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Summary

Parametric problems have been widely studied and many researches have been pro-

vided to reduce the cost of computations. Reduced order modelling (ROM) achieves this

goal by performing and storing a sequence of pre-computations in an expensive “offline”

stage, and utilises the stored data to make predictions of solutions for parametric prob-

lems in an “online” stage with low cost. The (POD -) Greedy sampling algorithm is a

powerful tool to obtain those pre-computations in an optimal sense.

Problems arise for conventional reduced order modelling when the system undergoes

dynamic changes: first of all, a robust error estimate is needed for dynamic problems;

moreover, a cost-effective procedure is required in the “offline” stage to generate the

optimum set of sample points, such that the most representative reduced basis may be

obtained, which would also keep the “offline” cost under control.

In this thesis, a new POD-Greedy sampling algorithm which utilises a new error in-

dicator will be presented. This error indicator aims to predict paths of the optimum

maximum error convergence. The standard POD-Greedy approach requires exact solu-

tions over the entire parameter domain when a-posteriori error estimate is not available,

thus is not practical. Instead, the proposed POD-Greedy algorithm avoids computa-

tions of the massive number of exact computations by applying interpolation, so that the

numerical efficiency can be improved. Another contribution is an “error in the error”

indicator which drives the local adaptivity of interpolation sample grids. This indica-

tor compares low and high order interpolation scheme to obtain the correct sequence

of local h − refinement and Greedy iterations. Finally a nonintrusive Abaqus/Matlab

code coupling technique will be presented in appendix to enable seamless integration of

commercial software and Matlab source code in computations of exact solutions. The

accuracy and feasibility of the proposed method will be experimented on varieties of
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Nomenclature

Chapter 1

• µ: parameter value.

• ρ: density.

• E: Young’s modulus.

• N : dimension of the finite element space.

• N : dimension of the reduced space.

• P: parameter domain.

• Ω: physical domain.

• X : space of exact solutions, Hilbert space.

• M: mass matrix.

• C: damping matrix.

• K : stiffness matrix.

• F: force matrix.

• Ü (t; µ), U̇ (t; µ), U (t; µ) ∈ X : finite element responses, the ‘exact’ solution.
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2 CONTENTS

• u(µN ): the ‘snapshot’ at parametric value µN .

• e(µ): the RB error.

Chapter 2

• Nµ: number of discretised parametric values to be evaluated.

• a and b: damping coefficients.

• Ü r (µ), U̇ r (µ), U r (µ): solutions from a reduced static problem.

• φ
i
: ith reduced basis vector.

• Φ: the reduced basis.

• δi j : the Kronecker delta symbol.

• PN = {µ1, . . . , µN } ⊂ P: the snapshot parameter set.

• XN : space of reduced solutions.

• üN (µ), u̇N (µ), uN (µ) ∈ XN : reduced solutions lie in the reduced space.

• KN , fN , lN : system matrices projected on reduced space.

• e: the exact (or RB) error.

• R(µ): residual for a static problem.

• R(t; µ): residual for a dynamic problem.

• Z: snapshot matrix, the collection of static solutions.

• Ptrain: the training set, Ptrain ⊂ P.

• Ntrain: number of discretised point in training set.

• eind: error indicator.



CONTENTS 3

• eproj: projection error.

• PM : the magic point set.

• Nadd: number of newly added reduced basis vectors.

• eto
r : error reduction threshold for the obtained magic point.

Chapter 3

• Üh(t), U̇h(t), Uh(t): space-time FE response.

• üh
n, u̇

h
n, u

h
n: FE response vector at time step n.

• F h(t): FE force matrix.

• fh
n
: FE force vector at time step n.

• xh
n: space and time FE response vector at time step n.

• Xh: the full response vector.

• a0 − a5: Newmark coefficients.

• I: identity matrix.

• Hs, H̃s: diagonal entries of A.

• H f : off-diagonal entries of A.

• gh
n
: force vector at time step n.

• Gh: the full force vector.

• A: the dynamic operator.

• gr
n
: approximated force vector at time step n.

• ψ: diagonal entries of Ψ.



4 CONTENTS

• πn: reduced variable vector at time step n.

• Ψ: the assembled reduced basis matrix.

• Π: the full reduced variable vector.

• Gr: the approximated full force vector.

Chapter 4

• ‖·‖F: Frobenius norm of ·.

• R(µ): the full residual vector.

• E(µ): the exact full error vector.

• A−1: the dynamic operator inverse.

• Â−1(µ): the approximated dynamic operator inverse.

• li (µ): the interpolation polynomial.

• Pi: the interpolation sample domain, Pi ⊂ Ptrain ⊂ P.

• A−1i : the dynamic operator inverse at interpolation sample µi.

• Termh
i and Termr

i jr: terms being used when solving approximated full error vector.

• Ê(µ): the approximated exact full error vector.

• Ψr: the assembled reduced basis matrix contains the rth basis vectors.

• Π jr (µ): the full reduced variable vector associated with the rth basis vector and jth

affined term.

• Gimp
jr : the full impulse matrix.

• F imp,m
jr , F imp,c

jr , F imp,k
jr : the impulses associated with mass, damping, stiffness

matrices, respectively.
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• Xh
i : the full response vector obtained by applying Gh.

• Xr
i jr: the full response vector associated with the ith interpolation sample, rth basis

vector and jth affined term.

• U imp,m
ijr , U imp,c

i jr , U imp,k
i jr : impulse responses correspond to mass, damping, stiffness

matrices, respectively. Displacement components of Xr
i jr.

• Uh
i : displacement component of Xh

i .

• ajr: the general form of reduced variables associated with acceleration, velocity and

displacement.

• δtn: the Kronecker delta symbol.

• tr(·): trace of ·.

• Mi: the matrix which contains vectors Uh
i and U imp

ijr .

• Mtrans
i : the displacement vector product matrix.

• a: vector of affine coefficients and reduced variables.

• VL, VR, Σ: left singular vectors, right singular vectors and singular value matrix of

impulse responses.

• Wα: the reduced variable vector matrix, which is a collection of reduced variable

vectors.

• Mtrans,r: subspace projection of Mtrans
i .

Chapter 5

• P̂i,
ˆ̂
Pi: the ‘slave’ and ‘master’ interpolation sample domain.

• N̂b,
ˆ̂Nb: number of blocks partitioned by ‘slave’ and ‘master’ vertices.

• ee: the “error in the error”indicator.
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Chapter 1

Introduction

1.1 Motivation

Modern engineering problems often require the simulation of structural behaviours

which may compose multiple parts and various materials, and/or encounters different

conditions. For example, pressure and temperature under different loading conditions

(amplitude, frequency, location, etc); surgical simulations and computer games which

requires real-time outputs; optimal control problems, etc. Analytical solutions are usu-

ally not available in these cases, therefore instead of executing complex and expensive

physical experiments, computational simulations may be used to reduce the costs. The

aforementioned types of problems are similar in the aspect that the simulations may

need to be performed for many times, which can be time-consuming and expensive. Sim-

ulation methods can be varied, such as Finite Element (FE) Methods, Finite Volume

(FV) Methods, Finite Difference Method, Finite Strip Method, etc. The complexity

of the simulations depends on a large number of factors. While physical experiments

are necessary for calibrating models, computer simulations show strong advantages over

physical experiments in terms of cost and accuracy under certain conditions. For exam-

ple, design of modern high-performance aircraft often faces challenges in the transonic

7



8 CHAPTER 1. INTRODUCTION

regime. Replacing the manufacture of wind tunnel flutter model by computational fluid

dynamics (CFD) simulations is an efficient approach. The construction and analysis

of a wind tunnel flutter model could cost over a year’s time, and the nonlinear CFD

model with 168799 degree of freedoms (dofs) requires less than 2 weeks on a 6-processor

system, or less than a day on a 128-processor system [36]. The simulation process can

be further accelerated, for example using the adaptive Finite Element method, adaptive

time-integration method, etc. These methods produce relatively satisfying results under

certain circumstances.

Moreover, many simulations require the solutions to be obtained in a very rapid

manner, or the results of simulations and optimisations are dependent on the settings

of various parameters, such as Young’s modulus, Poisson’s ratio, density in structural

engineering practices. The particular setting decides that the solution is obtained in a

repeated way which could result in thousands of calculations and/or subject to parameter

variations. The applications of conventional computational methods are restricted for this

class of problems. For example:

• High-dimensional problems: some models are defined in high-dimensional spaces,

which suffer the well-known so-called curse of dimensionality. A model defined in

dimension N with M nodes in each space results in MN nodes in total. Applications

of standard mesh-based methods are restricted in these cases.

• Time-dependent problems: dynamic problems are time-dependent but not neces-

sarily high-dimensional. Such problems may contain very small time steps in order

to satisfy the stability requirements. The system needs to be solved for each time

step. If time interval is large, obtaining solutions simply becomes impossible with

conventional time-integration methods due to the large number of calculations re-

quired.

• Uncertainty problems: Helmholtz-type PDEs govern the propagation model of har-

monic waves in unbounded domains, which are solved with a large number of input
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data. Uncertainty quantification (UQ) characterizes and predicts certain outcomes

in a statistical sense (forward UQ usually requires 1000+ realisations). Small dis-

turbances could have a large impact on the results for these problems. Due to the

high computational cost, the number of tests is limited for different parameters,

and the accuracy is therefore compromised [56, 82].

• Parametric problems: in problems of electromagnetics, in order to obtain outputs

such as the Radar Cross Section (RCS), the electric field integral equation (EFIE)

needs to be solved under a variation of a set of parameters (wavenumber, incident

plane angle, etc) [35]. Another case is aerodynamic shape optimisation which aims

to improve the aerodynamic performance of the design by a set of given parameters.

Cost functions need to be minimised to achieve this improvement. Each function

evaluation requires a CFD simulation on a different design, therefore it is not

practical to re-mesh the model for each individual simulation.

The above problems are required to be solved in a rapid or iterative manner, there-

fore conventional methods are no longer suitable, and efficient techniques are needed to

tackle the complexity of these problems, as well as to seek the balance between numer-

ical accuracy and computational speed. Many methods have been proposed, the most

well-known are: Multiscale methods, Modal Truncation methods, Reduced Basis (RB)

method [6, 12, 21, 95, 98], Proper Generalised Decomposition (PGD) [18, 88], Proper Or-

thogonal Decomposition (POD) [8, 58, 67, 107, 112], Data-driven reduced order models

[93, 115].

This thesis focuses on obtaining solutions for parametric problems utilising projection-

based Reduced Order Modelling (ROM) techniques. The latter are widely applied to

reduce the computational cost of predicting the time dependent behaviour of structures

subjected to parameter variations, as well as providing efficient and reliable solutions to

these PDE outputs. Reduced order model functions are computed in low-dimensional

subspaces, therefore the repeated calculations become much more feasible. The reduction
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is feasible due to the fact that the parameter-dependent solution can be represented by

a linear combination of (i) parameter-independent, pre-computed modes, (ii) parameter-

dependent unknowns which are inexpensive to obtain. The key is to construct the modes

which is able to well recast the solution. These modes are exact solutions computed

from a set of sample points which best represent the parameter domain. The reduction

process is divided into an “Offline/Online” decomposition: the “Offline” stage consists

of a sequence of expensive pre-computations during which the solutions are learned and

stored; the “Online” stage makes use of this accumulated data to predict the solution

related to any particular parameter of interest at extremely low costs. In the “Offline”

stage, a good sampling technique is crucial to the selection of representative ‘snapshots’.

This thesis focuses on projection based reduction methods (i.e. POD type approaches),

coupled with effective sampling techniques.

1.2 Aims and outline

POD-Greedy algorithm further divide the POD “Offline” stage into Greedy basis

processing and parameter sweep stages in order to ‘greedily’ find the most optimised

snapshots. The Greedy basis processing stage compresses the representative solutions

into compact reduced basis; the Greedy parameter sweep stage evaluates the error over

a carefully chosen training set, once this is finished, the sample snapshot parameter is

chosen as the value associated with the maximum error. A main obstacle of applying

the standard method is to balance the cost and performance: large training set are more

costly but may result in better exploratory of the parameter domain; small training set

are less expensive to evaluate but may lead to insufficient search of the information.

The aim is to provide new computational strategies based on standard POD-Greedy

sampling algorithm to deal with the aforementioned challenges. More specifically, we

aim to develop:
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• a proposed POD-Greedy sampling algorithm which utilises a new error indicator.

This new indicator should enable fast evaluation of large training sets thus achieves

an acceleration of the Greedy parameter sweep stage. The new POD-Greedy algo-

rithm should achieve accurate prediction of maximum relative error convergence,

i.e. approaching the error convergence of standard POD-Greedy algorithm.

• a new error estimate which decides the sequence of local h− refinement and Greedy

iterations, such that the accuracy is guaranteed.

• a nonintrusive Abaqus/Matlab code coupling technique which allows users to com-

pute solutions of parametric problems using Abaqus as a ‘black box’. The non-

intrusive technique should be seamlessly integrated into the computation of exact

solutions, and works as a bridge between commercial software and ROM source

code.

The thesis is structured into the following: in chapter 1, definitions of parametric

linear elasto-dynamic problem and the Newmark method are given. Chapter 2 intro-

duces popular reduced order modelling methods, which includes a brief introduction of

a priori and a posteriori ROM methods for non-parametric problems, detailed review of

a posteriori ROM methods for parametric problems, and other reduced order modelling

methods. Various numerical experiments are investigated to show the pros and cons.

Chapter 3 introduces the full space-time representation of the Newmark method, which

shows that a linear dynamic problem can be solved in a ‘static’ way. This is the theoret-

ical foundation of the proposed POD-Greedy algorithm. Chapter 4 explains the imple-

mentation of a new error indicator developed by applying the full space-time Newmark

representation. A new “error in the error”indicator is presented in chapter 5 to deter-

mine the sequence of Greedy iterations and local refinement. A complete computational

procedure is proposed in chapter 6, including the pseudo code and the basis processing

and parameter sweep process for the proposed method. Finally the proposed method is

validated in chapter 7 with a varieties of numerical examples.
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Figure 1.1: Parametric beam model: multiple inclusions.

1.3 Parametric linear elasto-dynamic problem

In this thesis, µ is used to denote the parameter which characterizes the dynamic

problem, and P to denote the parameter domain, such that µ ∈ P. µ consists of a finite

set of Nµ scalar values {µi }
Nµ

i=1. In structural dynamics, functions of parameter µ consists

of density ρ, Young’s modulus E, Poisson’s ratio v, etc. Structural responses include

acceleration, velocity and displacement, which are also parameter-dependent functions.

The linear elastic structure occupies a bounded domain Ω in the physical space,

Ω ∈ Rd, d = {1, 2, 3}. Domain Ω possesses multiple sub-domains {Ω1, . . . ,Ωn} which denote

the inclusions in a structure, for example, a 3D dental implant model is proposed in [51],

which consists of 5 physical regions, each is homogeneous and isotropic. Any region which

adapts parameter changes can be viewed as an inclusion. Modification of properties in

these inclusions affects the behaviour of the structures. Dirichlet boundary conditions

are satisfied on boundary Γgi . The Hilbert space X is then introduced with inner product

〈·, ·〉 and norm ‖·‖. The norm is given by ‖x‖ =
√
〈x, x〉. The solution u(t; µ) is discretised

in space and time, lies in X .
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For a general elasto-dynamic problem, the initial conditions specify both displace-

ments and velocity:

u0i : Ω→ R

u̇0i : Ω→ R
(1.1)

these initial conditions are given functions for each i, 1 ≤ i ≤ nsd, where nsd denotes

number of space dimensions, Ω denotes an open set without boundary, R denotes real

numbers. Define remaining prescribed data:

li : Ω × ]0, T [ → R

gi : Γgi × ]0, T [ → R

hi : Γhi × ]0, T [ → R

(1.2)

where li denotes prescribed body force per unit volume, gi denotes prescribed boundary

displacements, hi denotes prescribed boundary tractions. For convenience, the paramet-

ric setting is omitted in these terms. Density ρ : Ω → R is positive. The input of a

parametric problem is a set of Nµ parameter scalars. The strong form of the parametric

elasto-dynamic problem is:

(S): Given li, gi, hi, u0i, u̇0i, ∀µ ∈ P, find ui (t; µ) : Ω × [0, T ]→ R, such that

ρui,tt (t; µ) = σi j, j + li, on Ω × [0,T ]

ui (t; µ) = gi, on Γgi × [0,T ]

σi jn j = hi, on Γhi × [0,T ]

ui (x, 0; µ) = u0i (x; µ), x ∈ Ω

ui,t (x, 0; µ) = u̇0i (x; µ), x ∈ Ω

where σi j denotes Cauchy stress tensor, ci jkl denotes elastic coefficients, ui denotes the

displacement vector. σi j = ci jklu(k,l) and ci jkl = ci jkl (x). Correspondingly, the weak form

reads:
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(W): Given l, g,h,u0, u̇0, ∀µ ∈ P, find u(t; µ), t ∈ [0,T ], such that ∀w ∈ V ,

(w, ρü(t; µ); µ) + a(w,u(t; µ); µ) = (w, l; µ) + (w,h; µ)Γ

(w, ρu(0; µ); µ) = (w, ρu0(µ); µ)

(w, ρu̇(0; µ); µ) = (w, ρu̇0(µ); µ)

where (w, ρü(t; µ); µ) and a(w,u(t; µ); µ) denotes time-dependent parametric bilinear

forms. The above equation leads to the following parametric matrix problem in discre-

tised spatial domain:

(M): Given F : [0,T ]→ Rneq , ∀µ ∈ P, find U (t; µ) :]0,T [→ Rneq , such that

M (µ)Ü (t; µ) +K (µ)U (t; µ) = F (µ), t ∈ [0,T ]

U (0; µ) = u0(µ)

U̇ (0; µ) = u̇0(µ)

where neq is the number of global equations. F denotes the force matrix which can be

parametric or deterministic depending on the specific problem. See [54] for the detailed

derivation from (W) to (M). Introducing the parametric viscous Rayleigh damping matrix

C, which is mass and stiffness proportional by applying the following form:

C (µ) = aM (µ) + bK (µ) (1.3)

where a and b are damping parameters. Now the parametric system becomes:

M (µ)Ü (µ) +C (µ)U̇ (µ) +K (µ)U (µ) = F (µ) (1.4)

for M (µ),C (µ),K (µ) ∈ RH×H , and F (µ) ∈ RH . Physical inclusions in this equation is

introduced by the affine parameter expansion, which will be addressed in section 2.2.1.



1.4. TIME DISCRETISATION: THE NEWMARK METHOD 15

Consider a parametric quantity of interest (QoI) s(µ) = s(U (µ)), where s denotes a

matrix that consists of 0s and 1s such that certain values in the outputs can be extracted

as the interested quantity. The goal is to obtain the quantity of interest that depends on

the solution, rather than the finite element solution itself. Engineers might know what

part of structure they are interested in, therefore only focus on the output of this part.

For instance, vertical displacement of the bridge deck edge [119], average temperature

on the boundary of the thermal block [45], average displacement on the head of dental

implant screw [52], etc.

1.4 Time discretisation: the Newmark method

In this thesis, Newmark method [20, 39, 40, 87] is applied as the time discretisation

scheme. Consider time domain [0,T ], it is divided into N subintervals with equal lengths

∆t = T
N , therefore the number of time steps Nt = N + 1. The aim is to find a solution

U (t) satisfying eq. (1.4). Given initial data:

U (0) = u0

U̇ (0) = u̇0

(1.5)

For time step n, the Newton’s law of motion reads:

Mün +Cu̇n +Kun = f n
(1.6)

Newmark family of method is widely used to solve dynamic problems. The Newmark
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Figure 1.2: Time discretisation

method consists of the following equations:




u̇n =
γ
β∆tun −

γ
β∆tun−1 −

(
γ
β − 1

)
u̇n−1 −

∆t
2

(
γ
β − 2

)
ün−1, 0 ≤ n ≤ Nt

ün =
1

β∆t2
un −

1
β∆t2

un−1 −
1
β∆t u̇n−1 −

(
1
2β − 1

)
ün−1, 0 ≤ n ≤ Nt

(1.7)

if coupling eq. (1.7) with eq. (1.6), and utilize initial condition eq. (1.5), ün, u̇n,un can

be calculated with information from previous time steps. Scalar coefficients γ and β

determine the stability and accuracy of the algorithm. In this thesis, coefficients γ and

θ are chosen to be 1
2 and 1

4 , respectively, such that the results are unconditionally stable

and 2nd order accuracy is reached, that is to say the numerical error of Newmark outputs

is proportional to the time step length to the 2nd power
(
e(δt) = c(δt)2

)
.

The following clarifications are made for this thesis: the solutions obtained by ap-

plying the standard Galerkin finite element method and Newmark’s method are defined

as the ‘truth’ or ‘exact’ solutions. In the reduced order modelling, the RB outputs are

approximations of the exact solutions.



Chapter 2

Reduced Order Modelling (ROM)

Methods

In this chapter, various techniques applied in reduced order modelling (ROM) com-

munity are reviewed. Distinctions are made between 2 main categories: (i) a priori and

a posteriori ROM methods for non-parametric problems, (ii) a posteriori ROM methods

for parametric problems. The former introduces modal analysis and Proper Orthogonal

Decomposition (POD) for time-dependent problems. Then for parametric problems, the

introduction starts with snapshot-POD, then extend to global-POD. The Greedy pro-

cedure is introduced next. Then these two popular methods are combined to form the

POD-greedy algorithm, which is the theoretical foundation of this thesis. At the end of

this chapter, other popularly applied methods in ROM community are reviewed. In this

chapter, applications of Greedy procedure and POD-Greedy algorithm are demonstrated

with numerical examples to assist readers to better understand this thesis.

17
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2.1 A priori and a posteriori ROMmethods for non-parametric

problems

2.1.1 Modal analysis

Structure under vibrational excitation is studied in the frequency domain using modal

analysis [20, 40]. The computational cost can be effectively reduced by using a few

dominant modes. The eigenfrequency and eigenvectors are extracted by solving the

following eigenvalue problem:

Kφ
i
=Mφ

i
λ2i (2.1)

where λi denotes the ith eigenvalue, or eigenfrequency or natural frequency in structural

dynamics, and φ
i
denotes the ith eigenvector, or eigenshapes or mode shape in structural

dynamics. The collection of λi and φ
i
together are called a dynamic mode. The mode

shapes are orthogonal to the dynamic system matrices, i.e. φT

i
Mφ

j
= 0 and φT

i
Kφ

j
= 0,

if i , j. This property guarantees to recast the vibrations of a multi-dof problem into a

sequence of single-dof vibration problems, namely modal superposition. The recast is a

linear combination of eigenvectors as follows:

U (t) =
n∑
i=1

φ
i
αi (t) (2.2)

where αi denotes the unknown modal coordinates for mode i. Now the dynamic system

can be projected to the subspace spanned by mode i:

φT

j

(
M

n∑
i=1

φ
i
α̈i +K

n∑
i=1

φ
i
αi

)
= 0 (2.3)

Orthogonality of the mode shapes dictates that the above equation is non-zeros only
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if j = i. Thus a sequence of single-dof system can be obtained:

mi α̈i + kiαi = 0,∀ i (2.4)

the space-time responses can then be recast by applying eq. (2.2). Here the natural

frequency of mode i is obtained by solving λi =
√
ki/mi. Again the damping matrix is

defined by a Rayleigh model: C = aM + bK. The reason is Rayleigh damping model

facilitates modal analysis and it’s computationally convenient. Engineers often want to

express C in terms of M and K in order to maintain the classical normal modes. The

Rayleigh coefficient is defined as: ζ = a 1
2λi
+bλi2 . [3] is referred as a detailed introduction.

With the eigenfrequencies and Rayleigh coefficients in hand, the unknowns can be solved

for the dynamic system subject to prescribed forces:

α̈i + 2ζiλi α̇i + λ
2
i = φ

T

i
F (t) (2.5)

the solution is then recast by applying eq. (2.2). The model is reduced by the fact that

not all mode shapes are necessary for recasting the solutions. In fact, due to the large

number of degrees of freedom, only the first N dominant eigenfrequencies and associated

mode shapes are retained and the rests are discarded. Then the solution is then expanded

by the linear combination of the dominant mode shapes and modal coordinates. This

is a priori, i.e. no solution or a priori knowledge is required, the process of obtaining

results is independent of experiences.

