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Server	Behaviours	in	Healthcare	Queueing	Systems	
	
	
Abstract	
In	 the	 classical	 queueing	 theory	 literature,	 a	 server	 is	 commonly	 assumed	 to	
work	 at	 a	 constant	 speed.	 Motivated	 by	 observations	 from	 healthcare	
applications,	a	study	 is	made	to	explore	the	nature	of	 the	relationship	between	
service	 times	 and	 workload	 in	 order	 to	 assess	 and	 quantify	 any	 workforce	
(server)	 behaviours.	 	 	 Consequently,	 an	 initial	 analytical	 queueing	 model	 is	
considered	 with	 switching	 thresholds	 to	 allow	 for	 two-speed	 service.	 	 In	 this	
model	 service	 time	 depends	 on	 queue	 length,	which	 for	 example	 captures	 the	
congestion	 in	 the	 waiting	 room	 and	 the	 resulting	 change	 in	 speed	 of	 the	
workforce	 to	 try	 and	 cope	 with	 the	 backlog	 of	 patients.	 Furthermore,	 related	
behavioural	 characteristics	 resulting	 from	 workload	 fatigue	 and	 service	
breakdown	 are	 considered.	 A	 developed	 analytical	 model	 with	 ‘catastrophic’	
service	 failure	 is	 proposed	 to	 examine	 the	 consequences	 on	 patient	 service	
levels.	 The	 research	 helps	 to	 demonstrate	 the	 importance	 of	 more	 accurately	
capturing	 server	 behaviours	 in	 workload-dependent	 environments,	 and	 the	
impact	 this	 has	on	 the	overall	 system	performance.	 It	 is	 hoped	 that	 this	paper	
might	 help	 spawn	 an	 emergence	 of	 behavioural	 queueing	 systems	 literature,	
retaining	the	role	that	queueing	theory	plays	within	our	field	but	with	enhanced	
consideration	of	the	role	of	behaviours	when	constructing	such	models.	
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1.		Introduction	
	
There	 has	 been	 an	 emergence	 of	 interest	 in	 Behavioural	Operational	 Research	
(BOR)	 in	 recent	 years	 (Hämäläinen	 et	 al	 2013).	 BOR	 studies	 are	 designed	 to	
advance	our	understanding	of	how	behavioural	factors	affect	the	conduct	of,	and	
interaction	 with,	 model-based	 processes	 that	 support	 problem	 solving	 and	
decision	making	(Franco	and	Hämäläinen,	2016).			Whilst	the	majority	of	recent	
interest	 in	 BOR	 has	 tended	 to	 focus	 on	 client-engagement	 and	 stakeholder	
behaviours	 throughout	 the	 modelling	 process,	 as	 well	 as	 the	 development	 of	
agent-based	 simulations	 for	 reflecting	 behaviours	 within	 OR	 models,	 the	
contribution	 of	 this	 paper	 is	 to	 consider	 how	we	might	 better	 capture	 human	
behaviours	within	queueing	theory	based	models.		
	
In	 the	 classical	 queueing	 theory	 literature,	 a	 server	 is	 commonly	 assumed	 to	
work	at	a	constant	speed.		That	is,	we	implicitly	assume	the	server’s	productivity	
is	 independent	 of	 the	 workload.	 	 However	 there	 are	 many	 real-world	
observations	when	such	an	assumption	may	not	be	appropriate,	such	as	varying	
service	speed	 in	production	 lines	based	on	orders	placed	and	product	demand.			
Kc	 and	 Terwiesch	 (2009)	 study	 the	 impact	 of	 workload	 on	 service	 time	 and	
patient	safety	within	hospital	operations,	specifically	for	cardiothoracic	patients.	
They	 find	 that	 workers	 (healthcare	 staff)	 accelerate	 the	 service	 rate	 as	 load	
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increases.		In	particular,	a	10%	increase	in	load	reduces	length	of	stay	by	2	days.				
Jaeker	and	Tucker	(2016)	study	two	years	of	inpatient	data	from	203	Californian	
hospitals	 and	 observe	 that	 patient	 length	 of	 stay	 increases	 as	 occupancy	
increases,	 until	 a	 tipping	 point,	 after	 which	 patients	 are	 discharged	 early	 to	
alleviate	congestion.	 	Moreover,	the	authors	find	a	second	tipping	point	beyond	
which	 additional	 occupancy	 leads	 to	 a	 longer	 length	 of	 stay,	 indicative	 of	 a	
workload-related	 "saturation	effect"	where	employees	can	no	 longer	overcome	
high	workload	by	speeding	up.	Other	studies	have	reported	workload-dependent	
service	 across	 different	 customer	 intensive	 environments	 such	 as	 Anand	 et	 al	
(2011),	Tan	(2014)	in	restaurants,	and	further	work	by	Kc	and	Terwiesch	(2013)	
in	healthcare.			
	
Motivated	by	findings	from	an	empirical	study	of	a	large	emergency	department,	
this	paper	builds	on	the	literature	to	more	formally	consider	models	for	explicit	
consideration	of	situations	when	the	time	it	 takes	a	resource	to	serve	a	patient	
depends	on	the	current	state	of	that	queueing	system,	specifically	the	workload	
as	 measured	 by	 the	 current	 queue	 length	 for	 service.	 	 	 There	 is	 a	 vast	 and	
growing	 literature	on	 the	use	of	OR	 in	healthcare	 service	operations,	 including	
comprehensive	reviews	such	as	those	by	Brailsford	et	al	(2009)	and	Hulshof	et	al	
(2012).	It	is	fair	though	to	say	that	the	majority	of	studies	that	capture	the	true	
underlying	 stochastic	 nature	 of	 such	 systems	 (Harper,	 2002)	 traditionally	 fit	
distributions	 to	 observed	 service	 times,	 such	 as	 length	 of	 stay,	 and	 use	 these	
within	 developed	 analytical,	 or	more	 typically,	 simulation	models.	 	 	 Hence	 the	
majority	 of	work	 to-date	 implicitly	 fails	 to	 consider	 any	 relationships	 between	
workforce	behaviours/productivity	and	workload.			Of	course,	it	may	well	be	the	
case	 that	 such	 a	 relationship	 does	 not	 pertain	 to	 the	 healthcare	 system	 under	
investigation	but	since	this	is	rarely,	if	ever,	reported,	we	may	assume	that	it	has	
not	been	considered.		Therefore	it	is	currently	not	known	if	such	an	assumption	
is	detrimental	to	the	quality	of	results	and	decision-making	for	resourcing	levels.		
	
