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Abstract

A new method for estimating Bayesian vector autoregression (VAR) models using priors from a dy-

namic stochastic general equilibrium (DSGE) model is presented. The DSGE model priors are used

to determine the moments of an independent Normal-Wishart prior for the VAR parameters. Two

hyper-parameters control the tightness of the DSGE-implied priors on the autoregressive coefficients

and the residual covariance matrix respectively. Selecting the values of the hyper-parameters that

maximize the marginal likelihood of the Bayesian VAR provides a method for isolating subsets of

DSGE parameter priors that are at odds with the data. The ability of the new method to correctly

detect misspecified DSGE priors is illustrated using a Monte Carlo experiment. The method gives

rise to a new ‘quasi-Bayesian’ estimation approach: posterior estimates of the DSGE parameter

vector can be recovered from the BVAR posterior estimates. An empirical application on US data

reveals economically meaningful differences in posterior parameter estimates when comparing the

quasi-Bayesian estimator with Bayesian maximum likelihood. The new method also indicates that

the DSGE prior implications for the residual covariance matrix are at odds with the data.

JEL Classification: C11, C13, C32, C52

Keywords: BVAR, SVAR, DSGE, DSGE-VAR, Gibbs Sampling, Marginal Likelihood Evaluation,
Predictive Likelihood Evaluation, Quasi-Bayesian DSGE Estimation

∗Corresponding author.
Email addresses: t.filippeli@qmul.ac.uk (Thomai Filippeli), Richard.Harrison@bankofengland.co.uk

(Richard Harrison), theodoridisk1@cardiff.ac.uk (Konstantinos Theodoridis)

Preprint submitted to Elsevier December 19, 2018



1. Introduction

A new method for estimating Bayesian vector autoregression (VAR) models using priors from a

dynamic stochastic general equilibrium (DSGE) model is developed, contributing to a rich litera-

ture that seeks to combine the theoretical structure of DSGE models with the fit and forecasting

performance of VAR models.

Dynamic stochastic general equilibrium (DSGE) models have become a workhorse for macroeco-

nomic policy analysis. Part of the attraction of these models is the discipline imposed by a tight

theoretical structure. The structure implies that the properties of the model are determined by

a relatively small number of ‘deep’ parameters, describing the preferences and constraints of op-

timizing agents. While the small number of parameters sharpens policy analysis, it also places

many restrictions on the implied time series properties of endogenous variables. So, a priori, DSGE

models may be expected to be at a disadvantage when used to fit time series data compared with

more densely parameterized models such as VARs.

This observation prompted the development of a literature exploring the links between DSGE and

VAR representations of the data and seeking to use information from DSGE models to apply some

structure to VAR priors. As discussed in Section 2, a key contribution to this literature is the

DSGE-VAR methodology proposed by del Negro and Schorfheide (2004, henceforth ‘DNS’). They

utilize a mapping from the linearized DSGE model solution to a VAR representation to build a

hierarchical prior. The researcher specifies a prior for the vector of deep DSGE model parameters.

The mapping can then be used to compute the coefficients of the implicit VAR representation,

using the population moments of the data implied by the DSGE model. This is used as the prior

for Bayesian VAR estimation.

The DNS approach can be interpreted in terms of augmenting the data sample with a sample of

artificial observations from the DSGE model. A hyper-parameter specifies the size of the sample of

artificial observations relative to the actual data sample. DNS propose that the hyper-parameter

be selected to maximize the marginal data density of the VAR.

The new method also uses the moments of the VAR representation of the DSGE model implied by

the priors for the DSGE parameters. However, in contrast to DNS, draws of the DSGE parameter

vector from the prior distribution are used to characterize the moments of VAR representation.

These moments are used to parameterize an independent Normal-Wishart distribution which forms

the prior for the Bayesian VAR estimation. Using a non-conjugate prior increases the computational

demands of the new method. However, such an approach uses more information from the DSGE

model priors. Specifically, the second moments of the VAR priors capture the variance of the VAR

coefficients implied by the priors for the deep DSGE parameters, rather than the variance of the

OLS estimators of those parameters as in DNS.
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Two hyper-parameters control the tightness of the DSGE-based priors on the VAR autoregres-

sive coefficients and the residual covariance matrix respectively. When the values of these hyper-

parameters are selected to maximize the marginal data density, the new method provides informa-

tion that helps to isolate subsets of the DSGE parameters for which the priors are substantially at

odds with the data. In particular, the parameters governing the variances of the structural shocks

in the DSGE model have a strong influence on the implied covariance matrix of VAR residuals.

If the relevant hyper-parameter indicates that DSGE prior information on the residual covariance

matrix should be down weighted, this may indicate that the priors for the parameters related to

the structural shocks are out of line with the data.

This property of the new method is verified using a Monte Carlo experiment with data generated

by a variant of the medium-scale DSGE model of Smets and Wouters (2007). The case in which

the new procedure is applied using misspecified priors for the variance of the structural shocks is

studied. In that experiment, the new approach consistently down weights the DSGE-based prior for

the VAR residual covariance matrix. Importantly, the hyper-parameter on the autoregressive VAR

parameters is often chosen to place a relatively large weight on the DSGE-based prior, allowing

the new approach to selectively use information from the DSGE parameter priors. This property

implies that, in the Monte Carlo study, the new procedure fits better on average than the DNS

method. That is because the DNS approach down-weights all information from the DSGE-based

priors, even when priors for only a subset of the model parameters are substantially at odds with

the data.

The new method can be used to uncover estimates of the posterior distributions for the DSGE

model parameters from the posterior distributions of the BVAR parameters. Posterior distributions

from this ‘quasi-Bayesian’ procedure can be compared with the posterior estimates from Bayesian

maximum likelihood estimation of the DSGE model. If the DSGE model estimated using Bayesian

maximum likelihood fits poorly, then such a comparison can provide useful information about which

particular parameters within the DSGE model parameter vector may be contributing to the poor

fit. An empirical application of the new approach using US data and the Smets and Wouters (2007)

model is used to illustrate this. Posterior DSGE parameter estimates from the new approach are

compared to those obtained using Bayesian maximum likelihood. This comparison indicates some

economically meaningful differences in the implied behavior of the model, including the parameters

of the monetary policy reaction and the macroeconomic responses to a monetary policy shock:

two topics of considerable interest to applied macroeconomists. As in the Monte Carlo study, the

empirical application implies that the DSGE-based prior for the residual covariance matrix is at

odds with the data.

The rest of the paper is organized as follows. The existing approaches for constructing priors from

structural models are reviewed in Section 2. The new method is described in Section 3. Section 4
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presents a Monte Carlo exercise comparing the new method to that of del Negro and Schorfheide

(2004). The empirical application is presented in Section 5 and the final section concludes.

2. Existing literature

As noted in the Introduction, there is a rich literature exploring the links between DSGE and VAR

models. A seminal contribution is Ingram and Whiteman (1994), who construct priors for a BVAR

using a simple Real Business Cycle (RBC, King et al., 1988) model. The authors exploit the simplic-

ity of their model and the properties of the normal distribution to allow posterior estimation of the

VAR implied by the DSGE model using single equation ‘mixed’ estimation procedures introduced

by Theil and Goldberger (1961).

De Jong et al. (1993) built on this approach by assuming that the prior distribution for the VAR

parameters has a conjugate Normal-Wishart distribution, estimating its moments using OLS on

stochastically simulated data. Conjugate priors imply that the posterior moments of the VAR

parameter vector can be written as weighted averages of the prior moments and the OLS estimates.

One implication of the De Jong et al. approach is that if the priors are strongly at odds with the

data, then posterior inference would be damaged since the priors are dogmatically applied in their

method.

The work of del Negro and Schorfheide (2004, ’DNS’) provides both a theoretical underpinning for

the De Jong et al. approach and a way to deal with issues arising from imposing priors that are

strongly at odds with the data. As in De Jong et al., the actual data set is augmented with a number

of artificial observations simulated from the DSGE model. The number of artificial observations is

proportional to the size of the actual sample (T ) by a factor λDS ∈ (0,∞). DNS factorize the VAR

likelihood of the augmented sample into the likelihood of the actual data and the likelihood of the

artificial data, with the latter interpreted as the prior density of the VAR parameters. To avoid the

stochastic variation rising by the simulation of the model, the authors replace the non-standardized

sample moments of the likelihood with their expected values. The resulting representation of the

likelihood can be viewed as the posterior kernel of the VAR parameter vector.