2.1.2 Proper Orthogonal Decomposition (POD)

For time-dependent problems, construction of a good and small basis becomes

much harder in this case when time is involved as an additional parameter. The main

difficulties are: (i) computation of each solution is more expensive, as the full trajectory

of the time-dependent problem needs to be evaluated. (ii) maintaining detailed infor-
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mation might result in a very large basis. Hence, discarding unimportant information

becomes necessary. However, it might be difficult for the users to decide what is less

important and to be discarded. These two obstacles can be tackled by the so-called

Proper Orthogonal Decomposition (POD) [8, 15, 94, 104]. Different from modal

analysis, POD is a-posteriori as it generates the basis from the output solution without

knowing any knowledge of the system.

Consider the general parametric linear elasto-dynamic problem as described in sec-

tion 1.3, POD is based on the fact that the time-dependent solution U (t) can be approx-

imated by a finite sum of the linear expansion:

U (t) ≈ U r (t) =
N∑
i=1

φ
i
αi (t) = Φα(t) (2.6)

where Φ denotes the reduced basis matrix which consists of orthogonal basis vectors:




Φ = (φ
1
,φ

2
, . . . ,φ

N
)

〈φ
i
,φ

j
〉 = δi j

(2.7)

where δi j is the Kronecker delta symbol:

δi j =




0, i , j

1, i = j
(2.8)

α denotes the unknown time-dependent reduced variables. The approximation U r is

separated into 2 parts: space-related reduced basis Φ and time-related reduced variables

α. POD looks for the reduced basis which gives the best approximation by solving the

following minimisation problem:

Φ = argmin
t∈T

∫
t

U (t) −ΦΦTU (t)
2

2
dt (2.9)
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where 〈·, ·〉 denotes the inner product and ‖·‖ =
√
〈·, ·〉 denotes the norm. These defi-

nitions depend on the specific settings of the problems. In order to obtain a compact,

representative reduced basis, one possible solution is to search for the optimal snapshot

location, see [68]. Another family of methods is the compression of the Lagrangian ba-

sis. This thesis focuses on the latter approach, which can be achieved by applying the

Singular Value Decomposition (SVD).

Singular Value Decomposition

POD is closely related with SVD as the compression in time is achieved by application

of SVD. SVD compresses the exact solution into a compact basis without losing the key

information. Imagine a solution U (t) is obtained, and let Z = U = [z
1
, . . . , z

n
] ∈ Rm×n,

where z
n
denotes the column vector for the nth time step, and Z possesses rank c,

c ≤ min{m, n}. Z cannot be directly used as the reduced basis due to the large size. The

solution is to apply the Singular Value Decomposition (SVD):

Z = UΣVT (2.10)

where Σ ∈ Rm×n denotes the singular value matrix which contains non-zero singular

values σi, (i = 1, . . . , c) on the diagonal entries in a descending order. These singular

values are square roots of eigenvalues of both ZT Z and Z ZT . U = [u1, . . . , um] ∈ R
m×m

denotes orthonormal left singular vectors, V = [v1, . . . , vn] ∈ R
n×n contains orthonormal

right singular vectors. The left singular vector matrix U are a set of eigenvectors of Z ZT ,

the right singular vectors V is a set of eigenvectors of ZT Z. More specifically, {ui }
c
i=1 is

a set of orthonormal vectors which satisfies the eigenvalue problem: Z ZTU = λU, and

λi = (σi)2. The remaining singular vectors {ui }
m
i=c+1 are eigenvectors of Z ZT with zero

eigenvalues.

The following clarifications are made for dimensions of non-zero portion of Σ: if m < n,

diagonal entries of the m×m dimensional left block of Σ contains non-zero singular values
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Figure 2.1: Dimensional differences between SVD cases.

and the m × (n − m) dimensional right block contains zeros; in the contrary, if m > n,

diagonal entries of the n × n dimensional upper block of Σ contains non-zero singular

values and the (m − n) × n dimensional lower block contains zeros. See fig. 2.1 for a

schematic illustration.

The goal of POD is finding k vectors which best represent solution Z. For time-

dependent problems, dimension m and n might be very large, therefore it is not economic

to directly utilize all c (c ≤ min{m, n}) vectors of U as the reduced basis. One can prove

that using the first k (k ≤ c) left singular vectors Ũ = {ui }
k
i=1 as an approximation of Z is

optimal on the mean along all rank k approximations to the columns of Z [107]. Hence

Ũ is used as the POD basis. Denote the POD progress as: Φk := PODk (Z ) := {φ
i
}ki=1,

which means POD is applied to dataset Z and k basis vectors are chosen as the reduced

basis. The best approximation property of the left singular vectors with respect to the

mean square projection error is: chosen Φ = Ũ results in the following:

Z − ŨΣ̃ṼT F
=

Z −ΦΦT ZF
=

√√
c∑

i=k+1

(σi)2 (2.11)

where ‖·‖F denotes the Frobenius norm. The POD basis is hierarchical, i.e. Φj ⊂ Φk for

j ≤ k.
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Truncated-SVD

Using the first k ingredients of SVD vectors leads to the concept of truncated-SVD

(t-SVD):

Z ≈ Z̃ = ŨΣ̃ṼT (2.12)

truncated-SVD selects the first k (k ≤ c) column vectors of U and V corresponding to

the first k largest singular values (σi)ki=1, such that Z̃ is the best approximation of Z in

terms of order k. T-SVD results in the following truncation error which can be used to

determine the dimension of the reduced basis:

e(Φ) =

√
tr (Σ̃T Σ̃)
tr (ΣTΣ)

=

√∑c
i=k+1(σi)2∑c
i=1(σi)2

(2.13)

the numerical distance between Z and Z̃ in the l2-norm and Frobenius norm are:

Z − Z̃2 = σk+1

Z − Z̃F =

√√
c∑

i=k+1

(σi)2
(2.14)

Truncation error may be used as a choice of determining the number of basis vectors

to be used in an RB-model. However the truncation error is different from the RB-

error (eq. (2.21)) or projection error (eq. (2.27)), thus needs to be treated carefully in

applications.

2.2 A posteriori ROM methods for parametric problems

From now on the thesis focuses on parametric problems. The definition of paramet-

ric linear elasto-dynamic problem refers to section 1.3. Solutions of parametric PDEs
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Figure 2.2: Dimensions of truncated SVD.

might be obtained in high-dimensional space, result in large number of simulations and

expensive computational cost. Numerical algorithms are in high demand to improve the

efficiency and reduce the cost. u(µ) is used to denote the solution of parametric PDE, a

quantity of interest s(µ) in both space and time is desired as an output. High dimensional

parametric space remains as a challenge, as parametric problems are often required to

be solved in a iterative manner. In other applications, the simulations sometimes are

required to be real-time or at least in a fast manner. However high-dimensional solutions

are expensive to be obtained, thus limits the applications of conventional methods.

The reduced Basis (RB) method is a family of methods which aims at tackling the

above limitations. The goal of the reduced basis method is to compute low-dimensional

approximations that allow rapid computation of the outputs. For the family of parametric

PDEs, the crucial insight which allows the use of reduced basis method is that the solution

manifold can often be well-approximated by a low-dimensional subspace XN ∈ X . The

so-called ‘snapshots’ (u(µi) ∈ X, i = 1, . . . , N) are sought to construct the subspace. The

snapshots are solutions of the full problem at parameter samples µi, originally defined

in [103]. Correspondingly, the chosen parametric sample point µi are known as magic

points [38, 76]. Construction of the reduced basis is a progress of seeking the magic point

set PM , as well as the associated representative snapshots. It will be shown that the

selection of snapshot parameter samples has direct impact on the performance of the RB
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model.

Reduced basis methods usually works with the assistance of Galerkin Projection.

Once the reduced model is established, one can quickly compute solution approximation

uN (µ) ⊂ XN and output approximation sN (µ). A-posteriori error estimation also plays

an important role to evaluate the accuracy of the approximations. When applying the

reduced basis method, the following questions arise and need to be answered:

• How to construct the reduced space XN?

• How to compute an accurate approximation uN?

• How to construct a good reduced basis?

• How to evaluate the performance of the reduced basis?

Definitions in terms of static problems are given first, then this is extended to dynamic

problems.

2.2.1 Problem definitions

Full problem (P)

The full problem (P) is defined as follows:

(P): For µ ∈ P, find solution u(µ) ∈ X , and output of interest s(µ) ∈ R, t ∈ [0,T ],

such that ∀v ∈ X ,

a(u(µ), v; µ) = f (v; µ),

s(µ) = l (u(µ))
(2.15)
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Lagrangian reduced basis

Given a set of linearly independent solutions, Lagrangian Reduced basis is a simple

type of reduced basis defined as:

Φ := {u(µ1), . . . ,u(µN )}

where PN := {µ1, . . . , µN } ⊂ P
(2.16)

RB-problem (PN)

A low-dimensional space XN can be constructed as follows:

XN := span(Φ) = span{u(µ1), . . . ,u(µN )} ⊂ X (2.17)

with a basis Φ = {φ
1
, . . . ,φ

N
}, XN denotes the reduced basis space. Here u(µi) denotes

the exact solutions being computed at parameter sample value µi. With a careful selec-

tion of PN , a Lagrangian reduced basis is able to provide a good approximation globally.

Defining the reduced basis space allows us to define the RB-problem (PN ):

(PN ): For µ ∈ P, find solution uN (µ) ∈ XN , and output of interest sN (µ) ∈ R, such

that ∀v ∈ XN ,

a(uN (µ), v; µ) = f (v; µ),

sN (µ) = l (uN (µ))
(2.18)
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Affine parameter expansion An important assumption in this thesis is that the

bilinear and linear forms naturally admit an affine parameter expansion:

a(u, v; µ) =
Ca∑
c=1

ac (u, v)γac (µ) (2.19)

for some small integer Ca (the complexity of the RB problem depends explicitly on the

quantity of Ca). Here γac (µ) ∈ R are parameter-dependent coefficient functions, and

the bilinear forms ac (·, ·) are parameter-independent. Affine parameter dependence is

beneficial in reduced order modelling techniques as the parameter-independent terms

can be separated and pre-computed in the “offline” stage once and for all. Whenever

is needed, the system matrices may be obtained by a simple linear combination of the

pre-computed operators and coefficients, such that the complex assembly is avoided. The

“offline/online” computational strategy will be introduced in detail later. If this property

does not hold, i.e. the system matrices are non-affine, then some types of interpolation

methods are required to construct the affine approximations of the non-affine terms,

such as Empirical Interpolation Method (EIM) [6, 32], Discrete Empirical Interpolation

Method (DEIM), [16, 92], etc.

Discrete RB-problem (PD)

Defining the reduced space allows us to write the discrete RB-problem (PD):

(PD): Given reduced basis Φ = {φ
1
, . . . ,φ

N
}, for µ ∈ P, find solution uN (µ) =

(uN, i)Ni=1 ∈ R
N by solving the following linear system:

KN (µ)uN (µ) = fN (µ), and

KN (µ) := (a(φ
j
,φ

i
; µ))Ni, j=1 = Φ

TKΦ ∈ RN×N,

fN (µ) := ( f (φ
i
; t; µ))Ni=1 = Φ

T f ∈ RN,

lN (µ) := (l (φ
i
; µ))Ni=1 = Φ

T l ∈ RN
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after solving PD and obtaining solution uN , the solution of PN can be written as follows:

uN (µ) = ΦuN =

N∑
j=1

uN, jφ
j
∈ RH, sN (µ) = lTN (µ)uN (µ) (2.20)

the solution uN may be compared with the reduced variables α as aforementioned in

POD, see section 2.1.2. Similarities: (i) they are both µ-dependent (for parametric

problems); (ii) they are the solutions to the unknown RB-problems, which lies in a low-

dimensional space, thus easy to be solved in a parameter sweep stage. Their difference

lies in dimensions as uN ∈ R
N and α ∈ RN×T . In other words, for time-dependent

problems, RB-model only reduces the spatial complexity.

The solution of the RB-problem uN (µ) is high-fidelity, in contrast to some other

numerical methods which also provide fast solutions but with low-fidelity. The reduced

basis is usually orthogonalised by post-processing: for example, once the snapshots u(µi)

are obtained, a standard Gram-Schmidt process can be applied to the snapshots such

that the orthogonality of basis ΦN is ensured. One may notice the differences between

Reduced Basis method and classical Finite Element method:

• In the setting of Finite Element method, K ∈ RH×H , where H is a large number; in

Reduced Basis method, KN ∈ R
N×N , where N is small. However, KN is typically

dense while K is sparse.

• The solution of PN is produced by a linear combination of uN, j and φ
j
(eq. (2.20)).

N is typically small, hence real-time computations are enabled and this process is

much faster than solving the classical Finite Element problem.

• Orthogonality of the reduced basis guarantees stability, i.e. the condition number

of KN remains stable if N grows. In Finite Element method, the condition number

of K grows polynomially in H.
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The exact error or true RB-error for elliptic problems is:

e(µ) := u(µ) − uN (µ) ∈ X (2.21)

the error analysis is residual-based, therefore the residual is defined as:

r (v; µ) := f (v; µ) − a(uN (µ), v; µ), v ∈ X (2.22)

hence the error-residual relation is:

a(e, v; µ) = r (v; µ) (2.23)

the residual in static problems can be expressed in the matrix form as follows:

R(µ) = f −K(µ)ΦuN (µ) (2.24)

similarly, the residual can be extended to dynamic problems as follows:

R(t; µ) = f −M(µ)ΦüN (t; µ) −C(µ)Φu̇N (t; µ) −K(µ)ΦuN (t; µ) (2.25)

the residual satisfies a Petrov-Galerkin condition:

ΦTR(t; µ) = 0 (2.26)

“Offline/Online” decomposition

Standard ROM process typically includes the following ingredients: (i) computation

of N snapshots, i.e. N exact solutions, (ii) projection of system matrices on a low-

dimensional subspace, (iii) computation of the approximated solutions uN . Compared
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with Finite Element method, RB-approach would only be worthy under a multi-query

scenario, which particularly suits the need of parametric problems. An “Offline/Online”

decomposition is thus developed to satisfy the above requirement: during the “offline”

stage, a series of expensive solutions to the parametric problems are precomputed and

stored, which is done once and for all; in the “online” stage, the accumulated data

obtained from the offline stage are utilised to solve the low-dimensional system and

predict the µ-dependent solution uN (µ) ∈ RN and output of interest sN (µ) rapidly.

The reduced basis method is efficient due to the fact that the numerical complexity in

the online stage only depends on N , which is typically a small quantity. The offline

stage can be a relatively expensive process, usually costs more than computing a few

high-dimensional solutions. The detailed procedures are given below:

“Offline” stage:

• Select the training samples µi ∈ Ptrain to be the snapshot parameters, solve the set

of full problems at µi, obtain the exact solutions u(µi), then compute the reduced

basis Φ = {φ
1
, . . . ,φ

N
}, obtain the reduced affine system matrices and vectors by

Galerkin projection:

KN,c := ΦTKcΦ ∈ R
N×N, c = 1, . . . ,Ck,

fN,c := ΦT fc ∈ RN, c = 1, . . . ,Cf ,

lN,c := ΦT lc ∈ RN, c = 1, . . . ,Cl .

“Online” stage:

• Apply affine expansion, multiply the affined system matrices and vectors with co-
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efficient functions for all µ ∈ P:

KN (µ) =
Ck∑
c=1

γkcKN,c

fN (µ) =
C f∑
c=1

γ
f
c fN, f

lN (µ) =
Cl∑
c=1

γlclN,c .

which results in the discrete system as aforementioned in section 2.2.1. Then for

any desired parameter values µ, the approximation and output quantity of interest

is obtained by applying eq. (2.20).

2.2.2 Snapshot-POD

For parametric problems, ROM seeks the many ‘snapshots’ to construct the low-

dimensional subspace XN . The snapshots are a dataset of N exact solutions u(µi), being

computed at parameter sample points µi, i = 1, . . . , N , known as the magic points. Com-

putation of the reduced basis depends on the size of snapshot matrix Z = [u(µ1), . . . ,u(µN )]:

if the dataset is small, then dataset Z can be used as POD basis without compression,

orthonormalization is still required in order to guarantee stability; if the dataset is large,

the dataset can be compressed by SVD and the orthonormalized left singular vectors

are used as POD basis. However for dynamic problems, the snapshot dataset is usually

large, therefore SVD is essential to be applied to the dataset such that a compact basis

can be built. Using snapshots to generate POD basis is named as snapshot-POD method

[14, 58, 59, 60, 80, 99].

A crucial point to the application of snapshot-POD is the choices of magic points.

In some applications they are uniformly distributed in the parameter domain [4, 13,
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49], otherwise they might be determined by sampling methods such as pseudorandom

sampling, quasi-random sampling [60, 102], Latin Hypercube sampling [9, 17, 78], etc.

First briefly the above sampling methods are briefly introduced in the subsequent section.

Statistically based sampling approaches (choice of magic points)

Pseudorandom sampling The magic points might be a subset of P in which each

point of the subset has equal probability of being selected. Matlab Randi function is

used in this thesis to randomly select magic points in the logarithmically distributed

parameter domain to compute snapshots. Due to the random property, each time the set

of chosen magic points might be different, thus N experiments are conducted to ensure

generality. Notice that the random numbers generated in Matlab are pseudorandom, i.e.

they are not random in a strict, mathematical sense.

Quasi-random sampling Quasi-random sampling uses low-discrepancy sequences,

in contrast to pseudorandom sequences which have high-discrepancy. Low-discrepancy

property indicates that quasi-random sequences are more uniformly distributed. Quasi-

random sampling is more advanced than pseudorandom sampling in Monte-Carlo sim-

ulations as it converges faster. Quasi-random sequences are not real-random sequences

either, instead they are deterministic. In this thesis Matlab haltonset and sobolset

functions are used to generate Halton and Sobol sequences, respectively.

Latin Hypercube sampling Latin Hypercube sampling (LHS) can also be used to

construct sets of near random values. It divides the input samples into N Latin squares,

each possesses equal probability. Only 1 sample is drawn from each row and column

of the Latin square, such that uniform distribution is guaranteed. Matlab lhsdesign

function is used in this thesis to generate Latin Hypercube samples.
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Demonstration A 2-dimensional domain P = [0, 1]×[0, 1] with sample number N = 100

are used to demonstrate the points generated by different sampling methods. Visually

Sobol sequence has the lowest discrepancy.

2.2.3 Global-POD

In section 2.1.2, SVD is applied on the individual snapshot U (µi), which results

in a reduction in time. However, the application of POD is not limited in time, the

reduction in parameter might also be achieved. The POD in both parameter and time

is named as the Global-POD. Imagine N snapshots have been successfully collected,

and Z is used to denote this collection, such that Z = {U (µi)}Ni=1. The POD basis of

rank k consists of the first k left singular vectors obtained by applying SVD on Z, i.e.

Φk := PODk (Z ) = {ui }ki=1 = {φi
}ki=1. Again, this POD basis is optimal in the mean

along all rank k approximations to Z. Global-POD requires all snapshots available and

compresses them all at once, thus an effective sampling method is needed for selecting

the snapshots. The output global-POD basis is not a simple combination of POD basis.

2.2.4 The Greedy procedure for linear static problems (choice of magic

points)

Driven by the goal of minimising the error indicator, the Greedy procedure [44, 45,

91, 106] plays a powerful role in reduced basis construction, i.e. the ROM “offline” stage.

Greedy algorithm is widely applied in optimisation type of problems, which require the

optimal solution iteratively such that the overall result is optimal. This iterative in the

algorithm gives the name ’Greedy’. The key idea is to minimize the output error by

iteratively enriching the snapshot space with solutions computed from a discrete path

which trained in a Greedy manner. A training set of parameter values Ptrain ⊂ P are

selected to represent the parametric domain. Correspondingly, the number of the training

samples in Ptrain is denoted by Ntrain. Ntrain is crucial to the performance of the Greedy
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Figure 2.3: An example demonstration of different sampling methods, 100 sample points

are drawn from each method. Discrepancy DSobol < DHalton < DLHS < DPseudorandom.
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algorithm: if too small, Ptrain is not able to represent P, and key information might be

ignored; if too large, cost of the Greedy algorithm would be too expensive. The reduced

basis is enriched in an accumulative manner: each Greedy iteration finds 1 basis vector

and adds it to the previous basis to form a new basis (orthonormalization might needed).

The Greedy procedure requires the users to initiate the following ingredients: an error

indicator eind(µ) and a tolerance tolerr.

Error indicator

An error indicator eind(µ) is set to denote the approximation error. This indicator is

essential as it directs the linear search of the reduced basis. There are different choices

of eind(µ), for example

• True RB-error or the exact error e(µ) (eq. (2.21)): this error indicator requires

the RB-model and all exact solutions for the discretised parameter values, hence

it is expensive to evaluate. However, e(µ) fits the goal of Greedy procedure and is

accurate as it directly evaluates the numerical distance between exact solution and

approximation, thus is advantageous.

• Projection error eproj, which is defined as:

eproj(µn) :=u(µn) − projΦu(µn) =
u(µn) −ΦΦTu(µn) (2.27)

where projΦu(µn) denotes the orthogonal projection of u at magic point µn onto

the current reduced space spanned by Φ. eproj has several advantages: (i) the

information which cannot be approximated by Φ is contained in eproj; (ii) once a

reduced basis is obtained, eproj can be utilised without solving the RB problem; (iii)

no a-posteriori error estimators are required. The projection error is also expensive

to use as exact solutions u(µn) need to be computed.

• A-posteriori error estimator, which requires an RB-model and a-posteriori error

estimator. If these are available, this approach is recommended as it does not
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require computation of all snapshots. The training set can be set to be fairly large

and more representative, results in a much better reduced basis.

• Goal-oriented error indicator. The basis can be quite small but u(µ) is not guar-

anteed to be well-approximated.

This thesis focuses on elasto-dynamic problems, which lack of a verified, inexpensive

a-posteriori error estimator (to the best of author’s knowledge). Therefore the true RB-

error is utilised when an error indicator is needed to evaluate the numerical distance

between exact solution and approximation. The following clarification is made such that

readers comprehend the associated terms when reading subsequent chapters: a standard

Greedy procedure refers to the Greedy algorithm with any available error indicators; a

reference Greedy procedure refers to Greedy algorithm with true RB-error as an error

indicator.

The algorithm

The Greedy algorithm is demonstrated in algorithm 1. The Greedy procedure further

divides the RB “Offline” stage into a Greedy basis processing stage and a parameter sweep

stage (the terminology parameter sweep is adapted from [45]), where the training set

Ptrain is exhaustively swept during the parameter sweep such that the sample which

maximize the error can be drawn. Once the samples are chosen, the associated exact

solutions are computed. With current reduced basis and the exact solution in hand, the

projection error can be computed to be used as the newly added information. Size of

Ptrain has a direct impact on the number of operations in the Greedy procedure. The

numerical complexity is introduced in [45]: the computation of the snapshots consists of

O(N H2) operations which dominants the cost of the entire Greedy procedure. Hence the

size of Ptrain needs to be carefully set to guarantee the efficiency. In order not to miss

any important information, the size should be chosen as large as possible.
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Algorithm 1 The Greedy algorithm
Input: tolerr (User defined error tolerance)

Output: N , XN , PN

1: Choose µ1 ∈ Ptrain, initialize N = 1, set P1 = {µ1}, X1 = span{u(µ1)} . Initialisation

2: Define egr := maxµ∈Ptrain eind(µ)

3: while egr ≥ tolerr do

4: for all µ ∈ Ptrain do

compute eind(µ) . parameter sweep

5: end for

6: µn+1 := argmaxµ∈Ptrain eind(µ) . New samples (magic point)

7: φn+1 := u(µn+1)

8: Φn+1 := Φn
⋃
φn+1 . Basis enrichment

9: PN+1 := PN
⋃
{µn+1}

10: XN+1 := XN

⊕
φn+1

11: Set N := N + 1

12: end while
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Here a detailed definition of different stages of a ROM approximation with the Greedy

algorithm is given as follows:

• ROM “offline” stage: basis construction

– POD-Greedy parameter sweep: evaluate error for every single parameter value

of Ptrain, step 4-5.