In	 this	 paper	 an	 initial	 analytical	 queueing	 model	 is	 consider	 for	 switching	
thresholds	 to	 allow	 for	 two-speed	 service	 that	 better	 reflects	 workforce	
productivity.	 	 Furthermore,	 consideration	 is	 given	 to	 the	 related	 issue	 of	 staff	
burnout	caused	by	sustained	levels	of	high	workload	and	the	resulting	impact	on	
patient	service.	The	overarching	aim	of	this	research	is	thus	to	explore	whether	
more	 detailed	 modelling	 of	 server	 behaviours	 in	 queueing	 systems,	 and	 the	
necessary	effort	to	do	so,	is	worthwhile	in	providing	greater	precision	in	capacity	
planning	decision	making	compared	to	the	use	of	more	commonly	used	methods	
that	assume	service	rates	to	be	exogenous	of	resource	utilisation.		
	
Whilst	the	models	presented	in	this	paper	may	still	be	considered	as	a	simplified	
version	of	reality	and	not	fully	able	to	capture	all	aspects	of	exhibited	behaviours,	
they	 are	 intended	 to	 provide	 helpful	 insights,	 tools	 to	 quickly	 compute	 key	
performance	 metrics,	 and	 to	 incorporate	 the	 major	 features	 evidenced	 in	 the	
motivating	 case	 study.	 	 The	 contribution	 of	 this	 work	 is	 thus	 not	 tied	 to	 the	
proposed	 models	 being	 an	 entirely	 accurate	 description	 of	 how	 a	 server	
responds	 to	 queue	 size,	 but	 rather	 the	 value	 is	 in	 having	 analytical	models	 to	
explore	the	potential	impact	of	such	features	of	queueing	in	healthcare	systems,	
and	to	hopefully	motivate	further	research	in	this	area.	
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The	 remainder	 of	 this	 paper	 is	 organised	 as	 follows.	 	 In	 section	 2	we	 present	
findings	 from	 an	 empirical	 study	 of	 service	 times	 for	 a	 large	 emergency	
department.	 	 In	 section	 3	 an	 M/G/1-type	 queueing	 model	 is	 formulated	 to	
accommodate	 the	 observed	 switching	 threshold	 for	 two	 speeds	 of	 service.		
Results	 from	 the	 analytical	 insights	 and	 a	 developed	 simulation	 model	 are	
reported	and	compared	in	section	4.	 	Section	5	considers	workload	fatigue	and	
proposes	an	analytical	model	 to	capture	service	breakdown.	We	conclude	with	
discussions	and	possible	future	research	directions	in	section	6.		
	
	
2.		Motivating	Empirical	Study	
	
Many	healthcare	systems	across	the	globe	are	facing	a	time	of	austerity,	having	
to	 deal	 with	 increasing	 demand	 and	 complexity	 in	 heath	 needs	 within	
constrained	 budgets.	 	 Designing	 and	 delivering	 prudent	 healthcare	 services	 to	
ensure	 resources	 are	 used	 to	 maximum	 effect	 is	 a	 challenging	 yet	 vital	 task.			
Improved	understanding	of	patient	and	staff	behaviours	is	therefore	critical.		
	
The	use	of	techniques	such	as	agent-based	simulation	can	help	facilitate	this,	and	
there	 has	 been	 an	 emergence	 of	 papers	 in	 this	 field.	 	 A	 good	 overview	 of	
applications	to	healthcare	can	been	seen	in	Barnes	et	al	(2013).			However	such	
methods	still	 require	rules	 to	be	assigned	 to	 the	 individual	autonomous	agents	
(for	example	both	patients	and	healthcare	 staff)	 that	govern	how	 they	 react	 to	
changing	environments,	such	as	patient	choice	(Knight	and	Harper,	2013).	 	To-
date	 though,	 few	 healthcare	 OR	 papers	 have	 explicitly	 considered	 workforce	
behaviours.	 	 One	 can	 find	 other	 examples	 on	 more	 general	 topics	 such	 as	
organisational	structures	(e.g.	Fetta	et	al,	2012).	
	
The	 first	 known	 empirical	 study	 to	 demonstrate	 how	 healthcare	 employees	
adjust	 their	 service	rate	with	changing	 levels	of	 load	was	by	Kc	and	Terwiesch	
(2009).	 	 They	 used	 data	 from	 a	 cardiothoracic	 surgery	 unit	 in	 a	 major	 US	
teaching	hospital.		The	authors	observed	a	clear	pattern	indicating	that	length	of	
stay	decreased	with	an	 increase	 in	workload.	 	By	 staff	working	 faster,	 the	unit	
increases	its	throughput	when	it	is	busy.			The	implications	of	their	study	is	that	
the	adaptive	behaviour	of	the	healthcare	workforce	increases	the	overall	process	
flow	 of	 patients	 from	 the	 hospital	 that	 one	 might	 have	 not	 have	 otherwise	
observed	if	assuming	a	fixed	single	service	time	distribution.	
	
Motivated	 by	 Kc	 and	 Terwiesch	 (2009)	 and	 Jaeker	 and	 Tucker	 (2016),	 and	
through	 discussions	 with	 collaborating	 clinical	 staff	 in	 different	 healthcare	
settings,	patient	data	has	been	acquired	from	a	 large	emergency	department	 in	
Wales,	UK.			The	data	covers	a	period	of	6	months	(July	2015	–	December	2015).		
Each	patient	 record	used	 in	 the	analysis	provides	 their	 time	of	 arrival	 into	 the	
department,	service	time	(taken	as	the	time	treatment	commences	to	the	time	a	
decision	was	made,	which	could	be	discharge	or	a	transfer	to	assessment	unit	or	
ward),	and	their	triage	category	(an	indicator	of	urgency/medical	need).		Hence	
it	is	possible	to	explore	service	times	against	patient	census	counts,	defined	here	
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as	the	number	of	patients	waiting	in	the	emergency	department	for	service	at	the	
time	the	patient	starts	service.		
	
