2002; Kannurpatti, Biswal, & Hudetz, 2003; Pasley, 

Inglis, & Freeman, 2007; Shulman, Rothman, & Hyder, 2007). This suggests, if the CBF 

and CMRO2 is lower at baseline, it will need to increase proportionately more to match 

the  CBF and CMRO2  changes due to neural activity. These findings show the 

importance of characterising the baseline state, in patient and healthy populations, for 

proper interpretation of relative stimulus changes.  

 

Conclusions  
 

We report differences in BOLD and CBF responses in MS, in a small region of visual 

cortex, not explained by changes in visual acuity. We do not report visual CMRO2 
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changes, or differences in the coupling between CBF and CMRO2 in the patient group, 

suggesting the vascular system is responding adequately to the level of demand. 

Although visual abnormalities are common in MS, MS is not specifically a disease of 

the visual system and there is great variability across participants in the type of 

symptoms and their severity. The signals and parameters modelled here, specifically 

CBF and CMRO2, are physiologically specific and interpretable, yet they are noisy and 

sometimes spatially insensitive. With continual improvement of these methods, 

baseline and task-induced CMRO2 changes will be able to be characterised more 

robustly on a voxel-wise basis.  

 

6.5 SUPPLEMENTARY 

 
 
 

 

 

 

 

 

 
 

Supplementary Figure 6.1. (A) Diagram of the FEAT model used to estimate 
the BOLD and CBF responses to the visual stimulus for echo 1 and echo 2, for 
each participant, using FEAT’s Full Perfusion Modelling. (B) Diagram of the 
higher-level FEAT analysis  to model the effect of the visual stimulus across 
all participants (Group Av) as well as differences between groups (Controls – 
Patients and Patients – Controls).  
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7 Coupling between brain oscillations, CBF, and BOLD signals 
during naturalistic movie viewing  

 

7.1 INTRODUCTION 
 

In Chapter 1.2.3, we covered the importance of understanding NVC in the healthy brain, 

as it is the physiological basis of many commonly used neuroimaging techniques, 

including fMRI. Coupling between neural activity, blood flow, and oxygen usage is also 

thought to be altered in different disease pathologies. Therefore, to accelerate our 

understanding of this in health and disease, we need to develop non-invasive ways of 

investigating these coupling mechanisms, with practically feasible methods applicable 

to patient populations. 

 

In Chapter 4 we measured the electrophysiological response (with MEG) and the 

hemodynamic responses (with fMRI), and the coupling between them, in response to a 

visual checkerboard stimulus. This type of stimuli, artificial and with highly-controlled 

visual features, is what is typically used in E/MEG and fMRI studies. This approach 

often limits the analysis to a few localised regions, and specific oscillatory frequencies, 

and is not particularly representative of normal visual experiences. Furthermore, 

participants can often struggle to attend to the high-contrast full-field stimulus types, 

typically chosen to elicit maximal signal responses. 

 

In this current chapter, we again compare brain oscillations with CBF and BOLD 

responses, but with a naturalistic movie viewing paradigm. Previous literature has 

shown that passive-viewing of movie clips allows activity to be characterised across 

multiple brain areas, and multiple oscillatory frequency bands, giving reliable inter-

subject correlations and intra-subject correlations (between two repetitions of the same 

clip). This has been shown extensively with BOLD-fMRI (e.g. Bartels & Zeki, 2004, 

2005; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Jääskeläinen et al., 2008; 

Lahnakoski et al., 2014; Nummenmaa et al., 2012), as well as with EEG and MEG 

(Chang et al., 2015; Dmochowski, Sajda, Dias, Parra, & Rousselet, 2012; Ki, Kelly, & 

Parra, 2016; Lankinen, Saari, Hari, & Koskinen, 2014). Very few papers have 

characterised CBF responses to movie viewing (Griffeth, Simon, & Buxton, 2015; Rao, 

Wang, Tang, Pan, & Detre, 2007). Rao et al (2007) revealed both CBF and BOLD 

increases and decreases to a movie stimulus, with CBF showing activation patterns 

across more areas.  
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Only a few studies have compared both MEG and BOLD-fMRI signals to a movie 

stimulus (Betti et al., 2013; Kaisu Lankinen et al., 2018; Whittingstall, Bartels, Singh, 

Kwon, & Logothetis, 2010). MEG and BOLD signals often show similar spatial 

topographies, yet their relationship becomes more complex when comparing across 

different oscillatory frequency bands. The strongest and most consistent relationships 

between MEG and fMRI are reported in occipital areas, most likely due to the visual 

stimuli used. 

 

In this study, we aimed to characterise inter-subject correlations (ISCs) to a naturalistic 

movie clip for MEG, BOLD and CBF signals, as well as the coupling between them to 

represent an empirical measure of NVC. To the best of our knowledge, this has not 

been done previously in the same study. We re-sampled the MEG and fMRI data to the 

same spatial and temporal scales, to investigate voxel-wise relationships between brain 

oscillatory amplitude envelopes across a wide-range of frequency bands (1 – 145Hz), 

alongside BOLD and CBF weighted signals, using a pseudo continuous ASL (pCASL) 

acquisition. As CBF images typically have poorer signal-to-noise ratios than BOLD, one 

aim was simply to see if the MEG-BOLD coupling relationships that have been reported 

previously, and that we investigated, can also be seen for MEG-CBF relationships, and 

if there are any differences, spatially and temporally.  

 

We predict that this design will give temporal similarity across participants in each 

modality, and across modalities, allowing us to evaluate its utility as a way to investigate 

NVC in a healthy population. We predict we will replicate previous findings of how 

oscillatory frequencies correlate with BOLD signals and extend this by investigating 

coupling with CBF signals. We characterise the ISCs and the cross-modality coupling 

correlations in a voxel-wise analysis, therefore also investigating spatial variation in 

NVC relationships across different brain regions.    

 

7.2 METHODS 
 

Participants  

 

19 healthy volunteers participated in this study, and 17 were used in the final analysis. 

All participants had normal or corrected-to-normal vision and had no history of 

neurological or psychiatric disorder. All participants gave written informed consent prior 

to participation and received £10 per hour for taking part. The study was approved by 

the Cardiff University School of Psychology ethics committee.  
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Design and Procedure 

 

All participants had a MRI scan and a MEG scan (see diagram below). Both scanning 

sessions included passive viewing of the same movie clip from the James Bond film 

‘Skyfall’ (approximately the first 19 minutes 38 seconds). A subset of these participants 

also had a BH scan during the MRI session, and this data is analysed in Chapter 8.  

 

 

 

Figure 7-1 gives an overview of the data collection and analysis pipeline, which is then 

explained in detail in the next section.   

Consent forms 
Screening forms
Session Overview
~15 minutes 

MEG session
Subject set-up: ~30 mins
Scanning: ~20 mins

MEG & MRI SAME DAY (5 datasets)

BREAK (+ Hg sample ⍟)
~20 minutes

MRI session
BH practice & subject set-up ~15 mins
Scanning ~45 mins

MEG & MRI DIFFERENT DAYS 
(12 datasets, average days apart: 24)

COUNTERBALANCING 

Of the 17 subjects analysed:
First scan MEG: 8 subjects
First scan MRI: 9 subjects

MRI session

~30 minutes
Consent & screening 
Hg sample ⍟
BH Practice
Subject set-up
~45 minutes
Scanning

MEG session

~30 minutes
Consent & screening 
Subject set-up
~20 minutes
Scanning

MEG SCAN
20 min movie clip 

(SkyFall)

MRI SCANS
MPRAGE (T1-anatomical)
Phase-Contrast 
Time of Flight
OxFlow ⍟
M0 PCASL
SkyFall during DEXI-PCASL
Breath-Hold during DEXI-PCASL (n=15)
Fieldmaps

⍟ Data 
not used
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Figure 7-1. Diagram showing the analysis pipeline used to analyse the MEG and fMRI 
data, to produce the within-modality and between-modality results.  
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MRI acquisition and pre-processing  

 

Data were acquired on Siemens Prisma 3T MRI scanner (Siemens  Healthineers, 

Erlangen, Germany), using a 32-channel head coil. A magnetization-prepared rapid 

acquisition with gradient echo (MPRAGE) T1-weighted scan was acquired for co-

registration and source localisation purposes (matrix 165 x 203 x 197, 1mm3 resolution, 

TR/TE = 2100/3.24ms). During the movie, a pCASL acquisition was run, as explained 

in Chapter 5. A DEXI readout gives BOLD and CBF weighted signals. An effective TR 

of 4.4. seconds was used to acquire 16 slices, in-plane resolution 3.4 x 3.4 mm and 

slice thickness 7mm with a 20% slice gap. Before this scan, an M0 image was acquired. 

 

Motion correction was performed with the FSL-McFLIRT function and spatial smoothing 

(FWHM=4.5mm) of the BOLD data (surround average of TE2) was performed with 

SUSAN (Smith & Brady, 1997). CBF data (surround subtraction of TE1) and the M0 

acquisitions were spatially smoothed using a 3D Gaussian kernel (FWHM 4.5mm). The 

first and last volume of the BOLD and CBF time-series were removed. Registrations 

were carried out with FSL-FLIRT. The BOLD and CBF data were both registered to the 

M0 image. The M0 image was registered to the brain extracted T1 image and this T1 

image was registered to MNI-2mm standard space. The data were then down-sampled 

to 6mm, to match the spatial resolution of the MEG beamformers. BOLD and CBF time-

series at each voxel were up-sampled to 0.5 seconds (with MATLAB’s interp1 function), 

in order to compare with MEG time-series. Spikes were removed using a median 

replacement filter, time-series were changed to percentage change from mean in each 

voxel, and a high-pass filter at >0.01Hz was applied to remove drift. At this stage a 

mean time-series was calculated, across participants, at each voxel, termed the Group 

BOLD time-series and the Group CBF time-series.  Each participant’s data was also 

separately computed and saved, to give a Subject BOLD times-series and Subject CBF 

time-series. 

 

MEG acquisition and pre-processing  

 

Whole-head MEG recordings were collected using a 275-channel CTF Omega system, 

sampled at 600Hz and analysed as synthetic third-order gradiometers. The continuous 

MEG recording was synchronised to the start of the movie clip, which ran for 19 minutes 

and 39 seconds. We used continuous head localisation of electromagnetic fiducial coils; 

these were placed at fixed distances from three anatomical landmarks (1cm anterior to 

left and right tragus, 1cm superior to nasion). Fiduciary locations were later manually 

marked on the anatomical MRI for co-registration (with Fieldtrip toolbox in MATLAB), 
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based on this 1cm distance, as well as verified with photographs. Offline, the data were 

divided into 2-second epochs and visually inspected for major artefacts. Head location 

at each time point was changed to the average head location across the recording. Two 

out of the nineteen participants were removed due to excessive eye and motion 

artefacts. 

 

The data were filtered into these frequency bands: delta (1-4Hz), theta (4-8Hz), alpha 

(8-13Hz), beta (13-30Hz), low gamma (40-70Hz) and a range of 50Hz-wide overlapping 

‘high gamma’ bands (70-120Hz, 95-145Hz). We also filtered the data into two frequency 

bands (120-170Hz, 145-195Hz) above the anti-alias filter cut-off (150Hz for this MEG 

acquisition). This filtered data were source-localised using an LCMV beamformer (Van 

Veen et al., 1997) which provides estimates of the virtual-sensor time-series at each 

voxel in the brain. These time-series were re-constructed on a 6mm grid in standard 

MNI-template space (using the 2mm MNI template brain down-sampled to 6mm), within 

cortical areas only. The time-series at each voxel was converted to an amplitude 

envelope using the analytic function, via the Hilbert Transform. The amplitude 

envelopes were down-sampled to 0.5 seconds to match the up-sampled fMRI data. 

Spikes were removed using a median replacement filter, time-series were changed to 

percentage change from mean in each voxel, and a high-pass filter at >0.01Hz was 

applied to remove drift. At this stage a mean time-series was calculated, across 

participants, at each voxel. This mean time-series was convolved with a canonical 

hemodynamic response function (HRF) from SPM to delay and disperse the oscillatory 

power in order to match to the BOLD and CBF responses.  This will be termed the 

Group MEG time-series for each frequency band. Each participant’s data separately, 

after high-pass filtering, was also convolved with the HRF, to give a Subject MEG time-

series for each frequency band. 

 

Within-modality analysis: inter-subject correlations (ISCs) 

 
For each type of analysis (BOLD, CBF, MEG at each frequency band), we correlated 

the time-series between each pair of participants, transformed the r values using 

Fisher’s Z transform and then averaged all pairwise coefficients to give a mean inter-

subject correlation (ISC) for each voxel. This is a model free analysis to indicate where 

there are changes in activity common across the group. To test if these correlation 

coefficients were significantly different from zero, we performed a one sample-test at 

each voxel. This was statistically tested with randomisation testing (10,000 

permutations, alpha = 0.05). The absolute maximum t-statistic at each randomisation 
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stage was used to define the null distribution, and the absolute t-score was tested 

against this null distribution (Nichols & Holmes, 2001). 

 

Between-modality analysis: MEG-fMRI coupling 

 
First, at each voxel, we performed a linear regression analysis with MATLAB’s fitlm 

function, using the Group MEG time-series (for each frequency band) to predict the 

Group BOLD time-series or the Group CBF time-series, separately, and computed 

maps of correlation coefficients and beta values for each fMRI to MEG regression. R 

values and not R2 values were outputted and tested, in order to represent the shared 

variance between the MEG and fMRI signals whilst still preserving the sign of the 

relationship. Beta coefficients represent the relationship in meaningful units. These 

maps were thresholded to p<0.05 (with false discovery rate (FDR) correction to account 

for multiple comparisons), and also masked to areas that had significant ISCs in either 

the BOLD or MEG data, for that specific frequency band. For example, for the BOLD 

and 1-4Hz correlation analysis results, we plot FDR-thresholded voxels only in areas 

that had significant MEG 1-4Hz ISCs or significant BOLD ISCs, for ease of 

interpretation. Voxel-wise correlation coefficients for the Group-BOLD and Group CBF 

time-series where also produced, to aid with interpretation of results.  

 

At each voxel we had 7 correlation coefficients and 7 beta values, for the BOLD and 

CBF regressions. We performed a principle component analysis (MATLAB’s default 

pca function, centered) on the correlation coefficients and beta values, to explore the 

dominant tuning function across the brain. We examine the principal component 

explaining the most variance and display how this function loads spatially across 

different areas of the brain.  