– POD-Greedy basis processing: find and compress snapshot to obtain Φ, step

6-11.

• ROM “online” stage: calculations of U r (µ) for single or multiple parameter values

of interest µ.

Error response surface

An important component of the Greedy parameter sweep is construction of the error

response surfaces. Response surface methodology [27, 61, 83, 85] is a family of mathemat-

ical and statistical methods which establish a functional relationship between the input

control variables x1, . . . , xn and output of interest y. The parameter sweep process fits

this definition as it establishes the relationship between the input of parametric values

and the output error indicator values. For n control variables {xi }ni=1, n experiments are

carried out, and for each experiment the error eind is measured. Once this evaluation

stage is finished, an error response surface can be constructed and the control variable

which gives the maximum error is located.

Training set treatment

A training set Ptrain is generated and swept in order to evaluate the error in the

parameter domain. This training set needs to be carefully selected: if it’s too large, the

computation would be unnecessarily cumbersome; if it’s too small, the domain P would
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not be represented well and key information might be dropped out. This training set

problem has been treated in many researches, such as:

• Multistage Greedy: a subset of the training set is generated, and start the Greedy

algorithm on a subset, generate a basis, repeat the procedure until the Greedy

algorithm is running on the entire Ptrain. The method generates a basis with

degenerated quality and improved efficiency, see [101].

• Full scale realisation: the entire discretised parameter domain can sometimes be

treated as Ptrain under certain circumstances, see [105].

• Randomisation: in each Greedy iteration, a random training set is drawn such that

effectively the training set is enlarged, more samples are evaluated than using a

fixed training set. See [50].

• Adaption: the Greedy procedure is started with a coarse grid, then the error esti-

mator is evaluated for parameter subdomains, the subdomain corresponding to the

largest error is refined such that Ptrain is enriched. See [46].

Parameter nondimensionalisation

The parameters in this thesis are set to be nondimensional, the nondimensionalisation

is done by the follows: take aluminium as an example material, knowing Young’s modulus

of aluminium is 69 GPa, then the nondimensional material parameter µ is set to be a

relative value which ranges in 69GPa
[690GPa,6.9GPa] = [10−1, 101], such that discretisation of the

parameter domain can be log-uniform. In real applications, the parameter set might

be stochastic, which may involve uncertainty quantification. However in this thesis a

deterministic sample set is used, as parameter uncertainty is not the focus of this study.
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Figure 2.4: The 2D beam model and its FE reference mesh.

Greedy procedure: numerical example and results

The simple parametric beam model as shown in fig. 2.4 is considered to demonstrate

the Greedy procedure with true RB-error as the error indicator. For simplicity, the para-

metric model is set to possess only 1 inclusion. Uniform Dirichlet boundary conditions

is applied at both end.

Announcement These numerical examples in this section are based on standard Greedy

procedure [45] thus the author does not claim any novelty (so does the numerical exam-

ples of POD-Greedy algorithm, see section 2.2.5). Instead, they work as benchmarks

and assist readers to gain a better understanding of optimality of the (POD-) Greedy

procedure by providing a schematic illustration of maximum error convergence (fig. 2.5)

and the error reduction (fig. 2.8).
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Example setting Figure 2.4 introduces the geometry, notation and material parameter

of the beam model. The FE mesh consists of 527 nodes and 920 linear triangular elements.

The quantity of interest is defined as the displacement of the inclusion. A point force is

applied at the centre node of the beam upper edge.

A training set Ptrain is created and moderately discretised into {µi }129i=1, Ntrain = 129

samples. µ in the central region ranges in [10−1 101] logarithmically. µ remains 100 in the

matrix, thus µi in the central region is the sole parameter in this example. The first magic

point is chosen randomly as µ1 = 100, which is the middle point of the 1d parametric

domain. The weak nonintrusive technique is utilised in this model (see appendix A.2), the

model is generated and meshed in Abaqus, all information are imported and processed

in Matlab.

The beam model is selected to demonstrate the Greedy procedure due to its simple

solution structure: for each training point, the exact solution can be obtained, such

that the true RB-error (eq. (2.21)) can be computed and used as an error indicator.

Equation (2.24) is used to obtain the error via the error-residual relation. The relationship

between maximum relative true-RB error and total number of basis vectors are plotted

as convergence, see fig. 2.5.

Comparison with statistically based sampling approaches The Greedy proce-

dure are compared with the following statistically based sampling methods: pseudoran-

dom sampling, uniform systematic sampling, Quasi-random (Sobol sequence) sampling,

Latin Hypercube sampling. The desired output of Greedy procedure and other sampling

approaches is the magic point set PM and maximum relative error convergence. To

ensure the tests are under equal conditions, the statistically based sampling approaches

are performed in a Greedy manner: the nth magic point µn is the output of the nth

iteration. This principle is applied to all comparison tests in this thesis (section 2.2.5,

section 7.1, section 7.2). The difference among sampling approaches is: in other sam-

pling approaches, the magic points may be generated prior to the search, while in the
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Greedy procedure the nth magic point remains unknown until the nth Greedy iteration

is finished. For testing purpose, 10 iterations are performed for all tests regardless of the

given error tolerance tolerr. In order to ensure generality, random type methods (pseudo-

random, Latin Hypercube Sampling) are repeated for 5 times. Notice that in the Greedy

procedure, an important nature is that no magic point will be selected more than once;

however, for non-Greedy type methods, this principle might be violated (repeat selection

of magic point), results in zero error reduction. In order to prevent this from happening,

a safety check is set for statistically based methods: if a repeated magic point is detected,

dump it and choose a new magic point until all magic points are unique.

Numerical results The error response surfaces, magic point locations and maximum

error convergence are displayed in fig. 2.8. Some remarks can be made based on the

results:

• For static RB problems, adding a single mode to the basis nicely reduces the error

to zero.

• Due to the thorough error reduction, a magic point would not be selected more

than once.

• The maximum error convergence of Greedy procedure is more rapid than other

sampling approaches.

• The maximum error generally decreases with the basis enrichment for all cases.

However, the convergence depends on the performance of the reduced basis. The

enrichment of the reduced basis does not just reduce the error at magic point to

zero, but also brings down the error at other parameter points. This effect weakens

as the distance between the magic point and parameter point increases. If this

distance is large, the overall reduction might be insufficient, which results in a

larger maximum error than the previous one.
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(a) Greedy vs Sobol sequence (b) Greedy vs systematic sampling (uniform

grid)

(c) Greedy vs pseudorandom sampling (d) Greedy vs Latin Hypercube sampling

Figure 2.5: Compare Greedy procedure with other sampling approaches, Greedy proce-

dure shows the most rapid convergence.
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Figure 2.6: Greedy magic points, digits above the samples denote Greedy iterations.

(a) Sobol samples (b) Systematic samples (uniform grid)

(c) Pseudorandom samples (d) Latin Hypercube samples

Figure 2.7: Samples obtained from statistically based approaches for section 2.2.4, digits

on top of samples denote iteration numbers. For systematic sampling, showing the 10

samples from the last iteration due to application of global-POD.

2.2.5 POD-Greedy algorithm for linear dynamic problems

Greedy algorithm and POD are popularly applied methods for basis construction.

They both produce reduced bases in an optimum sense, and the bases possess a hierar-

chical structure, i.e. Φj ⊂ Φk for j ≤ k. Both methods require to compute a sequence of

exact solutions, i.e. snapshots, thus are not necessarily inexpensive in terms of computa-

tional costs. However, they are different in these aspects: (i) Greedy algorithm produces

a Lagrangian space spanned by snapshots, while the reduced space generated by POD

is not Lagrangian; (ii) POD aims at minimizing the squared projection error (in an av-

erage sense), while Greedy algorithm minimizes the maximum projection error. Greedy

algorithm constructs the snapshot dataset, and POD compresses the snapshot into a rep-

resentative, compact basis. Hence in linear dynamic problems, these two methods might

be suitably combined, i.e. select magic points in a Greedy manner and compress the as-



2.2. PARAMETRIC ROM METHODS 45

Figure 2.8: The first 5 error response surfaces and associated magic point locations from

the Greedy procedure. The 2 digits in the square brackets are sample index and maximum

error value, respectively. The digits in pink denotes the relative error at the magic point

after the Greedy reduction. Visually it can be seen that no magic point is selected more

than once due to the thorough reduction of error in static problems.
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sociated snapshots with POD, such that advantages of both methods can be maximised.

The combined method is called the POD-Greedy algorithm [30, 33, 42, 47, 51, 59],

which acts as a standard approach in ROM for time-dependent problems.

POD-Greedy algorithm reduces the maximum projection error by adaptively search-

ing for Greedy samples (same as the Greedy procedure). Once a full snapshot trajectory

is revealed, POD is applied with respect to time to compress the projection error into a

compact basis, and this new basis is added to the current one to achieve the enrichment.

Standard POD-Greedy Algorithm The standard POD-Greedy method is intro-

duced in algorithm 2. The structure of POD-Greedy algorithm is similar to the Greedy

procedure in the following aspects: (i) the training set Ptrain ⊂ P is discretised into Ntrain

samples; (ii) the projection error eproj is being used as the data for basis enrichment;

(iii) a suitable error indicator is required to direct the linear search of the reduced basis;

(iv) the POD-Greedy algorithm is also divided into a Greedy basis processing stage and

a Greedy parameter sweep stage. The main differences are (i) the snapshots are time-

dependent; (ii) POD is an additional ingredient. See algorithm 2 for the pseudo-code.

Similar to section 2.2.4, detailed descriptions of different stages of a ROM approxi-

mation with standard POD-Greedy algorithm are given as “offline” stage:

• ROM “offline” stage: basis construction

– POD-Greedy parameter sweep: evaluate error for every single parameter value

of Ptrain, step 4-5.

– POD-Greedy basis processing: find and compress snapshot to obtain Φ, step

6-12.

• ROM “online” stage: calculations of U r (µ) for single or multiple parameter values

of interest µ.
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Algorithm 2 The standard POD-Greedy algorithm
Input: tolerr (User defined error tolerance)

Output: N , XN , PN , Φ

1: Choose µ1 ∈ Ptrain, initialize N = 1, set P1 = {µ1}, X1 = span{U (µ1)} . Initialisation

2: Define egr := maxµ∈Ptrain eind(µ)

3: while egr ≥ tolerr do

4: for µ ∈ Ptrain do

compute eind(µ) . Greedy parameter sweep

5: end for

6: µn+1 = argmaxµ∈Ptrain eind(µ) . New samples (magic point)

7: eproj(µn+1) := U (µn+1) −ΦnΦ
T
nU (µn+1)

8: φn+Nadd := PODNadd

(
eproj(µn+1)

)
. POD

9: Φn+Nadd := Φn
⋃
φn+Nadd . Possible multiple basis vectors

10: PN+1 := PN
⋃
{µn+1} . Only one new magic point

11: XN+Nadd := XN

⊕
φn+Nadd

12: Set N := N + Nadd

13: end while
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Here Nadd denotes the number of newly added basis vectors. This number is not

necessarily 1, but can be chosen as a fixed number, or to be calculated according to an

error reduction tolerance, e.g. SVD truncation error, true RB-error, projection error,

etc. If using N to denote the total number of basis vectors after the entire POD-Greedy

algorithm, it can be seen that complexity N of the RB approximation remains unknown

until the Greedy process is finished. For step 8, when constructing the reduced basis via

the projection error at magic point µn, if an error reduction tolerance eto
r is to be used,

algorithm 3 might be applied to determine the number of newly added basis vectors.

Again the following clarification is made to differentiate POD-Greedy algorithms

in this thesis: a POD-Greedy algorithm with any error indicators is named as the

standard POD-Greedy algorithm; if equipped with true RB-error, the algorithm is named

as the reference POD-Greedy algorithm (as opposed to the proposed POD-Greedy algo-

rithm in the subsequent chapters), which is considered as the optimum benchmark in

this thesis.

Algorithm 3 The RB enrichment algorithm (determination of Nadd)
Input: eto

r (User defined enrichment tolerance)

Output: Nadd

1: Initialize Nadd = 1 . Initialisation

2: Define e(µn) := U (µn) −U r (µn)F

3: while e(µn) ≥ eto
r do

4: eproj(µn) := U (µn) −ΦnΦ
T
nU (µn)

5: φn+Nadd := PODNadd

(
eproj(µn)

)
. POD

6: Φn+Nadd := Φn
⋃
φn+Nadd . Basis enrichment

7: Set Nadd := Nadd + 1

8: end while
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POD-Greedy algorithm numerical example and results

Example setting In order to demonstrate the reference POD-Greedy algorithm (using

true RB-error as an error indicator), the same simple fixed beam model as introduced in

section 2.2.4 is inherited. A few modifications are made as follows: (i) a dynamic force is

applied at the same node with amplitude shown in fig. 2.9; (ii) for time integration, the

total time is set as T = 4.9s and time step length is set as ∆t = 0.1s, which results in 50

time steps; (iii) Rayleigh damping coefficient b is added as the second parameter. With

affine parameter dependence, the damping matrix is generated by affine expansion, i.e.

Cj := bKj , where Kj is the jth affine stiffness operator. In this example, the param-

eters only varies in the central inclusion, thus Cinclusion := bKinclusion. The parameter

domain P := [10−1, 101] × [10−1, 101]. A training set Ptrain is created with a moderate

discretisation: {µi, bj }
17,17
i, j=1 , results in Ntrain = 289 samples. The initial magic point, is

randomly chosen as [µ1, b1] = [10−1, 10−1]. Again for testing purpose, 10 Greedy iter-

ations are performed and the reference POD-Greedy algorithm is compared with other

sampling methods. These sampling approaches include Quasi-random sampling (Halton

and Sobol sequences), pseudorandom sampling, Latin Hypercube sampling. In order to

ensure generality, random-type approaches (pseudorandom and Latin Hypercube) are

repeated for 5 times. The magic points are searched hierarchically in a Greedy manner,

i.e. generate [µ1, b1] in first iteration, [µ2, b2] in the second iteration, etc. The settings

of other sampling methods in this example are adapted from section 2.2.4.

Algorithm 3 is applied to determine the number of basis vectors being added at each

Greedy iteration, where eto
r = 0.6 is set as the error reduction ratio at the magic points,

as a results, each iteration may generate different number of basis vectors. The true

RB-error (eq. (2.21)) is calculated and used as an error indicator. Equation (2.25) is

used to compute the error via the error-residual relation.

Numerical results The following remarks are made from the experiment results:
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Figure 2.9: The 2D beam model

• Results suggest that the output RB-space XN is much larger, while the overall

convergence is much slower than the Greedy procedure (maximum error exceeds

10−8 in Greedy procedure while only 10−2 is achieved in POD-Greedy algorithm).

This slow convergence somehow fits our expectation due to the parameter and time

complexity of the dynamic problem.

• The application of POD results in 2 aspects: (i) the error at each magic point is

not necessarily reduced to 0 (one may force the error to be reduced to 0, however

the resulting basis would be significantly large); (ii) due to the partial reduction of

error, a magic point might be selected more than once in POD-Greedy algorithm,

which simply implies that this particular magic point location weights more than

others.

• The regions of large error are shown in fig. 2.10, where results indicates that it is

more difficult to approximate the less damped regions in the parametric domain.
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In fact 9 out of 10 Greedy magic points are selected at b = 10−1. This is possibly

because the higher frequencies are damped by the stiffness proportional damping,

leaving only the lower frequency modes, which are the key components of the

reduced basis. As a result, highly-damped regions possess low error.

• POD-Greedy algorithm converges more rapidly than all statistically based ap-

proaches in this experiment. Statistically based sampling approaches may reach

the same maximum relative error as the reference POD-Greedy method, however

the resulting reduced bases are much larger. In several cases when the bases are

small, the reference POD-Greedy method is not necessarily the optimum, i.e. it

converges slower than other sampling approaches (see fig. 2.10: N < 4 in Halton

and Sobol, N < 11 in pseudorandom, N < 6 in Latin hypercube). This is com-

pletely normal due to the fact that error at magic point is not reduced to 0 in

reference POD-Greedy method.

2.2.6 ROM for parametric dynamic problems

Large-scale dynamic systems are often need to be simulated to study the nature of

complex physical phenomena. When the system is parametric, the computational cost

can be prohibitive due to high-demands of each individual simulation. This burden

might be alleviated by applying ROM to generate and solve low-dimensional reduced

order models. This thesis focuses on dealing with large-scale dynamic problems, thus

here state-of-art projection-based ROM methods are reviewed for parametric dynamic

problems [2, 33, 43, 63, 64, 65, 66, 96, 97]. A POD-Greedy algorithm is presented in

[33] where an ‘hp’-refinement is applied to perform rapid online evaluation of parametric

parabolic PDEs. The parameter domain is partitioned into a set of subdomains by an

‘h’-refinement and the approximation space is then expanded by a ‘p’-refinement. This

‘hp’ certified RB method results in higher “offline” cost and “online” computational

savings, the latter is relatively important in terms of real-time applications. The domain
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Figure 2.10: The error response surfaces for the first 10 POD-Greedy iterations.
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(a) POD-Greedy vs Halton sequence (b) POD-Greedy vs Sobol sequence

(c) POD-Greedy vs pseudorandom sampling (d) POD-Greedy vs Latin Hypercube sampling

Figure 2.11: Compare the reference POD-Greedy algorithm with other sampling ap-

proaches, the former shows the most rapid convergence.
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partitioning technique is applied in [43], which allows to use arbitrary time steps in each

subdomain. This study considers local scale properties in different structure zones in

both space and time. A two-time-scale (coarse and fine time scales) approach allows the

iterations to be performed on the coarse time scale. Furthermore, number of iterations

in the coarse time intervals are reduced due to application of two space scales (coarse

and fine mesh).

The spectral function type of methods which aims at predicting transient response

of randomly parametric structural dynamic systems are proposed in [63, 66, 65], where

the reduced space is spanned by a set of orthogonal eigenbasis, namely spectral func-

tions. The eigenbasis are eigenvectors of system matrix equipped with diagonal terms as

preconditioner, therefore physical vibration modes can be used as eigenmodes. In [66],

direct Monte-Carlo Simulation (MCS) is taken as the benchmark solution and Polyno-

mial Chaos (PC) approach is presented as comparisons to show the effectiveness of the

proposed method. Numerical results indicate that using high-order spectral modes agree

well with direct MCS, while fourth-order PC method fails to reproduce the outputs.

Another application of the spectral function method is proposed in [65], where author

proves that higher order spectral functions lead to more accurate approximations, with

a higher computational cost. This high cost is alleviated by application of a Bayesian

metamodel, results in a hybrid approach. Again numerical examples show good match of

responses between spectral function method and direct MCS as a benchmark. The spec-

tral function method extends its application to dynamic control problems in conjunction

with Balanced truncation method in [64], where principle modes of the controllability

Gramian are utilised to construct the low-dimensional subspace.

2.3 Nonintrusive techniques in ROM

Nonintrusive techniques can be applied in both ROM “offline” and “online” stages.

More specifically, in ROM “offline” stage, computations of exact solutions by source
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code can be replaced by utilisation of commercial software or open-source code packages,

e.g. Abaqus, ANSYS, Nastran, Fluidity; in ROM “online” stage, varieties of numerical

methods can be used to compute the unknown reduced variable to suitably replace the

standard Galerkin approach, such as radial basis function (RBF) approximation method

[4, 108, 117], neural network, Smolyak sparse grid collocation method [74, 116], least

square fitting method [74], etc.

First the nonintrusive applications in ROM “online” stage are addressed in this sec-

tion. Standard ROM requires a Galerkin projection to construct the reduced system and

to compute the unknown reduced variables (or namely POD coefficients in [74, 116]). A

nonintrusive algorithm is developed in the above 2 researches to improve such compu-

tations. Instead of using the Galerkin approach, the reduced variables are interpolated

on a Smolyak sparse grid such that the number of nodes is only a polynomial function

of dimensions. As a result, the curse of dimensionality is cured. Another least square

fitting approach is proposed in [74] to compute the reduced variables. Advantage of

such approach is that linear solvers are used to replace full simulations, thus the ap-

proach is nonintrusive and the computational cost is reduced. A second-order Taylor

series method is applied in [116]: the POD coefficients at new time steps are calculated

with a second order Taylor expansion. This implementation does not require to solve the

governing equation of the original system for parametric problems thus are easy to be

implemented. Radial basis function (RBF) method is popularly utilised as a nonintrusive

approach to fit the nonlinear cases when Galerkin approach is inappropriate. An exam-

ple of application can be found in [4], where ROM is constructed for time-dependent

problems with parametric governing equations, boundary and initial conditions. This

is achieved through a 2-level approach: POD snapshots are obtained from solving the

problem at a set of parameter points, and the POD coefficients are approximated with

the RBF approach. A comprehensive review of nonintrusive ROM in finite element based

structural problems can be found in [81], in which comparisons of outputs between ROM

source code and commercial software (Nastran and Abaqus) are given to show close or



56 CHAPTER 2. ROM METHODS

matching results. For nonintrusive applications in ROM “offline” stage, [121] introduces

a nonintrusive PGD scheme using Abaqus to solve linear elasto-mechanical problems

externally. In this research the stiffness matrices are exported from Abaqus and im-

ported into Matlab to solve the inexpensive parametric problems, while the expensive

mechanical problems are isolated and solved in Abaqus to obtain the spatial unknowns.

Once finished these unknowns are imported into Matlab as reduced basis. Notice that a

detailed procedure of nonintrusive technique utilising Abaqus is introduced in this work.

2.4 Metamodel based stochastic analysis for high-dimensional

parametric problems

Surrogate based uncertainty quantification algorithm plays as an important tool in

terms of determining the input-output (IO) relation of high-dimensional, many param-

eter systems.The repetitive feature of parametric problems requires utilisation of model

approximations, i.e. model of the model (such as ROM of the FE model) [26]. These are

often referred to as metamodels. Varies of methods have been developed to tackle this

type of problems. Based on the fact that the input variables are often correlated, the high

dimensional model representation (HDMR) [70, 71, 72, 73, 109] is an effective approach

to deal with high-dimensional input-output systems. When learning the IO behaviour

of high-dimensional systems, HDMR techniques can be applied to reduce the sampling

effort by decomposing the output variance. Typically response surfaces are generated to

evaluate the nonlinear functional behaviour between the input and output. The model

output is expressed as an expansion in terms of the input variables, and a second order

expansion is often satisfying for many high-dimensional systems. The high-dimensional

integrals in the expansion may be carried out by random sampling techniques, thus

namely RS (random sampling)-HDMR. When the number of samples are moderate, RS-

HDMR is an efficient tool to provide reliable global uncertainty assessments [73]. The

high-order terms in RS-HDMR can be approximated as products of low-order functions,
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namely low-order term product (lp)-RS-HDMR, hence direct evaluation of high-order

terms can be circumvented, and the sampling effort can be as well reduced [70]. How-

ever this approximation violates the orthogonality properties of the components, thus to

overcome this, orthonormal polynomial approximations are applied [71]. The accuracy

is also improved by preserving the orthogonality. Polynomial chaos expansion (PCE)

[19, 77, 111, 113, 120] constructs a stochastic space spanned by a set of orthogonal bases,

such that the random variables can be projected on. The orthogonal bases might be gen-

erated by Gram Schmidt orthogonalisation. Instead of applying standard Monte Carlo

simulation which may require large number of simulations, Latin Hypercube sampling

might be used in conjunction with PCE [19] to find the key component in uncertainty

quantification.

For complex system, Artificial neural network (ANN) works as an efficient represen-

tation [25, 41, 79, 90]. Basic elements of ANN are neurons, which combine inputs and

perform non-linear operations to obtain the final results. Benefits of ANN is that prior

specification of fitting function is not needed, and almost all kinds of non-linear functions

can be approximated with ANN. Moving least squares (MLS) [10, 57, 69, 118] employs

a weighted interpolation function to reconstruct the continuous response surfaces. Dur-

ing this reconstruction process, a set of unorganised, experimental points are selected

and fitted using a 2nd order polynomial, such that the weighted least-square error can

be minimised. High-dimensional data can be modelled by flexible regression applying

Multivariate adaptive regression splines (MARS) [23, 37, 84, 110]. By choosing a set of

piecewise linear basis functions to approximate the response function, MARS produces

continuous models with continuous derivatives. Moreover, knot of MARS are allowed to

bend, thus complex behaviours of the function can be modelled. MARS is considered to

be accurate as well as cost-effective in terms of metamodel construction. When the input

data is scattered, i.e. grid data is absence, Radial based function (RBF) [11, 31, 48, 86]

which interpolates surrogates can be used to model multivariate functions. RBF is par-

ticularly attractive in many cases as it is applicable independent of dimension. The
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interpolation is a linear combination of weights and basis functions, where the functions

fit exactly at the given sample points. RBF can be applied in ANN as active functions,

called Radial basis function network. RBF has its shortcoming as the metamodel may

change significantly with different basis function and/or parameters.