DNS show that the posterior distribution of the DSGE parameter vector can be obtained by com-

bining the marginal likelihood of the VAR (which in their case has an analytic form) with the prior

distribution of the DSGE parameter vector. DNS highlight that the empirical performance of the

time-series model crucially depends on the choice of λDS and, therefore, they recommend that it is

selected based on measures of fit such as the marginal likelihood. The resulting posterior density of

the DSGE parameter vector consists of the parameter values that minimize the distance between

the OLS estimated VAR parameter vector and the VAR parameters implied by the DSGE model.
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Loosely speaking, this can be viewed as the Bayesian version of the estimator proposed by Smith

(1993).

While offering a flexible approach for generating DSGE-based priors, the DNS approach has two

important implications for the behavior of those priors. The first is that the DSGE-based prior

moments are constructed by estimating a VAR(p) on data generated by the DSGE model and using

the moments of the OLS estimators to characterize the priors. This is not the prior distribution

of the VAR parameters, but rather the distribution of the OLS estimates of the VAR (computed

under the assumption that the DSGE model is the true data generating process). If the DSGE

model is the true data generating process, then consistency of the OLS estimator ensures that the

VAR estimates converge in probability to the VAR parameters implied by the DSGE model as the

pseudo sample becomes infinitely large. However, the OLS covariance matrix does not measure the

dispersion of the prior probability density function of the VAR parameters implied by the DSGE

model: it measures the variance of the estimation error, which converges to zero as the pseudo

sample becomes infinitely large.

These observations suggest that information captured by the second moments of the prior density

of the DSGE model parameters is not fully utilised. The variance of the priors over the DSGE

parameters reflects the researcher’s confidence over the range of values that the parameter vector

may take. It is likely that the researcher will have tighter priors over some parameters than others.

In this case, some VAR parameters should also receive a larger prior weight than others. This is an

important piece of information that helps researchers to improve the properties of DSGE models

and so should not be ignored. For instance, the distribution of the VAR impulse responses under

the prior depends on the variance of the VAR coefficients, which under DSGE-based priors should

also depend on the variance of the ‘deep’ DSGE parameters.

The second implication of the DNS approach is that the functional form of the prior covariance

matrix strongly restricts the covariances between the priors for the VAR coefficients. For instance,

it implies that the prior covariance matrix for each reduced form VAR equation has the same

structure (up to a scaling factor) (see, De Jong et al., 1993; Sims and Zha, 1998). There is no

reason to suggest that DSGE models would in general give rise to VAR representations with this

property.

The new approach therefore allows a more complete and more flexible specification of the prior

implied by the DSGE model. The inclusion of two hyper-parameters allows the new approach to

detect possible sources of misspecification in the DSGE priors. In recent research, Drautzburg

(2017) also introduces a second hyper-parameter controlling the tightness of the priors on the VAR

covariance matrix, by extending the DNS approach. While similar in spirit to the new method

presented in Section 3, Drautzburg (2017) does not conduct a comparison with the original DNS
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method.

3. Method

The new method uses the well-known mapping between DSGE and VAR models together with

the prior distribution of the DSGE parameter vector to derive the prior moments of the VAR

parameter vector (Fernandez-Villaverde et al., 2007; Christiano et al., 2006; Ravenna, 2007). Two

hyper-parameters are introduced to ensure well-behaved posterior inference. The method makes

it possible to to obtain the posterior distribution of the DSGE parameter vector from the BVAR

posterior moments.

We start from the state space representation of the rational expectations solution of a (log) linearized

DSGE model (M), which is given by

yt = A (θ) ξt, (3.1)

and

ξt = B (θ) ξt−1 + Υ (θ)ωt. (3.2)

Equation (3.2) describes the evolution of the state vector of the model, ξt ∈ Rdξ, where the da

indicates the dimension of the vector a. Equation (3.1) is the measurement equation mapping the

unobserved state of the economy to the observable variables, yt ∈ Rdy. The vector of the shocks,

ωt ∈ Rdω, is normally distributed with mean zero and identity covariance matrix. The elements

of the matrices A (θ), B (θ), and Υ (θ) are nonlinear functions of the DSGE parameter vector (the

‘structural parameter vector’), θ ∈ Θ.

The VAR(p) model (T ) of the observable variables y, is:

yt =

p∑
i=1

Φiyt−i + ut, (3.3)

where the vector of the reduced form errors is normally distributed as ut ∼ N (0,Σu). The standard

regression representation of the VAR is:

Y = ΦX + U, (3.4)

where Φ =
[

Φ1 · · · Φp

]
is the dy × (p · dy) matrix of the VAR coefficients, T is the sample

size, Y is the dy × T data matrix of the observed variables, X is the (p · dy) × T matrix of the

lagged data and U is the dy × T matrix of the VAR innovations.

To simplify notation, vectorized matrices are used. Specifically, define the vec operator as trans-

forming a da×da matrix to an da2×1 vector by stacking the columns. The vech operator is defined
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as the transformation of a da× da matrix to an (da(da+ 1)/2)× 1 vector by stacking the elements

on and below the main diagonal. The vectorized parameter matrices are then given by ϕ ≡ vec (Φ)
′

and σ ≡ vech(Σu)′ as the components of the VAR parameter vector δ ≡ (ϕ′, σ′)
′ ∈ ∆.

In contrast to the existing literature, the new method does not assume conjugate priors. Instead, the

prior distribution of the VAR parameter vector p (δ) is independent Normal-Wishart. This slightly

complicates the implementation of the approach, but the benefits repay the additional effort. In

particular, p(δ), can be interpreted as the prior distribution of the reduced-form parameter vector

δ. As noted in Section 2, this contrasts with previous approaches (such as the method of del Negro

and Schorfheide (2004)) that proxy this prior using the distribution of the OLS estimator δ̂ under

the assumption that the DSGE model is the true data generating process. As noted in Section 2,

using the distribution of the OLS estimator δ̂ produces some counterintuitive implications for the

prior covariance matrix of δ. The new approach circumvents these difficulties.

3.1. The Prior Moments of δ

The starting point for the new method is the DSGE model summarized by equations (3.1) and (3.2)

and the prior distribution of the structural parameter vector.

It is assumed that the number of shocks coincides with the number of the observable variables and

that the eigenvalues of the matrix

M (θ) ≡
[
Idξ −Υ (θ) [A (θ) Υ (θ)]

−1
A (θ)

]
B (θ) , (3.5)

are less than one in absolute terms (where Ida is the (da× da) identity matrix). This condition

is known as the Poor Man’s Invertibility Condition (PMIC) (Fernandez-Villaverde et al., 2007).

The mapping between the DSGE and VAR models relies on the PMIC being satisfied. While this

requirement reduces the set of models to which the new method can be applied, that is also true of

alternative approaches.

From the work of Fernandez-Villaverde et al. (2007), Christiano et al. (2006) and Ravenna (2007)

the PMIC implies an analytical mapping between the structural and VAR parameter vector.

φ : θ → δ, (3.6)

namely,

ϕ (θ) = vec (Φ (θ))
′
, (3.7)

Φ (θ) =
[

Φ1 (θ) · · · Φp (θ)
]
, (3.8)

Φi (θ) ≡ A (θ)B(θ) [M (θ)]
i−1

Υ(θ) [A (θ) Υ (θ)]
−1
, (3.9)
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and

σ (θ) = vec
(
[A (θ) Υ (θ)] [A (θ) Υ (θ)]

′)
. (3.10)

The non-linearity of the mapping and the non-normality of p(θ) implies that the functional form of

p (δ (θ)) does not have a closed-form and it cannot be approximated using either the ‘Mean Value

Theorem’ or the ‘Change of Variable Theorem’ : φ is not an injection (see Koop (2003, pp. 334)

and Ingram and Whiteman (1994) for a discussion of the mean value theorem).

The analysis proceeds with the assumption that the prior for δ(θ) is the independent Normal-

Wishart distribution and its moments are approximated through stochastic simulation. The ter-

minology ‘Normal-Wishart’ comes from the time series econometrics literature which would often

specify regression models in terms of the slope coefficients and ‘precision’ of the errors (the inverse

of the variance of the errors). The Normal-Wishart specification applies to the slope and precision

parameters. So the prior for the covariance matrix is inverse Wishart.

Specifically, the priors for the VAR parameters are given by:

p (ϕ,Σu) = p (ϕ) p (Σu) , (3.11)

p (ϕ) = N (µϕ,Σλϕ) , (3.12)

and

p (Σu) = IW
(
Π−1, η

)
. (3.13)

The notation p (α) denotes the prior distribution of the vector α. The notation N (µ,Σ) represents

the normal distribution, where µ and Σ denote the mean and the covariance matrix of the (vector-

valued) random variable, respectively. The Wishart distribution and its inverse are defined as

W (Π, η) and IW
(
Π−1, η

)
, respectively, where η is the degrees of freedom and Π is the scale

matrix. The matrix Σλϕ is described below.