 

This analysis explained above is performed only on mean time-series data, across 

participants. Therefore, to consider between-subject variance in coupling, we also 

performed a linear regression analysis for each subject separately, regressing the 

Subject MEG time-series in each frequency band at each voxel location onto the 

Subject BOLD times-series and the Subject CBF time-series. To test whether the 

correlation coefficients (Fisher transformed) or beta values were significantly different 

from zero for each voxel, we used FSL’s randomise function to perform a nonparametric 

one-sample t-test at each voxel (5000 permutations), FWER-corrected p-values at 

p<0.05 and TFCE (Threshold-Free Cluster Enhancement). Due to our relative small 

sample size, we used variance smoothing of 12mm, to increase power to detect effects 

(Nichols & Holmes, 2001; Singh, Barnes, & Hillebrand, 2003).  
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A different study carried out at CUBRIC also showed the same movie clip in MEG and 

fMRI (BOLD-weighted sequence only), showing very similar results. With the 

researcher’s approval, their data was combined with some of the data from this study, 

where appropriate, in order to investigate whether significant effects would be seen with 

more statistical power. Their data were processed in the same way, and correlation 

maps between MEG (at each frequency band) and BOLD for each participant (n=16) 

was combined with the ones from this study (n=17). For this data, a BOLD-EPI 

sequence was run (TR = 2 seconds, TE = 30ms, voxel resolution = 2mm3). 

 

7.3 RESULTS 
 

There were 17 participants included in the final analysis, as two were removed for poor 

data quality (excessive head motion and motion artefacts throughout the MEG or fMRI 

recording). The 17 participants were aged 28.29 ± 1.64 (Mean ± SEM), and 4 were 

male. There were 14 who had watched the movie before and 5 who had not.  

 

Within-modality analysis: ISCs for MEG, BOLD and CBF signals 

 
To uncover activity related to the movie, consistent across participants, we calculated 

ISCs at each voxel. Figure 7-2 shows significant ISCs for the BOLD and CBF analyses, 

and Figure 7-3 shows significant ISCs for the MEG analyses for each frequency band. 

Using the whole movie clip or using the first half of the movie clip gave extremely similar 

results, both in the spatial coverage of significant ISCs and the magnitude of 

correlations. Supplementary Figure 7-1 shows cross-correlations of two frequency 

bands above the anti-alias filter cut-off for the MEG acquisition (120 – 170Hz, 145 – 

195Hz), which still show feasible ISCs locations and magnitudes. With a sampling 

frequency of 600Hz, the anti-alias filter in the MEG starts at 150Hz but falls off quite 

slowly, so this is why plausible signals may still be seen just above this cut-off. 

 

We examined what anatomical areas the ISCs where located in by looking at their 

overlap with the AAL atlas (Tzourio-Mazoyer et al., 2002). Common areas with 

significant ISCs in BOLD, CBF, and all MEG frequency bands (both left and right unless 

stated) were seen across inferior, superior and middle occipital regions, including 

calcarine sulci, cuneus, lingua gyri, and fusiform gyri, and superior/middle/inferior 

temporal gyri. Except for CBF, significant ISCs were also found in the angular gyrus 

(anterior parietal). Except in the 40-70Hz frequency band, significant ISCs were seen 

for BOLD, CBF and MEG seen in the pre-cuneus (part of the superior parietal lobe). 
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Significant ISCs in frontal regions (superior, middle, medial or inferior frontal) were seen 

for 4-8Hz, 8-13Hz, 13-30Hz and 40 – 70Hz only. 

 

 
Figure 7-2. Significant BOLD and CBF inter-subject correlations (ISCs) showing movie-
activated areas, using all the data (Whole Movie) and just half the data (First Half). 
Correlation values corrected to p<0.05, with randomisation testing. Correlations are 
displayed on an inflated MNI template brain. Mean correlation over voxels (Mean r) and 
maximum correlation over voxels (Max r) are reported. 
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Figure 7-3. Significant MEG inter-subject correlations (ISCs) showing movie-activated 
areas, using all the data (Whole Movie) and just half the data (First Half). Correlation 
values corrected to p<0.05, with randomisation testing. Correlations are displayed on 
an inflated MNI template brain. Mean correlation over voxels (Mean r) and maximum 
correlation over voxels (Max r) are reported. 
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Between-modality analysis: MEG-BOLD and MEG-CBF coupling 
 

Figure 7-4 displays the relationship between the Group MEG time-series and the Group 

BOLD/CBF times-series, for 1-30Hz, and Figure 7-5 displays this for 40-145Hz. For 

both BOLD and CBF, significant positive and negative correlations are seen between 

all frequency bands, except 40-70Hz which only displays positive.  In fact, activity in 40-

70Hz frequency band displays the largest correlation for both BOLD and CBF signals 

and appears to be one of the MEG coupling relationships that is most similar for BOLD 

and CBF.  

 

Many areas where BOLD displays positive correlations CBF displays negative 

correlations, and vice versa, for example this can be seen clearly in the coupling with 

8-13Hz, 13-30Hz and 70 – 120Hz. There appears to be more negative correlations with 

BOLD signals, than CBF. Areas near the cuneus and the pre-cuneus appear to have 

opposing correlation directions i.e. when one has a positive correlation between MEG 

and BOLD, the other has a negative. However, the correlation between BOLD and CBF 

across the brain appears to be predominately positive (Supplementary Figure 7-2). 

 

We explored these relationships further by running a PCA to determine the dominant 

tuning function across the brain, and this can be seen in Figure 7-6. The first PCA 

component explained 45% of the variance in the BOLD-MEG PCA and 32% in the CBF-

MEG PCA. Here we see that some areas of the brain load positively and some 

negatively onto this first component, indicating different NVC characteristics for different 

areas. Very similar trends were found for PCA analysis run on the beta coefficients 

(data not shown).  
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Figure 7-4. Correlation coefficients between Group BOLD time-series and Group CBF 
time-series with Group MEG time-series, for frequencies 1-30Hz, thresholded to p<0.05 
(FDR corrected), as well as masked to voxels that had significant BOLD ISCs or 
significant MEG ISCs, in that frequency band. Black – Red – Yellow display increasing 
positive correlations, and Black – Blue – Pink increasing negative correlations. 
Correlations are displayed on an inflated MNI template brain.
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Figure 7-5. Correlation coefficients between Group BOLD time-series and Group CBF 
time-series with Group MEG time-series, for frequencies 40-145Hz, thresholded to 
p<0.05 (FDR corrected), as well as masked to voxels that had significant BOLD ISCs 
or significant MEG ISCs, in that frequency band. Black – Red – Yellow display 
increasing positive correlations, and Black – Blue – Pink increasing negative 
correlations. Correlations are displayed on an inflated MNI template brain.  
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So far, the MEG-fMRI relationships have been presented based on the group mean 

time-series data. We also characterised the coupling for each individual first, then 

tested whether correlation coefficients or beta coefficients were significantly different to 

zero, across the group of participants, for each voxel. Figure 7-7 (top) displays the 

MEG-BOLD or MEG-CBF pairings that had significant correlations. All correlation 

coefficients are much lower in magnitude, compared to the group time-series analysis 

explained above. Significant correlations were found between BOLD and MEG signals 

in the 4-8Hz, 40-70Hz, and 70-120Hz frequency bands, in visual areas, specifically the 

cuneus.  Only in the 70 – 120Hz band was there significant correlations between CBF, 

and this was in the middle/superior frontal gyrus. There were no significant voxel-wise 

beta coefficients, except for BOLD and 40-70Hz, again located near the cuneus (data 

not shown). Supplementary Figure 7-3  displays the unthresholded t-statistics (testing 

if beta coefficients are different to zero) for each voxel in the MEG-BOLD coupling, and 

Supplementary Figure 7-4  for the MEG-CBF coupling, which suggested similar trends 

to the mean time-series results (Figure 7-4 and Figure 7-5). Suspecting the lack of 

statistically significant voxels to be due to low statistical power, we combined our BOLD-

MEG correlations maps (17 participants) with some from a different cohort (16 

Figure 7-6. Principle Component (PC) Analysis to investigate how MEG-BOLD and 
MEG-CBF relationships change across frequency bands and in different brain areas. 
The plots show the dominant tuning function (the PC explaining the most variance), 
and the inflated MNI template brains show how each voxel loads onto this PC.  
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participants) and tested again whether correlation coefficients significantly different to 

zero. These results are shown in Figure 7-7 (bottom). More significant voxels, in the 

directions we would expect, are seen: negative correlations between BOLD and alpha 

(8-13Hz) and beta (13 – 30Hz), and positive correlations between BOLD and theta (3-

8Hz) and BOLD and gamma (40Hz+).  

Same analysis, on extra participants. Just 
looking at BOLD-MEG coupling. 

Figure 7-7. Top: Significant correlation coefficients, for MEG-fMRI coupling. Only 
shown for coupling relationships that had significant voxels. Bottom: Significant 
correlation coefficients, for MEG-BOLD coupling only, for a combined analysis of this 
dataset (n=17) and data from a different cohort (n=16). There was also a small region 
in superior occipital areas that showed significant coupling between 1-4Hz and 
BOLD. This data was calculated by first calculating correlation coefficients at each 
voxel for each subject, then using FSL’s randomise function to perform a 
nonparametric one-sample t-test at each voxel, FWER p<0.05 corrected, TFCE and 
12mm of variance smoothing. 
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7.4 DISCUSSION 
 

 

Passive viewing of a simple movie stimulus, easy to implement with MEG and fMRI 

acquisitions, allowed us to characterise frequency-dependent NVC, across many brain 

areas. Compared to resting-state paradigms, getting each participant to view the same 

movie clip imposed some common temporal structure on the MEG and fMRI responses, 

allowing group average MEG and fMRI time-series to be correlated. Below, a brief 

discussion of the within modality analysis is given, before moving on to a more detailed 

discussion of the between-modality analysis, the main purpose of this chapter.   

 

Within modality analysis: MEG, BOLD and CBF activity 

 

Significant common activity across participants was seen for MEG (across multiple 

frequency bands up to 145Hz), BOLD and CBF, across occipital, parietal, temporal and 

frontal regions, but most consistently in visual areas. These results are similar to the 

single modality movie literature, but looking at MEG, BOLD and CBF movie responses 

in a single combined study has not been previously reported.  When using half the data, 

the ISCs were almost unchanged, suggesting a shorter movie clip is sufficient to 

characterise significant ISCs.  Showing an isolated movie clip, with no sound or sub-

titles, likely gave varied levels of emotional engagement, and narrative recognition, from 

subject to subject, therefore frontal attentional networks are less likely to be consistently 

activated. Indeed, significant frontal activity, common across participants, was not seen 

in BOLD or CBF movie responses, and only seen for some MEG frequencies. 

Responding to shapes, colour, movement, faces and scenes is likely to be more 

consistent across participants, reflected in the more consistent significant activity we 

report in visual and perceptual regions across BOLD, CBF and MEG. This movie clip 

displayed emotional engaging and high arousal content, and there is evidence that 

these factors increase BOLD ISCs to movie stimuli (Ki et al., 2016; Nummenmaa et al., 

2012). Using audio or sub-titles would increase the emotional engagement and 

attention further, and potentially give more significant ISCs in wider brain areas, 

however achieving similar audio delivery in MEG and fMRI environments is very 

challenging.  

 

The magnitude of the significant MEG ISCs were very small (r < 0.1), and smaller than 

BOLD and CBF ISCs. A recent study by Lankinen et al (2018) report very similar ISCs 

for MEG and for BOLD, and suggest some potential reasons for this difference. They 

suggest spatial inaccuracies going from sensor to source space, but also the fact that 
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MEG time-series have richer temporal information so differences between participants 

may have a greater effect. Fewer ISCs, and ISCs with smaller magnitudes, were seen 

for the CBF analysis, compared with the BOLD, most likely due to poorer SNR for CBF 

signals.  

 

Between modality analysis: Coupling between MEG, BOLD and CBF 

 

Consistent with previous non-invasive (e.g. Zumer, Brookes, Stevenson, Francis, & 

Morris, 2010) and invasive (e.g. Mukamel et al., 2005) human literature, our results in 

Figure 7-7 (bottom, larger sample), show a frequency-dependent NVC relationship, with 

negative correlations with BOLD at lower frequencies (alpha, 8-13Hz, beta 13-30Hz) 

and positive correlations with BOLD at higher frequencies. In fact, EEG and MEG 

paradigms using visual stimuli typically report an increase in gamma oscillatory power 

at the same time as a decrease in alpha (e.g. Muthukumaraswamy & Singh, 2013; 

Swettenham, Muthukumaraswamy, & Singh, 2009). Looking at BOLD and CBF 

coupling with MEG, with the smaller sample (Figure 7-7, top), only positive correlations 

showed significant activity, for BOLD (4-8Hz, 40-70Hz, 70-120Hz) in visual areas, and 

for CBF (70-120Hz only) in the middle/superior frontal gyrus. This was presumably due 

to the smaller sample size, as the T-statistic maps (Supplementary Figure 7-3 and 7-4) 

showed similar trends. This frontal activity in CBF stood out, as it was not seen in BOLD 

or the other analysis approaches; although it could be noise or eye artefacts, it could 

also be meaningful activity of the frontal eye fields, which play a key role in saccadic 

eye movements for the purpose of directing attention (Schall, 2009). This would make 

sense in the context of the free-viewing of the movie clip. 

 

For the results in Figure 7-7, each MEG frequency band is dominated by either a 

positive or negative relationship with BOLD or CBF, unlike the mean time-series 

analysis  which showed both positive and negative relationships with BOLD and CBF 

in a single frequency band. This is summarised in the PCA analysis (Figure 7-6); the 

dominant relationship between frequency and BOLD/CBF was very consistent with 

what has been reported previously (Mukamel et al., 2005; Zumer et al., 2010). This 

function loads positively onto some brain areas, and negatively onto others, suggesting 

opposite NVC for different regions. Regional differences in NVC have been reported 

before (Bentley, Li, Snyder, Raichle, & Snyder, 2016; Devonshire et al., 2012; Huo, 

Smith, & Drew, 2014), but we are not aware of any other studies reporting inverted NVC 

relationships in different brain areas, using the relationship between MEG/EEG and 

fMRI. Many of the inverted relationships where seen most clearly in the pre-cuneus, a 

key area in the default mode network (Utevsky, Smith, & Huettel, 2014), a network of 
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regions that decreases in connectivity during tasks and increases during rest. 

Therefore, these findings could have interesting and important implications for the 

interpretation of activity in the default mode network; a decrease in BOLD-connectivity 

may not directly reflect decreased activity in neural activation, as these regions may be 

functionally coupled together in different ways than assumed.  