2.5 Summary

In this chapter popular ROM techniques have been reviewed, including Modal anal-

ysis and POD for non-parametric problems (a-priori methods), snapshot-POD, global-

PODGreedy procedure and POD-Greedy algorithm for parametric problems (a-posteriori

methods). In snapshot-POD, statistically based sampling approaches are reviewed, which

may be applied during sampling of the snapshots. In Greedy procedure, different error

indicators are introduced, then a simple fixed beam example under static load is used

to demonstrate its optimality in terms of maximum error convergence (section 2.2.4).

The same beam model with dynamic load is used in section 2.2.5, where POD-Greedy

algorithm application is investigated. In both tests statistically based approaches are

presented as comparisons. These tests are important as they aid readers to understand

the theoretical foundations of these thesis: POD, Greedy procedure and POD-Greedy

sampling algorithm. Finally metamodels for high-dimensional parameter problem are

reviewed, providing a broader introduction for this area of work.



Chapter 3

Full Space-time Representation of

the Newmark Method

In this chapter a full space-time representation based on the classical Newmark

Method is introduced. The Newmark method is an implicit, iterative method to solve

dynamic problems in a step-by-step manner. However, with the full space-time rep-

resentation one can see that the dynamic problem may be solved in an elliptic way

after an assembly process. The representation is crucial in this thesis in terms of

derivation of the new error indicator, the proposed POD-Greedy algorithm and the

“error in the error”indicator introduced in the subsequent chapters. First the full repre-

sentation for the exact problem is derived in section 3.2, then this is extended to reduced

order problems in section 3.3.
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3.1 Preliminary: vectorisation of space-time responses

Given uh(tn) = uh
n, FE space-time acceleration, velocity, displacement and force

matrix are defined as follows:

Üh(t) =
[
üh
0 · · · üh

n · · · üh
Nt

]
, t ∈ [0,T ]

U̇h(t) =
[
u̇h
0 · · · u̇h

n · · · u̇h
Nt

]
, t ∈ [0,T ]

Uh(t) =
[
uh
0 · · · uh

n · · · uh
Nt

]
, t ∈ [0,T ]

F h(t) =
[
fh
0
· · · fh

n
· · · fh

Nt

]
, t ∈ [0,T ]

(3.1)

where üh
n, u̇

h
n and uh

n denote acceleration, velocity and displacement vector at time

step n, respectively. Performing vectorisation, there is (see fig. 3.1 for vectorisation of

acceleration, velocity and displacement):

Ü
h
=

[
üh
0

T
· · · üh

n

T
· · · üh

Nt

T
]T
,

U̇
h
=

[
u̇h
0

T
· · · u̇h

n

T
· · · u̇h

Nt

T
]T
,

Uh =

[
uh
0

T
· · · uh

n

T
· · · uh

Nt

T
]T
,

F h =

[
fh
0

T
· · · fh

n

T
· · · fh

Nt

T
]T

(3.2)

define space and time response vector at time step n as follows:

xh
n =

[
üh
n

T
u̇h
n

T
uh
n

T
]T

(3.3)

thus for the entire time domain, the FE full response vector reads:

Xh =

[
xh
0

T
· · · xh

Nt

T
]T

(3.4)

dimension of Xh is very large, it is emphasised that it is only necessary for derivations
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Figure 3.1: Vectorisation of displacement matrix.

in Chapter 4, and will not be used in solution of real problems. Schematically see fig. 3.2

for vectorisation of full response vector.

3.2 The full-scale case

A set of coefficients are defined for Newmark method as follows:

a0 =
1

β∆t2
, a1 =

γ

β∆t
, a2 =

1

β∆t
, a3 =

( 1

2β
− 1

)
, a4 =

(
γ

β
− 1

)
, a5 =

∆t
2

(
γ

β
− 2

)

thus eq. (1.7) becomes:




u̇h
n = a1uh

n − a1uh
n−1 − a4u̇h

n−1 − a5üh
n−1, 0 ≤ n ≤ Nt

üh
n = a0u̇h

n − a0uh
n−1 − a2u̇h

n−1 − a3üh
n−1, 0 ≤ n ≤ Nt

(3.5)
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Figure 3.2: Vectorisation of full response vector.

couple eq. (3.5) with eq. (1.6) and rewrite in matrix form:



M C K

0 I −a1I

I 0 −a0I

︸               ︷︷               ︸
Hs



üh
n

u̇h
n

uh
n

︸︷︷︸
xh
n

+



0 0 0

a5I a4I a1I

a3I a2I a0I

︸               ︷︷               ︸
H f



üh
n−1

u̇h
n−1

uh
n−1

︸  ︷︷  ︸
xh
n−1

=



fh
n

0

0

︸︷︷︸
gh
n

(3.6)

where I ∈ RN×N denotes the square identity matrices and 0 denotes all-zero matrices

and vectors. Hence the general form for time step n can be written as:

Hsxh
n +H

fxh
n−1 = g

h
n

(3.7)
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in addition, initial condition is introduced as follows:



M C K

0 I 0

0 0 I

︸            ︷︷            ︸
H̃s



üh
0

u̇h
0

uh
0

︸︷︷︸
xh
0

=



fh
0

u̇h
0

uh
0

︸︷︷︸
gh
0

(3.8)

the general form reads:

H̃sxh
0 = g

h
0

(3.9)

Coupling eq. (3.9) and eq. (3.7) and assemble the outputs in direction of time results

in the full space-time representation of Newmark method as follows:



H̃s 0 · · · · · · 0

H f Hs · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...

0 0 · · · H f Hs

︸                                    ︷︷                                    ︸
A



xh
0

xh
1
...
...

xh
Nt

︸︷︷︸
Xh

=



gh
0

gh
1
...
...

gh
Nt

︸︷︷︸
Gh

(3.10)

therefore it can be seen that H̃s,Hs denotes the diagonal entries of A, and H f are the

off-diagonal entries of A. Equation (3.10) can be written as:

AXh = Gh (3.11)

now the full space-time representation of Newmark method is obtained. Compare to the

conventional step-by-step Newmark integration method, this full space-time representa-

tion allows one to solve dynamic problems in one go. However, this is only necessary in

the theoretical derivation due to the large size of A (A ∈ R3NNt×3NNt ). A is named as
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the dynamic operator. A contains parametric system matrices M (µ), C (µ) and K (µ),

thus A is also affine parametrised. Xh is named as the full response vector and Gh is

named as the full force vector.

Remark 1. An elasto-dynamic problem can be solved using the form of AXh = Gh, as in

elasto-statics. More interestingly, the dynamic operator A shares some similar properties

with a stiffness matrix. A is sparse, positive-definite, but is non-symmetric.

The following equivalence between the conventional Newmark method and ful space-

time representation holds:

A−1(µ)Gh

y
Xh(µ)

B

[F h,M (µ),C (µ),K (µ)]
y

[Üh(µ), U̇h(µ),Uh(µ)]

3.2.1 A SDOF example

Consider a SDOF example from [7], in this section the results obtained from standard

form and full space-time form of Newmark method will be presented and compared to give

reader a comprehensive understanding of the full space-time Newmark representation.

In this example, 100 time steps are considered with time step ∆t = 0.28s, thus total

time T = 28s. Force is only applied at the initial time step. Assume Rayleigh damping

coefficients a = 0.1, b = 0.1, the mass, damping, stiffness matrices and force are given by:

M =



2 0

0 1


, C =



0.8 −0.2

−0.2 0.5


, K =



6 −2

−2 4


, F0 =



0

10


Ft =



0

0
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Figure 3.3: Sparsity of the dynamic operator A.
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the set of integration constants are:

a0 = 51.0, a1 = 7.14, a2 = 14.3, a3 = 1.00,

a4 = 1.00, a5 = 0.00, a6 = 0.14, a7 = 0.14

applying zero initial conditions, solving the given system with standard step-by-step

Newmark method gives (showing results of first 5 time steps):

Time 0 ∆t 2∆t 3∆t 4∆t 5∆t

üx 0 0.263 0.387 0.271 -0.0266 -0.380

üy 10 -1.28 -2.08 -2.18 -1.64 -0.748

u̇x 0 0.0368 0.128 0.220 0.254 0.197

u̇y 0 1.22 0.751 0.155 -0.380 -0.714

ux 0 0.00515 0.0282 0.0768 0.143 0.206

uy 0 0.171 0.447 0.574 0.542 0.389

Now the full space-time representation is being applied, first block components of the

dynamic operator are obtained:

H̃s =



2 0 0.8 −0.2 6 −2

0 1 −0.2 0.5 −2 4

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, Hs =



2 0 0.8 −0.2 6 −2

0 1 −0.2 0.5 −2 4

0 0 1 0 −7.14 0

0 0 0 1 0 −7.14

1 0 0 0 −51.0 0

0 1 0 0 0 −51.0



,
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H f =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 7.14 0

0 0 0 1 0 7.14

1 0 14.29 0 51.0 0

0 1 0 14.29 0 51.0



the dynamic operator is assembled by aligning H̃s, Hs on the diagonal blocks, and H f

on the off-diagonal blocks. Generate Gh by vectorising F h(t), the full response vector

can be obtained by solving AXh = Gh (showing results of first 5 time steps, Xh has

been reshaped to space-time form to enhance visibility):

Time 0 ∆t 2∆t 3∆t 4∆t 5∆t

üx -3.820 × 10−16 0.263 0.387 0.271 -0.0266 -0.380

üy 10 -1.28 -2.08 -2.18 -1.64 -0.748

u̇x 2.877 × 10−16 0.0368 0.128 0.220 0.254 0.197

u̇y 5.595 × 10−16 1.22 0.751 0.155 -0.380 -0.714

ux 3.502 × 10−16 0.00515 0.0282 0.0768 0.143 0.206

uy 7.277 × 10−16 0.171 0.447 0.574 0.542 0.389

which equal to solution of step-by-step solutions, except initial condition due to machine

precision. See fig. 3.4 for the output y-displacement of the SDOF example.

3.3 The reduced-order case

The full space-time representation of the Newmark method is also applicable to a

parametric RB-model. Dimension of the problem is still large, only that the reduced order

system is injected into the problem now. The space-time reduced basis approximation
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Figure 3.4: Y-displacement of the SDOF example.

of acceleration, velocity and displacement Ü r (µ), U̇ r (µ), U r (µ) are defined as follows:




Ü r (µ) = Φα̈(µ) =
[
Φα̈0(µ) . . . Φα̈n(µ) . . . Φα̈Nt

(µ)

]

=

[
ür0(µ) . . . ürn(µ) . . . ürNt

(µ)

]
, 0 ≤ n ≤ Nt

U̇ r (µ) = Φα̇(µ) =
[
Φα̇0(µ) . . . Φα̇n(µ) . . . Φα̇Nt

(µ)

]

=

[
u̇r0(µ) . . . u̇rn(µ) . . . u̇rNt

(µ)

]
, 0 ≤ n ≤ Nt

U r (µ) = Φα(µ) =
[
Φα0(µ) . . . Φαn(µ) . . . ΦαNt

(µ)

]

=

[
ur0(µ) . . . urn(µ) . . . urNt

(µ)

]
, 0 ≤ n ≤ Nt

(3.12)

here α̈n, α̇n, αn ∈ R
N are column reduced variable vectors at time step n. Since dy-

namic problems are the main concern of this thesis, the reduced variables are separated

into acceleration (the second derivative), velocity (the first derivative) and displacement

relative terms. Injecting the reduced order model into the full space-time representation
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and replacing the exact solutions with RB-approximations result in the following:



fh
n

0

0

︸︷︷︸
gh
n

≈



M C K

0 I −a1I

I 0 −a0I

︸               ︷︷               ︸
Hs



Φα̈n

Φα̇n

Φαn



+



0 0 0

a5I a4I a1I

a3I a2I a0I

︸               ︷︷               ︸
H f



Φα̈n−1

Φα̇n−1

Φαn−1



(3.13)

separate reduced basis and reduced variable vectors as follows:



fh
n

0

0

︸︷︷︸
gh
n

≈



M C K

0 I −a1I

I 0 −a0I

︸               ︷︷               ︸
Hs



Φ 0 0

0 Φ 0

0 0 Φ

︸          ︷︷          ︸
ψ



α̈n

α̇n

αn

︸︷︷︸
πn

+



0 0 0

a5I a4I a1I

a3I a2I a0I

︸               ︷︷               ︸
H f



Φ 0 0

0 Φ 0

0 0 Φ

︸          ︷︷          ︸
ψ



α̈n−1

α̇n−1

αn−1

︸  ︷︷  ︸
πn−1

(3.14)

the reduced variable vectors at time step n are now assembled in a column, πn is used

to denote this column vector. The above matrix form now becomes:

gh
n
≈Hsψπn +H

fψπn−1 (3.15)

moreover, the initial step also possesses an approximation that:



fh
0

u̇h
0

uh
0

︸︷︷︸
gh
0

≈



M C K

0 I 0

0 0 I

︸            ︷︷            ︸
H̃s



Φ 0 0

0 Φ 0

0 0 Φ

︸          ︷︷          ︸
ψ



α̈0

α̇0

α0

︸︷︷︸
π0

(3.16)

i.e.

gh
0
≈ H̃sψπ0 (3.17)
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let gr
n
=Hsψπn +H

fψπn−1, g
r

0
= H̃sψπ0. Similar to eq. (3.10), couple eq. (3.15) and

eq. (3.17) and write the results in terms of time incrementation:



gr
0

gr
1
...
...

gr
Nt

︸︷︷︸
Gr

=



H̃s 0 · · · · · · 0

H f Hs · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...

0 0 · · · H f Hs

︸                                    ︷︷                                    ︸
A



ψ 0 · · · · · · 0

0 ψ · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...

0 0 · · · · · · ψ

︸                         ︷︷                         ︸
Ψ



π0

π1
...
...

πNt

︸ ︷︷ ︸
Π

(3.18)

the mathematical form reads

Gr = AΨΠ
ΨΠ=Xr

−−−−−−→ Gr = AXr (3.19)

where Ψ ∈ R3N (Nt+1)×3N (Nt+1) denotes the assembled reduced basis matrix, Π ∈ R3N (Nt+1)

is the full reduced variable vector aligned in time andGr is the approximated full force vector.

Equip each term with the parametric form, a similar equivalence as aforementioned in

section 3.2 can be obtained:

A−1(µ)Gr (µ)
y

Xr (µ)

B

[F r (µ),M (µ),C (µ),K (µ)]
y

[Ü r (µ), U̇ r (µ),U r (µ)]
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Figure 3.5: The assembled reduced basis matrix Ψ and full reduced variable vector Π.

Components of Ψ aligns on the diagonal entries.
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Chapter 4

Development of A New Error

Indicator for POD-Greedy Sampling

Algorithm

In this chapter, the major contribution is introduced: a new error indicator for POD-

Greedy algorithm. This chapter begins with an introduction of the rationale behind this

new error indicator, i.e. discussion of existing approaches to improve performances of

POD-Greedy algorithm. Then the exact (section 4.2) and approximated (section 4.3)

full error vector are derived based on the full space-time representation of the New-

mark method. The derivation is then extended to approximated displacement error (sec-

tion 4.4) by applying transformations which utilise step-by-step Newmark method and

Duhamel’s integral. A preliminary comparison of proposed error indicator and residual

indicator is presented in section 4.6 to show power of such approach. Finally SVD and

POD are applied to the proposed indicator to achieve additional speed-up (section 4.7,

section 4.8).
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4.1 Introduction

Snapshot-based methods require a carefully chosen set of samples to form a represen-

tative reduced space thereby to generate a good basis. This can be achieved by applying

the well-established methods: the Greedy procedure [44, 91, 106] for static problems,

or the extension: POD-Greedy algorithm [47, 62] for dynamic problems. The snapshots

are evaluated exhaustively on a training set, which is required to be as large as possible,

such that no key information is dropped out. A reduced basis is then constructed by

compressing the obtained information. The size of the training set is crucial to the speed

of standard POD-Greedy algorithm due to the fact that many full problems need to be

solved when an a-posteriori error estimator is not available. More specifically, a large

training set may result in prohibitively high computational cost, especially when dealing

with dynamic problems. These challenges lead to a class of problems namely training set

treatment. A lot of research has been conducted to generate good training set, as well

as reducing the workload of the standard POD-Greedy algorithm, for example, adaptive

training set extension and parameter domain partitions [33, 34, 46], multistage greedy

algorithm [101] and randomisation [50].

The size of training set might be a function of numerous variables, such as material

parameters, physical structure components, parametric domain discretisations, boundary

conditions, etc. A possible solution to restrain the training set size is the multistage

Greedy algorithm introduced in [101], which uses a coarse, small training set to replace

the fine, large one, and the Greedy algorithm is operated using this small training set to

generate the reduced basis. The large training set is then searched to confirm that the

generated basis is sufficient. For the parametric sample points where the reduced basis

shows insufficient performance, the Greedy algorithm is rerun only over these points

and the new basis vectors would be generated using information produced from the

new Greedy iterations. A necessary ingredient of multistage Greedy algorithm is the

rigorous and sharp a-posteriori error bounds to guarantee reliability of of the results.
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A drawback of such approaches is that overfitting tends to happen when the training

set is not sufficiently large, i.e. even if the overall error converges nicely, the error for

individual parametric values may still be large. Hence a ‘smarter’ algorithm is in need to

determine the appropriate training set size and locations, such that overfitting and high

computational cost can be both prevented.

Adaptive training set extension (see [46]) aims to prevent overfitting by setting up an

extra validation set mval (small and randomly chosen), and an extra tolerance γtol. First

an Early Stopping Greedy algorithm is applied until either Greedy error tolerance tolerr

or the extra tolerance γtol is reached. Then if the Greedy error tolerance is exceeded,

the training set will be locally refined in the region where the error indicator reaches

maximum value. The initial training set is chosen to be very small, and the refinement

only happens where needed. The cost of the Greedy training progress is reduced by

precisely determining the number and location of the training set points. Another solu-

tion is adaptive parameter domain partitioning. The goal is to resolve the problem of

large basis size such that the ROM “online” complexity can be reduced. POD-Greedy

algorithm may result in a very large basis in order to achieve the desired Greedy error

tolerance tolerr, as a result the “online” cost becomes prohibitively high as it requires

operations with full matrices. Ultimately the cost of a single online operation may be

higher than the cost of solving the original exact problem if the basis size is too large.

Adaptive parameter domain partitioning limits the size of the reduced basis by setting up

a maximum basis size, nmax. This is achieved by partitioning the parameter domain and

generating small reduced bases on each subdomain. Again, the Early Stopping Greedy

algorithm is induced if nmax is exceed, which indicates that the solution is too complex to

be recast by a small basis. Then the parameter domain is refined using similar approaches

to [33, 34] until prescribed tolerance and basis size limit is reached. Adaptive training set

extension and parameter domain partitioning can be suitably combined to yield reduced

ROM “online” computational cost. The time-interval may also be adaptively partitioned

if it’s too large, see [28, 29].
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A model-constrained adaptive sampling strategy based on a standard Greedy sam-

pling algorithm for large-scale systems with many parameters is proposed in [12]. The

goal of the methodology is to determine the appropriate magic point locations. It

has been proven that the strategy would not sample the same point in the paramet-

ric space. The adaptive strategy utilises gradient-based optimisation, and assumes that

no a-posteriori error estimators are available. Instead, the squared norm of the residual

is used as an error indicator instead of true error, to limit the computational cost. Us-

ing such indicator can be risky, as radically it is different from using true error as the

indicator, and the true error is expensive but accurate. Numerical results in [12] show

that using squared norm of the residual as indicator is approximately an order of mag-

nitude less expensive than using true error as the indicator, thus the numerical cost is

effectively reduced. Also convergence of the new strategy is faster compared to statically

based methods. Though a major drawback is that the error convergence of using the

squared residual indicator is slower than using the true error indicator, unless a large

basis is generated. The convergence of residual and true RB-error indicators are too

diversified, thus application of the residual indicator is not sufficiently convincing. This

might more be intuitive but a better performance can be achieved. Another drawback of

a residual indicator is that an insufficient number of cases are tested to ensure generality

of the strategy, i.e. evidence provided to prove that using the residual error indicator

would achieve a good performance is not conclusive enough.

Dynamic or hyperbolic problems are complex intrinsically, for example, hyperbolic

problems that contain sharp gradients or discontinuities with respect to the parameter

are difficult to be approximated accurately, as conventional reduced order models tend to

smooth out the key features or suffer oscillations at or near these sharp regions. One so-

lution is to use the local parametric domain refinement applied in [47, 55, 114], where the

discontinuous regions are highly-discretised, so that local features can be well-represented.

However, this might not be suitable for many parameter cases due to possible high com-

putational cost. Snapshot-POD may be used to construct a reduced basis, such that
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solutions at other points can be approximated with it. The rationale behind this is that

the solution varies smoothly in most physical domain and the regions that contain dis-

continuity can be relatively small. In [22], the gradient of the approximations is used to

describe the discontinuities, and the exact problem is solved at these discontinuities to

improve accuracy of the reduced order model. Boundary and initial conditions might be

arbitrary on the subregions, hence appropriate solvers are needed to treat such special

conditions.

The above approaches all aim to improve the performance of the (POD-)Greedy

algorithm, however, the following problem remains unsolved: given a dynamic model

with a large, preset, uniformly structured training set, how to develop an improved POD-

Greedy algorithm which evaluates the error over the large training set efficiently? With

many parameter settings, it is almost impossible to evaluate all of the parameter sample

points in the training set, as the number of points increases exponentially due to the

curse of dimensionality. For example, if there are 10 parameters and each possesses only 5

sample points, the resulting training set contains 9765625 points. This is computationally

prohibitive for standard (POD-) Greedy algorithm. To the author’s knowledge, the

existing methods are insufficient to deal with such problems due to lack of sharp, rigorous

error bound for dynamic problems. In the cases where a posteriori error estimator is

unavailable, using true error as indicator guarantees accuracy but may suffer prohibitively

high numerical cost. Therefore this chapter presents a new error indicator which tackles

the problem and allows the user to evaluate a very large training set. Standard POD-

Greedy algorithm requires a full sweep on a parameter training set, which can possibly

result in a large number of exact solutions. Moreover the size of the training set needs to

be carefully chosen: a large size leads to precise sweep but possible slow evaluations; a

small size leads to quick evaluation but important information might be left out. The goal

of the new error indicator is to allow users to evaluate a very large training set without

losing the calculating efficiency. Our solution is to interpolate the dynamic operator

inverse, the rationale behind this choice will be explained, as well as the procedures to
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achieve it.

This chapter is organised as follows: first the true RB-error vector (the exact er-

ror vector) is derived using the full Newmark representation developed in chapter 3.

Then the true RB-error vector for dynamic problems is approximated by interpolating

the inverse of the dynamic operator. The approximated displacement error is then de-

rived. More specifically, a sequence of unit impulse responses by applying the standard

Newmark step-by-step method. An error norm square is then computed to be the inter-

polated term. Once the above procedures are introduced, the method is demonstrated

by conducting numerical experiments based on the simple beam model and showing that

it accurately predicts error convergence. The proposed error indicator is then compared

with the residual indicator to show its feasibility. In section 4.7 and section 4.8, speed of

the proposed indicator is further improved without losing accuracy, this is achieved by

compressing the impulse responses and perform POD on collection of reduced variable

vectors.