Service	time	in	the	emergency	department	will	 typically	be	affected	by	medical	
need	(case-mix)	and	possibly	on	congestion	in	other	parts	of	the	hospital,	such	as	
timely	 access	 to	 necessary	 scans,	 laboratory	 tests	 etc.	 In	 turn	 access	 to	 such	
resources	itself	may	be	time-dependent,	such	as	limited	staff	for	some	additional	
tests	during	the	night	shift	or	over	weekends.		We	therefore	focus	our	empirical	
study	 on	 one	 shift	 (8am	 –	 4pm)	 only,	 which	 has	 the	 advantage	 of	 comparing	
service	 times	 in	daytime	hours	with	a	similar	number	of	staff	rostered	on	duty	
each	 day	 and	when	 access	 to	 other	 related	 resources	 is	 typically	 less	 variable.	
Furthermore	we	 consider	only	 service	 times	 for	 those	patients	 assigned	 in	 the	
urgent	category	of	care.	This	has	the	advantage	of	best	reflecting	what	the	true	
workforce	service	 time	might	be	and	removes	 the	 issue	of	having	 to	adjust	 for	
risk/severity.	 	Furthermore	 this	 category	has	 the	most	number	of	attendances,	
the	other	categories	being	critical	(typically	taken	immediately	into	care	without	
any	 wait)	 and	 non-urgent.	 Whilst	 we	 acknowledge	 this	 is	 still	 by	 no	 means	
perfect,	and	even	if	 in	reality	the	recorded	service	times	may	still	be	influenced	
by	exogenous	 factors,	we	do	have	a	sufficiently	 large	number	of	patients	 in	the	
analysis	(n	=	4,832)	to	allow	a	relative	like-for-like	comparison	of	service	times	
and	congestion	levels.	
	
A	 violin	 plot	 (showing	 the	 shape	 of	 the	 distribution	 alongside	 the	 more	
traditional	box	plot	format)	of	patient	service	times	for	each	observed	number	of	
patients	waiting	 at	 that	 time	 for	 commencement	 of	 service	 (patient	 census)	 is	
shown	in	Figure	1.		The	solid	line	connects	the	average	service	times	across	the	
range	 of	 patients	 waiting;	 note	 that	 in	 fact	 the	 highest	 observed	 number	 of	
patients	waiting	 for	 service	 in	 the	 dataset	was	 24,	 but	 given	 the	 small	 counts	
above	 13,	 the	 plot	 shows	 only	 up	 until	 this	 number.	 	 Figure	 2	 plots	 just	 the	
average	 service	 time	 and	 clearly	 shows	 the	 trend	 over	 the	 number	 of	 patients	
waiting.	
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Figure	1:	Service	times	as	a	function	of	number	of	patients	waiting	for	service		

	

							 	
Figure	2:	Average	service	time	against	number	waiting	for	service	

	
Figure	1	and	2	are	very	 interesting	 in	 several	 respects.	 	Generally	 it	 reinforces	
the	 findings	 of	 published	 work	 that	 service	 times	 change	 with	 a	 changing	
workload.	 However,	 rather	 than	 a	 smooth	 continuous	 relationship	 over	 the	
range	of	workload,	there	appears	to	be	a	possible	threshold	at	which	we	observe	
a	 levelling	 off	 in	 service	 rates	 (around	 7	 patients	 waiting	 for	 service	 in	 the	
emergency	 department).	 	 Furthermore,	 for	 the	 highest	 levels	 of	 workload	 (in	
excess	 of	 11	 patients	 waiting),	 there	 is	 an	 apparent	 increase	 again	 in	 service	
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times,	or	conversely	a	drop-off	in	staff	productivity.		Interestingly,	this	is	similar	
to	 reported	 studies	 that	 have	 also	 demonstrated	 hospital	 resources	 cannot	
sustain	the	increased	service	rate	and	that	there	may	exist	an	effect	of	overwork	
(Kc	and	Terwiesch,	2009),	or	what	Jaeker	and	Tucker	(2016)	term	a	workload-
related	"saturation	effect"	where	staff	can	no	longer	overcome	high	workload	by	
speeding	up.	Indeed	medical	studies	also	report	of	increased	productivity	in	the	
short	 run	 followed	 by	 burnout	 after	 a	 prolonged	 period	 of	 exceptionally	 high	
service	 rate	 activity;	 see	 for	 example	 Aiken	 et	 al	 (2002),	 Gaba	 and	 Howard	
(2002)	and	Rubulotta	et	al	(2016).				
	
Finally,	although	not	frequently	observed	and	therefore	inconclusive,	there	also	
appears	to	be	the	possibility	of	longer	service	times	at	very	low	levels	of	activity	
(0	 or	 1	 patients	 waiting).	 It	 would	 therefore	 seem	 that	 when	 the	 unit	 is	
particularly	quiet,	staff	are	not	hurried	and	thus	slow	down	their	service	speed.		
Whilst	we	cannot	provide	a	definitive	explanation,	it	could	be	explained	by	staff	
slowing	down	to	fill	the	time	they	have	available,	or	staff	providing	the	necessary	
levels	of	patient	care	that	perhaps	aren’t	otherwise	fully	given	when	rushed.			
	
In	summary,	Figure	1	would	suggest	 that	 for	 the	emergency	department	under	
investigation:	
• As	the	unit	moves	from	low	workload	levels	to	more	moderate	levels,	service	

times	decrease;	
• As	the	unit	moves	 from	moderate	 to	high	workload	 levels,	 there	appears	 to	

be	 a	 possible	 step-change	with	 service	 times	 decreasing	 and	 then	 levelling	
off,	 possibly	 indicating	 a	 switch	 in	 productivity	 to	 handle	 the	 increasing	
backlog	of	patients;	

• As	 the	 unit	moves	 from	high	 to	 exceptionally	 high	workload	 levels,	 service	
times	increase	again,	possibly	indicating	workforce	burnout,	low	morale	give	
the	 levels	 of	 congestion	 and	 busyness,	 and/or	 physical	 space	 constraints	
limiting	the	movement	of	patients,	staff,	and	resources.		