 

Hermes, Nguyen, & Winawer (2017) make the distinction between synchronization of 

neural responses, compared with changing levels of neural activity due to metabolic 

demand, and propose this as an explanation for discrepancies between measured 

electrophysiological and BOLD responses, and for different positive and negative 

relationships seen for different frequencies. However, a confound in  the interpretation 

of these positive and negative relationships arises from the fact that MEG beamformers 

are sensitive to source leakage. For instance, a strong oscillatory source may have a 

weak tail of activation that ‘leaks’ to an adjacent brain region which, under certain 

conditions, could arise as a spurious correlation with fMRI signals that do not have the 

same spatial errors.   

 

Not only did the relationship between neural oscillatory frequency and fMRI vary across 

brain areas, but these relationships often appeared opposite for BOLD and CBF. This 

opposite relationship can be seen quite clearly in the BOLD and CBF PCA loadings in 

areas near the cuneus and pre-cuneus, and particularly in coupling with 13-30Hz in 

Figure 7-4 and with 70-120Hz in Figure 7-5. However, there were positive correlations 

between BOLD and CBF signals in these areas (Supplementary Figure 7-2), making 

this divergence of BOLD and CBF coupling with neural activity hard to interpret. In some 

areas, it is possible that BOLD and CBF are explaining different parts of the MEG signal; 

considering it is a rich temporal signal with both amplitude and phase changes reflecting 

functional activity, this could be plausible. Another factor to consider, is that BOLD is a 

complex signal with known vascular contamination. For instance, mislocalisation 

between neural activity and BOLD signal changes can occur due to large velocity 

changes in draining veins (Fukuda, Poplawsky, & Kim, 2016). However, performing the 

analysis at 6mm spatial resolution should have mitigated this effect to some degree.  

 

Animal work has shown similar regional discrepancies between neural, BOLD and CBF 

signals, for example one study showed that increases in hemodynamic, neuronal, and 

metabolic activity were associated with positive BOLD signals in the cortex, but with 

negative BOLD signals in hippocampus, during seizure activity in rats (Schridde et al., 

2008). Although we did not characterise our MEG signals in sub-cortical areas (due to 

depth insensitivity)  this is still evidence for regional differences in the coupling between 
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these signals. Another study with anesthetized macaques showed evidence that the 

cortical layers may have different NVC behaviours, and that CBF and CBV relate to 

positive and negative BOLD changes differently in response to a visual stimulus 

(Goense, Merkle, & Logothetis, 2012). However, there is not a lot of research 

charactering these differences in humans due to the invasive nature of measuring these 

signals simultaneously.  

 

The CBF response, despite having lower SNR, is a more meaningful and interpretable 

signal, directly reflecting blood flow to an amount of tissue. However, the CBF signal 

still only tells us about the delivery of blood to the tissue, and not about neural 

metabolism. The BOLD response cannot be taken as a direct reflection of underlying 

metabolic changes, as it relies on CBF, CBV, CMRO2 changes, as well as the baseline 

tissue state. Furthermore, there is evidence that coupling between CBF and CMRO2 

(Ances et al., 2008), and variations in capillary vascularisation (Ekstrom, 2010) vary 

across brain regions. Both factors would affect the resultant BOLD response, causing 

it to not be a true reflection of neural activity.  Therefore, it is important to develop non-

invasive ways of measuring both CBF and CMRO2  signals and investigate how they 

relate to different types of neural activity, in different brain regions. The relationship 

between MEG and CMRO2  signals has not been characterised previously,  and this is 

the focus of Chapter 8, displaying some exploratory relationships between MEG and 

CMRO2  signals to the movie stimulus.  

 

Methodological considerations and limitations  

 

It is a possible that these inverted coupling behaviours, and the differences between 

BOLD and CBF, have not been reported previously due to the stimuli type normally 

used. Using highly controlled visual stimuli (e.g. checkerboards, gratings) typically 

focuses the analysis on the low gamma-band (similar to our 40-70Hz range). The 40-

70Hz band was actually the only frequency band that showed only positive correlations 

with BOLD and was the most similar in the BOLD and CBF coupling. It also showed 

some of highest correlations with BOLD and CBF, in both types of analyses. 

 

Although these inverse NVC patterns, and discrepancies between BOLD and CBF, 

where seen across multiple frequency bands, it is important to note that this was only 

found for the mean time-series analysis. This was not seen when fitting the model for 

each participant first, then testing for statistical differences, the more typical approach 

taken for neuroimaging data. A larger sample would be needed to adequately 

characterise both fixed effects (parameters constant across individuals, our mean time-
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series correlations/regressions) and random effects (parameters can vary across 

individuals, our subject time-series correlations/regressions). Considering random 

effects in the modelling becomes more important if you want to test differences between 

two populations.  

 

An assumption made in this analysis, is that the neural response to the movie stimuli 

was the same in MEG and fMRI. They are unlikely to be identical, considering they are 

measured at different times, but still share a lot of similarity.  Counterbalancing the order 

of MEG and fMRI movie presentation, as done in this study, is therefore an important 

factor considering reports of how ISCs can change on repeated viewing (e.g. Chang et 

al., 2015), but this only controls order differences at the group level.  

 

When characterising the MEG and fMRI coupling relationship on the group mean time-

series data, the data were masked to significant BOLD or MEG ISCs regions, to look at 

coupling only in places where there was a significant response to the movie.  However, 

Lankinen et al (2018) showed that the regions with the most consistent MEG activity 

across participants may not be the same as regions that are most correlated with fMRI. 

Also, they critique the use of the typical univariate voxel-wise correlation approach to 

characterise responses to a continuous naturalistic stimulus and propose instead a 

spatial filtering approach which they use to demonstrate more significant coupling 

relationships.  

  

Conclusions 

Passive viewing of a simple movie stimuli in MEG and fMRI allowed us to measure 

neural oscillations in multiple frequency bands, BOLD signals and CBF signals, non-

invasively in the same participants. This demonstrated complex patterns of coupling 

between neural activity and vascular and metabolic responses. NVC is dependent on 

both oscillatory frequency and brain region and appears different for BOLD and CBF 

signals.   
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7.5 SUPPLEMENTARY  
 

 
 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7-1. Significant inter-subject correlations (ISCs) showing 
movie-activated areas, for the two MEG frequency bands above the anti-alias filter 
cut-off of 150Hz. Correlation values corrected to p<0.05, with randomisation 
testing. Correlations are displayed on an inflated MNI template brain. Mean 
correlation over voxels (Mean r) and maximum correlation over voxels (Max r) are 
reported. 
 
 

Supplementary Figure 7-2. Correlation coefficients between Group BOLD time-
series and Group CBF time-series, unthresholded. Black – Red – Yellow 
display increasing positive correlations, and Black – Blue – Pink increasing 
negative correlations. Correlations are displayed on an inflated MNI template 
brain.   
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Supplementary Figure 7-3. Unthresholded T-statistics for each voxel, testing if the 
beta coefficients are different to zero for MEG-BOLD coupling. Light blue to dark 
blue represents increasing negative T-statistics (beta-coefficients less than zero) 
and red to yellow increasing positive T-statistics (beta-coefficients greater than 
zero). The subject average beta coefficients, across voxels, ranged from -0.0012 
to 0.0013 for BOLD 1-4Hz regression, from -0.0011 to 0.0019 for the BOLD 4-8Hz 
regression, from  -0.0016 to 0.0020 for BOLD 8-13Hz,from  -0.0032 to 0.0031 for 
BOLD 13-30Hz, from -0.0032 to 0.0055 for BOLD 40-70Hz and from -0.0027 to 
0.0055 for BOLD 70-120Hz.  
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Supplementary Figure 7-4. Unthresholded T-statistics for each voxel, testing if the 
beta coefficients are different to zero for MEG-CBF coupling. Light blue to dark 
blue represents increasing negative T-statistics (beta-coefficients less than zero) 
and red to yellow increasing positive T-statistics (beta-coefficients greater than 
zero). The subject average beta coefficients, across voxels, ranged from -0.0012 
to 0.0013 for CBF 1-4Hz regression, from -0.0011 to 0.0019 for the CBF 4-8Hz 
regression, from  -0.0016 to 0.0020 for CBF 8-13Hz,from  -0.0032 to 0.0031 for 
CBF 13-30Hz, from -0.0032 to 0.0055 for CBF 40-70Hz and from -0.0027 to 0.0055 
for CBF 70-120Hz.  
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8 Using a breath-hold design to estimate the calibration factor 
M: can we model CMRO2 to a movie-stimulus? 

 

8.1 INTRODUCTION  
 

Following on from Chapter 7, this chapter aimed to characterise relative change in the 

CMRO2 to the movie stimulus. As covered in Chapter 1.2.1, oxidative metabolism of 

glucose is the predominant mechanism through which the energy demands of neural 

activity are met. Compared with CBF and BOLD signals, CMRO2  is thought to be more 

closely coupled to neural activity (Du et al., 2008; Hyder, 2010). As demonstrated in 

Chapter 6, we can ‘calibrate’ our BOLD and CBF signals with hypercapnic stimuli, 

allowing us to estimate the M parameter.  Estimating the M parameter in the same 

scanning session as measuring BOLD and CBF signals to the movie stimulus can allow 

us to model CMRO2 to the movie stimulus. Here we present an alternative way of 

estimating the M parameter by modelling the relationship between BOLD and CBF 

signals to hypercapnia, induced by a breath-hold (BH) design. Although there have 

been many studies using a BH task to characterise Cerebrovascular Reactivity (CVR), 

very few have gone on to estimate M (One example: Kastrup, Krüger, Glover, & 

Moseley, 1999).  The majority of studies use increases in inspired CO2 gas fractions to 

estimate M (Blockley et al., 2013). Using a BH task is easy to implement and needs 

less equipment but requires more subject compliance to achieve good data.  

 

A previous study characterised the CMRO2 responses to a naturalistic movie stimuli 

(Griffeth et al., 2015). Their focus was to compare flow-metabolism coupling between 

different stimulus types, and they report no significance difference in flow-metabolism 

coupling to a movie stimulus and to a flickering checkerboard stimulus. Their movie 

clips were shown for ~6 minutes, and interspersed with rest blocks, therefore quite a 

different design to our continuous 20-minute recording. Here, we also characterise 

CBF- CMRO2 coupling to the movie stimulus.  

 

In this chapter, we report an exploratory, region of interest, analysis where we model 

the relationship between MEG and CMRO2 signals. In Chapter 7,  we reported divergent 

coupling relationships between MEG and BOLD and MEG and CBF, therefore being 

able to characterise MEG-CMRO2 coupling may bring insight into why these differences 

occur. More generally, it is important to understand how CMRO2 signals modelled with 

fMRI paradigms correlate with neural oscillations, considering CMRO2 is thought to 

more closely reflect the ATP consumption needed to restore ionic gradients after neural 
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signalling (Buxton, 2010). If most energy is replenished by the oxidative metabolism of 

glucose (Buxton, 2009; Du et al., 2008), we would expect CMRO2 to be a good index 

of neural activity, and therefore correlate with the neural oscillations measured with 

MEG. To the best of our knowledge, the relationship between MEG signals and CMRO2 

has not been explored previously.  

 

8.2 METHODS 
 

Participants and Design 

 
15 out of the 19 participants described in Chapter 7 performed a BH task in the same 

MRI session as the movie-watching. 14 out of these 15 participants also had movie 

data from MEG.  The BH task took 8 minutes and 44 seconds and is described in Figure 

8-1. 

 

 
Figure 8-1. The timings for the BH task. Participants practiced this task outside of the 
scanner first, until they fully understood the instructions and were comfortable to 
proceed. Before the task started in the scanner an instruction screen appeared saying 
“The breath-hold task is about to start. Follow the instructions on the screen, and please 
remember to breathe through your nose.” The task started with 24 seconds of paced 
breathing, where a screen alternated from ‘Breath In’ to ‘Breath Out’ with 3 second 
count downs in both. This was followed by a ‘Hold’ instruction where participants knew 
to not breathe through their nose or mouth for 20 seconds. After the breath-hold an 
‘Exhale!’ was given to measure the change in end-tidal CO2. Lastly, a ‘Recover’ was 
shown, where participants could breathe how they wished for 5 seconds. This cycle 
repeated 10 times before ending on one last 24 seconds paced breathing section. 

 

Task Compliance  
 

As the main purpose of the BH analysis was to estimate regional M values, the O2 and 

CO2 traces recorded through-out the experiment were not used in the modelling. The 

modelling of the M parameter was simply based on the fact that BOLD and CBF signals 

are changing in the response to the same CO2 increase due to the BH manipulation. 
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However, the physiological traces were inspected to ensure sufficient quality, and 

compliance with the BH task.  Two participants were left out of the analysis due poor 

compliance with the BH task (Figure 8-2). This left 12 participants, all of which had at 

least 8 clear BH segments in their physiological traces. Examples of acceptable and 

good traces from two participants are shown in Figure 8-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-2. Example BH traces from 4 participants. X-axis is time and y-axis are 
CO2 in mmHg. In example 1, it is very hard to notice any breath-holds. In example 
2, the breath-holds are noticeable but still inconsistent, and there are many spikes 
of exhalations. In example 3, there are also spikes of exhalation in the breath-hold 
segments however the end-tidal increases are clearer and there are more prolonged 
breath-hold segments. In example 4, you can see 10 clear breath-holds ending in 
10 clear end-tidal increases. 



   134 

MRI acquisition and Data Analysis 
 

During the BH  task, the sequence used was the same pCASL acquisition that was run 

during the movie stimuli (described in detail in Chapter 5), with a total of 119 volumes. 

 

Data Pre-processing  
 

BH data was pre-processed in the same way as the pCASL movie data, explained in 

Chapter 7. In brief, motion correction with FSL-McFLIRT, spatial smoothing 

(FWHM=4.5mm) for the BH-BOLD data with SUSAN, and for the BH-CBF data with a 

3D Gaussian kernel (FWHM 4.5mm). Surround subtraction and surround averaging 

was performed on the BH-CBF and BH-BOLD data, respectively. The BH-BOLD and 

BH-CBF data were both registered to the M0 image that was acquired before the movie. 

The BH-BOLD and BH-CBF data were transformed to M0 image, then to the T1 image 

and to the MNI-2mm image, using the movie-data transformation matrices made 

already. The BH-BOLD and BH-CBF data were then down-sampled to 6mm, in order 

to estimate M values in same space as the fMRI and MEG movie analysis.  