4.2 Exact full error vector

Now the full force vectors Gh has been derived in eq. (3.11) and Gr (eq. (3.19)), the

parametric full residual vector R(µ) reads:

R(µ) = Gh −Gr (µ) = A(µ)E(µ) (4.1)

the parametric exact full error vector E(µ) reads (assuming Gh is deterministic):

E(µ) = A−1(µ)R(µ)

= A−1(µ)(Gh −Gr (µ))

=Xh(µ) −Xr (µ)

(4.2)
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here the system is restricted to admit the affine form (see section 2.2.1). The full

space-time representation of Newmark method can be conveniently integrated into the

reference POD-Greedy algorithm. The error response surface can be constructed by eval-

uating the functional relationship between value µ and the norm of E(µ), ∀µ ∈ P. Notice

that the exact full error vector evaluates error in the entire space and time domain, i.e.

it contains the acceleration, velocity and displacement true RB-error. In order to quickly

identify parametric problems in different scenarios, the following distinctions are made:

• Full representation (FR) – solve the dynamic problem using A(µ)Xh(µ) =

Gh(µ), output vector Xh(µ) ∈ R3NNt×1.

• Standard representation (SR) – solve the dynamic problem using step-by-step

Newmark method, output Uh(µ) ∈ RN×Nt .

• Reduced order representation (RR) – solve the dynamic problem under an

RB frame using step-by-step Newmark method, output α(µ) ∈ RN×Nt .

these distinctions will be applied to clarify scales of system operators, space-time

responses and forces. They will be labelled after the associated terms, so that quick

guidance can be provided for readers to identify the different representations of the

dynamic problems.

4.3 Approximated full error vector

The reference POD-Greedy algorithm requires a carefully evaluated setting of Ptrain

size, otherwise the computational cost might be prohibitively high. More specifically, the

size of Ptrain needs to be small enough to ensure a rapid calculation, and large enough

to ensure Ptrain is representative. This can be solved by training set treatment, see
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section 2.2.4 for existing methods. Alternatively, a new error indicator is proposed, where

approximations of E(µ) are computed by interpolating the parametric dynamic operator

inverse: A−1(µ), so that the evaluation process over Ptrain can be greatly accelerated.

As a result, users can select a much larger Ptrain meaning detailed information of the

model can be obtained. The inverse of the dynamic operator A−1(µ) are chosen to be

interpolated for the following reasons:

• To maintain the robust error estimate E(µ) = A−1(µ)R(µ), so that the error is

evaluated in the entire time domain.

• A−1(µ) is the only suitable term to be approximated: expanding the full error

vector as follows:

E(µ) = A−1(µ)R(µ) = A−1(µ)
(
Gh −Gr (µ)

)
= A−1(µ)

(
Gh −A(µ)ΨΠ(µ)

)
It can be seen that Gh is a known term, A(µ) is affine parametric, Ψ can be

computed a-posteriori and Π(µ) is inexpensive to be directly computed. As a

result, R(µ) should not be approximated. The only term left to be approximated

is A−1(µ).

• A−1(µ) is non-affine, thus affine expansion can not be utilised to obtain a separated

form.

denote Lagrange sample point with {µi }Ni

i=1, µi ∈ P
i ⊂ P. Pi is the interpolation

sample domain. Define the collection of exact solutions at the Lagrange samples by

Xi =
{
Uh(µi)

}Ni

i=1
. The approximated dynamic operator inverse at a parameter point is

given by:

Â−1(µ) =
Ni∑
i=1

li (µ)A−1i (4.3)
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where li (µ) denotes piecewise linear Lagrange polynomial, A−1i denotes pre-computed

dynamic operator inverse at interpolation sample points. Therefore the approximated

full error vector reads (assume that Gh is deterministic):

Ê(µ) = Â−1(µ)R(µ)

=

Ni∑
i=1

li (µ)A−1i R(µ)

=

Ni∑
i=1

li (µ)A−1i
(
Gh −Gr (µ)

)
(4.4)

apply affine dependence, substitute eq. (3.19), the reduced full force vector reads:

Gr (µ) = A(µ)Xr (µ)

=

N j∑
j=1

γj (µ)AjΨΠ j (µ)

=

N j∑
j=1

γj (µ)Aj

N∑
r=1

ΨrΠ jr (µ)

(4.5)

notice that the full reduced variable vector is transformed to an affine-dependent form.

Substituting eq. (4.5) back to eq. (4.4) results in:

Ê(µ) =
Ni∑
i=1

li (µ)
(
A−1i G

h −

N j∑
j=1

N∑
r=1

γj (µ)A−1i AjΨrΠ jr (µ)
)

(4.6)

due to the number of parameters involved, the interpolation might be multi-variate de-

pending on the number of parameters. The interpolation problem needs to be solved

sequentially for each parameter. See [89, 100] for multivariate interpolation. In order to

solve eq. (4.6) and obtain the approximated exact full error vector, let:

Termh
i = A

−1
i G

h,

Termr
i jr = A

−1
i AjΨrΠ jr (µ)

(4.7)
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eq. (4.6) now becomes:

Ê(µ) =
Ni∑
i=1

li (µ)
(
Termh

i −

N j∑
j=1

N∑
r=1

γj (µ)Termr
i jr

)
(4.8)

the unknowns are Termh
i and Termr

i jr. Term
h
i is simply given by:

Termh
i = A

−1
i G

h =Xh
i (4.9)

where Xh
i denotes the full response vector obtained by applying the full force vector Gh

on the structure. Termr
i jr is not as straight forward, as more terms are involved. Notice

that the simplest affine term in Termr
i jr is AjΨr, moreover, the multiplication between

the inverse of dynamic operator A−1i and other terms is equivalent to applying a force on

the dynamic system Ai. The force vector reads:

Gjr (µ) = AjΨrΠ jr (µ) (4.10)

apply the force vector on dynamic system Ai, Termr
i jr is given by:

Termr
i jr = A

−1
i Gjr (µ) =Xr

i jr (µ) (4.11)

here Xr
i jr (µ) denotes the full response vector X associated with Termr

i jr for the ith in-

terpolation point, j th affined term, and r th reduced basis vector. Therefore eq. (4.8)

becomes (in the full space-time representation):

Ê(µ) =
Ni∑
i=1

li (µ)
(
Xh

i −

N j∑
j=1

N∑
r=1

γj (µ)Xr
i jr (µ)

)
[FR] (4.12)

again we emphasise that A−1 is not needed to be built in real applications, but it is

necessary for theoretical derivation of this thesis.
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4.4 Approximated displacement error

In a parametric dynamic problem with reduced order modelling, often the displace-

ment error is the quantity of interest, which is measured by the numerical distance

between the finite element solution Uh(µ) and the displacement U r (µ) obtained from an

RB-model, i.e. Frobenius norm of the true RB-error e(µ)F B
U

h(µ) −U r (µ)F
. In

order to minimize this quantity, one possible approach is to solve eq. (4.12) and extract

the displacement error from the exact full error vector E. Although this is mathemati-

cally correct and essential for theoretical derivation of approximated error, in reality this

is computationally prohibited due to the large size of A (A ∈ R3NNt×3NNt ). Therefore a

different approach has to be utilised, which is the step-by-step Newmark method for an

equivalent and practical computation.

4.4.1 Practical approach using Newmark method

Step-by-step Newmark method can be applied to solve the approximated displace-

ment error. In section 4.3 the solution has been recast into 2 parts: Termh
i and Termr

i jr.

The Newmark method is integrated to solve for each term individually.

(i) Recall that Termh
i = A

−1
i G

h, Gh is vectorised from external force F h. Ai is

the dynamic operator equipped with system matrices Mi, Ci, Ki. Solving Termh
i is

equivalent to using Newmark method to solve:

MiÜ
h
i +CiU̇

h
i +KiU

h
i = F

h (4.13)

which gives the following transformation from the full response vector to displacement

matrix:
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(Solving AiX
h
i = G

h) =⇒Xh
i [FR]

is transformed to

(Newmark solution) =⇒ Uh
i [SR]

(4.14)

(ii) Recall that Termr
i jr = A

−1
i AjΨrΠ jr (µ), first look at eq. (4.10), which defines the

force vector in high-dimension. Notice thatAjΨr results in a parameter-independent ma-

trix which contains repeated column vectors. Π jr (µ) is the full reduced variable vector for

jth affined term and rth reduced basis vector. The parameter-independent full impulse matrix

reads (see fig. 4.1 for a schematic illustration):

G
imp
jr = AjΨr (4.15)

in order to utilise Newmark method, the vectors in Gimp
jr are used as the non-zero

components of unit impulses, the other components are just zero vectors. F imp,m
jr , F imp,c

jr

and F imp,k
jr are used to denote mass, damping and stiffness associated impulses, respec-

tively. Each sparse unit impulse has 2 components: unit impulse vectors and zero vectors.

The mathematical form reads:

F
imp,m
jr =




Mjφ
r
, t = 0

0, t > 0

F
imp,c
jr =




Cjφ
r
, t = 0

0, t > 0

F
imp,k
jr =




Kjφ
r
, t = 0

0, t > 0

(4.16)
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Figure 4.1: Derivation of the full impulse matrix Gimp
jr , key components are column

impulse vectors Mjφ
r
, Cjφ

r
and Kjφ

r
.

from eq. (4.15) to eq. (4.16), the force term is transformed from full representation to

standard representation, which indicates that now, the step-by-step Newmark method

could be utilised. In Termr
i jr,AjΨr is multiplied withA−1i , which is equivalent to applying

the unit impulses to the dynamic system corresponding to the interpolation sample point

µi. Now step-by-step Newmark method is used to solve:

MiÜ
imp,m
ijr +CiU̇

imp,m
ijr +KiU

imp,m
ijr = F

imp,m
jr

MiÜ
imp,c
i jr +CiU̇

imp,c
i jr +KiU

imp,c
i jr = F

imp,c
jr

MiÜ
imp,k
i jr +CiU̇

imp,k
i jr +KiU

imp,k
i jr = F

imp,k
jr

(4.17)
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and the following relationship holds:

F
imp
jr = F

imp,m
jr + F

imp,c
jr + F

imp,k
jr

Ü
imp
ijr = Ü

imp,m
ijr + Ü

imp,c
i jr + Ü

imp,k
i jr

U̇
imp
ijr = U̇

imp,m
ijr + U̇

imp,c
i jr + U̇

imp,k
i jr

U
imp
ijr = U

imp,m
ijr +U

imp,c
i jr +U

imp,k
i jr

(4.18)

solving eq. (4.17) results in the unit impulse responses, which include accelerations,

velocities and displacements. Once eq. (4.17) is solved by the Newmark method, one

may extract and deal only with displacements U imp
ijr (all 3 equations need to be solved

even if only displacement components are needed). Uh
i and U imp

ijr are the pre-computed

impulse responses.

Unlike solving Termh
i , the matrix formulation of the full space-time representation

indicates a coupled relationship between impulse responses U imp
ijr and reduced variables

α. In other words, solving Termr
i jr requires a discrete Duhamel’s integral between these

2 terms, which will be address in the following section. See fig. 4.2 for an example of

unit impulse response (model adapted from section 2.2.4).

4.4.2 Discrete Duhamel’s integral of unit impulse responses and re-

duced variables

The discrete Duhamel’s integral of the impulse responses and reduced variables is

defined as the sum of the product of two functions – shifted responses and the reduced

variables:

Ui jr (µ) =
Nt∑
n=0

(
U

imp,m
ijr δtnα̈r (tn; µ) +U imp,c

i jr δtnα̇r (tn; µ) +U imp,k
i jr δtnαr (tn; µ)

)
(4.19)
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Figure 4.2: An example of unit impulse response U imp
ijr . Left sub-figure showing the

amplitude of the response, which is the y-displacement of the centre node (right sub-

figure showing the node location).

where δtn is the Kronecker Delta symbol. For simplicity of notations, mass, damping

and stiffness components of reduced variables are no longer separated, and ajr (tn) is used

to denote the reduced variables associated with acceleration, velocity and displacement.

Thus eq. (4.19) becomes:

Ui jr (µ) =
Nt∑
n=0

U
imp
ijr δtnajr (tn; µ) [SR] (4.20)

notice that U imp
ijr δtn denotes the shift of displacement U imp

ijr in time. Therefore the

full response vector is transformed into displacement matrix. The shift of unit impulse

responses is demonstrated in fig. 4.3.

(
Solving AiX

r
i jr (µ) = Gimp

jr

)
=⇒Xr

i jr (µ) [FR]

is transformed to

(Newmark solution with shift in time) =⇒
Nt∑
n=0

U
imp
ijr δtnajr (tn; µ) [SR]

(4.21)
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Figure 4.3: The shifted impulse responses response for a single degree of freedom: the

blue curve denotes the response U imp
ijr1 same as shown in fig. 4.2, which is obtained by

applying impulse at the initial time step; the red curve is the response U imp
ijrn obtained

by applying impulse at the second time step; once U imp
ijrn is obtained, the rest responses

(grey curves) are computed by shifting U imp
ijrn . The parametric displacement Ui jr (µ)

is reconstructed by shifting the impulse response and multiplying with the associated

reduced variables, then performing a summation over time.

Remark For the ith interpolation sample, the jth affined term, the rth reduced basis

vector, only 2 responses need to be computed:

Ui jrn, n = 1, 2 (4.22)

where n denotes the time step number. This is because applying the impulse on the

initial and second time step results in two different responses. However for n ≥ 2, only 1

response, Ui jr2, is required to be computed by applying Newmark method, the rest are

obtained by shifting, as U imp
ijrn is a unit impulse response which does not change in time,

see fig. 4.3. This benefits the proposed error indicator by keeping the number of exact

solutions under control thus preventing prohibited computational cost.
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4.4.3 Approximated displacement error

It has been proven that the full response vector can be transformed to displacements,

now substituting relationships eq. (4.21) and section 4.4.1 into eq. (4.12), the approxi-

mated displacement error in space and time is given by:

ê(µ) =
Ni∑
i=1

li (µ)
(
Uh

i −

N j∑
j=1

N∑
r=1

Nt∑
n=0

γj (µ)U imp
ijr δtnajr (tn; µ)

)
[SR] (4.23)

A decomposition of the proposed POD-Greedy algorithm can be preliminarily utilised:

POD-Greedy basis processing stage:

• compute reduced basis φ,

• generate impulses, compute and shift the responses Uh
i and U imp

ijr ,

POD-Greedy parameter sweep stage:

• compute reduced variables,

• interpolate the pre-computed responses, multiply the results with corresponding

affine coefficients and reduced variables, sum the results up.

• evaluate the error norm.
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4.5 Calculation of error norm square

The approximated displacement error is measured using Frobenius norm. This can

be calculated by evaluating the norm directly: ê(µ)F =

√
tr

((
ê(µ)

)T (
ê(µ)

))
. How-

ever, if interpolating the pre-computed responses U imp
ijr as shown in eq. (4.23), the

parameter sweep stage cost can be prohibitively high, as a number of responses would be

interpolated for each individual parameter value. This can be circumvented by calculat-

ing the square of the approximated error norm in the POD-Greedy basis processing stage

and interpolating this term in the POD-Greedy parameter sweep stage. In order to do

this, the first step is expanding the square of the error norm as follows:

ê(µ)2F = tr
((
ê(µ)

)T (
ê(µ)

))
= tr

(( Ni∑
i=1

li (µ)
(
Uh

i −

N j∑
j=1

N∑
r=1

Nt∑
n=0

γj (µ)U imp
ijr δtnajr (tn; µ)

)T
(
Uh

i −

N j∑
j′=1

N∑
r′=1

Nt∑
n′=0

γj′ (µ)U imp
ij′r′ δtn′aj′r′ (tn′; µ)

)))

= tr

( Ni∑
i=1

li (µ)
((
Uh

i

)T (
Uh

i

)
−

N j∑
j=1

N∑
r=1

Nt∑
n=0

γj (µ)ajr (tn; µ)
(
U

imp
ijr δtn

)T (
Uh

i

)
−

N j∑
j′=1

N∑
r′=1

Nt∑
n′=0

(
Uh

i

)T (
U

imp
ij′r′ δtn′

)
γj′ (µ)aj′r′ (tn′; µ)

−

N j∑
j=1

N∑
r=1

Nt∑
n=0

N j∑
j′=1

N∑
r′=1

Nt∑
n′=0

γj (µ)ajr (tn; µ)
(
U

imp
ijr δtn

)T (
U

imp
ij′r′ δtn′

)
γj′ (µ)aj′r′ (tn′; µ)

))
(4.24)

Equation (4.24) requires the computation of the matrix product trace, which can be

avoided by vectorising the approximated error and computing the vector products. This

is achieved by vectorizing the pre-computed responses hence obtain U ∈ RNNt , eq. (4.24)
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becomes:

ê(µ)2F =
ê(µ)

2

F

=
(
ê(µ)

)T (
ê(µ)

)
=

Ni∑
i=1

li (µ)
((
Uh

i −

N j∑
j=1

N∑
r=1

Nt∑
n=0

γj (µ)U imp
ijr δtnajr (tn; µ)

)T
(
Uh

i −

N j∑
j′=1

N∑
r′=1

Nt∑
n′=0

γj′ (µ)U imp
ij′r′ δtn′aj′r′ (tn′; µ)

))

=

Ni∑
i=1

li (µ)
((
Uh

i

)T (
Uh

i

)
−

N j∑
j=1

N∑
r=1

Nt∑
n=0

γj (µ)ajr (tn; µ)
(
U

imp
ijr δtn

)T (
Uh

i

)
−

N j∑
j′=1

N∑
r′=1

Nt∑
n′=0

(
Uh

i

)T (
U

imp
ij′r′ δtn′

)
γj′ (µ)aj′r′ (tn′; µ)

−

N j∑
j=1

N∑
r=1

Nt∑
n=0

N j∑
j′=1

N∑
r′=1

Nt∑
n′=0

γj (µ)ajr (tn; µ)
(
U

imp
ijr δtn

)T (
U

imp
ij′r′ δtn′

)
γj′ (µ)aj′r′ (tn′; µ)

)
(4.25)

eq. (4.25) requires O(Ni (NjNt N )2) operations. Note that the response matrices in eq. (4.24)

and vectors in eq. (4.25) are formulated in different ways when being shifted in time for

the Duhamel’s integral, see fig. 4.4. The following section explains the computational

procedures to compute eq. (4.25) and how this procedure can reduce numerical cost of

the POD-Greedy parameter sweep.

Computational procedures Equation (4.25) illustrates the expanded form of the

approximated error norm square. In order to reduced the numerical cost of the Greedy

parameter sweep stage, one needs to perform some special treatments to the pre-computed

responses and scalar coefficients. Both the basis processing stage and the parameter sweep

stage need to be modified, the treatments are explained as follows: first adding the fol-

lowing steps to the POD-Greedy basis processing stage,
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Figure 4.4: Shift of displacement in matrix and vector form. The grey dash lines indicate

that the displacement vectors are replaced by zeros after shift.

• once the impulse responses are computed, vectorize them to obtain U f and U imp

for the ith interpolation sample, align these vectors in a matrix as:




Mi =
[
Uh

i ,−U
imp
ijr δtn

]N j,N,Nt

j,r=1,n=0

Mi ∈ R
NNt×(N jNNt ) .

(4.26)

• then performing:

Mtrans
i = (Mi)T Mi (4.27)

the symmetric matrix Mtrans
i is then obtained, which is named as the displacement

vector product matrix. Mtrans
i ∈ R(N jNNt )×(N jNNt ).

In the POD-Greedy parameter sweep stage,

• since the reduced variables ajr (µ) and the space-time responses are coupled, for each

parameter value µ, the steps are: (i) compute ajr (µ), (ii) multiply the associated
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affine-dependent coefficients γj (µ), (iii) align the scalar values in a column vector

follow the same order as eq. (4.26), such that:




(
a(µ)

)T
=

[
1, γj (µ)ajrn(µ)

]N j,N,Nt

j,r=1,n=0

a ∈ R(N jNtN )×1
(4.28)

• the parametric displacement vector product matrix is obtained by interpolation:

Mtrans
i (µ) = li (µ)Mtrans

i (4.29)

• eq. (4.25) becomes:

ê(µ)2F = tr
((
ê(µ)

)T (
ê(µ)

))
=

(
ê(µ)

)T (
ê(µ)

)
=

(
a(µ)

)T (
Mtrans

i (µ)
)
a(µ)

=
(
a(µ)

)T
li (µ)

(
Mtrans

i

)
a(µ)

(4.30)

which gives the Frobenius norm of the approximated displacement error.

So now the terms being interpolated in the parameter sweep stage are the square

symmetric displacement vector product matrix Mtrans
i ∈ R(N jNNt )×(N jNNt ). Since NjN �

N , dimension of Mtrans
i � dimension of U . Compare with interpolating responses U ∈

RN×Nt , interpolating Mtrans
i is much more efficient.

4.6 Preliminary comparison between proposed error indica-

tor and residual as error indicator

Now that the main calculation procedures of approximated displacement error are

derived, it is necessary to investigate the comparative results of approximated and exact

displacement error, such that our theory can be verified and nature of the new error esti-

mate can be better understood. A test based on the simple beam model in section 2.2.5
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is set up, except this time the number of time steps are further simplified to Nt = 10,

and the time quantity of interest is set to be time steps [3, 5, 7]. Again a discretised

training set {µi, bj }
17,17
i, j=1 is used, results in 289 samples. 10 POD-Greedy iterations are

performed, calculating both true RB-error (eq. (2.21), displacement error) and approxi-

mated displacement error (eq. (4.23)). Let the number of initial basis vectors N init = 2

and enriched basis vectors Nadd = 2, thus 10 Greedy iterations result in N = 20 basis

vectors. The test contains the following components:

• the error response surfaces constructed using true RB-error indicator and the pro-

posed approximated error indicator are plotted and compared, they are expected

to match in the interpolation samples.

• an alternative to true RB-error is provided in [12]: using squared norm of the

residual as an error indicator. More specifically, in step 4− 5 of algorithm 2, | |R| |22
is measured to indicate the error (see eq. (2.25) for residual). Numerical efficiency

is greatly improved as no exact solution needs to be solved. However, results in

[12] is not satisfying as convergence of the residual indicator does not approach

the true RB-error. In this experiment, performance of different error indicators is

evaluated by comparing the output convergence of (i) true RB-error indicator, (ii)

proposed approximated error indicator eq. (4.23), (iii) residual indicator.

Output 1: error response surfaces

Error response surfaces are constructed for true RB-error (the exact displacement

error) and approximated displacement error, respectively, and the distance are also eval-

uated. Surfaces of Greedy iterations 1-5 are displayed in fig. 4.6. A 3 interpolation

sample set is being used in this test, see fig. 4.5 for the training interpolation sample set.
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Figure 4.5: The training set Ptrain and interpolation sample set Pi.

Output 2: maximum relative error convergence

The maximum relative error convergence using 3 error indicators are proposed in

fig. 4.7. For residual indicator, in order to guarantee a equal comparison, first the POD-

Greedy algorithm is performed using the residual as error indicator, then the true RB-

error convergence is evaluated based on the output magic points and reduced basis. 2

initial magic points [µ, b] = [10−1, 10−1] and [µ, b] = [101, 101] are chosen as the cases to

test the indicators. The following remarks can be made by observing the results:

• convergence of the proposed error indicator approaches the true RB-error indicator

for both test cases due to the good approximation of error response surfaces as

shown in fig. 4.6. Hence the proposed error indicator is proven to be effective at

this stage.

• convergence of residual indicator generally achieves an order of magnitude smaller

than the other 2 options after 10 POD-Greedy iterations. One may also notice
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(a) True RB-error response

surfaces

(b) Proposed error response

surfaces

(c) Response surfaces of the

difference

Figure 4.6: Evolution of error response surfaces for Greedy iteration 1-5, initial magic

point [µ, b] = [10−1, 10−1]. The maximum error points (magic points) are labelled on

the surfaces. The result shows that even with linear interpolation, the approximated

response surfaces match relatively well with the exact surfaces. Notice that in fig. 4.6c,

the numerical distance approaches 0 at the interpolation samples. The surfaces are shown

in 3D view for better visibility.
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(a) Initial magic point: [µ, b] = [10−1, 10−1] (b) Initial magic point: [µ, b] = [101, 101]

Figure 4.7: Compare the maximum error convergences obtained from the 3 error indica-

tors, results showing 2 different initial magic points as 2 test cases.

that for the three error indicators in this case, selecting the same initial magic

point does not lead to the same error value. The reason is: residual is obtained by

applying eq. (2.25), which results in a totally different quantity from true-RB error

or the approximation. Therefore even the initial error is different. Performance

of residual indicator is also not satisfying as the convergence trajectory diverges

from the reference. This might be intuitively expected since they are different.