Equations (3.5)–(3.10) and draws from p(θ) can be used to construct a pseudo set of S identically

independently distributed (i.i.d) draws of the reduced-form VAR parameter vector, {δj}Sj=1, where

j indexes the draw from p (θ). (Recall that ϕ ≡ vec (Φ)
′
, σ ≡ vech(Σu)′ and δ ≡ (ϕ′, σ′)

′
.) The

simulation steps are described in Appendix B.

Then from Theorem 3.1 and Proposition 3.2 of White (2001) it is known that the estimated moments
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converge to the true moments almost surely:

µ̂ϕ ≡ S−1
S∑
j=1

ϕ (θj)
a.s.→ µϕ, (3.14)

µ̂σ ≡ S−1
S∑
j=1

σ (θj)
a.s.→ µσ, (3.15)

and

Σ̂ϕ ≡ S−1
S∑
j=1

(ϕ (θj)− µ̂ϕ) (ϕ (θj)− µ̂ϕ)
′ a.s.→ Σϕ. (3.16)

From the properties of the Inverse Wishart distribution (Poirier, 1995) it is known that the scale

matrix Π is related to µσ (θ) through the following relationship:

µσ =
1

η − dy − 1
vec (Π) or Π = (η − dy − 1) Π∗, (3.17)

where vec (Π∗) ≡ µσ.

To study the variance of the prior distribution of Σu it is useful to exploit the properties of the

Wishart distribution, since Magnus and Neudecker (1979) provide an analytic expression for the

second moment of the Wishart distribution. The mapping between the Inverse-Wishart and the

Wishart distribution is given by Theorem 3.5.5 of Poirier (1995)

Σσ−1 ≡ 1

η − dy − 1

(
Idy2 +Kdy,dy

) (
(Π∗)

−1 ⊗ (Π∗)
−1
)
, (3.18)

where ⊗ denotes the Kronecker product operator and Kdm,dn is a commutation matrix, such that

for any dm× dn matrix G, Kdm,dnvec(G) = vec(G′).

Expressions (3.5)–(3.18) establish the mapping between the moments of p (θ) and p (δ (θ)).

3.2. Controlling the tightness of the DSGE priors

The economic assumptions underpinning DSGE models impose many restrictions on the behavior

of the data because the parameter vector θ is typically of relatively low dimension, compared with

the number of parameters in a comparable VAR. This section explains how these constraints can

be relaxed using the new method.

Singularity of Σϕ

DSGE models are typically able to describe the behavior of a set of variables using a relative small

number of so-called ‘deep’ parameters, relating to the optimization problems being solved by the
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agents in the model. In contrast, VAR models tend to have many more parameters since the lag

order of a VAR is typically chosen to provide a good fit to the observed data.

This implies that the dimension of θ is expected to be (much) smaller than ϕ. In turn, this means

that Σϕ, the covariance matrix of the VAR parameters implied by the DSGE model, may not be

positive definite. To avoid working with singular distributions, more structure on Σϕ is imposed by

assuming that it block diagonal. The length and, consequently, the number of blocks depends on the

number of the structural parameters. For instance, in the application in Section 5, there are twenty

five structural parameters and seventy five autoregressive coefficients, meaning that the minimum

number of blocks is three (twenty five parameters length, one for each lag) and the maximum is

seventy five (Σϕ is a diagonal matrix).

A diagonal specification for Σϕ can be implemented by setting all off-diagonal elements to zero.

Assuming that Σϕ is diagonal (similar to Minnesota priors) seems a natural choice when the re-

searcher is not very confident about the DSGE model’s predictions regarding the cross-moments

between the autoregressive coefficients and so does not wish to impose these restrictions on the

data. The new method therefore permits a more flexible prior for the covariance matrix of the

autoregressive parameters, ϕ, in contrast to the del Negro and Schorfheide (2004) approach which,

as noted in Section 2, forces the prior covariance structure to be identical (up to scale) across VAR

equations.

Hyper-Parameters

The work of De Jong et al. (1993) and del Negro and Schorfheide (2004) suggests that a device that

relaxes the ‘strength’ of the DSGE model priors when they are at odds with the data is desirable

to ensure well-behaved posterior inference.

Note that in the new method µϕ and µσ represent the DSGE model’s predictions of the mean of the

VAR coefficient and the residual variance-covariance vector, respectively. Sample estimates from

the data, µ̂ϕ and µ̂σ, are easily computed and these estimates must lie within the support of the

prior distribution implied by the DSGE model. This is possible by adjusting the variance around

µϕ and µσ.

From equation (3.18) it is evident that a suitable choice of the degrees of freedom η makes it possible

to either ‘shrink’ or ‘loosen’ the distribution around µσ−1 . Specifically, Σσ−1 → 0dy×dy as η → ∞
and Σσ−1 → ∞ as η → dy + 1. However, such a parameter does not exist for Σϕ. A second

hyper-parameter λ ∈ (0,∞) is therefore introduced to define:

Σλϕ ≡ λΣϕ. (3.19)
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Remark 3.1 below summarizes the role of the hyper-parameter vector λ̄ ≡ (λ, 1/η)
′

in the posterior

distribution of δ and, consequently, illustrates why its selection should be based on measures of fit.

3.3. VAR Posterior Estimation

The use of independent Normal-Wishart priors means that the posterior distribution of δ does

not have an analytic form. However, Proposition 3.1 states that the posterior kernel of the VAR

p
(
δ|Y, λ̄

)
can be expressed as the product of two conditional distributions, meaning that it can be

approximated using a Gibbs sampling scheme (Canova, 2005).

Proposition 3.1 If the prior for (ϕ,Σu) is specified as in equations (3.11)–(3.13), then the poste-

rior kernel of δ can be written as the product of two conditional distributions

p
(
δ|Y, λ̄

)
∝ N

(
µ̄ϕ, Σ̄ϕ|Σu

)
IW

(
Π̄, T + η|Φ

)
, (3.20)

where

Σ̄ϕ ≡
[
Σ̂−1
ϕ + Σ−1

λϕ

]−1

, (3.21)

µ̄ϕ ≡ Σ̄ϕ

[
Σ−1
λϕµϕ + Σ̂−1

ϕ ϕ̂
]
, (3.22)

and

Π̄ ≡ Π + T Σ̂u +
(

Φ− Φ̂
)′
X ′X

(
Φ− Φ̂

)
. (3.23)

and Σ̂u, Φ̂, ϕ̂ and Σ̂ϕ are the OLS estimates of Σu, Φ, ϕ and Σϕ, respectively. �

The proof can be found in Appendix A.

The following Remark highlights the role of λ̄ in p
(
δ|Y, λ̄

)
Remark 3.1 From Proposition 3.1 it can be seen that:

1. The posterior mean of the conditional Normal distribution of the VAR coefficient vector is a

weighted average between the prior mean and the OLS estimate

µ̄ϕ ≡
[
Σ̂−1
ϕ + Σ−1

λϕ

]−1 [
Σ−1
λϕµϕ + Σ̂−1

ϕ ϕ̂
]
,

=
[
Σ−1
λϕ + Σ̂−1

ϕ

]−1

Σ̂−1
ϕ ϕ̂+

[
Σ−1
λϕ + Σ̂−1

ϕ

]−1

Σ−1
λϕµϕ,

=

[
1

λ
Σ−1
ϕ + Σ̂−1

ϕ

]−1

Σ̂−1
ϕ ϕ̂+ λ

[
Σ−1
ϕ + λΣ̂−1

ϕ

]−1 1

λ
Σ−1
ϕ µϕ,

=

[
1

λ
Σ−1
ϕ + Σ̂−1

ϕ

]−1

Σ̂−1
ϕ ϕ̂+

[
Σ−1
ϕ + λΣ̂−1

ϕ

]−1

Σ−1
ϕ µϕ.
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From the latter expression it can be concluded that

µ̄ϕ → ϕ̂ as λ→∞, (3.24)

and

µ̄ϕ → µϕ as λ→ 0. (3.25)

2. From Theorem A.4.3(b) of Poirier (1995) it is known that

Σ̄ϕ ≡
[
Σ̂−1
ϕ + Σ−1

λϕ

]−1

= Σ̂ϕ − Σ̂ϕ

[
Σ̂ϕ + Σλϕ

]−1

Σ̂ϕ,

= Σ̂ϕ − Σ̂ϕ

[
Σ̂ϕ + λΣϕ

]−1

Σ̂ϕ. (3.26)

Meaning that

Σ̄ϕ → Σ̂ϕ as λ→∞, (3.27)

and

Σ̄ϕ → 0dϕ×dϕ as λ→ 0. (3.28)

3. From the properties of the inverse Wishart distribution is know that the posterior mean of Σu

is (Poirier, 1995)

µ̄σ =
η − dy − 1

T + η − dy − 1
µσ +

T

T + η − dy − 1
vec

(
Σ̂u

)
+

1

T + η − dy − 1
vec

[(
Φ− Φ̂

)′
X ′X

(
Φ− Φ̂

)]
.