	
Given	 that	 EDs	 largely	operate	 as	 a	 pre-emptive	 priority	 queueing	 system,	
further	analysis	of	the	data	explored	any	influencing	factors	caused	by	the	higher	
acuity	critical	patients,	given	medical	staff	will	generally	leave	an	urgent	case	to	
treat	a	critical	one.		According	to	the	acuity	classification	adopted	by	the	hospital,	
there	were	 only	 172	 critical	 admissions	 (compared	 to	 the	 4,832	 urgent	 cases)	
and	there	were	no	unusual	peaks	in	critical	demand	that	might	have	particularly	
influenced	service	times	for	urgent	patients.	 	 	Hence	we	conclude	that	with	the	
relatively	 low	 critical	 demand	 evenly	 distributed	 over	 the	 time	 period	 under	
study,	that	the	relationship	between	service	times	and	workload	is	seemingly	not	
attributable	to	pre-emptive	factors	relating	to	higher	acuity	demand.			
	
In	 subsequent	discussions	with	ED	 staff,	 they	 sensed	 that	both	 short-term	and	
longer–term	burnout	issues	were	potential	influencing	factors.		In	the	short-term	
(such	as	a	single	shift),	at	times	with	particularly	high	demand	resulting	in	higher	
numbers	of	patients	waiting,	a	shift	may	be	prolonged	(working	overtime,	either	
officially	 or	 unofficially;	 some	 staff	may	 decide	 to	 stay	 on	 beyond	 their	 end	 of	
shift	to	help	colleagues	cope	with	the	backlog).		With	successive	periods	of	high	
workload	(such	as	over	weeks),	a	repeated	pattern	of	busy	and	long	shifts	may	
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cause	 longer-term	burnout	and	 low	morale,	which	can	consequently	contribute	
to	staff	illness	and	absence	rates.		In	turn	this	can	result	in	financial	implications	
for	 having	 to	 bring	 in	 more	 expensive	 temporary	 staff	 to	 cover	 absence.	 	 To	
better	understand	 the	 reasons	 for	 the	observed	relationship	 (Figures	1	and	2),	
clearly	 this	 study	 would	 benefit	 from	 further	 inter-disciplinary	 research	
including	 qualitative	 methods	 and	 insights	 drawn	 from	 ethnography	 and	 the	
social	sciences.		
	
3.		A	Workload-Dependent	Queueing	Model		
	
When	 reviewing	 the	 literature	 on	 workload-dependent	 service	 rates,	 the	
pioneering	 work	 in	 this	 field	 is	 by	 Satty	 (1961)	 and	 Gebhard	 (1967)	 who	
consider	M/M/1	queues.		Subsequent	work	has	considered	multi-server	systems,	
with	Garg	and	Singh	 (1993)	determining	 the	optimal	queue	 length	at	which	 to	
employ	a	second	server	in	an	M/M/2	system.		Wang	and	Tai	(2000)	extend	this	
for	 M/M/3	 and	 Lin	 and	 Ke	 (2011)	 use	 genetic	 algorithms	 to	 find	 the	 best	
thresholds	for	change	in	number	of	servers	for	M/M/c	systems.				
	
More	 recent	 research	 has	 considered	 modelling	 queueing	 systems	 with	
adaptable	 service	 rates,	 such	 as	 by	 Zhernovyi	 (2012)	 who	 examines	 the	
stationary	 characteristics	 of	 a	MX/M/1	 system	with	 two-speed	 service,	 and	 by	
Baër	 et	 al	 (2014)	 for	 a	 PH/PH/1	multi-threshold	model.	 	 Tirdad	 et	 al.	 (2016)	
consider	optimal	control	points	of	M(t)/M/c/c	queues	with	periodic	arrival	rates	
and	two	levels	of	the	number	of	servers	and	apply	their	model	to	an	emergency	
room	at	the	Kelowna	General	Hospital,	US.		
In	this	paper	we	initially	consider	an	M/G/1	system,	motivated	by	the	fact	that	it	
is	 well	 documented	 that	 many	 service	 times	 (lengths	 of	 stay)	 in	 healthcare	
processes	 are	 rarely	 exponentially	 distributed	 (see	 for	 example	 Faddy	 et	 al,	
2009)	and	indeed	as	observed	in	the	ED	case	study	at	hand.			Hence	for	flexibility,	
it	is	preferable	to	accommodate	more	general	length	of	stay	distributions.		
	
Motivated	 by	 the	 empirical	 study	 above	 and	 of	 similar	 previously	 published	
findings,	 an	 analytical	 queueing	 model,	 namely	 an	 M/G/1-type	 model	 is	 now	
considered,	which	is	able	to	capture	some	of	the	observed	server	behaviours	as	
opposed	 to	 classical	 queueing	 theory	 models	 with	 assumed	 constant	 service	
rates.		The	data	and	insights	from	section	2	certainly	provide	further	evidence	of	
a	 major	 feature	 (lower	 service	 times	 at	 higher	 queue	 lengths)	 absent	 from	
traditional	 queueing	 models.	 	 Whilst	 the	 model	 presented	 here	 may	 still	 be	
considered	as	a	simplified	version	of	and	not	fully	able	to	capture	all	aspects	of	
Figure	 1	 behaviours,	 it	 is	 intended	 to	 incorporate	 this	 major	 feature,	 provide	
helpful	insights,	and	to	quickly	compute	key	performance	metrics.		
	
Initially,	we	assume	a	 single	 server	and	 two-speeds	of	 service,	with	 thresholds	
(numbers	 of	 patients	 waiting	 for	 service)	 at	 which	 the	 service	 rate	 switches.		
Figure	 1	 would	 seem	 to	 indicate	 more	 than	 2	 potential	 speeds,	 although	 for	
initial	 insights	 we	 construct	 a	 two-speed	 model	 given	 already	 the	 well	
documented	 challenges	 of	 deriving	 the	necessary	 equations	 for	 any	more	 than	
this,	 particularly	 given	 here	we	 are	 incorporating	 non-Markovian	 service	 time	
distributions.		
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Building	 on	 Gray	 and	 Wang	 (1992),	 here	 we	 incorporate	 two	 thresholds:	 an	
adaptive	server	will	change	speed	when	the	number	of	patients	in	the	emergency	
department	 reaches	 B	 and	 will	 retain	 this	 speed	 until	 such	 a	 time	 when	 the	
number	of	patients	waiting	reduces	below	A.		For	a	single	switching	threshold,	A	
and	B	would	be	 set	 to	 the	 same	value,	 but	 the	 formulation	here	 allows	 for	 the	
flexibility	 for	 the	 higher	 server	 rate	 to	 be	 in	 operation	 longer.	 	 This	 may	 be	
particularly	 useful	 in	 healthcare	 settings	 where	 staff	 continue	 to	 work	 faster	
until	the	backlog	of	patients	is	cleared	and	the	number	still	waiting	for	service	is	
below	 the	 original	 threshold.	 	 	 Once	 threshold	B	 is	 again	 reached,	 the	 service	
speed	is	again	switched,	and	so	on.		Furthermore	in	this	paper	we	consider	both	
mean	number	and	waiting	time	of	patients	in	the	queue	for	service.	
	