However the residual indicator is much less resource intensive than the other 2

choices, thus results in a general trade-off: if accuracy of the approximation is the

priority, then either true RB-error or proposed indicator should be used; otherwise

residual indicator can only be chosen as an indicator when low numerical cost and

fast evaluation speed are priorities.
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4.7 Space-time reduction on impulse responses

For the proposed algorithm, one of the main computational cost is the computation

and storage of the exact solutions Uh
i and U imp

ijr . The aim is to further optimise computa-

tional cost by compressing these exact solutions with Singular Value Decomposition. The

original displacement U ∈ RN×Nt , is decomposed into orthonormal matrices VL ∈ R
N×N ,

VR ∈ R
Nt×Nt and singular matrix Σ ∈ RN×Nt . Σ is a rectangular matrix and the diagonal

entries of its upper square contain decreasingly ordered singular values {σi }
n
i=1 .

Applying SVD to the pre-computed displacements results in:

Uh
i = V

h
iLΣ

h
i

(
V h
iR

)T
U

imp
ijr = V

imp
ijrL Σ

imp
ijr

(
V

imp
ijrR

)T (4.31)

in order to optimize computational storage, a low-rank approximation of the displace-

ments is required. Therefore a truncated SVD is performed by selecting the first k

(Nk � N ) largest singular values and the corresponding left and right singular vec-

tors and ignoring the rest: U ≈ Ũ = ṼLΣ̃(ṼR)T . The approximated displacements are

(assume N resp
k

singular vectors are being used):

Uh
i ≈ Ũ

h
i = Ṽ

h
iLΣ̃

h
i

(
Ṽ h
iR

)T
=

N
resp
k∑
k=1

Σ
h
ikV

h
iLk

(
V h
iRk

)T
U

imp
ijr ≈ Ũ

imp
ijr = Ṽ

imp
ijrL Σ̃

imp
ijr

(
Ṽ

imp
ijrR

)T
=

N
resp
k∑
k=1

Σ
imp
ijrk
V

imp
ijrLk

(
V

imp
ijrRk

)T (4.32)

substituting eq. (4.32) in eq. (4.23) ends up with the following approximation of ê(µ):

ê(µ) ≈
Ni∑
i=1

li (µ)
(
Ṽ h
iLΣ̃

h
i

(
Ṽ h
iR

)T
−

N j∑
j=1

N∑
r=1

Nt∑
n=0

γj (µ)Ṽ imp
ijrL Σ̃

imp
ijr

(
Ṽ

imp
ijrR δtn

)T
ajr (tn; µ)

)
(4.33)

application of SVD on pre-computed displacements leads to the following benefits:



4.7. SPACE-TIME REDUCTION ON IMPULSE RESPONSES 99

Figure 4.8: Store SVD vectors to optimize storage, shift right singular matrix to accelerate

the shift.

• after truncation, left singular matrix ṼL ∈ R
N×N

resp
k , sparse singular value matrix

Σ̃ ∈ RN
resp
k
×N

resp
k and right singular matrix ṼR ∈ R

Nt×N
resp
k are stored. Since N resp

k
�

N , computational storage cost is greatly reduced compared with storing the full

response matrices.

• during the Duhamel’s integral, instead of shifting the entire displacement matrix

in time (see section 4.4.2), now the right singular matrix ṼR is shifted. Due to the

small size of ṼR, the shift efficiency is greatly improved.
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4.8 POD on reduced variables

4.8.1 Analysis of POD-Greedy parameter sweep stage cost with the

new error indicator

In POD-Greedy algorithm, the Greedy iteration yields 2 results: the enrichment of

the reduced basis φ, and the upgrade of the reduced variables α. However, there is a

fundamental difference between these two results: the reduced basis is enriched hierar-

chically, while the reduced variable is updated to complete new data. See fig. 4.9 for a

schematic illustration. This difference leads to both an advantage and a disadvantage for

the new error estimate:

• advantage: when calculating the pre-computed responses, due to the hierarchical

structure, only the ones associated with the Nadd newly added basis vectors need to

be computed at each Greedy iteration. More specifically, the number of newly com-

puted exact solutions for each Greedy iteration is Ni×Nj×Nadd×2 (see section 4.4.2

for why this number is doubled here). Compare with the reference POD-Greedy

algorithm which requires Ntrain exact solutions each iteration, the proposed method

pays off if (i) the FE model is large, (ii) the training set is highly-discretised, i.e.

Ntrain is large.

• disadvantage: in the parameter sweep stage, when evaluating the displacement vec-

tor product matrix Mtrans
i , all the information from the previous Greedy iterations

needs to be stored. This is because the upgrade of the reduced variables results

in completely new values, and the pre-computed displacements U imp
ijr need to be

coupled with the reduced variables ajr (tn; µ). Moreover, the full Mtrans
i needs to be

interpolated in the parameter sweep, which can be expensive if the reduced basis

possesses a complex structure.

The dimensional increase of Mtrans
i due to the re-generation of reduced variables

during the Greedy procedure is further explained here: after NG Greedy itera-
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Figure 4.9: The difference between reduced basis enrichment and reduced variable up-

grade: former is hierarchical and latter is not.

tions, the dimension of the reduced variables associated with the jth affined term

increases from N × Nt to (N + NGNadd) × Nt . Dimension of Mtrans
i also increases

from
(
NjNt N

)
×

(
NjNt N

)
to

(
NjNt (N + NGNadd)

)
×

(
NjNt (N + NGNadd)

)
. In

POD-Greedy parameter sweep stage, one has to deal with the full matrix Mtrans
i ,

and the dimension of this matrix increases by NjNt Nadd within each POD-Greedy

iteration. The computational cost of the parameter sweep increases quickly with

increasing Greedy iterations, which is the limitation of the proposed POD-Greedy

algorithm so far. See fig. 4.10 for a schematic explanation of how Mtrans
i dimension

increases with reduced basis enrichment.
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Figure 4.10: Dimension of Mtrans
i , which increases with enrichment of reduced basis,

each dot denotes the vector product
(
U

imp
ijr δtn

)T (
U

imp
ij′r′ δtn′

)
.
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4.8.2 Speed-up the POD-Greedy parameter sweep stage: POD on re-

duced variables

The limitation of the proposed POD-Greedy algorithm so far lies in the cost of pa-

rameter sweep. When dealing with the training samples, the algorithm should maintain

a reasonably low-cost for each parametric value to guarantee a quick sweep. This is yet

limited due to dimensional increase of Mtrans
i . This problem can be tackled by (i) shift-

ing more workload from parameter sweep stage to basis processing stage, (ii) keeping size

of Mtrans
i a constant. Proper Orthogonal Decomposition is chosen to be applied to the

collection of reduced variables, so that the dimension of the matrix being interpolated

remains a constant after each Greedy iteration.

The procedure is as follows: first collect the parameter-dependent full reduced variable

vectors a over the entire training set Ptrain, Ntrain denotes number of collected vectors.

The reduced variable vector a is obtained by vectoring the reduced variable matrix a, see

eq. (4.20), thus a ∈ RN jNtN . The collection is:




Wα =
[
a(µi)

]Ntrain

i=1
, µi ∈ P

train

Wα ∈ R
(N jNtN )×Ntrain

(4.34)

Wα is named as the reduced variable vector matrix. Invoking truncated SVD and select

the first Nk (Nk � Ntrain) largest singular values and the corresponding left and right

singular vectors (assume N rv
k

singular vectors are being used here) gives:

Wα ≈ W̃α = ṼαLΣ̃α
(
ṼαR

)T
=

Nrv
k∑

k=1

Σ̃αkṼαLk
(
ṼαRk

)T
(4.35)

where W̃α is the closest approximation of Wα of order N rv
k
. ṼαL ∈ RN jNtN×N

rv
k , Σ̃α ∈

RNrv
k
×Nrv

k , ṼαR ∈ RNµ×N
rv
k . Recall that Mtrans

i ∈ RN jNtN×N jNtN , thus Mtrans
i and ṼαL
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can be coupled, which is a projection of Mtrans
i on the subspace spanned by ṼαL:

Mtrans,r
i = (ṼαL)

T
(Mtrans

i )ṼαL (4.36)

this is computed in the Greedy basis processing stage. In the Greedy parameter sweep

stage, Mtrans,r
i is interpolated and the result is multiplied with the singular value matrix

and right singular vector matrix as follows:

Mtrans,r = ṼαRΣ̃αli (µ)
(
Mtrans,r

i

)
Σ̃α

(
ṼαR

)T
(4.37)

where Mtrans,r = diag
(
m1, . . . ,mNtrain

)
∈ RNtrain×Ntrain . One may notice a major difference

between the approximation Mtrans,r and our targetê(µ)2F (see eq. (4.30)): ê(µ)2F is the

scalar value which denotes Frobenius norm of the approximated error at parametric value

µ; Mtrans,r is an Ntrain×Ntrain matrix, and the ith diagonal entry denotes Frobenius norm

of the approximated error at parametric value µi. Therefore once Mtrans,r is obtained,

the ith diagonal entry of Mtrans,r, mi, needs to be extracted:

ê(µi)2F ≈ mi,∀µi ∈ P
train (4.38)

eq. (4.37) interpolates the reduced displacement vector product matrix Mtrans,r
i , which

solves the problem due to these facts: (i) dimension of Mtrans,r
i is fixed to N rv

k
× N rv

k

hence no longer increases with Greedy iterations, (ii) N rv
k
� NjNt N , thus the term being

interpolated in the Greedy parameter sweep stage becomes much smaller, which allows

one to evaluate a considerably large training set thus no key information is lost. If let

N rv
k
= Ntrain, then eq. (4.37) should yield the same result as eq. (4.30).
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4.9 Summary

A new error indicator for parametric elasto-dynamic problems are presented in this

chapter, which allows rapid error evaluation and use of large training set. This chapter

is started with the introduction of current training set treatment approaches, leading to

the motivation of developing this new error indicator. In section 4.2, the exact full error

vector is derived based on the full space-time Newmark representation. ROM is then

involved given the approximated full error vector in section 4.3. The output of inter-

est: displacement error, is derived in section 4.4. The full representation is decomposed

into a set of impulse response problems, then the output impulse responses are linearly

combined to form the displacement error indicator. Its use is preliminarily verified in

section 4.6, showing accuracy and comparing it with residual as indicator. Finally re-

duction on impulse responses (section 4.7) and POD on reduced variables (section 4.8)

are proposed to further reduce the numerical cost of the new error indicator.
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Chapter 5

The “Error in the error”indicator

in Dynamics

The chapter is organised as follows: in section 5.1, a new error in the error indicator

is introduced. Two interpolation sample grids are generated for this indicator: a coarse

‘slave’ grid and a locally refined ‘master’ grid. The error indicator is driven by a user-

defined tolerance; the numerical distance between ‘master’ and ‘slave’ response surfaces

are evaluated: if the distance exceeds the tolerance, the algorithm performs the refine-

ment and ceases the Greedy iterations. The refinement follows a principle: the two

grids are refined locally according to the location of the maximum distance only within

the interpolation sample block which possesses the largest error. Numerical examples

are proposed in section 5.2 to demonstrate the error indicator and how training set size

affects it.

107



108 CHAPTER 5. THE “ERROR IN THE ERROR”INDICATOR

5.1 Local h−refinement and the “error in the error”indicator

The h− and p− versions of finite element methods are methods which aim at improving

the accuracy of standard FE simulation [5]. The h − refinement uses the same type of

element but a finer mesh, while the p− refinement increases order of shape functions but

keeps mesh size unchanged. The two approaches can be suitably combined to reach an

optimised accuracy. A question naturally arises when introducing interpolation in the

algorithm, that is, is a local domain h − refinement needed to refine the interpolation

sample domain thus accuracy of the interpolation can be improved? In order to provide

a solution, a new definition namely “error in the error”indicator is introduced to provide

a solution. The original interpolation sample grid is Pi = {µi }
Ni

i=1. Two interpolation

sample grids are specifically designed for this new error indicator: a coarse ‘slave’ grid

P̂i and a locally refined ‘master’ grid
ˆ̂
Pi. The following remarks are made:

• the new “error in the error”indicator requires a coarse ‘slave’ sample grid and a

locally refined ‘master’ sample grid. N̂b and ˆ̂Nb blocks are generated by defining

these 2 sample grids.

• dimensions of the error response surface equals to the number of affined parameters

Nj . The new error estimate requires the parametric domain to be divided into ˆ̂Nb

and N̂b blocks. For the initial Greedy iteration, ˆ̂Nb = 2N j , N̂b = 1. As a result, the

number of interpolation sample points are ˆ̂Ni = 2N j and N̂i = 3N j , respectively.

• once a Greedy iteration is performed, 2 error response surfaces ˆ̂e(µ) and ê(µ), ∀µ ∈

Ptrain are constructed based on
ˆ̂
Pi and P̂i, respectively. The following maximum

relative numerical distance is defined as the “error in the error”indicator

ee := max
������

| |ˆ̂e(µ) | |F − ||ê(µ) | |F
| |U (µ0) | |F

������
(5.1)

• ee needs to be coupled with a user-defined tolerance tolref: if ee > tolref, the local

h − refinement is performed at the interpolation block which possesses the largest

error; otherwise another Greedy iteration is started.
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The local refinement guarantees the reduction of the numerical distance between the

master and slave surfaces. The reason to choose ee as the error estimate is lim
n→in f

ê = e,

that is, an infinite refinement of the interpolation sample grid eventually leads to the

exact error. Ultimately the local h-refinement results in full reproduction of the exact

error, although in practice this is unachievable as excessive refinement leads to prohibitive

computational cost. See [34] for local h − refinement.

The following principle is followed when choosing refinement locations: first the para-

metric domain is searched over to obtain the sample block which possesses the largest

error, then the distance of error response surfaces between ˆ̂e and ê are evaluated to see

if it exceeds the pre-set tolerance. The rationales behind the principle are (i) this thesis

aims to capture the magic points at the maximum error, thus a precise interpolation

is required only in the associated region; (ii) if the region with low error is considered,

the domain might be refined excessively which leads to unnecessary and possible pro-

hibitive computational cost. The scalar quantity | |U (µ0) | |F is chosen as denominator

in ee because this ensures value of the “error in the error”indicator is always reduced

after the refinement. Another form of “error in the error”indicator is defined as follows:

ẽe := max
����
| |ˆ̂e(µ) | |F−| |ê(µ) | |F

| |ˆ̂e(µ) | |F

����. Test results show that ẽe is inappropriate as | |ˆ̂e(µ) | |F may

also change it’s value after the refinement, hence ee may increase which cannot truly rep-

resent the refinement property (in the same interpolation block, the numerical distance

must reduce after the refinement).

5.2 Numerical results

The model to evaluate performance of the “error in the error”indicator is inherited

from section 4.6. In order to demonstrate the results visually, one needs to plot the

response surfaces of (i) true RB-error, (ii) ˆ̂e approximation, (iii) ê approximation in 1

figure. Thus the model is further simplified to possess only 1 parameter, and 1 Greedy

iteration is performed. The effect of “error in the error” indicator is investigated as a
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(a) Demonstration of 5 local refinements for 1 parameter µ1, each refinement adds 1 sample

point.

(b) Demonstration of 5 local refinements for 2 parameters [µ1, µ2], each refinement may add 3,

4 or 5 sample points.

Figure 5.1: An example of 5 local refinements showing both slave grid N̂b and master

grid ˆ̂Nb. For each sub-figure, Bottom 5 figures show the coarse ‘slave’ grids and top 5

figures are the corresponding locally refined ‘master’ grids. The red diamonds with digits

denote locations of the maximum distance which drives the local refinement. The blue

dots are existing interpolation samples, the red dots denote the newly added vertices.
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function of training set size Ntrain.

Observing evolutions of error response surfaces in fig. 5.2 and fig. 5.3, the following

remarks are made:

• the “error in the error”indicator ee works as an effective guidance to the local

h − refinement. By loosening or restricting the user-defined tolerance tolref, ee

decides when to perform the refinement and which block to place the new sample.

• Before proceeding into the next Greedy iteration, ê is guaranteed to approach ˆ̂e,

thus ee decreases; in rare cases, ee increases when proceeding into new Greedy

iterations due to changes in response surface shape.

• Training set size Ntrain may affect the interpolation: as Ntrain increases, the error

response surface may become more complex, which indicates that more details of

the response surface are required to be captured by the algorithm. As can be seen

from fig. 5.3, in some cases even thorough refinement of the interpolation sample

domain drops out key information and cannot lead to precise prediction of the

magic point. A possible solution to this is utilising different interpolation methods.

• The “error in the error”indicator directly impacts numerical cost of the new error

indicator, hence tolref needs to be carefully set to balance the cost and accuracy.
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(a) Ntrain = 9, ˆ̂e captures the exact magic point

without any refinement, thus tolerance tolref

should be set loosely to avoid excessive cost.

(b) Ntrain = 17, Restricting tolref allows ˆ̂e to

capture the exact magic point with 1 refine-

ment.

Figure 5.2: Numerical results of applying “error in the error”indicator over training sets

of Ntrain = 9 and Ntrain = 17. Information of the magic point is labelled on the surface

following the form of [n, µn, e], where n denotes the nth sample point, µn is the associated

parametric value, e is the maximum relative error.
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(a) Ntrain = 33, restricting tolref leads to

more and more accurate approximations of

e, however even with exhaustive refinement

(ee = 0), ˆ̂e still cannot capture the exact

magic point.

(b) Ntrain = 65, similar phenomenon is ob-

served as restricting the tolerance leads to

relatively accurate approximation, however

a slight difference between e and ˆ̂e surface

results in different magic points.

Figure 5.3: Error response surfaces of training sets with Ntrain = 33 and Ntrain = 65.

Information of the magic point is again labelled on the surface following the form of

[n, µn, e].
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Chapter 6

Proposed POD-Greedy Algorithm

Now that all components of the proposed POD-Greedy algorithm is established, it is

necessary to summarize and present procedures and pseudo-code of the proposed adaptive

POD-Greedy sampling algorithm in this chapter. To be more specific, the key compo-

nents of the proposed algorithm are clarified: algorithm 2 equipped with true RB-error

indicator is referred as the reference POD-Greedy algorithm which is the theoretical foun-

dation; eq. (3.19) for the full space-time representation of Newmark method; eq. (4.12) for

full representation of the approximated exact full error vector; eq. (4.25) and eq. (4.30)

for Frobenius norm of the approximated displacement error matrix; eq. (4.33) for the

approximated displacement matrix with decomposed singular vectors; eq. (4.37) for

computation of the reduced displacement vector product matrix; plus chapter 5 for the

“error in the error”indicator.
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6.1 A complete computational procedure of the proposed

POD-Greedy algorithm

Similar to the reference POD-Greedy algorithm, a decomposition is enabled for the

proposed one, which contains the following parts

POD-Greedy basis processing stage: a series of expensive computations (parameter-

independent):

1. generate impulses, compute impulse responses: Uh
i , U

imp
ijr

2. compress Uh
i and U

imp
ijr , shift the right singular vectors to perform the

Duhamel’s integral

3. compute the displacement vector product matrix Mtrans
i

4. compute the reduced variable vectors, obtain and decompose the reduced variable

vector collectionWα, multiply with associated affine coefficients

5. compressWα to obtain the left and right singular vectors

6. perform Galerkin to obtain Mtrans,r
i

7. compute and enrich reduced basis Φ

POD-Greedy parameter sweep stage: exhaustively sweep parameter domain

(parameter-dependent):

1. interpolate Mtrans,r
i , multiply results with corresponding singular values and right

singular vectors

2. evaluate the error norm and construct the error response surface
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Error check (“error in the error” estimate, parameter-independent):

1. extract maximum error information

2. evaluate the “error in the error”indicator and compare with tolerance, if exceeds,

perform h − refinement, otherwise perform Greedy iterations

6.2 Pseudocode

The pseudocode of the proposed POD-Greedy method is shown in algorithm 4:

Similar to section 2.2.4, detailed definition of different stages of a ROM approximation

with proposed POD-Greedy algorithm is given as follows:

• ROM “offline” stage: basis construction

– POD-Greedy parameter sweep: evaluate error for every single parameter value

of Ptrain, step 11-14.

– POD-Greedy basis processing: step 4-10, 15-26.

∗ calculate displacement vector product matrix: step 4-5.

∗ calculate reduced displacement vector product matrix: step 6-10.

∗ calculate “error in the error”indicator: step 15.

∗ basis processing: step 17-23.

∗ local h − refinement: step 25.

• ROM “online” stage: calculations of U r (µ) for single or multiple parameter values

of interest µ.
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Algorithm 4 Proposed POD-Greedy algorithm
Input: tolerr (User defined error tolerance), tolref (h − refinement tolerance), N resp

k
for

eq. (4.32) and N rv
k

for eq. (4.35),

Output: N , Φ

1: Choose µ1 ∈ Ptrain, initialize N = 1, set P1 = {µ1}, X1 = span{U (µ1)}, set
ˆ̂
Pi
1, P̂i

1

2: Define egr := maxµ∈Ptrain eind(µ)

3: while egr ≥ tolerr do

4: {Mjφ
r
,Cjφ

r
,Kjφ

r
}

generate
−−−−−−−→ F

imp
jr

Newmark
−−−−−−−−→ {Uh

i ,U
imp
ijr }

SVD
−−−−→ {VL, Σ,VR} . Use

nonintrusive technique or source code

5: VRδtn + {VL, Σ} → Mtrans
i . Equation (4.27)

6: for µ ∈ Ptrain do

7: ConstructWα . Equation (4.34)

8: end for

9: Wα
SVD
−−−−→ ṼαL, Σ̃α, ṼαR

10: Mtrans
i

projection
−−−−−−−−→ Mtrans,r

i . Equation (4.36)

11: for µ ∈ Ptrain do

12: Interpolate Mtrans,r
i for

ˆ̂
Pi and P̂i

13: calculate
√

mi =ê(µi)F = eind(µ) . Greedy parameter sweep

14: end for

15: Compute ee . “error in the error”indicator, eq. (5.1)

16: if ee ≤ tolref then

17: µn+1 = argmaxµ∈Ptrain eind(µ) . New samples (magic point)

18: eproj(µn+1) := U (µn+1) −ΦnΦ
T
nU (µn+1)

19: φn+Nadd := PODNadd

(
eproj(µn+1)

)
. POD

20: Φn+Nadd := Φn
⋃
φn+Nadd . Basis enrichment, algorithm 3

21: PN+1 := PN
⋃
{µn+1}

22: XN+Nadd := XN

⊕
φn+Nadd

23: Set N := N + Nadd

24: else if ee > tolref then

25: Set ê = ˆ̂e, P̂i =
ˆ̂
Pi,

ˆ̂
Pi =

ˆ̂
Pi ⋃{µi+1} . h-refinement

26: end if

27: end while



Chapter 7

Algorithm Validations

The ultimate goal of the proposed POD-Greedy algorithm is to reach similar (or

preferably more rapid) maximum error convergence with the referenced one. The perfor-

mance of the proposed algorithm is verified when a good convergence is obtained, that

is to say, the proposed algorithm is accurate. Once the accuracy is validated, in next

section the feasibility in terms of the overall execution time is validated: due to the sub-

stantial overhead, the proposed algorithm is not likely to reach a shorter runtime than

the referenced one when the model is small. However, as the dimension of the model and

number of parameters increases, runtime of the reference algorithm increases exponen-

tially due to curse of dimensionality, while the proposed one increases much slower. If the

proposed algorithm does not have the ability to evaluate a much larger training set with

reasonable execution time, then it has no use as the reference POD-Greedy algorithm is

a better alternative. In this chapter he following aspects are going to be proved: (i) the

proposed algorithm is able to reach close convergence to the reference method, thus is

accurate (section 7.1); (ii) the proposed algorithm is able to evaluate a large training

set with reasonable accuracy and less runtime cost than the reference one when a large

model is evaluated, thus is feasible to be used in real-life applications (section 7.2).
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7.1 Accuracy of the proposed POD-Greedy algorithm

Due to the simple beam model structure, the reference POD-Greedy algorithm can

be used as a comparison: the maximum error convergence of proposed POD-Greedy

algorithm is expected to be close to the referenced one. In order to validate the accuracy

of the proposed algorithm, the following test stage is designed and added to the proposed

POD-Greedy algorithm: after each Greedy iteration is finished and Φ is constructed, the

true RB-error e(µ) will be computed ∀µ ∈ Ptrain and the error response surfaces will

be constructed, then maximum true RB-error will be extracted to plot the convergence

curve. It is emphasized that this stage is only for validation purpose, can be removed

at any time, and is completely independent of the proposed POD-Greedy algorithm.