 

In this MNI-6mm space, M was only estimated in voxels that had significant movie-

BOLD ISCs (Figure 7-2A). We split the significant movie-BOLD ISC image into 

anatomical areas using the AAL atlas (Tzourio-Mazoyer et al., 2002). We chose this 

ROI method instead of doing a voxel-wise analysis (as in Chapter 7) to: (1) constrain 

the M estimates to areas where the movie was activated as these are the areas where 

movie-CMRO2 will go on to be modelled (assuming movie-BOLD activation to be 

spatially similar to movie-CBF activation but with more voxels reaching statistical 

significance), and (2) to average out noise. The AAL atlas regions where in MNI-2mm 

space so these where first down-sampled to 6mm in order to overlay onto the movie-

BOLD ISC image. This gave 28 ROIs (see Table 8-1 for list). For each ROI, a mean 

over voxels was calculated for BH-BOLD and BH-CBF data, resulting in a 

representative time series (119 volumes) for that ROI. 

 

Baselining the BOLD and CBF BH data 
 

The equation used to model M (see page 136) based on the relationship between BOLD 

and CBF to an isometabolic stimulus, requires both BOLD and CBF signals to be 

expressed as change from baseline. As this experimental design did not include a long 

continuous baseline period at the beginning (limitations of which are covered in the 

discussion), we did not take a block-design approach to baselining the data. Instead we 
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defined an empirical baseline. In MATLAB, for BH-BOLD and BH-CBF times-series 

over each ROI, we calculated the 40th percentile of the time series (to approximately 

reflect the proportion of data points in the paced breathing periods) and took a mean 

over any data points less than the 40th percentile to be represent the baseline. We then 

transformed the BH-BOLD and BH-CBF time-series to change from this baseline (for 

every point we divided by this baseline value). Plotting this 40th percentile with the data, 

for each participant, seemed to give a reasonable estimate of where the baseline was 

(via visual inspection) and Figure 8-3 demonstrates this for one participant.  

 

 

 

 

 

 

 

 

Figure 8-3. Average BOLD and CBF time-series for one participant, in response to 
the BH task, shown for two example ROIs (Calcarine Left – top, Superior Parietal 
Left – bottom). Note the 10 BHs that can be seen in these BOLD and CBF time 
series. Plots on the left side show data that is not relative to baseline, with the 40th 
percentile being plotted as the straight blue line. Average of the values below this 
40th percentile where taken as ‘baseline’ and used to change the time-series into 
change from baseline (plots on the right).  
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Fitting for M  
 

Assuming no change in CMRO2  to hypercapnia or very mild hypoxia due to the BH, 

Equation 2-6 introduced in Chapter 2.3.3 (based on Davis, Kwong, Weisskoff, & Rosen 

(1998)) showed that: 

 

∆WXYT
WXYTZ

= 	𝑀 d1 −	_GWb
GWbZ

a
>0c

h	    

 

Using MATLAB’s curve fitting function (‘fit’), with non-linear least squares, the below 

curve was fitted to the inputted BH-BOLD (B) and BH-CBF data (C), to estimate the M 

parameter. A start point of 0.05, a lower point of 0 and an upper point of 2 was given to 

guide the fitting. An estimate for M alongside R2 and the Root Mean Square Error 

(RMSE) were extracted for each fit. 

 

𝐵 = 𝑴(1 − 𝐶0A.A), as setting 𝛼 = 0.2 and 𝛽 = 1.3, so 𝛼 – 𝛽 = -1.1 

 

CMRO2 movie time-series 
 

Only in ROIs where the M parameter could be reasonably estimated (no complex 

values in the fitting, and R2 > 0.1) was the CMRO2 time-series to the movie estimated 

for each subject. The pre-processed BOLD and CBF movie data, explained in  Chapter 

7 were averaged over each voxel within the anatomical ROI to give a representative 

time-series. Therefore, in each ROI, there was an average M value, a BOLD movie 

time-series (relative to baseline) and CBF movie time-series (relative to baseline). 

Therefore, CMRO2 (relative to baseline) could be estimated using the Equation 2-7 

introduced in Chapter 2.3.3 (based on Davis, Kwong, Weisskoff, & Rosen (1998)):  

 

𝐶𝑀𝑅𝑂2
𝐶𝑀𝑅𝑂2$

= 	d
𝐶𝐵𝐹
𝐶𝐵𝐹$

h
A0	>c	

. �1 −	

∆𝐵𝑂𝐿𝐷
𝐵𝑂𝐿𝐷$
𝑀 �

A/c

 

 

CBF-CMRO2 and MEG-CMRO2 coupling in each ROI 
 

The relationship between CBF and CMRO2 responses (n = DCBF/DCMRO2) is an 

important physiological parameter that has been characterised widely in the calibrated-

fMRI literature, so this was characterised over each ROI. In order to look at the 

relationship between MEG and CMRO2 signals, a representative amplitude envelope in 
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each frequency band needed to be obtained over each ROI. Instead of averaging the 

MEG amplitude envelopes over each voxel in the ROI, the coefficient of variance 

(SD/Mean) was calculated for each voxel, to locate the voxel with the biggest variance 

in signal, scaled by the mean. This is important as the SNR of MEG source 

reconstructions are spatially non-uniform (for example, poorer SNR for sources deeper 

in the cortex), (Hillebrand & Barnes, 2002). Therefore, the SD/Mean approach gives 

voxel-wise scaling and is similar to typical BOLD-fMRI analysis where signal changes 

are often expressed in terms of the mean intensity. Therefore, the MEG time-courses 

(pre-processing explained in Chapter 7) that were correlated with CBF/BOLD/CMRO2 

were taken from one voxel within this ROI, that had the largest coefficient of variance.  

 

Statistical Testing  
 

For each participant, over each ROI, a linear model was fit using the MEG data (in each 

frequency band) to predict the CMRO2 signals. For each fit, the beta coefficients were 

extracted for each participant. One sample t-tests tested whether these beta 

coefficients were significantly different to zero across the group.  

 

As was done with MEG-fMRI coupling in Chapter 7, we also tested the coupling 

between MEG and CMRO2 signals on the group mean-time series data. The MEG and 

CMRO2 signals that were averaged over each ROI were then averaged across 

participants, before fitting the linear model to characterise if MEG data (in each 

frequency band) could predict the CMRO2 signals. 

 

8.3 RESULTS 
 

M fitting 
 

Table 8-1 shows the group average estimates of M, including the model fit parameters. 

These group averages are based on variable numbers of participants because of 

variability in the M fitting across ROIs. Figure 8-4 displays examples of the M fitting for 

five ROIs for one participant. 
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Table 8-1. Estimates of M, including fit parameters. Averages for each ROI are 
displayed, only for subjects that did not have complex values in the model fit (often due 
to negative CBF values) and had an R2 of greater than 0.1. RMSE = Root Mean Square 
Error. 

 

ROI 

N 

subjects 

R2 > 0.1 

R2 

Mean 

R2 

SD 

RMSE 

mean 

RMSE 

SD 

M 
mean 

M 
SD 

Angular_R 4 0.324 0.150 0.004 0.001 0.028 0.012 
Occipital_Inf_R 9 0.437 0.161 0.004 0.001 0.030 0.010 
Occipital_Inf_L 9 0.512 0.160 0.003 0.001 0.030 0.008 
Occipital_Mid_R 7 0.443 0.096 0.003 0.001 0.029 0.005 
Occipital_Mid_L 9 0.528 0.152 0.003 0.001 0.027 0.007 
Occipital_Sup_R 8 0.438 0.174 0.004 0.001 0.031 0.007 
Occipital_Sup_L 8 0.416 0.167 0.004 0.001 0.031 0.011 
Calcarine_R 9 0.501 0.147 0.004 0.001 0.034 0.007 
Calcarine_L 11 0.412 0.172 0.006 0.001 0.045 0.014 
Cuneus_R 8 0.377 0.189 0.005 0.001 0.035 0.008 
Cuneus_L 6 0.376 0.144 0.005 0.001 0.038 0.011 
Lingual_R 9 0.438 0.114 0.005 0.001 0.042 0.011 
Lingual_L 11 0.408 0.184 0.005 0.001 0.041 0.015 
Parietal_Inf_R 4 0.276 0.078 0.006 0.003 0.035 0.012 
Parietal_Inf_L 2 0.196 0.027 0.005 0.001 0.026 0.000 
Parietal_Sup_R 3 0.223 0.070 0.008 0.001 0.042 0.009 
Parietal_Sup_L 3 0.257 0.091 0.005 0.000 0.027 0.005 
Precuneus_L 3 0.421 0.128 0.004 0.000 0.022 0.003 
Precuneus_R 4 0.280 0.070 0.007 0.001 0.039 0.009 
Temporal_Inf_R 5 0.515 0.126 0.004 0.001 0.036 0.010 
Temporal_Inf_L 8 0.370 0.188 0.005 0.001 0.033 0.013 
Temporal_Mid_R 5 0.353 0.162 0.004 0.001 0.031 0.004 
Temporal_Mid_L 6 0.394 0.177 0.004 0.001 0.028 0.008 
Temporal_Sup_R 3 0.252 0.197 0.005 0.000 0.032 0.011 
Fusiform_R 9 0.426 0.168 0.004 0.001 0.031 0.009 
Fusiform_L 9 0.425 0.160 0.004 0.001 0.030 0.011 
Postcentral_R 1 0.109 / 0.006 / 0.027 / 
Postcentral_L 2 0.196 0.030 0.004 0.000 0.024 0.001 

 

Grand 

Mean 0.368 0.136 0.005 0.001 0.032 0.008 
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Figure 8-4. Examples of the M fitting for one participant, across 5 different ROIs. 



   140 

CBF-CMRO2 coupling to the movie stimulus 
 

Table 8-2 shows the average n coupling values (n = DCBF/DCMRO2) across 

participants for each ROI, and Figure 8-5 displays shows an example of this coupling 

for a single participant, across three example ROIs.  

 

 

 

 

 

ROI subjects  n Mean n SD 

Angular_R 4 2.78 1.83 

Occipital_Inf_R 9 1.55 2.96 

Occipital_Inf_L 9 2.41 1.33 

Occipital_Mid_R 7 2.67 1.14 

Occipital_Mid_L 9 3.14 2.58 

Occipital_Sup_R 8 2.64 0.93 

Occipital_Sup_L 8 3.40 2.38 

Calcarine_R 9 2.24 0.68 

Calcarine_L 11 1.92 0.43 

Cuneus_R 8 2.23 0.67 

Cuneus_L 6 2.02 0.50 

Lingual_R 9 1.73 0.32 

Lingual_L 11 1.74 0.47 

Parietal_Inf_R 4 1.94 0.76 

Parietal_Inf_L 2 2.97 0.80 

Parietal_Sup_R 3 2.22 1.22 

Parietal_Sup_L 3 2.70 1.20 

Precuneus_L 3 3.34 1.83 

Precuneus_R 4 1.95 0.68 

Temporal_Inf_R 5 2.55 0.57 

Temporal_Inf_L 8 2.13 0.74 

Temporal_Mid_R 5 2.97 1.50 

Temporal_Mid_L 6 2.25 0.69 

Temporal_Sup_R 3 2.05 0.57 

Fusiform_R 9 1.91 0.58 

Fusiform_L 9 1.71 0.39 

Postcentral_R 1 1.77 / 

Postcentral_L 2 5.12 5.14 

Table 8-2. Average n parameter across participants, for each ROI, representing 
CBF-CMRO2 coupling to the movie. The number of participants that CMRO2 was 
estimated for varies across ROI and is shown in the ‘subjects’ column. 
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Coupling between MEG and CMRO2 movie signals  
 

Figure 8-6  shows an example subject time-series for BOLD, CBF, CMRO2 and MEG 

1-4Hz activity extracted over the same ROI, to demonstrate the shape and magnitude 

of each signal change. The relationship between MEG and CMRO2 signals to the movie 

was explored in six ROIs with some of the largest numbers of participants showing 

Figure 8-5. CBF-CMRO2 coupling to the movie stimulus, for one participant, over 
three different ROIs.  
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acceptable M fitting in both hemispheres: Calcarine Left (n=10), Calcarine Right (n=8), 

Lingual Left (n=10), Lingual Right (n=8), Fusiform Left (n=8) and Fusiform Right (n=8). 

These values are one less than those displayed in Table 8-1 due to there being only 14 

participants, out of the 15 participants with BH-data, also having MEG data.  

Figure 8-6. An example time-series for BOLD, CBF, CMRO2 and MEG 1-4Hz activity 
extracted over the same ROI. This data is from one participant, just to demonstrate the 
shape and magnitude of each signal change. Per-change refers to signals expressed 
as percentage change from baseline.  

 

MEG, in each frequency band separately, was used to predict CMRO2 for each 

participant, in each ROI. Beta-coefficients were extracted for all participants. There 

were no beta coefficients significantly different to zero for any MEG-CMRO2 

relationships. Two relationships showed p-values less than 0.05 (1-4Hz and CMRO2, 

8-13Hz and CMRO2 in Right Fusiform gyrus) however considering the many statistical 

tests performed this would not reach statistical significance after any multiple 

comparison correction. These beta-coefficients are shown in Table 8-3.  We explored 

the relationships between  CMRO2  and MEG using the group mean-time series data, 

in these ROIs. Three model fits had p-values less than 0.05 (1-4Hz and CMRO2, and 

95-145Hz and CMRO2 in the Right Fusiform gyrus, and 1-4Hz and CMRO2 in the Right 

Calcarine Sulcus). Again, these do not survive corrections for multiple comparison. 



   143 

These relationships are displayed in Supplementary Figures 8.1 - 8.3, alongside the 

MEG-BOLD and MEG-CBF coupling in the same ROI, for comparison. 

 

 
Table 8-3. Averages (AV) and standard deviations (SD), across participants, of beta 
coefficients (unstandardised) from the model fit of MEG activity (in each specific 
frequency band) and CMRO2  activity, over 6 ROIs that showed acceptable M fitting for 
either 10 participants (Calcarine Left, Lingual Left) or 8 participants (Calcarine Right, 
Lingual Right, Fusiform Left, Fusiform Right). The beta coefficients highlighted in grey 
were significant at p<0.05, uncorrected for multiple comparisons.  
 