Patients	(or	more	broadly	customers,	since	this	work	could	equally	be	applied	to	
different	service	settings)	arrive	according	to	a	Poisson	distribution	with	rate	λ.	
Arrival	and	service	times	are	independent	of	each	other.			Patients	are	served	on	
a	FCFS	basis.	When	there	are	no	more	than	B	patients	waiting	in	the	queue	(B	>	
1),	 service	 times	 are	 i.i.d	 random	 variables	 with	 associated	 density	𝑓"(𝑥)	for	
service	speed	1.		If	upon	completion	of	a	service	there	are	more	than	B	patients	
in	 the	 queue,	 then	 the	 service	 time	 switches	 to	 follow	 a	 different	 distribution	
𝑓&(𝑥)	for	service	speed	2.		Service	speed	2	remains	in	effect	until	if	on	completion	
of	a	service	the	queue	length	is	reduced	to	A	(0	≤	A	≤	B),	then	the	service	speed	
switches	back	again	to	service	speed	1.		
	
Let	 Si	 be	 a	 random	 variable	 corresponding	 to	𝑓'(𝑥)	i	 =	 1,	 2.	 	 Si	has	 a	 mean	 of		
1/𝜇'	and	variance	𝜎'&.		Let	𝜌' = 𝜆/𝜇' 	and	that	𝜌' < 1.		Let	Ui	represent	the	number	
of	patients	who	arrive	during	a	service	time	Si.		
	
Let	

𝑢2 = 𝑃(𝑈" = 𝑛) = 6 𝑓"(𝑡)
(𝜆𝑡)2

𝑛! 𝑒:;<𝑑𝑡									𝑛 = 0, 1, …
A

B
	

and	
	

𝑣2 = 𝑃(𝑈& = 𝑛) = 6 𝑓&(𝑡)
(𝜆𝑡)2

𝑛! 𝑒:;<𝑑𝑡									𝑛 = 0, 1, …
A

B
	

	
Let	U(z)	and	V(z)	be	the	generating	functions	of	{un}	and	{vn}	respectively.			Then:	
	
𝑈D(1) = 𝜌" 									𝑈DD(1) = 𝜆&𝜎"& + 𝜌"& 	
	
𝑉D(1) = 𝜌& 									𝑉DD(1) = 𝜆&𝜎&& + 𝜌&& 	
	

We	analyse	this	model	as	an	embedded	Markov	chain,	in	which	the	states	of	the	
chain	may	be	divided	into	two	classes	as	follows:	
	
𝑉" = {(𝑛, 1); 𝑛 = 0,…	, 𝐵}		
	
where	(n,	1)	represents	the	state	in	which	n	patients	are	still	in	the	queue	at	the	
end	of	a	service	and	the	next	service	is	to	be	of	service	speed	1,	and	
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𝑉& = {(𝑛, 2); 𝑛 = 𝐴 + 1, 𝐴 + 2,…	}		
	
where	(n,	2)	represents	the	state	in	which	n	patients	are	still	in	the	queue	at	the	
end	of	a	service	and	the	next	service	is	to	be	of	service	speed	2.	
	
Let	us	denote	the	stationary	probability	of	the	state	(𝑛, 𝑖)	by	𝜋(𝑛, 𝑖).			The	empty	
state	 of	 the	 system	 thus	 corresponds	 to	 (0,1)	 and	 is	 denoted	 by	𝜋B.	 	 We	 now	
derive	the	equations	for	the	stationary	probabilities	of	the	chain	as	follows:	
	

					𝜋(𝑖, 1) = 𝑢'𝜋B +O𝑢':PQ"𝜋(𝑗, 1)									0 ≤ 𝑖 ≤ 𝐵 − 1, 𝑖 ≠ 𝐴																									(1)
'Q"

PV"

	

	 	 	 	 	

						𝜋(𝐴, 1) = 𝑢W𝜋B +O𝑢W:PQ"𝜋(𝑗, 1) + 𝑣B𝜋(𝐴 + 1,2)
WQ"

PV"

																																														(2)	

	

						𝜋(𝐵, 1) = 𝑢X𝜋B +O𝑢X:PQ"𝜋(𝑗, 1) + 𝑣B𝜋(𝐵 + 1,2)																																													(3)
X

PV"

	

	

						𝜋(𝐴 + 𝑖, 2) =O𝑣':PQ"𝜋(𝐴 + 𝑗, 2)								𝑖 = 1,… , 𝐵 − 𝐴																																								(4)
'Q"

PV"

	

	
					𝜋(𝐵 + 𝑖, 2) = 𝑢XQ'𝜋B

+				O𝑢XQ':PQ"𝜋(𝑗, 1)
X

PV"

+ O 𝑣X:WQ':PQ"𝜋(𝐴 + 𝑗, 2)						𝑖 = 1, 2, …																																		(5)	
X:WQ'Q"

PV"

	

	
Define	the	following	generating	functions:	
	

						𝜋"(𝑧) =O𝜋(𝑖, 1)𝑧'
X

'VB

	

	
and				

							𝜋&(𝑧) = O 𝜋(𝑖, 2)𝑧'
A

'VWQ"

	

	
so	that	from	equations	(1)	–	(5)	we	obtain	the	following	relationship:	
	
			(𝑈(𝑧) − 𝑧)𝜋"(𝑧) + (𝑉(𝑧) − 𝑧)𝜋"(𝑧) = 	𝑈(𝑧)(1 − 𝑧)𝜋B																																												(6)			
	
and	we	require	that:	
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				𝜋(1) + 𝜋(2) = 	1																																																																																																																(7)		
		
Equations	(6)	and	(7)	alone	are	insufficient	to	determine	𝜋B	and	the	mean	queue	
length,	and	hence	it	 is	required	therefore	to	determine	𝜋"(1)	and	𝜋"D (1).	 	This	is	
achieved	through	the	following	algorithm.	
	