This implies that

µ̄σ → vec
(

Σ̂u

)
as η − dy − 1→ 0 and λ→∞, (3.29)

and

µ̄σ → µσ as η →∞. (3.30)

4. From Magnus and Neudecker (1979) and Theorem 3.5.5 of Poirier (1995) it is known that

vec (Σσ−1) = (T + η − dy − 1)
(
Idy2 +Kdy,dy

) (
Π̄−1 ⊗ Π̄−1

)
,

= (T + η − dy − 1)
(
Idy2 +Kdy,dy

)
×

[
(η − dy − 1) Π∗ + T Σ̂u +

(
Φ− Φ̂

)′
X ′X

(
Φ− Φ̂

)]−1

⊗
[
(η − dy − 1) Π∗ + T Σ̂u +

(
Φ− Φ̂

)′
X ′X

(
Φ− Φ̂

)]−1

 .
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It follows that

vec (Σσ−1) → 1

T

(
Idy2 +Kdy,dy

) (
Σ̂−1
u ⊗ Σ̂−1

u

)
as η → dy + 1 and λ→∞, (3.31)

and

vec (Σσ−1) → 0dσ×dσ as η →∞. (3.32)

�

Estimation & Interpretation of λ̄

The previous section demonstrates how λ̄ affects the fit of the VAR. To guard against worsening

empirical performance, the data can be used to guide the choice of this hyper-parameter vector.

This approach mirrors the suggestion of del Negro and Schorfheide (2004), who select the value of

the hyper-parameter in their DSGE-VAR approach based on model fit.

A natural measure for this purpose is the marginal likelihood of the VAR, defined as:

mT (Y ) ≡
∫
LT (Y |δ) p (δ) dδ, (3.33)

where LT (Y |δ) is the likelihood of the VAR. In this case ̂̄λ should be be determined as:̂̄λ = arg max
λ̄∈(0,∞)×(dy+1,∞)

mT
(
Y |λ̄

)
. (3.34)

For the new method, mT
(
Y |λ̄

)
does not have an analytic form. However, it can be approximated

by the output of the Gibbs sampler using either the methodology developed by Chib (1995) or

Geweke’s modified harmonic mean estimator (Geweke, 1999).

In practice, the researcher can create a two dimensional grid ((0,∞) × (dy + 1,∞)) and evaluate

mT
(
Y |λ̄

)
for all values of λ̄ inside this grid, setting ̂̄λ equal to the λ̄ that corresponds to mT

(
Y |λ̄

)
with the highest value.

This estimation procedure implies that ̂̄λ can be interpreted as an indicator of model misspecifica-

tion. If the DSGE model used to derive the prior of δ is ‘far away’ from the true data generation

process, then ̂̄λ is expected to be large, implying that ̂̄λ is an increasing function of model misspec-

ification. Another useful by-product of estimation of ̂̄λ is that it is possible to identify which parts

of the VAR parameter vector (ϕ and/or σ) are best (or worst) summarized by the DSGE model.

The curvature of mT
(
Y |λ̄

)
surface with respect to λ and η identifies whether small changes in

these arguments lead to large variations in the fit of the VAR, as measured by mT
(
Y |λ̄

)
.
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3.4. Using quasi-Bayesian estimation to pinpoint misspecification

The logic of the previous section indicates that ̂̄λ can be thought of as an indicator of model misspec-

ification. This implies that a form of quasi-Bayesian estimation can be useful in further examining

the misspecification of the DSGE model. The following subsections present the estimation approach

and then describe how this can be used for model evaluation exercises.

3.4.1. Quasi-Bayesian estimation of θ

The quasi-Bayesian estimator is a limited information estimator. The theory regarding this type

of estimator is developed in a series of papers by Kwan (1999), Kim (2002) and Chernozhukov and

Hong (2003). The studies of del Negro and Schorfheide (2004) and Christiano et al. (2010) can be

viewed as attempts to incorporate an approach to selecting structural parameters based on limited

information metrics within the Bayesian framework.

The new method takes a similar perspective and illustrates how the structural parameters can be

selected to minimize the distance between the posterior moments of the BVAR parameters estimated

using the approach described in Section 3.3 and the VAR parameters implied by the DSGE model.

From del Negro and Schorfheide (2004, Section 3.3.1), the posterior distribution of θ can be obtained

by combining the marginal likelihood of the VAR with the prior distribution of the structural

parameter vector. However, mT

(
Y |θ, δ̂, ̂̄λ) does not have an analytic form. This difficulty is

surmounted by using the Laplace approximation and the mapping (3.6).

To illustrate this, suppose that the likelihood is close to symmetric and highly peaked around the

mode, δ∗, given by

δ∗ = arg maxLT (Y |δ) p
(
ϕ|θ, ̂̄λ) p(σu|θ, ̂̄λ) . (3.35)

Then mT

(
Y |θ, δ̂, ̂̄λ) can be approximated by

mT

(
Y |δ∗, ̂̄λ) = (2π)

dδ
∣∣∣−∇2

δ log p
(
δ∗|Y, ̂̄λ)∣∣∣− 1

2

exp

[
1

2
(δ − δ∗)′∇2

δ log p
(
δ∗|Y, ̂̄λ) (δ − δ∗)

]
, (3.36)

where ∇af (a) and ∇2
af (a) represent the matrices of the first and second derivatives of the vector

function f (a) with respect to the vector a, respectively (see Canova, 2005, Chapter 9). At this

point the same assumption adopted by del Negro and Schorfheide can be applied and δ can be
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replaced by δ (θ) , namely

mT

(
Y |δ∗, ̂̄λ) = (2π)

dδ
∣∣∣−∇2

δ log p
(
δ∗|Y, ̂̄λ)∣∣∣− 1

2

exp

[
1

2
(δ (θ)− δ∗)′∇2

δ log p
(
δ∗|Y, ̂̄λ) (δ (θ)− δ∗)

]
. (3.37)

Thus

p
(
θ|Y, δ∗, ̂̄λ) ∝ mT (Y |δ∗, ̂̄λ) p (θ) , (3.38)

and the posterior distribution of θ can be constructed using the random walk Metropolis-Hastings

Markov Chain Monte Carlo algorithm.

Intuitively, (3.38) can be interpreted as the set of θ values that minimize the distance between the

posterior mode of the VAR parameter vector estimated in the data and the one implied by the

model. The difference between this estimator and that of del Negro and Schorfheide (2004) is the

set of instruments for the estimation of θ. For the new method it is the posterior mode of δ, while

del Negro and Schorfheide use the OLS estimate.

If the DSGE model estimated using Bayesian maximum likelihood fits poorly, then it may be

useful to compare the quasi-Bayesian estimate of θ with the posterior estimate of θ from Bayesian

maximum likelihood. This can provide useful information about which particular parameters within

the θ vector may be contributing to the poor fit of the DSGE model. This approach is implemented

in the empirical application in Section 5.2.

Of course, by definition, limited information methods do not include all information relevant for

estimation. For example, Canova and Sala (2009) argue that full information techniques deliver

more accurate inference than limited information methods since the likelihood of the model conveys

substantially more information than the limited information objective function, which aids the

identification of the true parameter vector. However, Iskrev (2010) suggests that many DSGE

models may suffer from identification problems, even when full information methods are used.

Theodoridis (2011) illustrates that if a sufficient number of instruments (which fully summarize

the likelihood of the model under normality) and the optimal weighting matrix are used then, in

small samples, limited information estimation techniques outperform even Bayesian full information

procedures with extremely tight priors around the true parameter vector.