 
Calcarine Left  (n=10) 

 
1-4Hz 4-8Hz 8-13Hz 13-30Hz 40-70Hz 

70-

120Hz 

95-

145Hz 

CMRO2 AV 0.001 0.005 0.010 0.013 -0.019 -0.008 0.013 

CMRO2 SD 0.010 0.019 0.023 0.026 0.071 0.090 0.103 

 
Calcarine Right  (n=8) 

  1-4Hz 4-8Hz 8-13Hz 13-30Hz 40-70Hz 

70-

120Hz 

95-

145Hz 

CMRO2 AV 0.006 0.007 0.004 0.005 -0.056 -0.033 0.005 

CMRO2 SD 0.014 0.017 0.021 0.037 0.075 0.080 0.062 

 
Fusiform Left (n=8) 

 
1-4Hz 4-8Hz 8-13Hz 13-30Hz 40-70Hz 

70-

120Hz 

95-

145Hz 

CMRO2 AV -0.003 0.007 0.008 0.012 -0.063 -0.020 0.022 

CMRO2 SD 0.019 0.015 0.023 0.033 0.112 0.050 0.087 

 
Fusiform Right (n=8) 

 
1-4Hz 4-8Hz 8-13Hz 13-30Hz 40-70Hz 

70-

120Hz 

95-

145Hz 

CMRO2 AV 0.013 0.008 0.011 0.005 -0.041 -0.025 -0.007 

CMRO2 SD 0.012 0.020 0.011 0.037 0.078 0.099 0.105 

 
Lingual Left (n=10) 

 
1-4Hz 4-8Hz 8-13Hz 13-30Hz 40-70Hz 

70-

120Hz 

95-

145Hz 

CMRO2 AV -0.003 0.009 0.004 0.001 -0.019 0.006 0.008 

CMRO2 SD 0.019 0.022 0.026 0.030 0.080 0.082 0.092 

 
Lingual Right (n=8) 

 
1-4Hz 4-8Hz 8-13Hz 13-30Hz 40-70Hz 

70-

120Hz 

95-

145Hz 

CMRO2 AV 0.001 0.009 0.006 0.010 -0.024 -0.005 0.000 

CMRO2 SD 0.017 0.023 0.016 0.035 0.077 0.083 0.064 
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8.4 DISCUSSION 
 

Breath-Hold Task to estimate M  

 

In order to model CMRO2 to the movie an estimate of M had to be obtained in the same 

brain region. M is a scaling parameter which represents the maximum BOLD signal 

change that would occur if all deoxyhaemoglobin was washed out of the venous blood 

vessels. In practice, smaller physiological changes are induced with hypercapnic 

stimuli, but it is enough to change the BOLD and CBF responses to get some estimate 

of the baseline tissue state, summarised by M. In this chapter, we fit for the M parameter 

using an accepted biophysical model linking BOLD and CBF changes. Although the 

model fit of M varied across participants, an adequate model fit was achieved in multiple 

brain regions, particularly in the visual cortex. It is important to highlight that in this 

study, we fit for the M parameter and only characterise CMRO2 in ROIs where the fit 

was reasonable. Most studies that have estimated M from a hypercapnic stimulus have 

taken baselined BOLD and CBF signals, averaged over time, and inputted these point 

estimates into the equation for M. The average M values we report were around 3%. 

However higher values of at least 6% are more typically reported for these brain regions 

(e.g. Wise, Harris, Stone, & Murphy, 2013). As M does not only depend on physiological 

factors, but also on image acquisition parameters and data analysis choices, it can be 

difficult to make meaningful comparisons across studies. However, there are many 

factors that may have contributed to these lower M values, some of which are discussed 

below. 

 

An assumption in the model fit for M is that the BH-paradigm induces isometabolic 

changes in BOLD and CBF. The assumed mechanism is an increase of PCO2 causing 

blood vessels to dilate, resulting in increased CBF and resultant increased BOLD 

signals (Ainslie & Duffin, 2009), without any change in oxygen metabolism. However, 

this assumption has been challenged and there is evidence for metabolic changes 

induced by hypercapnia (Driver et al., 2017; Yablonskiy, 2011; Zappe, Uludaǧ, 

Oeltermann, Uǧurbil, & Logothetis, 2008). There is recent work demonstrating how to 

measure and correct for the likely reduction of resting CMRO2 during hypercapnia, and 

therefore increase the accuracy of the M value estimates, and therefore the modelled 

task-induced CMRO2  changes (Driver et al., 2017), and this should be considered for 

future work. Unlike with a gas-delivery design, inspired oxygen is not being held 

constant, therefore there will also be small reductions in arterial PO2 (Bulte, Drescher, 

& Jezzard, 2009), which will decrease the BOLD signal and cause an underestimation 
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of M. Although these changes in arterial PO2 are likely to have a small effect over a 

short BH, this is a likely explanation for why we report lower M values with this design.  

 

Another factor contributing to the lower M values we report here could be an 

underestimation of the CBF change in the BH paradigm. This underestimation in CBF 

could be due to the long TR in the ASL sequence used (4.4 seconds) due to a pseudo-

continuous tagging design with dual excitation. The CBF changes are therefore 

effectively smoothed due a low sampling rate. This lower sampling rate is the same for 

the BOLD-weighted signal but for CBF it is worsened by the need to do tag-control 

subtraction in order to obtain the perfusion signal.  The estimate of the baseline BOLD 

and CBF signals was challenging due to this low sampling rate, accompanied with a 

dynamically changing stimulus. For each block of paced-breathing, only 5 brain 

volumes were acquired.  A clear improvement to this BH design would be to include a 

long baseline at the start and/or end, to more accurately estimate the baseline BOLD 

and CBF under normal breathing conditions, in each brain region. This BH task design 

is more appropriate for fMRI sequences with a shorter TR. Nevertheless, the relative 

values we got for BOLD and CBF response to the BH stimulus are in the ranges we 

would expect  (see Figure 8-3), which shows BOLD changes of around 1-2% and CBF 

of around 20-60%). There was a large variability in the fitting of M for each participant, 

presumably due to different task compliance and data quality. There was also a 

difference in the fitting of M across brain regions. There is evidence that coupling 

between CBF and CMRO2 (Ances et al., 2008), and variations in capillary 

vascularisation (Ekstrom, 2010) vary across brain regions. Fitting for M was best in the 

visual cortex; this could be explained by the fact the visual cortex has a higher density 

of capillaries (Buxton, 2009; Zheng, LaMantia, & Purves, 1991) and therefore this will 

result in higher CBV and higher M values. 

 

Modelling CMRO2 to the movie-stimulus  
 

Modelling the CMRO2 response with the standard calibrated-fMRI model (Davis et al., 

1998) gave physiologically reasonable CMRO2 changes (Buxton, 2009), see Figure 8-6 

showing CMRO2 increases and decreases to the movie stimuli of around 0-10%. 

Importantly, the CBF-CMRO2 coupling (n) was close to 2 or 3 in 27 out of the 28 ROIs, 

very consistent with what has been reported previously (Blockley et al., 2013). Griffeth 

et al (2015) characterised n to a movie stimulus and found very similar values: their 

average n over the visual cortex was 2.47, and our grand average n over the 12 visual 

ROIs was 2.31. They did not measure M but assumed different values (as well as 

different values for the parameters a and b) when comparing between their conditions. 
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They assumed a much higher M when modelling CMRO2 (11.6%), and actually show 

that when modelling the data with a lower M of 8.1% the difference between the 

increase in relative CMRO2 from the movie compared to the 10% visual contrast 

condition was no longer statistically different. Our underestimation of M, already 

discussed above, could have led to an underestimation in CMRO2, and contributed to 

the lack of significant correlations seen between MEG and CMRO2 movie signals.  

 

There were no reliable significant relationships between CMRO2 and MEG signals. This 

was most likely due to sample size, and propagated noise. CMRO2, being a derived 

parameter, is highly sensitive to the noise in the CBF timeseries, measured with ASL. 

Only datasets from 12 out of the 14 participants who had completed the BH task were 

good enough quality to analyse, and after this the fitting of M greatly varied over brain 

region, such that 10 was the maximum number of participants left to characterise MEG-

CMRO2 relationships over a specific ROI. Unfortunately, in areas showing different 

BOLD-MEG and BOLD-CBF coupling in Chapter 7 (for example, cuneus and pre-

cuneus) M could not be well estimated, and therefore CMRO2 time-series were not 

characterised over these regions. In the regions that suggested at a relationship 

between MEG and CMRO2, these were mostly in neural oscillations at lower 

frequencies (1-4Hz and 8-13Hz) which is possibly driven by the 1/f power spectrum 

known to exist in the brain i.e. higher amplitudes at lower frequencies (Jia & Kohn, 

2011).  For the relationships shown in Supplementary Figures 8.1 - 8.3, based on the 

mean-time series data, all beta coefficients (relating MEG to BOLD, CBF and CMRO2) 

were negative, which is not expected for delta and gamma frequencies, which we would 

predict positive correlations based on previous literature with BOLD-fMRI (Mukamel et 

al., 2005; Zumer et al., 2010).  

 

Conclusions  
 

This chapter demonstrated it is possible to use simple modelling of BOLD and CBF 

signals, elicited with a BH-design, to give reasonable estimates of M in different brain 

regions, although a slight underestimation compared to other literature. This allowed 

characterisation of CBF-CMRO2 coupling across different brain regions. With an 

improved BH design, including better estimation of the baseline, these M values, and 

therefore the modelled CMRO2 values, are likely to be more accurate. This research 

acts as a proof of principle that MEG and CMRO2 signals can both be modelled in 

response to the same stimulus, however much larger samples and optimised modelling 

of the relationship between these signals, is needed to characterise this relationship 

robustly.  
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8.5 SUPPLEMENTARY  
 

 

 

Supplementary Figure 8.1. The relationship between MEG (1-4Hz) and CMRO2, 
CBF and BOLD signal changes in response to the movie stimuli, based on the 
mean-times data across participants, averaged over the right fusiform gyrus. 
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Supplementary Figure 8.2. The relationship between MEG (95 – 145Hz) and 
CMRO2, CBF and BOLD signals changes in response to the movie stimuli, based 
on the mean-times data across participants, averaged over the right fusiform 
gyrus. 
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Supplementary Figure 8.3. The relationship between MEG (1 – 4Hz) and 
CMRO2, CBF and BOLD signals changes in response to the movie stimuli, 
based on the mean-times data across participants, averaged over the right 
calcarine sulcus. 
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9 Coupling between brain oscillations, CBF, and BOLD signals 
during naturalistic movie viewing in Multiple Sclerosis 

 

9.1 INTRODUCTION 
 

As discussed in Chapter 7, the rationale of using a movie stimulus to investigate NVC 

was partly motivated by the aim to develop engaging and easy designs that can be 

used in patient populations during both MEG and fMRI. Another motivation of using 

such a design is that it is more representative of visual processing in natural real-world 

environments, and therefore may be more disease relevant (compared to highly 

controlled visual stimuli) as it simultaneously recruits more areas of the brain. 

Therefore, in this chapter, we applied the methods presented in Chapter 7 in order to 

investigate differences in NVC between the healthy and MS brain.  

 

Although visual abnormalities are common in MS (Graham & Klistorner, 2017), MS is 

not specifically a disease of the visual system and there is great variability across 

participants in symptom severity. The movie stimulus used in Chapter 7 still 

predominantly recruits visual areas, however it recruits more of the occipital cortex than 

a visual checkerboard stimulus which is often more localised to primary visual areas. 

Furthermore, Chapter 7 also showed common movie activity, across participants, in 

temporal and parietal areas. Therefore, this design allows us to study NVC across more 

areas of the brain, which is important considering the wide spread damage in MS, and 

the fact that NVC is shown to vary across brain region (e.g. (Devonshire et al., 2012) 

and results from Chapter 7).   

 

In Chapter 4, no significant differences in NVC to a visual stimulus were reported in MS, 

although the MS group did show lower amplitude changes for gamma oscillations, 

BOLD and CBF signals. Despite no significant NVC differences, the MS group 

displayed more variability in their coupling relationships. It may be the case that NVC 

is not uniformly altered in MS, despite the inflammatory environment affecting NVC 

signalling mechanisms (D’haeseleer et al., 2015; Lapointe et al., 2018; Paling et al., 

2011; Spencer et al., 2018). Alternatively, the methods used may not have been 

sensitive enough to find differences between groups, considering they focused only on 

oscillations in the gamma frequency range in the early visual cortex. 

 

The design presented in Chapter 7 allowed us to characterise neural oscillations from 

1-145Hz. Different oscillatory frequencies are hypothesised to reflect activity across 

different scales of neural networks (Buzsáki & Draguhn, 2004) and in different cell 
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populations. Therefore, finding abnormalities in MS at specific oscillatory frequencies 

could give insight into possible disease mechanisms. This chapter presents the same 

methods used in Chapter 7, extending them to test differences between MS patients 

and healthy controls. The lack of baseline period in this continuous movie recording 

restricts the analysis approaches. Therefore, a simple aim of this chapter was to test 

the feasibility and utility of this type of design for studying NVC in MS. We also 

characterised the coupling between BOLD and CBF signals to the movie, as this may 

be informative about how blood flow and metabolism are coupled in MS.  Based on 

previous work on neural, vascular and metabolic impairment in MS, we predicted the 

MS group would have more variable responses to the movie stimulus and altered NVC 

in some brain regions.   

 

9.2 METHODS 
 

Participants  

 
15 MS patients with RRMS and 15 healthy controls are presented in this chapter. All of 

these patients and 12 of these controls were presented in Chapter 5, and three of these 

controls were from Chapter 7. Supplementary Figure 5-2 gives an overview of the data 

collection for the wider study. All participants gave written informed consent prior to 

participating in this part of the study and received £10 per hour for taking part. See  

Table 9-1 for participant details.   

 

Design and Procedure 

 

All participants had a MRI scan and a MEG scan.  The order of these scans is given in 

Table 9-1. Both scanning sessions included passive viewing of the same movie clip 

from the James Bond film ‘Skyfall’ (approximately the first 19 minutes 38 seconds). For 

the MRI session, all participants also had a T1 structural scan. 

 

Data Acquisition and Pre-Processing  
 

MEG data and fMRI data were collected and pre-processed with the identical pipeline 

used in Chapter 7, for both patients and controls.  
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Within modality analysis: inter-subject correlations (ISCs)  
 

The same within-modality analysis was run as was presented in Chapter 7, to get ISCs 

for BOLD, CBF and MEG in each frequency band. This was done for the control group 

and the patient group separately, simply to see where there was significant common 

activity to the movie stimulus in each group.  