Let	𝜋(𝑛, 1) = 𝜋2𝜋B, 1 ≤ 𝑛 ≤ 𝐵.	 	Let	𝜋(𝑛, 2) = 𝜑2𝜋B, 𝑛 ≥ 𝐴 + 1.		Also	 let	𝜋2D 	(0 ≤
𝑛 ≤ 𝐵)	be	the	coefficient	of	the	probability	of	the	empty	state	in	a	regular	M/G/1	
queue	with	service	time	density	𝑓"(𝑥).		We	note	that	the	𝜋2D 	satisfy:	
	
					𝜋BD = 1														𝜋"D = (1 − 𝑢B)/𝑢B									 	 				 	 								 									(8)	
	
and	

				𝜋'Q"D =
b(1 − 𝑢")𝜋'D − 𝑢'	𝜋BD − ∑ 𝑢':PQ"	𝜋PD'

PV" d
𝑢B

							𝑖 = 1,… , 𝐵 − 1																			(9)		

	
We	can	write	𝜋2in	the	form:	
	
					𝜋2 = 𝜋2D 								0 ≤ 𝑛 ≤ 𝐴																																																																																														(10)	
	
	and	
	
				𝜋fQ" = 𝜋fQ"D + 𝜔'𝜑WQ"							𝑖 = 1,…	, 𝐵 − 𝐴																																																										(11)	
	
where	𝜔'	(𝑖 = 1,…	, 𝐵 − 𝐴	)	are	computed	from	equations	(1)	–	(5).			From	these	
equations	we	note	that	𝜔' 	satisfy	the	following	recursive	relations:	
	
							𝜔" = −

𝑣B
𝑢B
																																																																																																																			(12)	

	
and	
	

			𝜔' =
b(1 − 𝑢")𝜔':" − ∑ 𝑢':P𝜔P':"

PV" d
𝑢B

							𝑖 = 2,… , 𝐵 − 𝐴																																			(13)		

	
We	can	compute	the	quantity	𝜑WQ"	by:	
	

			𝜑WQ" =
b(1 − 𝑢")𝜋XD − 𝑢X𝜋BD − ∑ 𝑢X:PQ"𝜋PDX:"

PV" d
𝐷X,W

																																																	(14)		

	
where	
	

				𝐷X,W = O 𝑢X:W:PQ"𝜔P − (1 − 𝑢")𝜔X:W

X:W:"

PV"

				𝐴 < 𝐵																																									(15)	

Note	that	in	the	special	case	of	𝐴 = 𝐵,𝐷X,W = 𝑣i	
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We	now	set	jk(l)
jm

= 𝜋no (𝑧), 𝑖 = 1, 2.		From	equations	(6)	–	(8),	it	follows	that:	
	
				(𝑈(𝑧) − 𝑧)𝜋no (𝑧) + (𝑉(𝑧) − 𝑧)𝜋&p(𝑧) = 	𝑈(𝑧)(1 − 𝑧)																																											(16)		
	
and	
	
				𝜋B = 1/[𝜋no (1) + 𝜋&p(1)]																																																																																															(17)		
	
Using	equations	(8)	–	(15)	we	have:	
	

				𝑆 = 	𝜋no (1) =O𝜋'D
X

'VB

+ tO 𝜔'

X:W

'V"

u 𝜑WQ"																																																																														(18)	

	
and	
	

				𝑇 = 	𝜋nDx (1) =O𝑖𝜋'D
X

'VB

+ tO(𝐴 + 𝑖)𝜔'

X:W

'V"

u 𝜑WQ"																																																														(19)	

	
By	differentiating	(16)	and	setting	z	=	1,	an	expression	for	𝜋&Dy(1)	is	found.		Then	
𝜋B	is	found	by	using	(17):	
	

					𝜋B =
1 − 𝜌&

1 + 𝑆(𝜌" − 𝜌&)
																																																																																																				(20)	

	
Finally,	the	mean	queue	length	is	found	by	differentiating	(6)	twice,	setting	z	=	1	
and	using	equations	(18)	–	(20).		Hence	we	derive	the	expected	queue	length	and	
waiting	time	for	a	system	with	a	two-speed	server,	as:	
	

				𝐿{ =
𝜆&𝜎"& + 𝜌&&

2(1 − 𝜌&)
+
2𝜌" + 𝑆[𝜆&(𝜎"& − 𝜎&&) + 𝜌"& − 𝜌&&] + 2𝑇(𝜌" − 𝜌&)

2[1 + 𝑆(𝜌" − 𝜌&)]
															(21)	

	

			𝑊{ = }
𝜆&𝜎"& + 𝜌&&

2(1 − 𝜌&)
+
2𝜌" + 𝑆[𝜆&(𝜎"& − 𝜎&&) + 𝜌"& − 𝜌&&] + 2𝑇(𝜌" − 𝜌&)

2[1 + 𝑆(𝜌" − 𝜌&)]
~	/	𝜆			(22)	

	
For	a	comparison	of	the	mean	queue	length	and	waiting	time	from	our	adaptive	
behaviour	 server,	 we	may	 compare	𝐿{ 	and	𝑊{ 	to	 standard	 results	 for	 a	M/G/1	
queueing	system:	
	

							𝐿{∗ =
𝜆&𝜎& + 𝜌&

2(1 − 𝜌) 																																																																																																										(23)	

	

			𝑊{∗ =
𝐿{
𝜆 																																																																																																																						(24)	
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4.		Numerical	Results	
	
We	present	some	numerical	results	(using	SageMath,	www.sagemath.org)	for	the	
modified	 (workload-dependent)	 M/G/1	 queueing	 model	 from	 section	 3	 and	
compare	 them	to	results	 from	a	standard	(constant	service	 time)	M/G/1	and	a	
developed	simulation	(using	Simul8,	www.simul8.com).				
	
Based	on	a	 slightly	 simplified	version	of	 Figure	1,	we	 consider	 a	 server	 that	 is	
able	to	switch	between	two-speeds	of	service	distributions.	From	our	empirical	
study	we	calculate	the	associated	parameters	to	be:		
	
• Arrivals	follow	a	Poisson	process	with	mean	inter-arrival	time	of	92	minutes	

and	 with	 an	 overall	 mean	 service	 time	 of	 84	 minutes,	 thus	𝜆 = 1/92, 𝜇 =
1/84	and	𝜌 = 84/92	 = 0.91.		Note	that	from	the	data	we	have	estimated	the	
demand	per	single	member	of	staff.		Typically	there	is	a	fixed	number	of	staff	
on	 the	 daytime	 shift,	 so	 it	 is	 possible	 to	 derive	 demand	 rates	 per	 single	
server.	