3.4.2. DSGE Evaluation

In this section, the previous results are developed to provide a method to evaluate the performance

of the DSGE model. The starting point is to note that the term inside the square brackets of (3.37)

W ≡ (δ (θ)− δ∗)′∇2
δ log p

(
δ∗|Y, ̂̄λ) (δ (θ)− δ∗) , (3.39)
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is a norm that assesses the plausibility of the DSGE model relative to the estimated VAR. To see

this notice that under the extreme assumption that the structural model is the true data generating

process and – for simplicity – the posterior mode is equal to the posterior mean then the expected

difference between δ (θ) and δ∗ should be equal to zero

Eθ (δ (θ)− δ∗) =

∫
(δ (θ)− δ∗) p

(
θ|Y, δ∗, ̂̄λ) dθ,

=

∫
δ (θ) p

(
θ|Y, δ∗, ̂̄λ) dθ − δ∗ = 0dδ×1. (3.40)

Alternatively, if the model is heavily misspecified then Eθ (δ (θ)− δ∗) will be large.

Under quadratic preferences, the following expressions

EθW =

∫
Wp

(
θ|Y, δ∗, ̂̄λ) dθ, (3.41)

and

Eθ (W−EθW)
2

=

∫
(W−EθW)

2
p
(
θ|Y, δ∗, ̂̄λ) dθ, (3.42)

can be interpreted as the expected loss and risk of usingM, respectively (Canova, 2005; Schorfheide,

2000). Furthermore, the overlap between the posterior distribution of W and the posterior distri-

bution of W∗

W∗ ≡ (δ − δ∗)′∇2
δ log p

(
δ∗|Y, ̂̄λ) (δ − δ∗) , (3.43)

which is obtained by the posterior estimation of the VAR, provides a more complete measure of

the misspecification of the structural model.

4. Monte Carlo experiments

This section uses Monte Carlo experiments to illustrate two aspects of the new estimation method.

The DSGE model is briefly described in Section 4.1. In Section 4.2, contains a Monte Carlo

investigation of the quasi-Bayesian estimator described in Section 3.4.1. Section 4.3 demonstrates

how the new estimation methodology detects priors about DSGE model shock variances that are

at odds with the data.

4.1. The DSGE model

The model is based on Smets and Wouters (2007) with two simplifications: there a smaller number

of shocks (specifically mark-up shocks are eliminated); and a simpler specification of the reaction

function for monetary policy is used.
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As the model is well known, the description is brief. Readers interested in the microfoundations

of the model are recommended to consult the original paper. All variables are expressed as log

deviations from their steady-state values, Et denotes the rational expectation formed at time t, the

steady-state value of a variable (e.g., yt) is denoted with an over-bar (ȳ) and all shocks (ωit) are

assumed to be normally distributed with zero mean and unit standard deviation.

The expenditure components are consumption (ct), investment (it), capital utilisation (zt) and

government spending εgt = ρgε
g
t−1 + σgω

g
t , which is assumed to be exogenous. The market clearing

condition is given by

yt = cyct + iyit + zyzt + εgt , (4.1)

where yt denotes total output. The consumption Euler equation is given by

ct =
λ

1 + λ
ct−1 +

1

1 + λ
Etct+1 +

(1− σC)
(
W̄hL̄|C̄

)
σC (1 + λ)

(Etlt+1 − lt)

− 1− λ
σC (1 + λ)

(
rt − Etπt+1 + εbt

)
, (4.2)

where lt is the hours worked, rt is the nominal interest rate, πt is the rate of inflation and εbt =

ρgε
b
t−1 + σgω

b
t is a risk premium process. In the absence of habit formation (λ = 0), equation (4.2)

reduces to the standard forward looking consumption Euler equation. The linearized investment

equation is given by

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1

(1 + β)S′′
qt + εit, (4.3)

where it denotes the investment and qt is the real value of existing capital stock (Tobin’s Q). The

sensitivity of investment to real value of the existing capital stock depends on the parameter S′′

(see, Christiano et al., 2005). The corresponding arbitrage equation for the value of capital is given

by

qt = β (1− δ)Etqt+1 + (1− β (1− δ))Etrkt+1 −
(
rt − Etπt+1 + εbt

)
, (4.4)

where rkt = − (kt − lt) +wt denotes the real rental rate of capital which is negatively related to the

capital-labor ratio and positively to the real wage.

On the supply side of the model, the aggregate production function is defined as

yt = φp (αkst + (1− α) lt + εat ) , (4.5)

where kst represents capital services which is a linear function of lagged installed capital (kt−1) and

the degree of capital utilization, zt (so kst = kt−1 + zt). Cost minimization implies that capital

utilization is proportional to the real rental rate of capital, zt = 1−ψ
ψ rkt . Total factor productivity
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follows an AR(1) process, εat = ρgε
a
t−1 + σgω

a
t . The accumulation process of installed capital is

kt = (1− δ) kt−1 + δit + (1 + β) δS′′εit, (4.6)

where the investment shock, εit = ρiε
i
t−1 + σiω

i
t, increases the stock of capital in the economy

exogenously. Monopolistic competition within the production sector and Calvo-pricing constraints

gives the following New-Keynesian Phillips curve for inflation (π)

πt =
ip

1 + βip
πt−1 +

β

1 + βip
Etπt+1 +

1

(1 + βip)

(1− βξp) (1− ξp)
(ξp ((φp − 1) εp + 1))

mct, (4.7)

where mct = αrkt + (1− a)wt −εat is the marginal cost of production. Monopolistic competition in

the labor market also gives rise to a similar New-Keynesian Phillips curve for wages

wt =
1

1 + β
wt−1 +

β

1 + β
(Etwt+1 + Etπt+1)− 1 + βiw

1 + β
πt +

iw
1 + β

πt−1

+
1

1 + β

(1− βξw) (1− ξw)

(ξw ((φw − 1) εw + 1))
µwt , (4.8)

where µwt =
(
σllt + 1

1−λ (ct − λct−1)
)
− wt is the representative household’s marginal benefit of

supplying an extra unit of labor service. Lags of inflation appear in both (4.7) and (4.8) because

price and wage setters that do not receive the Calvo signal to reset their price or wage may index it

to inflation in the previous period. The extent of indexation for prices and wages respectively are

captured by the parameters ip and iw.

Finally, the monetary policy maker is assumed to set the nominal interest rate (r) according to the

following Taylor-type rule

rt = ρrt−1 + (1− ρ) (rππt + ryyt) + εrt , (4.9)

where εrt = ρrε
r
t−1 + σrω

r
t is the monetary policy shock. This version of the monetary policy rule

specifies that the policymaker responds to detrended output rather than the output gap. This

modification to Smets and Wouters (2007) means that the model does not need to be augmented

with a block of equations that determine the flexible price allocations in the model (and hence the

output gap). This reduces the size of the model which reduces the computational burden somewhat.

4.2. The quasi-Bayesian estimator

This section contains a small simulation exercise to investigate the performance of the DSGE Quasi-

Bayesian (QB) estimator proposed in Section 3.4.1 against the standard full information Bayesian

maximum likelihood approach (BML). The data generating process is the model described in Section

4.1 and it is assumed that only output, consumption, investment, inflation and nominal interest

rates (yt, ct, it, πt and rt, respectively) are observed.
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The details of the Monte Carlo steps are described in Appendix C, though one particular aspect is

highlighted here. One critique of the proposed approach could be that the minimization required

to obtain δ∗ and ∇2
δ log p

(
δ∗|Y, ̂̄λ) will typically be computationally expensive. For that reason,

this step is replaced by the estimation of the VAR model, and the use of the posterior mean and

the variance-covariance matrix of p
(
δ|Y, ̂̄λ) instead of δ∗ and ∇2

δ log p
(
δ∗|Y, ̂̄λ), respectively. It

is common practice for applied researchers to approximate these quantities from the output of the

posterior simulation to reduce the computational burden (Koop and Poirier, 1993). Results using

δ∗ and ∇2
δ log p

(
δ∗|Y, ̂̄λ) are almost identical, but results are presented based on the approximation

to demonstrate that a less computationally demanding variant of the approach also performs well.

Before turning to the discussion of the results, it should be highlighted that the purpose of this

experiment is not to fully characterize the small-sample properties of the proposed estimator, for

which a more substantial exercise would be required. Instead, the aim is to assess whether the esti-

mator described in Section 3.4.1 behaves reasonably in small samples using the Bayesian maximum

likelihood estimator as the benchmark case to assess this.

Table E.1 provides description of the estimated parameters and their prior distributions used in

the Monte Carlo exercise. The prior moments (mean and standard deviation) of the structural

parameter vector are presented in the first two columns of Table E.3. The next three columns

display the median, the standard deviation and the bias for the BML estimator based on 1000

replications. The remaining columns capture the same information for the quasi-Bayesian estimator.

The median is calculated using the Mahanalobis metric, which has also been used by Jorda et al.