 

Cross-modality analysis: MEG-fMRI and CBF-BOLD coupling 
 

The focus of this analysis was to understand if there are differences in NVC and CBF-

BOLD relationships between patients and controls. Therefore, to take into account 

individual subject variability, MEG-BOLD, MEG-CBF and CBF-BOLD regressions were 

run for each subject separately, using MATLAB’s fitlm function. For each participant, 

and for each voxel in the 6mm template brain, a beta coefficient and an r value were 

outputted (as explained in Chapter 7). FSL’s randomise function was used to perform 

unpaired nonparametric t-tests at each voxel (5000 permutations) with FWER 

correction at p<0.05, and TFCE. T-statistic contrasts for Patients > Controls and 

Controls > Patient were examined.  

 

9.3 RESULTS 
 

Demographics for patients and controls are presented in Table 9-1, alongside disease 

characteristics for patients only. Patients and controls did not significantly differ in age, 

t(28) = 1.24, p = 0.225.  Each group had the same number of male and female 

participants.  

 
Table 9-1. Demographic and clinical information for patients and controls. First scan = 
which scanner they watched the movie in first. DM = data missing. Onset refers to 
disease onset and relapse refers to patient’s last clinically confirmed relapse.  

 

Patients Controls
Age (Mean ± SEM) 36.93 ± 1.60 34.13 ± 1.58

Gender (M/F) 3/12 3/12
First scan (MEG/fMRI) 15/0 10/5

Watched Movie (Y/N/DM) 10/3/2 11/4

97 ±  15 (28, 213)
36 ±  4.4 (11, 64)
2.2 ±  0.3 (1, 4)

Patients
Months since onset  (Mean ± SEM, min, max) 

EDSS  (Mean ± SEM, min, max) 
Months since relapse (Mean ± SEM, min, max) 
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Within modality results 
 

To uncover activity related to the movie, ISCs were calculated at each voxel, for the 

control group and patient group separately. Figure 9-1 shows significant ISCs for the 

BOLD and CBF analyses,  Figure 9-2 shows significant ISCs for the 1-30Hz MEG 

analyses, and Figure 9-3 shows significant ISCs for the 40Hz+ MEG analyses. The 

location of the significant ISCs are very similar to those reported in Chapter 7: across 

occipital, parietal and temporal cortical areas.  

 

 

Figure 9-1. Significant BOLD and CBF inter-subject correlations (ISCs) showing 
movie-activated areas, for control and patient groups separately. Correlation values 
corrected to p<0.05, with randomisation testing. Correlations are displayed on an 
inflated MNI template brain. Mean correlation over voxels (Mean r) and maximum 
correlation over voxels (Max r) are reported. 
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Figure 9-2. Significant MEG (1-30Hz) inter-subject correlations (ISCs) showing 
movie-activated areas, for control and patient groups separately. Correlation 
values corrected to p<0.05, with randomisation testing. Correlations are displayed 
on an inflated MNI template brain. Mean correlation over voxels (Mean r) and 
maximum correlation over voxels (Max r) are reported. 
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Figure 9-3. Significant MEG (40-145Hz) inter-subject correlations (ISCs) showing 
movie-activated areas, for control and patient groups separately. Correlation values 
corrected to p<0.05, with randomisation testing. Correlations are displayed on an 
inflated MNI template brain. Mean correlation over voxels (Mean r) and maximum 
correlation over voxels (Max r) are reported. 
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MEG-fMRI coupling 
 

Maps of beta coefficients and r values for each MEG-BOLD and MEG-CBF relationship 

were created for each subject, and group differences were tested at each voxel. The 

only relationship showing significant differences between patients and controls was the 

8-13Hz MEG and BOLD relationship. Significantly larger r values and significantly larger 

beta coefficients were reported in the patient group compared to the controls, see 

Figure 9-4. This figure displays the group mean beta or r values in areas where there 

were significant mean differences between the two groups. The sign of the relationship 

is different between groups, and not simply the magnitude of the relationship.  For each 

group separately, a few small significant clusters of r or beta values were found to be 

significantly different to zero (similar to Chapter 7, data not plotted).  

 

For each group, the r and beta maps for each subject were averaged and each 

relationship is displayed in Supplementary Figure 9-1 to demonstrate the unthresholded 

mean coupling relationships. These figures are not statistically thresholded but masked 

to areas that had significant ISCs for BOLD, CBF or that MEG within the frequency 

band of interest.  

 

 
Figure 9-4. MEG-fMRI relationships that showed significantly different beta or r values 
between patients and controls. The values displayed are means across groups. 
Red/Orange/Yellow indicate positive values and Blue indicates negative values.  
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BOLD-CBF coupling 
 

There were no r values or beta coefficients significantly different between patients and 

controls. However, for both groups, BOLD and CBF showed significant voxel-wise 

positive correlations to the movie stimulus in many areas across the brain. These 

significant correlations are displayed in Figure 9-5. 

 

 
Figure 9-5. BOLD-CBF correlations to the movie stimulus, for patient and controls. Data 
displayed is thresholded at p<0.05 with tfce correction. 
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9.4 DISCUSSION 
 

Responses to a continuous movie stimulus were compared between 15 MS patients 

and 15 controls, using MEG and fMRI. Results in a healthy population were explored in 

depth in Chapter 7, and therefore the focus of this chapter was to compare patients and 

controls in the context of NVC. Patients and controls were matched on age and gender, 

but there were differences in the order in which they watched the scan, with all patients 

watching the movie in the MEG first compared to only 10 out of the 15 controls. As 

habituation and memory effects have been demonstrated to affect the ISCs during 

movie watching (Chang et al., 2015; Dmochowski et al., 2012) this may have introduced 

bias in the group comparison.  

 

For the within-modality results, significant ISCs were reported for both patients and 

controls across occipital, parietal and temporal cortical areas, consistent with what was 

found in Chapter 7. For all fMRI and MEG ISCs, the patient group displayed lower 

average and maximum correlations, suggesting the patients have more variable MEG, 

BOLD and CBF responses to the movie. This variability refers to how similar their 

responses are to one another. Some spatial differences in the distribution of the ISCs 

can also be seen. There are noticeably fewer significant ISCs for CBF in the patient 

group, compared to the controls, whereas the BOLD ISCs appear similar between 

groups. Patients display significant ISCs in the temporal cortex for 1-4Hz and in the 

frontal cortex for 40-70Hz, which was also seen in the control group in Chapter 7. As 

with Chapter 7,  these ISCs are small, only explaining a very small fraction of shared 

variance between participants.  A similar movie design has been used previously to 

study ISCs in a patient group; Hasson, Malach, & Heeger (2010) reported more 

variability in BOLD-fMRI activity for individuals with autism (lower ISCs), in response to 

10 minute clip from a feature film. Although their questions were not centered around 

NVC, as they only report fMRI data, it demonstrates the application of this type of 

stimulus to studying disease related impairments. 

 

For the MEG-fMRI coupling, we examined both beta coefficients to represent the 

strength of the relationship between MEG and fMRI signals in meaningful units, as well 

as r values to represent how much shared variance there is in the MEG and fMRI time-

series. Despite some big visual differences in the mean correlation maps (in 

Supplementary Figure 9-1) there were only a few significant voxels found. This was 

between BOLD and 8-13Hz MEG responses showing patients to have significantly 

higher correlations and beta coefficients than controls. The sign of the relationship was 

in fact reversed for patients, showing a positive relationship instead of a negative. 
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Typically, negative correlations are reported between alpha (8-13Hz) frequencies and 

fMRI signals (Logothetis, 2002; Mukamel et al., 2005; Zumer et al., 2010). Therefore, 

this could reflect a reversed NVC pattern in patients, possibly reflecting an adaptation 

to damage.  However, this is a tentative interpretation that needs further investigation. 

The results are hard to interpret with so few voxels making up the significant cluster. 

Also, considering this relationship is with BOLD and not CBF, this could point to a 

difference in CBF, CMRO2, CBV or baseline tissue state and we cannot disentangle 

which with this data. 

 

In Chapter 7, we did not statistically test CBF-BOLD relationships to the movie stimulus 

as done here. Here, we demonstrate that the movie stimulus elicits very strong positive 

correlations between BOLD and CBF signals, widely across the brain. Although no 

significant differences in the relationship between BOLD and CBF were reported in the 

patient group, this strong positive correlation in functionally relevant areas indicates the 

movie must be imposing a strong temporal structure on these two signal contrasts.  

 

Considering Chapter 7 also reported an insensitivity to characterising NVC at the 

individual level, it is not surprising that few group differences were found between 

patients and controls. It is therefore difficult to establish whether this lack of differences 

are due to the limitations of the method, or no true difference in NVC in MS. A larger 

sample size is needed to address these questions, as Chapter 7 did demonstrate more 

significant coupling relationships between MEG and BOLD when expanding the 

dataset. A recent study comparing MEG and fMRI advocates the use of a spatial-

filtering approach on the MEG data . This helped uncover consistent canonical variables 

which increased sensitivity to characterising coupling relationships (Lankinen et al., 

2018), as opposed to this typical univariate voxel-wise approach. Therefore, different 

analysis strategies and larger sample sizes may make this design more applicable to 

investigating NVC in MS. 

 

9.5 SUPPLEMENTARY 
 

 Supplementary Figure 1 (see next page). Correlation values between each 
MEG and fMRI relationship, displayed for  each group. These maps are 
averages of  each participant’s correlation map and are not correlations based 
on the mean-time series. These images are not statistically thresholded but 
masked to areas that had significant ISCs for BOLD, CBF or the MEG frequency 
band of interest. Only views of the left hemisphere are shown; the right 
hemisphere showed similar trends.  
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10 GENERAL DISCUSSION  
 

One aim of this thesis was to develop different methods of investigating NVC in healthy 

and MS populations. A visual checkerboard design, with contrast manipulation, gave 

robust measurements of gamma oscillations, BOLD and CBF signals in the primary 

visual cortex, consistent with previous work. The amplitude of these signals was lower 

in the MS group, but there was no evidence to suggest NVC to this visual stimulus was  

impaired.  As there is evidence showing NVC varies across brain regions, and neural 

oscillatory frequencies, it is important to consider that this visual checkerboard design 

only gives a narrow window into investigating these mechanisms. The movie design 

made some progress at addressing these limitations allowing characterisation of BOLD, 

CBF and neural oscillations from 1-145Hz across more brain regions. However, this 

design was not able to robustly characterise individual subject variability in NVC but 

only group averaged responses. With larger samples, and more refined analysis 

pipelines, the results presented show that this type of design has potential to provide 

useful information about NVC variability. This type of research provides insight into 

important biological processes and also can aid in the interpretation of how fMRI signals 

reflect changes in neural activity. More work is needed to investigate these mechanisms 

in the healthy brain before wider application to disease populations.   

 

Another main aim of this thesis was to develop more quantifiable and interpretable 

measures of vascular and metabolic brain function, and this was demonstrated with the 

use of calibrated and dual-calibrated fMRI. The improvement of these methods and 

modelling strategies is an active area of research, but current application of these 

methods to patient populations still has practical value. Blood flow and oxygen 

metabolism signals were investigated in the brain at rest and in response to a stimulus. 

These signals are more physiologically interpretable than the BOLD-fMRI signal alone. 

At baseline, these blood flow and oxygen metabolism signals can also be estimated 

alongside oxygen extraction fraction, cerebrovascular reactivity and oxygen diffusivity, 

allowing clearer interpretations of patient-control differences. Our results demonstrated 

clear baseline vascular and metabolic impairment in MS, as well as some evidence for 

impaired stimulus responses. These methods are applicable to many patient 

populations that may have vascular and metabolic impairments contributing to the 

cause and/or progression of the disease.  

 

In the next sections (10.1 and 10.2), a summary and interpretation of the main results 

is given (for healthy populations and MS), then a consideration of the strengths and 



   162 

limitations of the methods. The interpretation of the results should be considered within 

the context of the validity of the methods used, which is discussed in Section 10.3. 

 

10.1 Neurovascular coupling and metabolic function in healthy populations 
 

Chapter 4 demonstrated that the change in BOLD and CBF signals were positively 

correlated with gamma oscillations and had good spatial overlap. This is consistent with 

a lot of previous work showing positive correlations between gamma amplitude and 

hemodynamic signals. In Chapter 7, the PCA results from the movie stimulus showed 

the characteristic tuning function that has been reported previously: in general, negative 

correlations between BOLD/CBF signals and low frequency oscillations and positive 

correlations at higher frequencies. Although these frequency-dependent relationships 

have been reported before, what is not clear from the literature is whether the same 

population of neurons is changing its oscillatory frequency patterns under conditions of 

stimulation, or different neural populations contribute to these frequency-dependent 

changes.  A clear finding from Chapter 7, is that these frequency-dependent 

relationships vary across the brain, i.e. in some areas the low frequency-negative 

correlations and the high frequency-positive correlations were reported but in other 

areas this relationship appeared opposite. Furthermore, the direction of the coupling 

relationships appeared opposite for BOLD and CBF in some areas. This reminds us 

that (1) BOLD and CBF reflect different aspects of the NVC response with changes in 

CMRO2 and CBV also contributing to BOLD signal changes and (2) interpretation of 

how BOLD and CBF responses reflect neural activity is complex and brain-region 

dependent.  

 

There are many reasons why differences in BOLD and CBF responses to the same 

stimulus can be found, and many of these were discussed in Chapter 7. One reason 

not discussed in Chapter 7 is the consideration of how oxygen diffusivity can change in 

response to neural activity. There is evidence suggesting that CBF and CMRO2  

responses can be decoupled due to the CMRO2 response reflecting a combination of 

the increased CBF and an increase of oxygen diffusion in the active region, because 

the oxygen diffusivity from the capillaries into the tissue can change locally in response 

to neural activity. These changes in oxygen diffusivity in response to a stimulus would 

therefore affect the CMRO2 and BOLD measurement, but not CBF. Empirical evidence 

for this, and a short discussion, is given in Appendix 1 (Chapter 11). One potential 

mechanism for these changes in diffusivity is via pericyte control of capillary diameter 

(Hamilton et al., 2010), and not just at the level of arterioles and arteries as previously 

assumed. 
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In an attempt to investigate some of these mechanisms, the relationship between MEG 

and CMRO2 signals in response to the movie stimulus was investigated in Chapter 8. 

Despite estimating reasonable M values across the brain and showing CBF-CMRO2 

coupling ratios in normal ranges, there no significant relationships between CMRO2 and 

MEG signals. This is unlikely to reflect the underling physiologically but the insensitivity 

of the design and measurements.  