• We	 observe	 from	 Figure	 1	 a	 possible	 switching	 threshold	 of	 around	 7	
patients,	so	initially	we	take	A	=	B	=	6	i.e.	when	6	or	less	patients	are	waiting	
we	 use	 service	 speed	 1	 (slow),	 and	 for	 7	 or	more	 patients	waiting	we	 use	
service	speed	2	(fast).	

• Service	 speed	 1	 follows	 a	 lognormal	 distribution	with	mean	 of	 86	minutes	
and	variance	of	77.		Thus	𝜇" = 1/86, 𝜎"& = 77, 𝜌" = 86/92	 = 	0.93		

• Service	 speed	 2	 follows	 a	 lognormal	 distribution	with	mean	 of	 62	minutes	
and	variance	of	55.		Thus	𝜇& = 1/62, 𝜎&& = 55, 𝜌& = 62/92	 = 0.64	

• For	 our	 simulation	 model,	 we	 use	 exactly	 the	 same	 distributions	 and	
parameter	as	those	above.		

• From	our	data,	after	adjusting	 for	multiple	staff	on	roster,	we	estimate	 that	
the	 observed	mean	 number	 of	 patients	 waiting	 (for	 a	 single	 server)	 is	 2.4	
patients	with	a	mean	waiting	time	of	221	minutes.			

	
Table	1	shows	how	our	three	models	compare:	constant	server,	modified	server,	
and	 simulation,	 corresponding	 in	 turn	 to	 the	 standard	 M/G/1	 queue,	 the	
modified	workload-dependent	M/G/1	queue,	and	the	simulation	model.		Results	
for	 the	 constant	 server	 are	 found	 using	 equations	 (23)	 and	 (24),	 and	 for	 the	
modified	server	equations	(21)	and	(22).		The	simulation	model	has	been	run	for	
1,000	repetitions,	each	one	for	100	shifts	(of	8	hours	duration)	and	with	a	100	
shifts	warm-up	period.		These	parameters	were	found	to	be	more	than	adequate	
to	give	sufficient	precision	in	the	model	predictions.				
	

	
Table	1:	Numerical	results	for	mean	queue	length	and	waiting	time	for	service	
	
Model	 Mean	queue	length,	𝑳𝒒	 Mean	waiting	time	(mins),	𝑾𝒒		
Constant	server	 3.57	 334	
Modified	server	 2.86	 261	
Simulation	 2.91	 270	
Observed	 2.43	 221	
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From	Table	1	we	immediately	note	that	the	modified	server,	accounting	for	the	
adaptive	 service	 speed,	 provides	 similar	 results	 to	 both	 the	 simulation	 model	
and	that	observed	in	the	empirical	study	for	mean	queue	length,	although	both	
slightly	 overestimate	 the	 observed	 mean	 waiting	 time.	 The	 constant	 server	
overestimates	 system	 congestion,	 indicating	 that	 it	 fails	 to	 fully	 capture	 the	
subtleties	of	an	adaptive	service	rate	and	a	workforce	 that	our	empirical	study	
has	shown	speeds	up	to	respond	to	the	workload.		
	
We	now	examine	different	switching	 thresholds.	 	Figures	3	and	4	show	results	
for	 equations	 (21)	 and	 (22)	 respectively,	 for	 different	 levels	 of	 switching	
thresholds	where	for	now	we	again	assume	A	=	B.	
	

	
	

Figure	3:	Plot	of	mean	queue	length	𝐿{ 	for	different	values	of	the		
switching	threshold	(where	A	and	B	are	equal)	
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Figure	4:	Plot	of	mean	waiting	time	for	service	𝑊{ 	for	different	values	of	the	
switching	threshold	(where	A	and	B	are	equal)	

	
	
Both	Figures	3	and	4	illustrate	how	the	adaptive	service	model	could	be	useful	to	
consider	 systems	where	 staff	behaviours	and	changing	 service	 rates	 impact	on	
patient	throughput	and	waiting	times.		The	mean	waiting	time	for	service	ranges	
from	62	minutes	(where	staff	always	work	at	the	higher	speed)	to	723	minutes	
(where	staff	always	work	at	the	slower	speed).	These	results	are	quite	different	
than	simply	assuming	the	average	service	rate	in	a	fixed	speed	server	queueing	
model.	 Thus	 the	 immediate	 implication	 of	 this	 study	 is	 that	 the	 adaptive	
behaviour	 of	 the	 healthcare	 workforce	 will	 result	 in	 potentially	 very	 different	
levels	 of	 system	 performance	 than	 one	 might	 have	 otherwise	 predicted	 if	
assuming	a	fixed	single	service	time	distribution.		
	
Finally,	 to	 illustrate	 the	 use	 and	 insights	 from	 the	 developed	 adaptive	 service	
model,	we	 allow	 for	 different	 threshold	 values	 for	A	and	B.	 	 Recall	 that	 in	 our	
model	an	adaptive	server	will	change	speed	when	the	number	of	patients	in	the	
ED	 reaches	B	 and	will	 retain	 this	 speed	until	 such	a	 time	when	 the	number	of	
patients	waiting	reduces	below	A	(0	≤	A	≤	B).	This	may	be	particularly	useful	in	
circumstances	where	staff	continue	to	work	faster	until	the	backlog	of	patients	is	
cleared	and	the	number	still	waiting	for	service	is	below	the	original	threshold.			
Figures	5	and	6	show	how	the	mean	number	and	waiting	time	in	the	queue	and	
varies	over	a	range	of	different	values	of	A	and	B.		
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Figure	5:	Contour	plot	of	mean	queue	length	𝐿{ 	for	different	values	of	the		
switching	threshold	values	A	and	B.	