(2010) to construct simultaneous confidence regions for forecast paths and by Minford et al. (2009)

for DSGE model validation.

The results reveal that the quasi-Bayesian estimator performs better than the BML estimator not

only in terms of bias but also in terms of efficiency. It is not surprising that the limited information

estimator is less biased than the full information estimator in small samples (Ruge-Murcia, 2007;

Theodoridis, 2011). However, it seems striking that the QB estimator also appears to be more

efficient than the BML estimator. This result can be rationalized by appealing to the asymptotic

theory of minimum distance estimators (Newey and McFadden, 1986). From (3.37) and (3.38) it is

evident that the posterior distribution of the structural parameter vector consists of the values of θ

that minimize the distance between δ(θ) and δ∗. In other words, δ∗ can be interpreted as the set of

the instruments used in this estimation and −∇2
δ log p

(
δ∗|Y, ̂̄λ)−1

is its covariance matrix. Loosely

speaking, p
(
θ|Y, δ∗, ̂̄λ) can be viewed as the distribution of an efficient estimator, a property

exhibited by the limited information estimator but not the full information estimator. Clearly this

property does not hold asymptotically where the BML is unambiguously more efficient than the

QB estimator.
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4.3. Identifying DSGE model misspecification

A simple Monte Carlo experiment is used to demonstrate how the new estimation methodology may

provide information about the source of the DSGE model misspecification. As before, data from the

DSGE model described in Section 4.1 are simulated. Performance of VARs based on misspecified

DSGE priors is then examined.

In each replication, DSGE model parameters γ are drawn from the prior distributions detailed

in Table E.1 and the first two columns of Table E.3. The model is solved and used to generate

a sample of 10000 observations, keeping only the final 200 observations as the synthetic sample.

VARs based on misspecified priors for the DSGE model parameters are then estimated. This is in

contrast to the Monte Carlo exercise in Section 4.2, which is intended to explore the performance

of the estimation approach when the priors are centered on the true parameter values.

The misspecified priors are for the five elements of γ that correspond to the standard deviations of

the structural shocks: {σi, σg, σa, σb, σr}. For these parameters the prior is set to double the true

values of the parameters drawn in that iteration. The remaining twenty elements of γ are set equal

to the values drawn in that iteration.

The misspecified DSGE priors are used to estimate VARs using the DSGE-VAR methodology of

del Negro and Schorfheide (2004) and the proposed approach. The hyper-parameters control-

ling the weight on the DSGE model priors (respectively λ̄ and λDS) are chosen to maximize

the marginal likelihood. Following del Negro and Schorfheide (2004) the marginal likelihood

is evaluated for a grid of hyper-parameters, selecting the element of the grid with the highest

marginal likelihood. The grid for λDS is the same used by del Negro and Schorfheide (2004):

{0.2, 0.35, 0.5, 0.7, 1, 1.25, 1.5, 2, 2.5, 5}. The same grid is used for λ. The grid for η − dy − 1 is

{0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

The goal is to examine how the misspecified DSGE priors affect the values of the hyper-parameters

and the consequent effects on inference. The key finding is that the proposed approach successfully

identifies that the misspecification of the DSGE model priors is primarily manifest in the prior

variance of the VAR residuals, Σu. This is evident in the fact that the estimation procedure selects

the lowest value for the degrees of freedom η−dy−1 available in the grid in all replications. So the

proposed estimation procedure places very little weight on the DSGE prior for the VAR covariance

matrix.

In contrast, λ, the hyper-parameter controlling the tightness of the prior of the VAR coefficients ψ

has a non-degenerate distribution. The mean value for λ is around 0.37. This implies that the new

method recognizes the usefulness of the DSGE prior information for ϕ and, on average, recommends

that the econometrician shrink their estimate of the prior variance for ϕ by around 60%.
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When this exercise is repeated using the DSGE-VAR approach of del Negro and Schorfheide (2004),

the mean value for λDS is close to the mean value of λ for the proposed approach. However, this

similarity masks some differences in the distribution of the hyper-parameters λ and λDS . This is

illustrated in Table E.5, which records the number of observations of λ and λDS for each of the

grid points considered. The modal value for the hyper-parameter λ is 0.2 (the lowest value in the

grid) whereas the modal value for λDS is 0.35. However, the distribution of λ across the Monte

Carlo replications has a heavy right tail, putting a weight of 1 or more on the DSGE model priors

in 5% of the replications. In contrast, the λDS puts a weight of 1 or more on the DSGE priors in

just 2 of the 1000 replications. This observation suggests that, by consistently placing a low weight

on the implications of the misspecified DSGE priors for the VAR covariance matrix (by selecting a

low η in all cases), the new method is able to place more weight on the VAR coefficient parameters

ψ when it is appropriate to do so.

Figure D.9 plots the estimated density of marginal likelihood values across Monte Carlo replications

obtained from the new method (FHT) and the DSGE-VAR (DNS). The DSGE-VAR tends to fit

less well (based on this measure of fit) than the new estimator. There are two possible explanations

for this result.

First, it may be the case that the new method delivers better fit precisely because it puts less weight

on the DSGE priors when those priors are misspecified. That is, the improvement in fit may be

driven by those instances in which λ = 0.2, so that little weight is being placed on the DSGE priors.

Figure D.10 illustrates that this is not in fact the case. The Figure shows the joint distribution

of {λ, λDS} across the 1000 experiments. Each {λ, λDS} pair is represented by a circle, the area

of which is proportional to the number of observations in the set of experiments. The color of the

circle indicates the mean difference in marginal likelihood for those observations: a higher number

indicates that the proposed approach fits better than the DSGE-VAR. The proposed approach

produces better fit in almost all cases and the extent of the improvement in average fit is not driven

entirely by cases in which the proposed approach heavily down-weights the DSGE priors (that is,

for low values of λ).

The second reason that the new method might be expected to dominate is that it incorporates an

additional hyper-parameter (η). Indeed, the purpose of the experiment in this section is to illustrate

that the additional flexibility afforded by the additional hyper-parameter could be particularly

valuable when there is relatively localized misspecification of the DSGE model priors.

5. Empirical application

This section contains an empirical application of the proposed method and compares it to other

approaches.
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The data set for the United States constructed by Smets and Wouters (2007) is used. This data set

is publicly available from the website of the American Economic Association. Five time series are

used to estimate the model: output, consumption, investment, the Fed funds rate and inflation. The

Hodrick-Prescott filter is used to eliminate the zero frequency component of the non-stationary series

(real output, real consumption and real investment). The estimation sample is 1966Q1–1999Q4,

with the period 2000Q1–2004Q4 used to evaluate out of sample forecasting performance.

The simplified version of the Smets and Wouters (2007) model described in Section 4.1 is used. The

five shocks that drive the DSGE model are: a shock to consumer preferences, a shock to investment

adjustment costs, a productivity shock, a monetary policy shock and a government spending shock.

The shape of the prior distribution is given in Table E.1, while the prior moments can be found in

Table E.4.

5.1. Selection of hyper-parameters

The posterior BVAR parameter estimates are weighted averages between the DSGE-based prior

moments and the OLS estimates, with the weights controlled by the hyper-parameter vector

λ̄ = (λ, 1/η)
′
. The hyper-parameter vector needs to be decided before the estimation and the

marginal likelihood is used to select the value that maximizes the fit of the BVAR. This process is

computationally demanding since it requires the discretization of the interval where λ̄ is defined to

specify a grid of {η, λ} pairs and posterior estimation of the BVAR model for each grid point.

The relationship between the hyper-parameter vector λ̄ and the marginal likelihood of the VAR is

shown in Figure D.1. This reveals an incompatibility between the DSGE-based priors and the data,

since the marginal likelihood is maximized for a large value of λ and a small value of η. However, it

is possible to identify which part of the VAR parameter vector implied by the DSGE-based priors

disagrees most with the data. The significant steepness of the surface with respect to small values

of η indicates that small changes to the degrees of freedom parameter lead to substantial changes

in the fit of the model, while the surface is relatively flat with respect to λ and large values of η.

This suggests that the prior mean of the residual variance-covariance matrix is at odds with the

data.

5.2. Assessing misspecification using quasi-Bayesian estimation

In this section, the quasi-Bayesian (‘QB’) estimator described in Section 3.4.1 is used to uncover

posterior estimates for the DSGE parameter vector, θ, based on the BVAR posterior parameter esti-

mates. These estimates are compared with those generated by full information Bayesian maximum

likelihood (‘BML’) to investigate potential areas of misspecification in the DSGE model.
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To provide an ‘eyeball’ assessment of fit, Figure D.7 plots the Kalman filter estimates of the observed

series of the two estimators against the data (black solid line), which can be regarded as the one-

step-ahead within sample forecasts. The prediction errors are computed for models solved using

parameter values equal to the estimated modes of the posterior densities in each case. The in-sample

fit of the structural model using the full information BML estimator (dashed red line) seems very

good, though the QB estimator (dotted-dashed blue line) seems to fit marginally better.