 

10.2 Neurovascular coupling and metabolic function in Multiple Sclerosis 
 

Chapter Key Findings relating to MS 

4 • No difference in baseline CBF, GM volumes, visual acuity and VEFs 

in MS 

In response to a visual checkerboard stimulus (5 contrasts):  

• Decreased amplitude of gamma oscillations, BOLD and CBF signals 

in MS over a visual ROI common to both groups 

• A small visual area showed increased BOLD and CBF responses in 

MS 

• No significant differences in NVC in the MS group but more variability  

5 • Reduced baseline CBF and CMRO2 in MS (quantified GM averages)  
• Reduced GM volumes in MS 

• No differences in baseline CVR, OEF or Dc in MS 

• Reductions in CBF and CMRO2 in 2 small clusters: subcallosal cortex, 

medial/orbital frontal regions. Further CBF reductions in occipital pole, 

parahippocampal gyrus. Further CMRO2 reductions in nucleus 

accumbens and paracingulate gyrus. 
• Self-report disease impact scores did not predict these reductions  
• Lesion volume predicted variability in CBF (negative relationship) 

• GM volume predicted variability in CMRO2 (positive relationship) 

6 In response to a visual checkerboard stimulus (100% contrast): 

• BOLD and CBF reductions were found in a small occipital cluster, in 

the MS group, not explained by visual acuity. 

• No differences in visual CMRO2 responses in MS, and no differences 

in the coupling between CBF and CMRO2.  

• In both controls and MS, baseline CBF and CMRO2 values 

significantly predicted stimulus CBF and stimulus BOLD responses, 

respectively. 
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9 In response to the movie stimulus: 

• Reduced inter-subject correlations in the MS group for BOLD, CBF 

and all MEG frequency bands 

• MS group had significant differences in the 8-13Hz MEG to BOLD 

relationship only, showing a positive coupling relationship in the 

parietal lobe and middle frontal gyrus (whereas the controls displayed 

a negative).  

• No significant differences in the correlations between BOLD and CBF 

in the MS group 

 

In general, the work presented in this thesis demonstrates clear vascular and metabolic 

impairment in MS. In terms of the brain at rest, CBF and CMRO2 were significantly 

reduced, and so was total GM volume.  Considering no differences were found in CVR, 

OEF or Dc, this suggests that the CBF is lower due to a lower metabolic demand. 

Furthermore, these CBF and CMRO2 reductions were based on averages across each 

voxel in GM i.e. the CBF and CMRO2  were lower per unit volume of the remaining GM. 

Therefore, the total brain oxygen consumption is likely to be even further reduced once 

the GM loss is also factored in.  Consistent with this, in Chapter 4 a large decrease in 

gamma power amplitude was seen in MS, for example this decrease was close to 20%, 

for the visual checkerboard contrast of 100%.  These gamma power reductions could 

be indicator of GM dysfunction in MS, mediated by GABAergic changes in interneuron 

populations (discussed in Chapter 4). The BOLD and CBF reductions seen in Chapter 

4 are likely to be reflective of this decrease in neural activity. However, the baseline 

CBF and CMRO2  signals from Chapter 5 correlated with different metrics of disease 

burden; they both appeared to have a similar negative relationship with lesion volume 

(although CMRO2 not significantly), but only CMRO2 positively correlated with GM 

volume. This suggests that explaining the CBF reduction simply as a reflection of a 

CMRO2 reduction may not be sufficient (this is discussed in more detail in Chapter 5), 

and more research is needed to understand these relationships. 

  

Unlike in Chapter 4, differences in BOLD, CBF or CMRO2  to a visual checkerboard 

stimulus was not as pronounced in Chapter 6. There was a small visual area showing 

decreased BOLD and CBF responses in the MS group, but no changes in relative 

CMRO2 and no changes in CBF-CMRO2 coupling. This difference in findings was 

unexpected; one contributing factor could be that the patients in Chapter 4 were 

treatment naive, as opposed to the patients in Chapter 6 who were on DMTs. In the 

untreated group in Chapter 4, there was actually a small cluster in the visual cortex that 

showed increased BOLD and CBF responses compared to controls. This could be 
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interpreted as a compensatory mechanism, or it could be related to levels of 

inflammation being higher in this group. This relates to a broader point about testing 

these metabolic and vascular signals in MS: characterising the levels of inflammation 

and structural damage is very important for the interpretation of these results. Evidence 

reviewed in Chapter 3.2.1 showed that atrophy is likely to lead to a decreased CBF due 

to a lower metabolic demand, whereas increased CBF may be found due to active 

inflammation leading to higher metabolic demands. If both processes happen in 

parallel, averaging signals over course spatial scales could result in no differences. 

Therefore, developing non-invasive markers of levels of inflammation is crucial, ideally 

with regional information. Quantifying the level of GM atrophy is also important for the 

interpretation of these results, which is an ongoing challenge in the MS literature, 

particularly non-invasively (Amiri et al., 2018).  

 

In Chapter 4 there were no significant differences in NVC, despite more variability in 

the patient group and a trend towards increased NVC in the visual cortex. In Chapter 9 

there was also evidence showing the patient’s MEG and fMRI responses were more 

variable. Differences in NVC relationships were found in two small clusters, only in one 

frequency band. Therefore, this data does not provide much evidence for alterations in 

NVC in MS. This may be due to the relatively small sample sizes, or it may be due 

limitations in the way NVC was studied (see Section 10.3.1 below). However, it could 

of course be due to no impairment of NVC in MS, at least within the range of damage 

and disability studied in this thesis. At the group level, this suggests that blood flow is 

generally responding appropriately to the level of neural activity in MS.  

 

To understand the role of these metabolic and vascular impairments in disease 

progression, longitudinal studies are needed to track changes over time. Unfortunately, 

very few significant correlations between clinical disease measures  were reported in 

this thesis, which is a pattern that has been noted on in previous studies (Lapointe et 

al., 2018). Therefore, there is still a lot of progress to be made in linking together 

changes between clinical and imaging metrics.  

 

10.3 Strengths and limitations of methods 
 

10.3.1 MEG-fMRI relationship as an empirical measure of NVC 
 

An empirical measure of NVC was characterised, defined as the relationship between 

neural oscillations and BOLD/CBF signals. It is important to note that this is 

representative of the consequences of NVC, and not an investigation of the signalling 
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mechanisms themselves. The process of NVC is very complex; how the vascular cells, 

glial cells and neural cells all interact to produce a blood flow response in the right 

location at the right time is still not fully known (Cauli & Hamel, 2010; Chen, Kozberg, 

Bouchard, Shaik, & Hillman, 2014; Petzold & Murthy, 2011). From a modelling 

perspective, there is some evidence to suggest that NVC may be non-linear in some 

circumstances (Hoffmeyer, Enager, Thomsen, & Lauritzen, 2007; Sheth et al., 2004), 

and this should be considered for future studies. The majority of the research informing 

the work on NVC in humans comes from examining the relationship between neural 

activity and BOLD signals. As covered previously, there are many factors that can affect 

the variability in the BOLD signal, some of which are not related to neural activity. The 

CBF response is therefore more relevant, however, fewer studies have looked at the 

relationship between MEG or EEG signals and CBF, in the context of NVC. 

 

NVC was investigated using two very different stimuli: a visual checkerboard within a 

block design and a clip from a movie within one continuous recording. Despite no 

significant differences between patients and controls, the gamma oscillations and fMRI 

signals displayed strong positive correlations in response to the checkerboard. 

Correlations of this magnitude were not seen with the movie paradigm, possibly due to 

it being a continuous recording. For the movie data, MEG and fMRI signals were 

correlated across time, whereas for the visual checkerboard the contrast manipulation 

was used to tune the amplitude of the MEG and fMRI responses in a similar way, and 

this manipulation was the basis of the NVC measure. For this low-level stimulus, the 

brain is likely to respond more similarly during MEG and fMRI, and more similarly across 

participants. For the more complex movie stimuli, there is likely to be more variation 

across people, and the neural responses may be slightly different on second viewing 

(Chang et al., 2015). Furthermore, it was challenging to characterise individual 

variability in NVC with this movie design; most of the significant results discussed are 

based on averaged time-series across individuals.  However, despite these limitations 

with the movie paradigm, it has the advantage of inducing activity over multiple brain 

areas, in multiple oscillatory frequency bands, and is more reflective of naturalistic 

stimuli. Some potential strategies to improve the usefulness of this type of design for 

investigating NVC could be: (1) to use a resting state paradigm to help characterise the 

baseline noise profile of the MEG and fMRI signals (2) to implement a potentially more 

sensitive independent component analysis to characterise the responses to the movie 

and (3) look at the amplitude and phase coupling between the frequency bands and 

how this relates to the fMRI signals (explained below).  
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The assumption made in using the MEG-fMRI relationship as an empirical measure of 

NVC is that both the signals are sensitive to changes in the same type of neural activity. 

The empirical evidence that was summarised in the introductory chapters has led to the 

common view that both neural oscillations and BOLD/CBF signals closely reflect LFPs 

(of which PSPs mostly contribute) as opposed to multi-unit spiking activity (MUA).  

However, this has also been acknowledged to be an oversimplification, and it is likely 

that the BOLD, CBF and neural oscillatory signals reflect both LFPs and MUA (Ekstrom, 

2010; Mukamel et al., 2005; Whittingstall & Logothetis, 2009). It is important to note 

that in some cases there is a strong correlation between spike rate, LFPs and BOLD, 

and in other cases they are decoupled (Ekstrom, 2010). More research is needed to 

understand the conditions that lead to this coupling or decoupling. A fairly recent idea 

proposed in the literature, with accompanying empirical evidence, is that high-frequency 

oscillatory activity (>100Hz) in LFPs reflect spiking activity (Scheffer-Teixeira, Belchior, 

Leão, Ribeiro, & Tort, 2013). With the movie paradigm, we characterised significant 

MEG correlations between subjects in frequencies up to 195Hz. It is intriguing that only 

in the highest frequency band (145-195Hz) we saw significant common activity in the 

thalamus  (Supplementary Figure 1.1). Although this cannot be fully disentangled with 

this study, and was not the main aim, this provides promising new research avenues to 

explore if such a simple non-invasive design is sensitive to spiking activity.  

 

Spatial sensitivity to neural activity is also an important factor to consider when 

comparing MEG and fMRI; activity of neurons in gyri that are perpendicular (radial 

orientation) to the cortical surface do not project outside the head and cannot be 

measured with MEG (Ahlfors et al., 2010), whereas fMRI signals would be sensitive to 

this activity. The main challenge with comparing MEG and fMRI signals to the same 

stimuli comes from their very different spatial and temporal resolutions. In order to carry 

out voxel-wise comparisons across the whole brain, we spatially down-sampled the 

fMRI to match the resolution of the MEG beamformers. Similarly, the fMRI time-series 

was temporally up-sampled and the MEG time-series was down-sampled. This results 

in pre-processing steps that are not optimum for each modality and may introduce bias 

in statistical testing as the DOF are altered. The need to perform the MEG and fMRI 

scans separately is a clear limitation in using their relationship to study NVC. 

Simultaneous EEG-fMRI is an alternative non-invasive methodology that can be applied 

to studying NVC. The decreased signal quality for both modalities makes the data 

acquisition and analysis challenging, however progress is being made to improve this 

(Huster, Debener, Eichele, & Herrmann, 2012).  
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Only the amplitude and frequency of neural oscillations were considered in this thesis.  

However, evidence suggests that the phase of the wave is also important for neural 

communication. A large area of research into neural oscillations is focused on 

characterising functional connectivity between brain regions, by looking at the how 

amplitude, frequency and phase correlate across regions (Bastos & Schoffelen, 2016). 

Coupling between phase and amplitude (Phase-Amplitude Coupling, PAC) also 

changes in response to a stimulus and is theorised to play a key role in neural 

communication. It is normally demonstrated by the phase of a low frequency oscillation 

modulating power of a higher frequency oscillation, i.e. when the slow wave is in one 

phase of its cycle the power in the fast wave increases, and when it’s in the other phase 

the power decreases  (Canolty & Knight, 2010). There is very little research studying 

how the PAC of neural oscillations is related to fMRI signals in humans, however one 

recent study did investigate this by simultaneously recording electrocorticography 

(ECoG) and fMRI data in the same participants whilst they performed a finger-tapping 

task (Murta et al., 2017). They reported the typical positive correlations between higher-

frequency (>70Hz) oscillations and BOLD, and negative correlations between lower 

frequencies (4-30Hz) and BOLD. More importantly, they showed the PAC strength for 

alpha/gamma and for beta/gamma was negatively correlated with the BOLD amplitude 

in the contralateral hemisphere. Furthermore, they report that the PAC for beta/gamma 

explained variance in the BOLD amplitude that was not explained by amplitude changes 

in alpha, beta or gamma. The complexities of modelling the amplitude, frequency, 

phase and the couplings between them brings new challenges to relating fMRI signals 

to neural oscillations measured with EEG or MEG. However, it is clearly an important 

metric to consider in future studies investigating NVC and may partly explain why the 

amplitude of MEG signals in one frequency band are not strongly correlated with fMRI 

signals (as seen in Chapter 7).  

 

10.3.2 Calibrated-fMRI to estimate oxygen metabolism 
 

In Chapters 5, 6 and 8 we used calibrated-fMRI to model CMRO2 at rest, and during 

stimulation. Chapter 5 was the first application of a dual-calibrated methodology in MS. 

Characterising multiple physiological parameters relating to cerebrovascular health 

(CBF, CBV, OEF, CMRO2, Dc) brings a clearer picture of the vascular and metabolic 

impairments in MS, as interpretation of the changes in one parameter can be taken in 

the context of changes in others. The validity of the modelling assumptions in healthy 

populations are still being investigated and regularly updated, and caution must be 

taken when implementing these methods in patients groups, considering the biological 

assumptions may be less valid (Germuska & Wise, 2018). The most significant 
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assumption, common across all calibrated-fMRI implementations, is that the increasing 

inspired O2 and CO2 does not alter CMRO2. Empirical data has shown that this is 

unlikely to be completely true (Yablonskiy, 2011; Zappe et al., 2008) and simulation 

data shows that if CMRO2 changes during hypercapnia and hyperoxia this would 

strongly affect the estimates of baseline OEF (Merola et al., 2016). Much more research 

is needed to understand the magnitude of this effect, and how best to correct for it 

(Driver et al., 2017).  

 

There are two main approaches to modulating end-tidal gases: fixed inspired fractions 

or targeted end-tidal changes. The methods presented in Chapter 5 used the former 

(fixed inspirations). In principle, targeting exact end-tidal changes in PCO2 and PO2 is 

better, as this allows for more controlled and repeatable modulation of Cv02 (in the case 

of PETO2) and of CBF (in the case of PETCO2), (Germuska & Wise, 2018). In practice, 

fixed inspirations are used more commonly due being less expensive and having a 

simpler equipment set-up. 