The test stage requires exact solutions over the entire training set, while the proposed

algorithm does not. The proposed method is tested with a simple example (the 2D fixed

beam), then extended to a larger model (the 3D cantilever I beam).

7.1.1 The 2D fixed beam model

The simple fixed end beam as presented in fig. 2.9 is considered to verify the accuracy

of the proposed POD-Greedy algorithm. The physical domain contains 2 regions: the

matrix ΩM and the inclusion ΩI, where parameter value only varies in ΩI. Dirichlet

boundary conditions Γg are applied on both ends of the beam model, while a dynamic

impulse force pointing to the −y direction is applied to the midpoint of the upper edge.

Density is set to be fixed to 0.01. The force is defined by a Gaussian function. For the

contacted surfaces between inclusion and matrix, it is assumes that the coinciding nodes

are rigidly connected. The output quantity of interest is defined as the displacement of

the inclusion. The parameter is set to be µ ∈ [10−1, 101]. µ is set to be 1 for the matrix,

thus the inclusion models a soft-to-hard region in the fixed beam model. The choice of

µ1 has direct impact on the maximum error convergence, therefore different µ1 values

should be tested. For this purpose, 10−1, 100, 101 are chosen to be the testing values for
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µ1. For the sake of simplicity, it is assumed that there is no damping, i.e. the Rayleigh

parameters a = b = 0.

The weak nonintrusive technique is utilised in this experiment: the model geome-

try is constructed in Abaqus 6.14. The multi-dof dynamic model is meshed in Abaqus

with 3-node linear elements, results in 514 nodes and 920 elements. The inclusion con-

sists of 121 nodes and 200 elements. The affined system matrices (mass, damping and

stiffness matrices) are obtained by importing the Abaqus .MTX files, then affine param-

eterisation is performed to obtain the parametric system matrices. However, in order to

accelerate the process, not Abaqus but rather Matlab Newmark source code is used to

obtain the pre-computed solutions for the simple beam model (see appendix A.2 for the

weak nonintrusive technique).

7.1.2 Experiment 1: fix basis enrichment

The maximum error convergence of the proposed POD-Greedy algorithm is compared

with the reference based on the single inclusion beam model. In this experiment, total

time is set to be T = 4.9s, time step ∆t = 0.1s, results in a total number of Nt = 50 time

steps. If let N init = 10 for the initial iteration and Nadd = 4 for the successive iterations,

the total number of Greedy iterations NG = 11, results in N tot = 50 basis vectors after

all computations. The “error in the error” tolerance is set loosely to 0.25 to prevent

the sample domain from being over-refined. Parameter µ is moderately discretised into

Ntrain = 129 samples. The reason for choosing numbers 129 is that the interpolation sam-

ples are set to match the discretised training points, rather than falling between 2 values.

The projection error eproj(µn) is compressed by POD to be used in the basis enrichment.

A standard Gram-Schmidt process is applied to ensure the basis is orthonormalised.

In order to evaluate the performance of the proposed POD-Greedy algorithm, the

error convergence is tested for the following 2 cases: (i) proposed POD-Greedy vs pro-

posed POD-Greedy with initial refinement vs reference POD-Greedy (benchmark); (ii)
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proposed POD-Greedy vs other sampling approaches (pseudorandom, uniform system-

atic (uniform structural grid), quasi-random, Latin Hypercube). An initial refinement of

the interpolation samples might be performed to accelerate the convergence. In case (ii),

the experiment is repeated 5 times for random type approaches (pseudorandom, Latin

Hypercube) to ensure generality. The settings of other sampling methods in this exam-

ple are adapted from section 2.2.4. Another parameter which impacts the performance

of the reduced basis is the choice of initial magic point. The initial magic point might

be selected randomly but in this experiment 3 choices are tested: [10−1, 101, 100], which

represent the left and right boundaries and the central point of the parametric domain,

respectively. Choosing these 3 test cases also ensures generality of the experiment.

Numerical results

Figure 7.1 reports the maximum error convergence and corresponding sample loca-

tions for reference and proposed POD-Greedy algorithms. As expected, convergence of

the proposed POD-Greedy algorithm is generally slower but stays close to the referenced

one. It can be seen from fig. 7.1 that (a): maximum error convergences of reference

and proposed POD-Greedy algorithm are equally good until N = 38, then convergence

of the proposed method reaches the bottleneck and becomes slow; the initial refinement

contributes to the method as the sample locations are close to the referenced one, thus its

convergence follows the blue curve more closely. However, again the convergence reaches

the bottleneck after N = 38. The magic point location gives a possible reason for such

bottleneck: after N = 38, the proposed algorithm keeps on capturing the same magic

point for the successive 4 Greedy iterations, and reduction of the error is insufficient to

capture another sample point due to the fixed enrichment of the basis size. Therefore a

solution for this is fixing the reduction rate at each magic point rather than fixing the

enrichment of the basis size. This will be demonstrated in section 7.1.3.

Proposed POD-Greedy algorithm performs better in fig. 7.1 (b) as it generally follows



7.1. ACCURACY OF THE PROPOSED POD-GREEDY ALGORITHM 123

referenced one quite closely. The initial refinement performs equally well as the reference,

also the bias in 26 ≤ N ≤ 42 is fixed. Proposed POD-Greedy algorithm shows its power

in fig. 7.1 (c) as it reaches the same convergence as the reference until N = 42. Then it

converges slightly slower.

Next the comparison between proposed POD-Greedy algorithm and other statically

based sampling approaches are being investigated. Figure 7.2 (a) shows that even the

proposed POD-Greedy suffers the bottleneck in N > 38, it still converges more rapidly

than pseudorandom, systematic and Latin Hypercube sampling. Quasi-random sampling

reaches a lower maximum error at N = 50 but prior to that it converges slower than the

proposed algorithm too. It can be seen from fig. 7.2 (b) and (c) that proposed POD-

Greedy algorithm gives equally good reduced model as referenced one and surpasses all

other sampling approaches at N = 50. Finally it can be seen that reference POD-Greedy

converges faster and reaches lower maximum error for all cases, which is intuitively

expected. Therefore it can be concluded that maximum error convergence reference

POD-Greedy > proposed POD-Greedy > statically sampling approaches, and overall

performance of the proposed POD-Greedy algorithm is relatively satisfying.

7.1.3 Experiment 2: fix error reduction tolerance

The general setting of experiment 2 is adapted from experiment 1, except that this

time not a fixed number of N init and Nadd are chosen. Instead, algorithm 3 is applied at

step 18 of algorithm 4 and the reduction tolerance is set to eto
r = 0.8. More specifically,

once a magic point is located and the associated snapshot is obtained, algorithm 3 is ap-

plied on the snapshot until the reduction tolerance is reached. The output of algorithm 3

is Nadd, i.e. number of enriched basis vectors. Statistically based sampling approaches

are shown as comparisons.
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(a) µ1 = 10−1

(b) µ1 = 100

(c) µ1 = 101

Figure 7.1: Compare the maximum error convergence (left) and corresponding magic

point locations (right) for experiment 1. Convergence of reference and proposed methods

are overall relatively close, except µ1 = 10−1after 38 basis vectors.
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(a) Initial magic point µ = 10−1 (b) Initial magic point µ = 100 (c) Initial magic point µ = 101

Figure 7.2: Compare the maximum error convergence between proposed POD-Greedy

algorithm and other sampling methods for experiment 1. Proposed POD-Greedy algo-

rithm converges more rapidly in most cases. Sobol sequence is a strong component as it

converges fast in all 3 tests. This will be further investigated with the I beam model in

experiment 2.
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Numerical results

The maximum error convergence and corresponding sample locations are shown in

fig. 7.3 and fig. 7.4, respectively. Due to the introduction of the reduction tolerance,

this time the number of newly added basis vectors is no longer fixed. In fig. 7.3 (a), the

proposed POD-Greedy algorithm reaches slightly larger maximum relative error with

N = 83, while N = 76 basis vectors are generated with reference. Compared to the

results in fig. 7.1 (a), this time the propose algorithm is able to capture non-repeated

magic points and the aforementioned bottleneck is fixed which results in a better error

reduction. Figure 7.3 (b) shows that convergence of the proposed algorithm follows

relatively closely with reference POD-Greedy algorithm until N = 70. Again similar to

fig. 7.1 (c), a very good match between reference and proposed POD-Greedy algorithm

is shown in fig. 7.3 (c). The proposed one reaches slightly smaller maximum error with

2 more basis vectors.

Figure 7.4 shows that proposed POD-Greedy algorithm converges more rapidly and

reaches smaller maximum relative error with more compact bases than pseudorandom,

systematic and Latin Hypercube sampling. An exception is quasi-random sampling:

it shows a very close convergence to the reference and performs better than proposed

algorithm when N > 50.

Speed-up

Now speed-up of the ROM is studied. The speed-up is defined as the ratio of the

execution time of the ROM over the full order simulation of Matlab Newmark source

code and Abaqus. More specifically, the ROM approximation is U r (µ) = Φα(µ), while

the exact solution is either obtained by solving eq. (1.6) and eq. (1.7) in a step-by-

step manner (Matlab Newmark source code), or performing a full Abaqus simulation.

Notice that for the Abaqus simulation, GUI is not utilised, instead Matlab is used to call
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(a) Initial magic point µ = 10−1

(b) Initial magic point µ = 100

(c) Initial magic point µ = 101

Figure 7.3: The maximum error convergence (left) and corresponding magic point loca-

tions (right) for experiment 2. Again close convergence are observed between reference

and proposed methods. Compare with fig. 7.1, convergence of proposed method with

initial refinement improves as a result of fixed error reduction at magic points.
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(a) µ1 = 10−1 (b) µ1 = 100 (c) µ1 = 101

Figure 7.4: Compare the maximum error convergence between proposed POD-Greedy

algorithm and statistically based sampling methods for experiment 2. Proposed POD-

Greedy algorithm converges more rapidly than most other cases.
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Figure 7.5: Evolution of the speed-up with respect to the number of basis vectors.

Abaqus via the .inp file such that only purely simulation time is being considered. See

appendix A for more details. The result can be intuitive: as the number of reduced basis

vectors increases, the speed-up and error decrease in a roughly linear manner.

7.1.4 Summary

In this numerical example, the proposed POD-Greedy algorithm gives a satisfying

performance in the following aspects: compare with the optimum benchmark reference

POD-Greedy algorithm, the proposed method ‘chases’ the reference one quite closely with

respect to maximum error convergence; compare with other statistically based sampling

methods, the proposed algorithm converges more rapidly than most of them. It can be
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noticed that a strong opponent is the quasi-random sampling (Sobol sequence), for some

reason it performs better than propose POD-Greedy algorithm in many test cases, which

requires future research.

7.2 Feasibility of the proposed POD-Greedy algorithm

The accuracy of the proposed POD-Greedy algorithm has been verified in the previous

section. Numerical results show that the proposed algorithm reaches a rapid maximum

relative error convergence, that is to say, convergence of the proposed method approaches

the reference POD-Greedy algorithm. However, in section 7.1, when dealing with a sim-

ple model such as the 2D fixed beam, the numerical cost of the proposed algorithm

exceeds the reference one, hence is not feasible to be used in real-life applications. The

POD-Greedy algorithm is divided into a basis processing stage and a parameter sweep

stage. The basis processing stage costs of reference and proposed POD-Greedy algorithm

are named as Cst
bg and Cpr

bg , and parameter sweep stage costs of reference and proposed

POD-Greedy algorithm as Cst
ps and Cpr

ps , respectively. If comparing algorithm 2 with

algorithm 4, it can be seen that under certain circumstances:

• basis processing stage of algorithm 2 (step 6-12) may cost less than that of algo-

rithm 4 (step 4-10, 15-26), i.e. Cst
bg < Cpr

bg

• parameter sweep stage of algorithm 2 (step 4-5) may cost more than that of algo-

rithm 4 (step 11-14), i.e. Cst
ps > Cpr

ps .

Cst
ps dominates the numerical cost of algorithm 2 due to iterative computation of exact

solutions. Cst
ps grows exponentially with dimensional increase of parameters. In contrast,

algorithm 4 has a smaller Nexact, i.e. requires less computation of exact solutions (main

cost is Cpr
bg in step 4), in fact Cpr

bg is a function of Ni, N and Nj .
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Therefore the following prediction is made and proved in this numerical experiment:

when dealing with a large model and a large training set, Cst
bg +Cst

ps > Cpr
bg +Cpr

ps , i.e. the

proposed POD-Greedy algorithm is more efficient than the reference in terms of execution

time, thus is feasible to be utilised in real-life applications.

7.2.1 The 3D I beam model

In order to prove the above predictions, a new model is required. Compared with

the 2D fixed beam model, this new one should possess larger number of DoFs and time

steps, and possibly more parameters. Moreover for each parameter, the domain needs

to be further discretised to create a larger training set. However in this case the large

training set may not be able to be evaluated by the reference POD-Greedy algorithm

due to prohibitive computational cost, thus a coarse grid is drawn from the large one to

work as a validation training set. Hence the 3D I beam model is proposed as follows:

Geometry of the I beam model is chosen from British Steel Universal Beam Sections

(see [1], serial size 127×76×13) as an example problem to verify feasibility of the proposed

POD-Greedy algorithm. The I beam consists of 2 flanges and 1 web. One end of the

beam is fully fixed, results in a cantilever beam model. A dynamic force is applied on

the other end pointing to the −y direction, which is defined as a Gaussian function as

shown in fig. 7.6b. For time integration, the total time is set to T = 99s and time step

length is set to ∆t = 1s, result in 100 time steps. Rayleigh damping is applied to the

model, where the damping matrix is obtained by affine expansion: Cj := bKj , Kj is the

jth affine stiffness operator. Density of the I beam is fixed to 0.01. Parameters of the

web are the varying parameters µ in this case, i.e. the parameter values of flanges remain

unchanged. The parameter domain P := [10−1, 101] ×[10−1, 101]. Both parameters are

fixed to 1 in the flanges. The spacial quantity of interest is defined as the displacement

at the beam end, and time quantity of interest is step 45 − 55, i.e. Tqoi = [45, 55]s.

Again the weak nonintrusive technique is utilised in this experiment: the model geom-



132 CHAPTER 7. ALGORITHM VALIDATIONS

etry is constructed in Abaqus 6.14. The multi-dof dynamic model is moderately meshed

in Abaqus with 4-node tetrahedral elements (C3D4 element provided by Abaqus), re-

sults in 1978 nodes and 5909 elements. Number of DoF N = 5934. The web consists of

837 nodes and 2417 elements. The affined system matrices (mass, damping and stiffness

matrices) are obtained by importing the Abaqus .MTX files, then affine parameteri-

sation is performed to obtain the parameter-dependent system matrices. However, in

order to accelerate the process, not Abaqus but rather Matlab Newmark source code is

used to obtain the exact solutions for the simple beam model (see appendix A.2 for the

weak nonintrusive technique).

For proposed POD-Greedy algorithm, the parameter domain P is discretised into a

uniform grid (the training set) Ptrain with {µi, bj }
65,65
i, j=1 , hence consists of Ntrain = 65 ×

65 = 4225 samples. This parametric domain discretisation is chosen to show that the

proposed POD-Greedy algorithm is capable of evaluating a very large training set. This

large training set can no longer be evaluated in the reference POD-Greedy algorithm

due to substantial computational time, hence a coarse training set Ptrain
co ⊂ Ptrain with

Ntrain = 9 × 9 samples is extracted to be used as a validation set. Both reference and

proposed methods utilise Ptrain
co to compare the maximum relative error convergence and

verify the accuracy of the latter method. For testing purpose, a fixed basis enrichment

is set as follows: N init = 2 and Nadd = 2, NG = 20 greedy iterations are performed, result

in N = 40 basis vectors in total. To ensure generality, 2 cases are tested by choosing

different initial magic point: [µ, b] = [10−1, 10−1] and [µ, b] = [101, 101] (one at a time),

i.e. the first and last sample of Ptrain (see fig. 7.7).

Experiment settings For convergence comparison, the experiment is performed as

follows: first the proposed method with Ptrain (4225 samples) is performed for 20 Greedy

iterations, once it’s finished the reduced basisΦpro and magic point set PM
pro are collected.

Then reference method with Ptrain
co is performed to obtain its maximum relative error

convergence (see red curves in fig. 7.10). In order to evaluate performance of the output
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(a) Geometry

(b) Force

(c) Quantity of interest and boundary conditions (d) Mesh generated in Abaqus

Figure 7.6: The 3D I beam model(using geometry from British Steel). The I beam

consists of two flanges and one web. The model is meshed in Abaqus, results in 1978

nodes and 5909 tetrahedral elements. A dynamic force is applied at the centre node

(node 17) of top of the free end. The output of interest is the displacement of the free

end section.
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Figure 7.7: The fine training set Ptrain being evaluated in proposed method and pre-

diction, and the coarse training set Ptrain
co being evaluated in the reference POD-Greedy

algorithm. Two corner vertices (yellow diamonds) are chosen as test cases to verify

accuracy of the proposed POD-Greed algorithm.

reduced basis Φpro, its vectors are utilised to construct 20 error response surfaces in

a Greedy manner and find corresponding maximum error convergence (blue curves in

fig. 7.10). This output convergence is compared with the red curve. Finally statically

based sampling approaches are performed to compute error convergence with similar

settings, except this time PM is generated a priori.

7.2.2 Numerical results

Execution time First the numerical cost between the reference and proposed methods

is compared in fig. 7.8, which is measured by the execution time obtained from Matlab

profile function. According to Matlab profiler output, 1620 exact solutions are solved in

reference POD-Greedy algorithm which requires 4396.699 seconds, while total execution

time is Tref = 4475.864 seconds.
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Now execution time of the two test cases for the proposed method is investigated.

For case 1 ([µ, b] = [10−1, 10−1]): 2880 exact solutions are solved which costs 3628.533

seconds, while total time cost is Tpro = 67136.947 seconds. Number of exact solutions

fits our calculation as number of pre-computed responses required in proposed method

equals to Nexact = Ni ×N ×Nj ×2 = 9×40×4×2 = 2880. One may notice that it takes less

time for the proposed method to produce same number of exact solutions as reference

method. The reason is that proposed method allows us to evaluate only max time

quantity of interest, which is 55 time steps in this case; while residual-based reference

method requires to evaluate the entire 100 time steps. For case 2 ([µ, b] = [101, 101]):

h− refinement are performed twice to reduce the “error in the error”indicator below the

pre-set tolerance, results in 19 interpolation samples. Consequently, the computation

becomes more sophisticated and the cost increases. Number of exact solutions Nexact =

Ni×N×Nj×2 = 19×40×4×2 = 6080, costs 7504.856 seconds to evaluate. Total execution

time is 76063.020 seconds for case 2. The h− refinement results in accurate prediction of

magic points for Greedy iterations 2-5 (first magic point is manually set to be the same),

which is reflected in the maximum error convergence, see fig. 7.10b.

Although the fine sample domain (65 × 65) cannot be evaluated with the reference

method, one may still predict its execution time (see prediction 2 of fig. 7.8): number of

exact solutions require to be computed equals to Nexact = 65× 65× 20 = 84500, therefore

POD-Greedy parameter sweep stage would cost Tpre =
4396.699
1620 × 84500 = 229333.991

seconds, which is roughly 3.416 times more than test case 1 and 3.015 times more than

test case 2. From algorithm 2 it can be seen that increasing parametric domain size

leads to trivial increase of basis processing cost, thus here it is assumed the prediction

possesses similar basis processing execution time as the test. It is also interesting to see

if given same execution time as test 2, what domain discretisation would be achieved by

reference method. Result shows that only a 38 × 38 grid might be evaluated, which is

much smaller than Ptrain in test 2 (see prediction 1 of fig. 7.8).
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Figure 7.8: Schematic representation of POD-Greedy methods time cost. Prediction 1

shows that with the same execution time, reference method is only capable of evaluating

a 38×38 grid, while the proposed method evaluates a 65×65 grid. Prediction 2 shows that

if evaluating a 65×65 grid, reference method would cost 3.416 times more than test case 1.

Cost of the extra 2 major components in proposed method is highlighted. In the reference

method, when dealing with a large training set, parameter sweep requires a enormous

number of exact solutions being solved, which is the main cost of the entire method. The

proposed method achieves a major reduction of the parameter sweep, which allows the

users to evaluate large training sets. As a trade-off, it requires to compute a number

of exact solutions (impulse responses U imp) and the displacement vector product matrix

Mtrans
i . However even with the trade-off, proposed method still achieves a much less

expensive cost than the reference one when the same large training set is evaluated.
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Accuracy Accuracy of the proposed algorithm are again verified in this test: com-

pare maximum relative error convergences of reference with proposed POD-Greedy algo-

rithm over the coarse training set Ptrain
co for 20 Greedy iterations, and statistically based

sampling approaches (pseudorandom sampling, Halton sequence, Sobol sequence, Latin

hypercube sampling) are shown alongside. Selection of the statistically based samples

follows the same principle as discussed in section 2.2.4. Convergence results are presented

in fig. 7.10, which show good agreement between reference and proposed methods. Both

results show that proposed algorithm follows closely with the reference method, while

other methods converges much slower. By observing magic point distributions in fig. 7.11,

it can be seen that for reference and proposed methods, all points fall in b = 10−1, i.e. the

low damp region. This fits the observation in section 2.2.5. Results of many research show

that the magic point distribution is not necessarily uniform in the parameter domain.

For example, in [51, 53], Young’s modulus and damping coefficient are parameters and

output magic points are distributed in low damp regions; in [50], the diffusion constant of

subdomains are the parameters and magic points distribute along domain borders; [75]

perform Greedy procedure with a 3-parameter example problem and the output magic

points show a relatively uniform distribution. Based on existing research and our ex-

periment results, it can be seen that simply using statistically based sampling methods

does not predict the magic point distribution accurately in many cases, which is likely

to result in a slow maximum error convergence.

The first 10 dynamic modes (reduced basis vectors) generated by the first 5 Greedy

iterations for initial magic point [µ, b] = [10−1, 10−1] are proposed in fig. 7.12 and fig. 7.13.

For this case, reference and proposed POD-Greedy algorithm generate 2 identical modes.

The y-displacement are plotted on the beam model as colour fields. Suitable scale factors

are applied to enhance visibility.

Speed-up Now speed-up of the ROM is studied based on the I beam model. The speed-

up is studied in 2 parts: (a) speed-up of recovering solution using reduced order model
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(a)
ˆ̂
Pi for test case 1. (b) Refined

ˆ̂
Pi for test case 2.

Figure 7.9: Interpolation domains for the two test cases. Case 2 performs 2 local refine-

ments. The grids are partitioned for better visibility.

over computing full trajectory, (b) speed-up of proposed method over other sampling

methods when reaching same level of error. For (a), similar setting as section 7.1.3 is

applied. Again as the number of reduced basis vectors increases, the speed-up decrease in

a roughly linear manner. However compare with fig. 7.5, it can be seen that the speed-up

for I beam model increases while the same number of basis vectors being used. In (b),

maximum 40% of speed-up is achieved.