If the BVAR model estimated using the new method is a good description of the data generating

process, then the metric discussed in Section 3.4.2 can be used to assess plausibility the restrictions

imposed by the BML and QB models on the data. Table E.2 displays the EθW and

√
Eθ (W−EθW)

2

moments indicating that the expected loss and risk of using the BML instead of the QB model is

substantial. Since the latter model is estimated by selecting the structural parameter vector to

minimize the distance between the VAR parameter vector implied by the DSGE model and the

VAR parameter estimated from the data, this is unsurprising.

The posterior distributions of BML-W (red dashed line) and QB-W (blue dashed-dotted line) are

plotted against the posterior distribution ofW∗ in Figure D.4. While the BML model appears to be

well estimated, its VAR predictions seem to be very different from those observed in the data. The

picture looks better for the QB model, though even in this case the overlap between the posterior

distribution of QB-W and W∗ is almost zero. One interpretation of this result is that the DSGE

model’s restrictions on the properties of the data are quite severe, even when θ has been selected to

give the best chance to the DSGE model of reproducing the estimated VAR dynamics. Again this

may be unsurprising since the VAR model has ninety well-estimated parameters and the DSGE

only twenty five.

It is possible to investigate which elements of the DSGE model structure may be placing the harshest

restrictions on the behavior of the data, by examining the estimation results in more detail. The

posterior distribution of the DSGE model parameters generated by the BML and QB estimators

are plotted with the prior distributions in Figure D.5. Table E.4 provides summary statistics. The

posterior variance for most of the QB estimates (eighteen out of twenty five) is smaller than the

posterior variance of the BML estimates. This result is consistent with the Monte Carlo evidence

presented in Section 4.2.

In terms of an economic interpretation, marginal cost variations have a smaller impact on current

inflation in the QB case (0.079), compared to the BML estimate (0.243). Additionally, the labor

supply curve responds less to wage and consumption movements in the QB case. The effect of the

expected growth of hours worked on consumption in the Euler equation (4.2) is much smaller in

the QB variant (0.079 versus 0.188 in the BML case). The response of monetary policy to inflation

is larger in the QB case.
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In general, the posterior estimates of the standard deviations of the structural shocks are smaller

in the QB case (an exception being the monetary policy shock). The overlap of the posterior

distributions of the persistence parameters of the risk premium, government spending and interest

rate shocks is quite small. The fact that the BML and QB methods generate somewhat different

estimates of the shock process parameters is consistent with the finding that the prior mean of the

residual variance-covariance matrix of the VAR is at odds with the data, as demonstrated in Section

5.1. Of course Σu is a function of all structural parameters, though the parameters governing the

variability and persistence of the shock processes have a particularly important influence. From

equation (3.2) it is evident that the parameters controlling the variance of the structural shocks

will enter the matrix Υ. From equation (3.10) it is evident that Σv = [AΥ] [AΥ]
′
.

The parameter differences documented above generate different economic behavior, as can been

seen from the impulse response function (IRF) comparison in Figure D.6. For instance, in the

QB case, a smaller and less persistent government spending shock crowds out less consumption and

investment than in the BML case. The difference in consumption responses leads to different profiles

for real wages (in the BML case, agents supply more labor pushing wages down) and, consequently,

different profiles for marginal cost, inflation and interest rates.

Another example is the investment shock: a similar perturbation leads to a smaller rise in investment

and, consequently, to a lower capital stock for the QB case. In the BML variant, the fall in the

rental rate of capital exceeds the increases in the wages (due to higher labor demand) keeping the

marginal cost below base from the fourth period after the shock. However, this does not happen

in the QB variant, where marginal cost stays above base for the entire duration of the shock, with

obvious implications for inflation and the interest rate.

The alternative estimation approaches deliver somewhat different impulse responses to a monetary

policy shock, which is often the focus of interest in monetary DSGE models (see, Christiano et al.,

2005). The higher estimated price stickiness in the QB variant gives rise to more persistent re-

sponses, despite the fact that the degree of interest rate smoothing in the Taylor rule is estimated

to be smaller than the BML variant.

Figure D.8 computes the contribution of each shock to the variance of the h-period-ahead forecast

error of the observable vector (h =∞ captures the long-run effect). Although both decompositions

look very similar, the QB estimator notably assigns more importance to the monetary policy shock

and reduces the effects of the productivity disturbance to all series except the nominal interest rate.

This is consistent with the flatter QB Phillips curve – inflation is mainly driven by productivity

shocks – and the higher inflation weight in the QB Taylor rule. The contribution of the government

spending shock to fluctuations in consumption and investment is small in the BML case, but its

contribution is almost zero in the QB variant, in which consumption and investment are driven
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primarily by the risk premium and investment shock, respectively. Taken together with the com-

parison of impulse responses, it is evident that the alternative estimation approaches give rise to

parameter estimates that have economically significant implications in some cases.

6. Conclusion

A new method for estimating BVAR models using priors from DSGE model is developed. The

method uses the DSGE model priors to determine the moments of an independent Normal-Wishart

prior for the VAR parameters. Two hyper-parameters control the tightness of the DSGE-implied

priors on the autoregressive coefficients and the residual covariance matrix respectively. Compared

with existing approaches, the new method makes more use of the information about the second

moments of the VAR parameters contained in the DSGE parameter priors. The hyper-parameters

provide a device for the researcher to detect subsets of DSGE parameter priors that are particularly

at odds with the data.

The new method can be used to uncover the posterior density of the DSGE parameter vector from

the posterior estimates of the VAR parameters. This new quasi-Bayesian estimator can also be used

to assess instances in which the DSGE prior is at odds with the data. In particular, a comparison of

the posterior estimates from the new quasi-Bayesian approach with those from Bayesian maximum

likelihood may provide useful information about specific parameter priors that are at odds with the

data. The strengths of the new method are illustrated using both Monte Carlo examples and an

empirical exercise using US data.
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Appendix A. Proofs

Proof: of Proposition 3.1
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δ|Y, δ̂, θ, λ̄
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]}
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exp
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u Π (θ)

)}
× |Σu|−0.5T

exp

{
−0.5

[(
Σ−0.5
u ⊗ IT

)
y −

(
Σ−0.5
u ⊗X
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)
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(
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u ⊗X

)
ϕ
] }

,

= |Σλϕ (θ)|−0.5dϕ |Π (θ)|0.5η |Σu|−0.5(T+η+dy+1)
exp

{
−0.5tr

(
Σ−1
u Π (θ)
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(
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(
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u ⊗X

)
ϕ
]

+
[
Σλϕ (θ)

−0.5
(ϕ− µϕ (θ))

]′ [
Σλϕ (θ)
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]

 .(A.1)

Similar to Canova (2005, Chapter 10, page: 354), let Y ≡
[

Σλϕ (θ)
−0.5

µϕ (θ)
(
Σ−0.5
u ⊗ IT

)
y
]′

and X ≡
[

Σλϕ (θ)
−0.5 (

Σ−0.5
u ⊗X

) ]′
, then (A.1) becomes
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δ|Y, δ̂, θ, λ̄

)
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by setting

µ̄ϕ = (X ′X )
−1 X ′Y =

[
Σλϕ (θ)

−1
+
(
Σ−1
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)]−1 [
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and

Σ̄ϕ ≡ (X ′X )
−1

=
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ϕ
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(A.2) reduces to

p (δ|Yt, λ, p (θ)) ∝ |Σλϕ (θ)|−0.5dϕ |Π (θ)|0.5η |Σu|−0.5(η+dy+1)
exp

{
−0.5tr

(
Σ−1
u Π (θ)

)}
(A.5)
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.

From (A.5), it can be seen that conditioning on Σu,

p
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meaning that ϕ is normally distributed with mean and variance equal to µ̄ϕ and Σ̄ϕ, respectively.