 

A robust measurement of CBF is one of the main technical challenges in calibrated 

fMRI methodologies. All these models rely on an accurate quantified estimate of CBF, 

in order to model many other parameters.  A limitation of all the ASL sequences used 

in this thesis (with the exception of the multi-TI ASL used in Chapter 4) is in assuming 

one value for how long the labelled blood takes to travel from the labelling site to the 

slice being imaged (TI for PASL sequences, and PLD for pCASL sequences). However, 

mean transit times have been shown to be altered in MS (see evidence in Chapter 

3.2.1). One study showed that prolonged arrival times in MS, in both GM and WM, were 

associated with higher disability scores (Paling et al., 2013). If patients have altered 

arrival times, this could lead to a bias in CBF quantification.  

 

Although fMRI gas studies are non-invasive, they can be complex from a data collection 

and analysis perspective. Furthermore, application of these methods in some 

populations (children, people with anxiety) may be challenging due the experience of 

breathing in raised CO2. This is why other alternatives have been investigated to 

calibrate the fMRI signals. As discussed in Chapter 8, one of these is a BH design. This 

allows the participant to have more control and often a nasal cannula instead of a face-

mask can be worn, making it a more comfortable procedure. This design requires a 

certain level of task compliance which can be variable across participants, although 

practising outside of the scanner can help improve this. However, unlike dual-calibrated 

fMRI, this BH modulation can still only give relative changes in CMRO2, and not 
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baseline estimates. It also involves more physiological confounds due inspired O2 

decreasing during the BH (discussed in Chapter 8). 

 

10.3.3 Statistical Power  
 

Improvements in experimental design 

 

Before considering the effect of sample size on statistical power, first let us consider 

improvements in the validity of the experimental designs. In relation to MEG-fMRI 

studies to investigate NVC, future studies should give more attention to controlling order 

effects (counterbalancing MEG/MRI session order), time-of-day effects (having each 

scan on a different day but at the same time) and measuring attentional levels to the 

stimulus. Considering the challenges that come with comparing MEG and fMRI signals 

at the same temporal and spatial scales, the experimental design needs to ensure that 

the subject’s experience of the stimuli shown during MEG and fMRI is as similar as 

possible.  

 

Some studies attempt to measure and/or control for lifestyle factors known to effect 

CBF (e.g. exercise, caffeine, nicotine), which have relevance for the validity of our 

methods characterising both resting and stimulus-induced CBF. Recruiting based on 

these factors must be done with caution because (1) a very long list of exclusion criteria 

may lead to recruiting a sample that is not representative of the population, and (2) 

instructing people to refrain from consuming their normal levels of caffeine on the day 

of the scan, for example, will lead to withdrawal effects which may also affect these 

measurements (Addicott et al., 2009). Nevertheless, these are important confounds to 

consider as these methods start to be applied to more questions and patient groups. 

Therefore, this type of data should be collected alongside the imaging data. 

Familiarisation sessions with hypercapnic gases, and practises with BH tasks, before 

the main MRI session is a valuable inclusion into a study design. This helps improve 

the quality of the data collected during the scan as well as ensuring safety.  

 

All of these experimental controls should reduce subject variability due to confounding 

factors, making it more likely to detect an experimental effect if one is present.   

 

Estimation of adequate sample size 

 

In some of these chapters, particular Chapters 4 and 9 for patient-control comparisons, 

the sample sizes were particularly small. It is of course possible that the lack of 
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significant differences we report in NVC is partly or completely due to low statistical 

power. Improving the SNR of imaging techniques and minimising the confounding 

variables may help to reduce this variability, as well as increasing sample sizes. It is 

important to note that post-hoc power analyses, as a way to add some interpretation to 

a null result, are often criticised in the literature as not being meaningful or informative 

(Mumford, 2012), so they will not be covered here. Also, estimating sample sizes based 

on pilot data has been criticised in a recent paper due to inaccuracies in estimating the 

effect size, amongst other factors (Albers & Lakens, 2018). Pilot data are thought to be 

more useful in assessing feasibility of recruitment, methods and analysis than 

estimation of future effect sizes (Leon, Davis, & Kraemer, 2011). Power analyses for 

neuroimaging studies are even more challenging considering the multiple statistical 

comparisons performed for each voxel of the brain, or within ROIs (Mumford, 2012). 

Furthermore, the variability of the MEG and fMRI data will not be spatially uniform 

across the brain and statistical comparisons at each voxel are not truly independent of 

one another. It was often difficult to estimate appropriate sample sizes needed for the 

research studies in this thesis due to the fact that many of these methods are novel and 

in active development. However, the next paragraph describes some approaches that 

were used to assess this as well as some sample size recommendations for future 

studies.  

 

For the data presented in Chapters 5 and 6, 26 MS patients and 25 controls were 

recruited.  These numbers were broadly based on numbers in previous studies that 

showed CBF/CVR differences in MS using a pCASL sequence, for example: Marshall 

et al (2014) with 19 controls and patients, Marshall et al (2016) with 28 controls and 

patients, and Ota et al (2013) with 27 patients and 24 controls. In future, it would be 

advisable to collect 3-5 extra controls and MS patients than is needed based on sample 

size estimates (so ~30 in each group). This is because these (dual) calibrated-fMRI 

methods can often lead to data drop-out due to a participant not being eligible for the 

study, or the data quality being poor due to the gas challenge being novel and 

uncomfortable for some. When using the movie design to investigate NVC, data in 

Figure 7-7 attempted to address the question of sufficient sample size by combining 

data collection from the study with other researchers’ data (common data only existed 

for MEG-BOLD coupling, not MEG-CBF). With a sample size of 33, significant positive 

or negative coupling relationships were seen across all frequency bands and in wider 

brain regions compared with the analysis including only 17 participants. Importantly, 

these coupling relationships were characterised at the individual level first, then 

statistically tested, taking into account individual variability. Therefore, similar studies in 
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the future should aim for at least a sample size of ~33 to characterise these NVC 

relationships, and even more if patient differences are to be compared. 

 

10.4 Conclusions  
 

Multi-modal neuroimaging studies, as presented in this thesis, can contribute to the 

knowledge of how neural, metabolic, and vascular responses interact. The non-invasive 

nature of MEG and MRI means they have wide applicability to studying young, old and 

disease populations, across multiple time points. In the context of studying MS, these 

methods have a lot of potential utility at investigating mechanisms that  may contribute 

to disease progression. For future studies investigating vascular and metabolic changes 

in MS, longitudinal designs and more characterisation of GM damage would allow 

clearer interpretation of results. With any neuroimaging method, a good generative 

model is crucial; one that explains the biological underpinnings of the measured signals. 

More research is needed in this area, to help us model the signals we measure, and 

this will lead to greater applications in understanding the brain, in health and disease.  
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11 APPENDIX 1: Gamma Oscillations, BOLD, CBF and CMRO2 
signals in response to a moving annular grating stimulus  

 
 
Study rationale: To investigate the relationship between different MEG and fMRI 

derived signals, including how they change with visual stimuli manipulation, in order to 

inform about NVC mechanisms.  
 
Study design: 12 healthy volunteers (10F, 3M,18-28 years, right handed, normal or 

corrected to normal vision) performed a visual task during a MEG scan and during a 

pCASL fMRI scan. A T1-weighted structural scan was also obtained. Approved by the 

School of Psychology Ethics Committee. 

 

 
• Annular grating stimuli, full-field, 100% contrast, 3 cycles per degree 

• Projector dimensions, screen refresh rate and degree of visual angle kept 

consistent between MEG and fMRI  

• Stimuli drifted inwards towards the centre at 0,4,8 or 12Hz 

• Participants told to fixate on red circle in centre and count colour changes from 

red -> green to maintain attention  

 
 
 
 
 
 
 
 
 
 
 
 
 

1 Trial

30secs 30secs

1 Block

0Hz 
(static)

4Hz 8Hz 12Hz

1 task
(16 mins)

4 Block 
repetitions

Order pseudo
-randomised 

• Annular grating stimuli, full-field, 100% contrast, 3 cycles per degree
• Projector dimensions, screen refresh rate, degree of visual angle consistent between MEG and fMRI.
• Stimuli drifted inwards towards the center at 0, 4, 8 or 12Hz
• Participants told to fixate on red circle in center and count colour changes from red à green to maintain attention
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MEG data collection and analysis: 275-channel CTF axial gradiometer system was 

used to obtain whole-head MEG recordings. To obtain the peak gamma response to 

the stimulus, the data was collected and analysed using very similar methods and 

pipelines as in Chapter 4.  In brief, data was band-pass filtered between 40 and 90Hz. 

Source reconstruction with LCMV beamformer, contrasting active and stimuli periods. 

Across the four conditions, the location of the peak gamma amplitude was found.  At 

this peak location, the source-level time-series were constructed by multiplying the 

sensor level data with the beamformer weights and constructing time-frequency 

information by calculating the amplitude envelope using the Hilbert transform. For each 

of the four conditions, the Peak Gamma Amplitude is the peak amplitude change, 

across the 30 seconds block, in this location. The Frequency of Gamma Peak was the 

specific frequency (constrained to 40-90Hz) of this peak amplitude. 
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MEG Source Localisation. Gamma amplitude (40-90Hz) percentage change 
from baseline, shown as averages across the group in MNI space (left plot) and 
shown for one individual (right plot). The blue cross-hairs represent the peak 
gamma response for that individual. All participants had a peak gamma response 
in the primary visual cortex.   
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fMRI data collection and analysis: 3T GE MRI system, 8-channel receiver head coil, 

ran a PASL sequence, acquiring CBF and BOLD weighted images (TI1/TI2  = 

700/1500ms, 20cm tag), with a dual GRE spiral readout (TR/TE1/TE2 = 2400/2.7/29ms, 

64 x 64 x 14 (3x3x7mm,1.5mm gap). To obtain the BOLD and CBF responses to the 

stimulus, the data was collected and analysed using very similar methods and pipelines 

as explained in Chapter 4. In brief, BOLD time courses (surround average of the second 

echo) and ASL time courses (first echo) were modelled with FEAT’s Full Perfusion 

Signal modelling, for each of the 4 conditions. A group ROI representing the significant 

activity to stimulus (across the four conditions, and common to both BOLD and CBF) 

was transformed from MNI to subject space and percentage change from baseline 

BOLD and CBF signals were extracted from this ROI. As explained in Chapters 8, the 

CMRO2 response to the stimulus was modelled, based on the standard calibration 

model (Davis et al., 1998), assuming a value for M of 0.075, an alpha of 0.2 and a beta 

of 1.3, based on previous literature (Wise et al., 2013).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

BOLD
(Z>2.3)

CBF
(Z>2)

fMRI group Z-stat images
Corrected cluster significance threshold of p =0.05. 

Example of a subject ROI containing voxels that were significant in the CBF and
BOLD analyses, where the BOLD and CBF signals were extracted.

BOLD
(Z>2.3)

CBF
(Z>2)

fMRI group Z-stat images
Corrected cluster significance threshold of p =0.05. 

Example of a subject ROI containing voxels that were significant in the CBF and
BOLD analyses, where the BOLD and CBF signals were extracted.
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TEMPORAL FREQUENCY TUNING OF MEG AND FMRI SIGNALS 
 
Two participants had MEG source localisation errors (due to eye artefacts and co-

registration errors) leaving n=10 common MEG and fMRI datasets to compare (8F, 2M). 

For each parameter plotted below, the maximum percentage change from baseline was 

obtained, across the four stimuli conditions, for each participant. Each stimuli condition 

response was converted into a percentage of this maximum value, in order to compare 

the stimuli manipulation between all parameters, which have different magnitudes. The 

table shows unnormalised values for each parameter, averaged across the stimuli 

conditions (‘Grand Mean’) to give an indication of scale. Group means ± SEM are 

displayed. 

 

 
 

 
 
 
What do these results show?  

 

• Peak amplitude of neural oscillations in the gamma band (40-90Hz), and the 

frequency of this peak, are tuned differently by this visual stimulus manipulation  
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MEG:Peak Gamma Amplitude MEG: Frequency of Gamma Peak
fMRI: BOLD fMRI: CBF
fMRI:CMRO2

PeakAmplitude (%) FrequencyOfPeak (Hz) CBF (%) BOLD (%) CMRO2 (%)
Grand Mean 69.68 53.03 30.70 1.06 11.33

SE 15.13 5.63 2.66 0.09 1.05
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• BOLD, CBF, and the frequency of the gamma peak all display peak responses at 

8Hz of stimuli movement, whereas peak gamma amplitude and the modelled 

CMRO2 response both peak at 4Hz  

 

Why is this important? 

 

• The biological mechanism that drives gamma oscillations is still not fully known, but 

there is evidence to suggest they are driven by a network of interconnected 

excitatory pyramidal cells and GABAergic inhibitory interneurons (Bartos et al., 

2007). The balance of this excitation and inhibition is thought to play a role in setting 

the peak gamma oscillation frequency (Brunel & Wang, 2003). Increases in gamma 

amplitude may simply reflect a larger population of neurons firing in synchrony.  

 

• These results very closely mirror those of a study using PET imaging (Vafaee & 

Gjedde, 2000b) that looked at CBF and CMRO2 responses to similar visual grating, 

showing that CBF peaked at 8Hz and CMRO2 peak at 4Hz of stimuli movement, as 

we have shown here. They modelled the oxygen diffusivity from capillaries into the 

active tissue and found that this followed the same pattern as CMRO2, peaking at 

4Hz. They explained this increase of oxygen consumption at 4Hz to be a 

combination of increased CBF and increased oxygen diffusion in the active region, 

and that oxygen diffusion can therefore change locally in response to neural activity. 

Another study testing visual responses at  0, 1, 4, 8, 16, 32, and 50Hz showed that 

CMRO2 response peaked at 4Hz (Vafaee et al., 1999).  

 

• This provides support that the CMRO2 response may better reflect the energy 

demands of neural activity compared to both the BOLD and CBF response, and 

therefore developing methods of measuring CMRO2  is important. There is other 

evidence to suggest that the CBF response is mediated by factors other than the 

demand of oxygen (Lin, Fox, Hardies, Duong, & Gao, 2010).However, the CBF 

response very closely follows the tuning pattern of the frequency of the gamma 

peak, suggesting instead that CBF and CMRO2  may represent different information 

about neural activity. More generally, the fact that CBF and CMRO2  responses to 

the same stimulus are different suggest that CMRO2  responses may also be 

reflecting a more local regulation of blood flow, at the level of capillaries (Hamilton 

et al., 2010).  
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