Time-domain displacements The time-domain displacements in fig. 7.15 for differ-

ent parametric values after 20 Greedy iterations are presented. The amplitude is the

mean displacement of the I beam free end under dynamic load. Each plot shows exact

solution (black curve), approximation constructed using reference (blue curve) and pro-

posed POD-Greedy (red curve) output reduced bases, respectively. Results suggest good

agreement between exact solution and the two approximations for all time steps, which

fits our expectation as the maximum relative error drops below 2% for both approxima-
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(a) Initial magic point [µ, b] = [10−1, 10−1] (b) Initial magic point [µ, b] = [101, 101]

Figure 7.10: Compare the maximum error convergence between reference, proposed POD-

Greedy algorithm and statistically based sampling methods. Reference and proposed

methods show close, fast convergences which well exceed other methods.
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(a) Sobol sequence samples (b) Halton sequence samples

(c) Latin hypercube samples (d) Pseudorandom samples

Figure 7.11: Compare locations of the 20 output samples of reference, proposed POD-

Greedy algorithms and statistically based methods. Some samples are chosen at the

same point thus gradient size is used to indicate weight of each sample. Notice that

for reference method, the points are sampled from the 9 × 9 grid Ptrain
co , while a 65 × 65

training set Ptrain is used to collect samples for proposed method.
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(a) Reference: mode 1-5 (b) Proposed: mode 1-5

Figure 7.12: First 5 modes for reference and proposed POD-Greedy algorithms, µ1 =

(E, b) = [10−1, 10−1]. The colour field is y-displacement.
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(a) Reference: mode 6-10 (b) Proposed: mode 6-10

Figure 7.13: Mode 6-10 for reference and proposed POD-Greedy algorithm outputs,

µ1 = (E, b) = [10−1, 10−1]. The colour field is y-displacement. Many modes are similar,

which is a possible cause of close convergence between reference and proposed algorithms.
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(a) Speed-up of reduced order model over full

Newmark solution.

(b) Speed-up of proposed method over statis-

tically based sampling methods when reaching

same level of error.

Figure 7.14: Speed-up results for test case 1. In (b), 1 case from pseudorandom and

Latin hypercube results are presented. Combine results of fig. 7.10a and (a) it can be

seen that with less than 2% of maximum error, the approximation achieves over 2000

times of speed-up over solving the full trajectory. Notice y-axis of (a) is normal scale

while (b) uses percentage scale.
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tions. Another observation is that as µ decreases and b increases, the mean displacements

change from overdamped to underdamped.

7.2.3 Summary

In this section from evaluating the I beam model, three remarks can be made: (i)

compare with reference method, the proposed method costs much less time to evaluate

a large training set; (ii) in terms of maximum error convergence, the proposed method

approaches the reference one, and converges much more rapidly than statistically based

sampling approaches; (iii) approximations obtained from the reduced basis are in good

agreements with exact solutions. They show that the proposed method is feasible, and

can be utilised as a possible solution for real-life applications.
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Figure 7.15: Mean displacements of the free end of the I beam under dynamic load for

different parametric values. Exact solution and approximations show good agreements.
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Chapter 8

Conclusions, Discussion and Future

work

8.1 Conclusion

In this thesis, a new POD-Greedy algorithm for elasto-dynamic problems is imple-

mented, which enables users to evaluate a large training set without losing numerical

efficiency and accuracy. As a response to section 1.2, the following objectives are met:

1. In chapter 2, numerical examples are provided to demonstrate the Greedy proce-

dure and POD-Greedy algorithms, along with comparisons with statistically based

sampling approaches. Results explain the optimality of Greedy procedure and

POD-Greedy algorithm, which provide assistance to users to understand the theo-

retical foundation of this thesis.

2. Based on standard POD-Greedy algorithm and driven by the goal of evaluating

a large training set, a new error indicator is proposed in chapter 4, which is de-

rived from the full space-time Newmark representation presented in chapter 3.

147
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The new error indicator is able to process a large training set by interpolating the

dynamic operator inverse. However direct interpolation of the dynamic operator

inverse is too expensive due to the large matrix size, therefore the operation is

decomposed into solving a set of impulse response problems to form a practical ap-

proach. Then a discrete Duhamel’s integral is performed to superpose the impulse

responses to obtain the approximated displacement error, which is the quantity of

interest. Up until now a preliminary numerical experiment is used to investigate the

effect of the new error indicator. This is compare with using residual as indicator,

see section 4.6 for details.

Computation of the new error indicator is then further accelerated by (i) compress-

ing the impulse responses and only shifting right singular vectors section 4.7; (ii)

performing POD on the collection of reduced variable vectors to fix size of the com-

ponent being interpolated section 4.8. These improvements are of vital importance

as it enables rapid interpolation, hence the evaluation of large training set becomes

possible.

3. A new “error in the error”indicator is proposed in chapter 5 to focus on providing

a criterion of local h − refinement. Using a fixed grid as interpolation samples

might be insufficient in terms of accuracy, thus the grid could be refined locally

to improve it. The “error in the error”indicator guides the algorithm to choose

when to perform Greedy iterations and when to refine the grid by setting up a

pre-defined tolerance. Numerical results are presented in section 5.2 to show the

rationale behind this indicator.

4. Once all essential components are proposed, they are combined and the proposed

POD-Greedy algorithm is presented. The algorithm utilises (i) the new displace-

ment error indicator, (ii) the “error in the error”indicator, such that a large train-

ing set can be evaluated. A set of illustrative experiments are provided in chap-

ter 7: first a small-scale 2D fixed beam model is used to prove that the algorithm

is accurate by showing that convergence of the proposed POD-Greedy algorithm
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approaches the reference one, and is more rapid than statically based sampling

methods; then a 3D I beam model is used to show that the proposed algorithm

is feasible to be used in real-life applications, more specifically, compare with ref-

erence algorithm, the proposed one costs much less time to evaluate a same large

training set without losing accuracy.

5. A nonintrusive Abaqus/Matlab code coupling technique is presented in appendix A,

which can be seamlessly integrated in ROM to utilise Abaqus as an external solver,

so that no source code is required during solving for exact solutions. This technique

builds a bridge between commercial FE software and source code, allows users to

isolate and analyse the problem by only modifying parametric values in some simple

text files without developing and validating their own codes.

A simple yet clear sequential introduction of the numerical results is given with the

following flow chart:
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Show that Greedy proce-

dure is an optimum approach.
section 2.2.4

Show that POD-Greedy pro-

cedure can be optimum.
section 2.2.5

Show that convergence of proposed method

approaches the reference one, and is

more rapid than using residual as indi-

cator. The “error in the error”indicator

effectively aids the proposed method.

section 4.6, section 5.2

With the 2D fixed beam model, show

that convergence of proposed method ap-

proaches the reference one, and exceeds

statistically based samping approaches.

section 7.1

With the 3D cantilever I beam model,

show that the proposed method is fea-

sible to be used in real-life applications.

section 7.2

8.2 Discussion

In many ways this thesis has tried to prove that the proposed POD-Greedy algorithm

is accurate and feasible. It is also interesting and important to reflect the advantages

and disadvantages of it. In this section, the rationale behind the good performance of
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the proposed method is discussed, and possible improvement to be pursued are pointed

out.

• For each individual iteration, cost of the reference POD-Greedy algorithm is a func-

tion of Ntrain. Ntrain suffers curse of dimensionality, i.e. large number of parameters

or highly discretised parametric domain results in substantial Ntrain, hence may lead

to prohibitive computational cost.

The proposed POD-Greedy algorithm alleviate this issue to enable evaluation of

large training sets. As shown in section 7.2.2, the proposed method is efficient

because it (i) performs fast interpolation; (ii) computes a limited number of exact

solutions. For each Greedy iteration, this number is Nexact = Ni × N × Nj × 2 for

proposed method, while Nexact = Ntrain for reference method. Hence it can be seen

that the proposed method pays off if Ni × N × Nj × 2 � Ntrain. In many cases this

is easy to be achieved if the parametric domain is moderately or highly discretised.

However if Ntrain is small one may use the reference method directly.

• Another component which affects cost of the proposed method is the computation

of the displacement vector product matrix Mtrans
i . Dimension of Mtrans

i equals to

N NjNt+1×N NjNt+1 and Ni such matrices need to be computed, therefore the cost

increases as number of Greedy iterations grows. The proposed method does not

pay off if a very large basis is generated, or a large number of time steps requires

to be analysed. However dimension of Mtrans
i is irrelevant to number of DoFs, thus

the proposed method should be used when dealing with a large model.

• The proposed method benefits the ROM community by providing a solution for fast

training set evaluation, however, this benefit is achieved with a trade-off of memory

cost due to interpolation. The impulse responses are treated with SVD hence

only singular vectors are stored, which is trivial. However the many displacement

vector product matrices required to be stored would result in high memory cost.

Possible solutions include memory increase, or developing optimisation approaches
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to alleviate this issue.

8.3 Future Work

Many aspects of this work may require further investigations, which are concluded

by providing some suggestions for future development.

As discussed in section 8.2, for the proposed POD-Greedy algorithm, our first future

work is to eliminate this time effect in the displacement vector product matrix Mtrans
i .

The size of interpolated component Mtrans,r
i has already been successfully fixed in the

Greedy parameter sweep, which is done by projecting Mtrans
i in a low-dimensional sub-

space. However number of time steps still affects computational cost of Mtrans
i . The

proposed method will be much improved if the time effect can be terminated.

Moreover, as Greedy iterations increase, number of reduced basis vectors also in-

creases which leads to dimension increase of Mtrans
i . Another factor is number of pa-

rameters and affined terms, if this is large, computations of Mtrans
i is also challenging.

However for the reference method, number of parameters and affined terms is also a

deciding factor due to curse of dimensionality. Fixing this will contribute to the entire

ROM community.

Another future work is to improve the “error in the error”indicator. Current imple-

mentation requires to compute approximated error and perform piecewise linear inter-

polation over two parameter sample grids, which can be computationally intensive. The

first possible improvement is: perform proposed method and only evaluate ê over P̂i,

once the reduced basis is obtained after a Greedy iteration, set up a sparse sample grid

and evaluate the error only over these grid points. If the distance exceed the pre-set toler-

ance, locally refine P̂i in the block which possesses largest error (apply same principle as

described in section 5.1). The second improvement is: instead of piecewise linear interpo-

lation, piecewise constant interpolation might be performed to reduce the cost. However
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this needs to be verified as the accuracy of interpolation decreases. Suitable combination

of the above 2 approaches should reduce cost of the “error in the error”indicator as well

as the proposed method.

Finally, the linear interpolation is hardly satisfying. The possibility of higher-order

interpolations has been investigated, such as quadratic interpolation. However numerical

instability were observed in the past experiments. In the future, other interpolation

polynomials might be explored such as splines to ensure positivity of the polynomials.
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Appendix A

Nonintrusive Code Coupling

Technique for Abaqus/Matlab

Most of the POD frameworks utilise intrusive methods based on FE source codes,

which is implemented by the authors or adapted from open-source codes. For exam-

ple, POD-based reduced order modelling software package RBmatlab is available from

http://www.ians.uni-stuttgart.de/MoRePaS/, for PGD-based codes, see [24]. However,

these coding works usually requires the detailed knowledge of Finite Element Method

from the author, thus is not the best choice in many cases. In order to circumvent

these obstacles, nonintrusive approaches which do not require knowledge of the govern-

ing equations or source codes are implemented. Moreover, commercial FE software such

as Abaqus or ANSYS are widely applied in industrial applications. Commercial FE

software has the following benefits: (i) the FE problem is solved in a black box, which

only requires definition of parameters, boundary conditions, etc; (ii) reliability of the

commercial software is tested by real-world applications, thus can be trusted; (iii) with

long-term development and good maintenance, commercial software is able to be used

to solve complex problems, while personal-developed source codes lack of such abilities.

Motivated by the above, a nonintrusive approach is implemented, which builds a bridge
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between parametric-ROM and commercial software Abaqus, such that the parametric

exact solutions are obtained from Abaqus and the output data are imported into Matlab

POD-Greedy code for further analysis. Abaqus provides many nonintrusive approaches

using scripts, such as (i) define .psf file which is a Python script; (ii) record the entire op-

eration as a macro; (iii) use plain-text .inp file; . Author has compared these approaches

and find that (i) and (ii) require knowledge of Python, which can be difficult for users,

(ii) is also cumbersome as unnecessary operations are also recorded as the macro sim-

ply records all operations. The third approach is user-friendly as it is a plain-text file

which uses nature language, all parameters are easy to be read and modified, no Python

knowledge is required.

A.1 Preparation

A.1.1 Installation of Abaqus on Ubuntu

In this section a step-by-step guide to install Abaqus on Ubuntu is presented. All the

following operations are performed with root permissions.

• install the necessary libraries:

sudo apt-get update

sudo apt-get install csh

sudo apt-get install libjpeg62

sudo apt-get install libstdc++5

• create directories:

sudo mkdir ∼/abaqus

sudo mkdir ∼/abaqustemp

sudo mkdir ∼/abaqusworks
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sudo mkdir /media/virtualCD

• download the iso file: ABAQUS_6.14-1_x64_Win_Linux.iso

• mount the iso file:

sudo mount -o loop /path/to/Abaqus/ABAQUS_6.14-1_x64_Win_Linux.iso /media/virtualCD/

• change directory to the upper level of the mounted .iso file location: cd /media

• run installation file: sudo ./virtualCD/setup

• follow the GUI to finish the installation, when prompted to locate the scratch

directory, use:

∼/abaqustemp

• run Abaqus by typing the following command in Terminal:

/abaqus/Commands/./abq6141 cae -mesa

if the command window is transparent, quit and use the following command to

start Abaqus:

env XLIB_SKIP_ARGB_VISUALS=1 ∼/abaqus/6.14-1/code/bin/abq6141 cae -mesa

A.1.2 Typical procedure of an Abaqus finite element analysis

Many tutorials can be found on the internet to demonstrate the procedure of Finite

Element analysis in Abaqus. The settings of the analysis rely heavily on the variation of

materials, geometries, assembly of parts, boundary conditions and loads, types of mesh,

etc. The general procedure can be summarised as following modules:

Step 1: Start Abaqus/CAE

Step 2: Create parts

Step 3: Create materials
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Step 4: Create and assign section properties

Step 5: Assemble the model

Step 6: Define analysis steps

Step 7: Apply boundary conditions and loads

Step 8: Mesh the model

Step 9: Create the job and submit

Step 10: Post-processing

A.1.3 Read nodal coordinates and element connectivities

The nonintrusive Matlab/Abaqus code coupling technique brings us the convenience

of exporting information directly from Abaqus. In this section the aim is to export

geometrical information, i.e. nodal coordinates and connectivities of structure and in-

clusions. These information can be read from the Abaqus input file and exported into

Matlab to be utilised. In order to read these information automatically, some naming

rules need to be followed during creation of model in Abaqus. If taking the fixed beam

model in section 2.2.4 as an example: the aim is to read nodal coordinates and element

connectivity from the input file. Nodal coordinates of the 2D beam mesh are denoted by

x − y coordinates in the .inp file:

*Node

1, 73.75, 10.

2, 17.3999996, 5.4000001

3, 66.8499985, 6.55000019

4, 43.2209625, 9.78882408
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5, 11.6499996, 12.3000002

......

in this case element type is defined as CPS3: 3-node linear triangles. Connectivity is

shown in the following demo, where the first column denotes element number:

*Element, type=CPS3

1, 400, 1, 14

2, 400, 34, 1

3, 402, 14, 15

4, 401, 33, 34

5, 425, 403, 422

......

therefore in order to read these information into Matlab, one first needs to locate nodal

information start and end rows, in this case they are *Node and *Element, type=CPS3.

Then locate element information of start and end rows needs to be located, in this case

they are *Element, type=CPS3 and *Nset, nset=Set-1. After obtaining the number of

the above rows, the information between can be read by Matlab for further use. Special

geometrical information are represented by sets, for instance the following set denotes

node number of the inclusion Ω1:

*Nset, nset=Set-1

5, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125

128, 129, 130, 131, 132, 133, 134, 629, 630, 631, 632, 633, 634, 635

638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651

......

connectivities of Ω1 are not completely represented in the input file, however it can be
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revealed from the corresponding node set. In case of multiple inclusions, different node

set will be created, one then read *Nset, nset=Set-n with a loop, and find related node

sets. Node sets needs to ne named carefully, best with continuous integers, such that any

confusions in the reading process are avoided.

After acquiring nodal coordinates and element connectivities, the mesh can be plotted

with Matlab, see fig. A.1. Methods readINPconsFixie provides a solution to read the con-

straint information from .inp file, readINPgeoMultiInc reads the geometric information

from .inp file, see GitHub repository https://github.com/thinkvantagedu/Matlab.

A.2 The weak nonintrusive technique

Extraction of the affined system matrices An important assumption in Model

Order Reduction methods is that the system matrices naturally admit an affine form. By

admitting this feature, the system matrices can be pre-computed in an computationally

intensive “offline” phase once and for all. In the “online” phase, the system matrices

are simply assembled by a linear combination of the pre-computed components with

coefficients. Once the model is built, material properties are properly defined and mesh

is generated, Abaqus provides us the functionality of exporting system matrices, thus the

computational cost is greatly saved without the need of matrix assembly. The procedures

of obtaining system matrices require modification of the .inp file: after creating the job,

select ‘Write Input’, an input file with extension ‘.inp’ will be created in the Abaqus

directory. Use a text editor to open the Abaqus input file, find the dashed line between

definition of Material properties and Steps. Add the following content to the row after

the dashed line:

*STEP,

name=exportmatrix

https://github.com/thinkvantagedu/Matlab
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Figure A.1: The parametric beam model (top) and mesh generated in Abaqus (middle)

and by Matlab (bottom), notice the Matlab mesh is generated by reading the input file

from Abaqus
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*MATRIX GENERATE, STIFFNESS,

MASS

*MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX

INPUT

*END

STEP

** -------------------------------------------

after editing the input file, switch back to Abaqus and create job again, this time select

‘Input file’ from the drop down menu of ‘Source’. Find the edited input file and submit

the job. After the analysis there will be ‘.mtx’ types of plain-text files in the same

directory, which contains information of the mass and stiffness matrices. There is no

need for the job to be successfully finished, even if it’s aborted, the ‘.mtx’ files will

still be exported. Methods ‘readMasMTX2DOF’ and ‘readStiMTX2DOFBCMod’ read and import

the mass and stiffness matrices respectively, see GitHub repository https://github.com/

thinkvantagedu/Matlab.

An important premise of exporting the affine system matrices from Abaqus is the

correct definitions of material parameters. Here Young’s modulus of the fixed beam is

taken as an example: define the system stiffness matrix in an affined form

K (µi, µs) = µiKi + µsKs (A.1)

hence Ki and Ks need to be extracted separately. In order to do this, one may define

(µi, µs) = (1, 0) for Ki and (µi, µs) = (0, 1) for Ks. Since Abaqus does not allow us to

define µ = 0, a value which close to machine precision might be chosen instead. In our

case µ is set to be 10−36 to be as close to 0 as possible. Once Ki and Ks are extracted

successfully, they can be further utilised in the POD-Greedy algorithm. The above

process reduces the numerical complexity by generating the system matrices by Abaqus.

Users can choose to import these system matrices and solve the parametric problems

https://github.com/thinkvantagedu/Matlab
https://github.com/thinkvantagedu/Matlab


A.3. THE STRONG NONINTRUSIVE TECHNIQUE 163

using source code. Since this approach still requires source code to solve the problem,

this method is named as the weak nonintrusive technique. Figure A.2 demonstrates the

process (take the fix beam model as an example with 1 inclusion and 1 structure).

A.3 The strong nonintrusive technique

.inp file structure The .inp file is a type of plain-text files generated by Abaqus,

which records all information being input by the user. The Abaqus job can be created

directly from the model, or indirectly from the .inp file. Being a type of file specially

created by Abaqus, the key words which defines the modules is aligned sequentially, and

clearly marked with double asterisks. Following is a minimum example:

*Heading

** Job name: l9h2SingleInc Model name: Model-1

** Generated by: Abaqus/CAE 6.12-4

......

** PARTS

......

** ASSEMBLY

......

** Section: Section-S

......

*Nset, nset=Set-af, instance=beam-1

......

*Elset, elset=Set-lc, instance=beam-1, generate

......

** MATERIALS

......
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Figure A.2: Flowchart of the weak nonintrusive technique, the yellow block indicates that

Matlab provides exact solutions.
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** -------------------------------------------

*STEP, name=exportmatrix

*MATRIX GENERATE, STIFFNESS, MASS

*MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX INPUT

*END STEP

** -------------------------------------------

** STEP: Step-af

......

** BOUNDARY CONDITIONS

** Name: BC-lc Type: Displacement/Rotation

......

** Name: BC-rc Type: Displacement/Rotation

......

** LOADS

** Name: Load-af Type: Concentrated force

......

** OUTPUT REQUESTS

......

** FIELD OUTPUT: F-Output-1

......

** HISTORY OUTPUT: H-Output-1

......

The material properties are defined in the material module, which is defined as fol-

lowing:

** MATERIALS

*Material, name=Material-I1

*Density

0.01,
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*Elastic

1, 0.3

the values under *Elastic are Young’s modulus E and Poisson’s ratio v, respectively.

Modification of these values allows us to evaluate the parametric model. More specifically,

a scalar string [E, v] is generated in Matlab and replace the original values in the .inp

file, then a new .inp file is generated to be the new Abaqus job. Abaqsu provides the

following code to allow users to run Abaqus in Matlab without invoking GUI:

system(noGUI job=beamModel inp=beamModel.inp interactive ask_delete=OFF’)

once the job is finished, a data file with extension .dat contains output responses, what

one needs is to read the data file with .dat extension into Matlab to be further processed.

Notice that the above process does not involve any operations from the source code, the

entire solution process is conducted in Abaqus. Therefore this method is named as the

strong nonintrusive technique. Flow chart fig. A.3 demonstrates the process.

A.3.1 Numerical example

The strong nonintrusive technique is demonstrated with the fixed beam model shown

in fig. 2.4. The Young’s modulus are set to be (EI, ES) = (10−1, 101). Numerical re-

sults show completely matched space-time responses between the strong Matlab/Abaqus

nonintrusive technique and Matlab source code, see fig. A.4.

Hilber-Hughes-Taylor (HHT) method [39, 87] is used in Abaqus as the time inte-

gration scheme for dynamic problems. In the above example where damping is 0, the

parameter of the HHT operator needs to be adjusted. Three parameters are involved in

the HHT operator: α, β and γ, where Abaqus only allows users to modify α, with the

other parameters being adjusted automatically to β = 1
4 × (1 − α)2 and γ = 1

2 − α. In

order to satisfy the no damping condition (energy preserving) hence make HHT method

equivalent to Newmark method, if let α = 0, which can be modified in the STEP module
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Figure A.3: Flowchart of strong nonintrusive technique, the yellow block indicates that

Abaqus provides exact solutions.
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Figure A.4: Compare outputs between the nonintrusive technique and Matlab source

code, figures showing DoF 100, 200, 300, 400 of the 2D fixed beam model.
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of the .inp file. The modification is as follows

** STEP: Step-af

*Step, name=Step-af, inc = 10000

*Dynamic,alpha=0.,direct

0.1, 9.9

A.4 Modification of force as a parameter

In Greedy procedure and the POD-Greedy algorithm, the error-residual relation

eq. (2.24) and eq. (2.25) are applied to compute the error. Residual appears in a form of

external force. Another case is the computation of the impulse responses in section 4.4.1,

where many impulses are generated and applied on the system. In these cases, the appli-

cation of the automated nonintrusive technique requires special treatment to define the

forces in the .inp file. The residual force in hyperbolic problem is chosen as an example.

Definition of force in the .inp file contains 3 parts: (i) the set of nodes where force

is applied; (ii) the amplitude; (iii) the force step; (iv) load information. The residual is

different from the point force as it is applied at each node of the structure. As a result,

one needs to define the time-history of the residual force individually for each node. In

the original .inp file, the point force is defined by the following commands

*Nset, nset=Set-af, instance=beam-1

9,

......

*Amplitude, name=Amp-af

0, 0, 0.1, 0.0332, 0.2, 0.1894, 0.3, 0.
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......

** STEP: Step-af

*Step, name=Step-af, inc = 10000

*Dynamic,alpha=0.,direct

0.1, 9.9

......

** Name: Load-af Type: Concentrated force

*Cload, amplitude=Amp-af

Set-af, 2, -1.

which need to be modified for the residual case. The new .inp file defines the residual

individually at each node as follows

*Nset, nset=Set-af1, instance=beam-1

1

*Nset, nset=Set-af2, instance=beam-1

2

......

*Amplitude, name=Amp-af1

......

*Amplitude, name=Amp-af2

......

** STEP: Step-af

*Step, name=Step-af, inc = 10000

*Dynamic,alpha=0.,direct

0.1, 9.9

......

** Name: Load-af Type: Concentrated force
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*Cload, amplitude=Amp-af1

Set-af1, 1, 1

*Cload, amplitude=Amp-af2

Set-af1, 2, 1

......
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