Alternatively, equation (A.1) can also be written as
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which, conditional on ϕ, is the Wishart distribution with Π (θ) + T Σ̂u +
(

Φ− Φ̂
)′
X ′X

(
Φ− Φ̂

)
scale matrix and T + η degrees of freedom. �
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Appendix B. δ Draws

This Appendix explains how the draws of δ are produced

1. Draw θj from p (θ) and solve the DSGE model

2. If θj satisfies Blanchard and Kahn’s conditions (Blanchard and Kahn, 1980) calculate the M

matrix (3.5) else go to step 1

3. If the eigenvalues of M are less than one in absolute terms calculate ϕj and σj using equations

(3.7)–(3.10)) else go to step 1

4. Repeat steps 1 to 3 S times

Appendix C. Implementation of Monte Carlo assessment of QB estimator

This Appendix describes the steps required to produce Table E.3.

1. The draws described in Appendix Appendix B are used to construct the prior moments of δ

(3.5)–(3.10)

2. A sample of 200 observations is generated by the model described in Section 4.1 based on the

prior moments of θ given by Table E.3 for yt, ct, it, πt and rt

3. A BVAR with 3 lags is fitted to this data.

4. The posterior median and variance-covariance matrix of δ are calculated. The former is

obtained using the Mahanolobis metric, namely,

δ̄median = arg max
(
δ̄j − µδ̄

)′
Σ−1
δ̄

(
δ̄j − µδ̄

)
,

where µδ̄ and Σδ̄ are the posterior mean and variance-covariance matrix of p
(
δ|Y, δ̂, p (θ)

)
5. Given the posterior moments of δ, the posterior mode of θ is obtained by minimizing m̃ (yt|δ∗, λ) p (θ),

namely

θ∗ = arg max m̃ (yt|δ∗, λ) p (θ) .

6. Steps 2-5 are repeated 1000 times
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Appendix D. Figures

Figure D.1: FT-VAR λ = (λδ, η)
′
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Figure D.2: DS-VAR λ
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Figure D.3: M-VAR λ
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Figure D.4: DSGE Evaluation
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Figure D.5: Prior versus Posterior DSGE Parameter Distribution
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Figure D.6: DSGE Posterior IRFs
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Figure D.7: BML One-Step-Ahead Forecasts & FVD
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Figure D.8: BML FVD QB FVD
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Figure D.9: Estimated density of marginal likelihood values across Monte Carlo replications
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Figure D.10: Distribution of λ and λDS across Monte Carlo replications
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Appendix E. Tables

Table E.1: DSGE Parameter Description & Prior Distribution

Symbols Description Prior Distribution

B Fixed Cost Normal
S” Steady State Capital Adjustment Cost Elasticity Normal
α Capital Production Share Normal
σ Intertemporal Substitution Normal
h Habit Persistence Beta
ξw Wages Calvo Parameter Beta
σl Labour Supply Elasticity Normal
ξp Prices Calvo Parameter Beta
iw Wage Indexation Beta
ip Price Indexation Beta
z Capital Utilisation Adjustment Cost Beta
φπ Taylor Inflation Parameter Normal
φr Taylor Inertia Parameter Beta
φy Taylor Output Gap Parameter Normal
ρi Investment Shock Persistence Beta
ρg Government Spending Shock Persistence Beta
ρa Productivity Shock Persistence Beta
ρb Premium Shock Shock Persistence Beta
ρr Monetary Policy Shock Shock Persistence Beta
σi Investment Shock Uncertainty Inv. Gamma
σg Government Spending Shock Uncertainty Inv. Gamma
σa Productivity Shock Uncertainty Inv. Gamma
σb Risk Premium Shock Uncertainty Inv. Gamma
σr Policy Shock Uncertainty Inv. Gamma

Table E.2: DSGE Evaluation

Model EθW
√

Eθ (W−EθW)
2

BML 1257.300 215.452
QB 224.727 9.178
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Table E.3: Full versus Limited Information Bayesian Monte Carlo Evaluation

Prior Moments BML QB
Parameters Mean STD Median Bias STD Median Bias STD

σa 0.462 0.100 0.461 0.002 0.069 0.451 0.023 0.013
σb 0.182 0.100 0.137 0.245 0.106 0.166 0.089 0.087
σg 0.609 0.100 0.560 0.080 0.095 0.613 0.006 0.018
σr 0.460 0.100 0.465 0.012 0.091 0.434 0.056 0.070
σq 0.240 0.100 0.180 0.248 0.097 0.268 0.119 0.070
ρa 0.950 0.100 0.948 0.002 0.131 0.985 0.036 0.018
ρb 0.180 0.100 0.113 0.371 0.085 0.169 0.061 0.046
ρg 0.970 0.100 0.861 0.112 0.189 0.983 0.013 0.009
ρq 0.710 0.100 0.813 0.145 0.097 0.698 0.017 0.059
ρm 0.120 0.100 0.084 0.300 0.094 0.026 0.782 0.021
S′′ 5.740 1.500 6.356 0.107 1.036 5.583 0.027 0.392
σ 0.900 0.375 0.888 0.013 0.353 0.966 0.074 0.242
h 0.710 0.050 0.684 0.037 0.045 0.725 0.021 0.013
ξw 0.700 0.100 0.763 0.091 0.080 0.717 0.025 0.017
σl 1.830 0.750 1.841 0.006 0.568 1.818 0.007 0.057
ξp 0.660 0.100 0.695 0.052 0.089 0.712 0.078 0.038
iw 0.580 0.150 0.591 0.019 0.063 0.595 0.025 0.012
ip 0.240 0.150 0.191 0.205 0.144 0.190 0.207 0.065
z 0.540 0.150 0.547 0.014 0.130 0.536 0.008 0.029
B 1.600 0.125 1.592 0.005 0.054 1.607 0.004 0.013
φπ 2.040 0.150 2.059 0.009 0.086 2.071 0.015 0.033
φr 0.810 0.100 0.749 0.075 0.091 0.814 0.005 0.052
φy 0.300 0.050 0.291 0.030 0.038 0.292 0.026 0.014
ρga 0.050 0.050 0.051 0.024 0.013 0.049 0.022 0.001
α 0.190 0.050 0.176 0.072 0.045 0.193 0.014 0.018
Total Bias 2.275 1.762
Average Bias 0.091 0.070
Total STD 3.890 1.408
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Table E.4: Full versus Limited Information Bayesian Estimation

Prior Moments BML QB
Parameters Mean STD Median LwB UpB Median LwB UpB

σa 0.500 0.100 0.832 0.576 1.017 0.533 0.384 0.710
σb 0.500 0.100 0.331 0.266 0.395 0.237 0.193 0.271
σg 0.500 0.100 0.676 0.605 0.732 0.413 0.355 0.462
σr 0.500 0.100 0.679 0.586 0.808 0.539 0.432 0.623
σq 0.500 0.100 0.273 0.238 0.305 0.265 0.229 0.309
ρa 0.750 0.100 0.797 0.713 0.905 0.811 0.729 0.892
ρb 0.750 0.100 0.627 0.504 0.731 0.514 0.325 0.615
ρg 0.750 0.100 0.718 0.636 0.818 0.517 0.42 0.666
ρq 0.750 0.100 0.433 0.318 0.547 0.402 0.314 0.539
ρm 0.500 0.200 0.373 0.177 0.524 0.718 0.611 0.789
S′′ 4.000 1.500 2.241 2.040 3.624 2.245 2.019 3.513
σ 0.850 0.375 0.719 0.627 0.847 0.840 0.725 1.039
h 0.700 0.050 0.731 0.640 0.777 0.715 0.653 0.784
ξw 0.500 0.100 0.548 0.465 0.703 0.565 0.479 0.697
σl 2.000 0.750 1.870 0.988 3.427 2.425 1.096 3.486
ξp 0.500 0.100 0.427 0.294 0.563 0.541 0.452 0.681
iw 0.500 0.150 0.593 0.247 0.839 0.520 0.288 0.857
ip 0.500 0.150 0.115 0.036 0.241 0.060 0.032 0.172
z 0.500 0.150 0.678 0.428 0.869 0.633 0.390 0.875
B 1.250 0.125 1.184 1.030 1.409 1.367 1.090 1.495
φπ 1.750 0.150 1.558 1.367 1.905 1.801 1.510 2.159
φr 0.750 0.100 0.790 0.748 0.847 0.517 0.501 0.589
φy 0.125 0.050 0.247 0.178 0.347 0.254 0.165 0.324
ρga 0.100 0.050 0.105 0.064 0.147 0.097 0.044 0.148
α 0.300 0.050 0.192 0.127 0.211 0.194 0.164 0.242

Grid value λ frequency λDS frequency
0.20 544 165
0.35 162 575
0.50 101 169
0.75 49 5
1.00 23 1
1.25 18 1
2.00 2 0
2.50 5 0
5.00 1 0

Table E.5: Distribution of hyper-parameters
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