	

	
Figure	6:	Contour	plot	of	mean	waiting	time	𝑊{ 	for	different	values	of	the		

switching	threshold	values	A	and	B.	
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In	 Table	 1	we	 assumed	 that	 the	 switching	 thresholds	A	 and	B	 were	 fixed	 and	
equal	(A	=	B	=	6).	The	modified	server	and	simulation	however	still	slightly	over-
estimated	the	observed	mean	waiting	time	for	service.		On	closer	examination	of	
the	numerical	 results	used	 to	 construct	Figure	6,	we	might	hypothesise	 that	 in	
fact	 in	 the	ED	under	 investigation	 staff	move	 to	 the	 faster	 speed	of	 service	 for		
B	 =	6	 and	 continue	 to	 work	 at	 the	 faster	 speed	 until	 the	 number	 of	 patients	
waiting	 drops	 below	 4	 (i.e.	A	 =	 4).	 	With	 these	 parameter	 values,	we	 obtain	 a	
similar	waiting	time	to	that	observed	(221	minutes).		From	our	empirical	study	it	
is	 impossible	 to	 know	 for	 sure	 the	 threshold	 values,	 but	 using	 the	 developed	
modified	server	model	has	the	additional	benefit	of	allowing	us	to	estimate	what	
these	values	might	actually	be	in	practice.		
	
	
5.		Workload	Fatigue	and	Service	Breakdown	
	
Having	explored	staff	behaviours	in	relation	to	service	speed	and	workload,	we	
now	 turn	 our	 attention	 to	 the	 related	 issue	 of	 workload	 fatigue	 and	 service	
breakdown.		Again	it	is	stressed	that	whilst	the	new	model	proposed	here	is	still	
a	simplified	version	of	reality,	it	nevertheless	captures	new	behavioural	features	
not	 typically	 considered	 in	 the	 literature.	 Furthermore,	 this	 second	 model	 is	
presented	 to	 provide	 an	 additional	 and	 complementary	motivating	 example	 of	
healthcare	 behavioural	 queueing	 theory	 and	 to	 motivate	 further	 work	 in	 this	
important	and	emerging	field	of	research.			
	
There	is	a	sizeable	medical	literature	on	staff	burnout	caused	by	prolonged	and	
sustained	high	levels	of	demand	for	care	and	resulting	workload.	 	Of	concern	is	
the	reported	detrimental	impact	not	only	on	the	healthcare	workforce	(such	as	a	
reduction	in	job	satisfaction,	increased	sickness	rates	and	staff	turnover)	but	also	
on	patient	 outcomes;	 see	 for	 example	Gaba	 and	Howard	 (2002),	 Coomber	 and	
Barriball	(2007),	You	et	al	(2013),	and	Rubulotta	et	al	(2016).				
	
In	 this	paper,	we	propose	 to	capture	 this	server	behaviour	 through	a	queueing	
system	model	which	incorporates	service	breakdown	resulting	in	patients	being	
released	 from	 that	 resource	 and	 having	 to	 be	 treated	 by	 other	 staff	 or	
transferred	 to	 a	 different	 healthcare	 setting.	 	 It	 could	 be	 viewed	 that	 staff	
burnout	whilst	on	shift	could	be	captured	by	server	breakdown	models	such	as	
service	 with	 vacation	 models	 (see	 for	 example	 Gray	 et	 al.,	 2000).	 	 	 	 Here	 we	
instead	 desire	 to	 add	 to	 the	 literature,	 and	 thus	 extend	 the	 choice	 of	 available	
models	dependent	on	the	particular	situation	at	hand,	by	proposing	a	variant	on	
the	well-studied	classical	machine	breakdown	literature.			
	
We	also	note	that	capturing	such	a	system	might	equally	lend	itself	to	modelling	
of	pre-emption	by	higher	acuity	patients	(such	as	urgent	and	critical	cases).	That	
is,	staff	may	become	unavailable	to	treat	more	critical	patients	and	the	care	for	
lower	acuity	cases	could	be	impacted.		
	
In	considering	a	member	of	staff,	such	as	a	specialist	consultant	in	a	busy	ED,	we	
allow	the	possibility	that	given	a	prolonged	period	of	high	workload	and	faltering	
productivity	(as	evidenced	in	the	case	study	in	Section	2	and	related	literature),	
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the	 member	 of	 staff	 is	 taken	 off-shift	 for	 a	 much	 needed	 rest	 break	 before	
returning	 after	 a	 given	 time,	 or	 a	 replacement	 member	 of	 staff	 is	 sought	 to	
replace	them.		During	this	time,	no	patients	are	assigned	to	them	and	are	instead	
moved	 to	 another	member	 of	 staff	 (equivalently,	 in	 a	 pre-emptive	 situation,	 a	
member	of	 staff	may	be	 required	 to	provide	 care	 for	 critical	 patients	 and	 thus	
leave	lower	acuity	patients).			If	this	is	a	specialist	care	provider,	where	no	other	
local	workforce	can	provide	similar	care,	patients	would	need	to	be	moved	to	an	
alternative	 care	 setting	until	 such	a	 time	 that	 the	 staff	member	 comes	back	on	
shift	or	an	alternative	member	of	staff	to	cover	the	breakdown	is	called	in.		In	the	
later	case,	during	that	time	no	further	patients	are	allowed	to	enter	the	system	
and	 are	 diverted	 to	 the	 alternative	 provider.	 	We	 call	 this	 system	 catastrophic	
service	breakdown,	to	distinguish	it	from	a	server	with	vacation.	 	Such	a	model	
would	 of	 course	 also	 be	 applicable	 to	 modelling	 a	 wide	 range	 of	 catastrophic	
events,	such	as	an	ED	shutdown	to	the	general	public	 in	order	to	prioritise	and	
cope	 with	 a	 major	 incident	 such	 as	 serious	 road	 traffic	 accident	 or	 terrorist	
attack.			
	
Consider	 a	 single	 server	 queue	 where	 patients	 arrive	 according	 to	 a	 Poisson	
process	with	mean	arrival	rate	𝜆	and	with	service	times	following	an	exponential	
distribution	with	a	mean	1/𝜇.		Arrival	and	service	times	are	independent	of	each	
other.			Patients	are	served	on	a	FCFS	basis.		The	server	is	‘on’	for	a	random	time	
distributed	exponentially	with	mean	1/𝛼	after	which	a	catastrophic	event	occurs	
(the	 member	 of	 staff	 leaves).	 	 The	 server	 stays	 away	 for	 a	 random	 time	
distributed	exponentially	with	mean	1/𝛽.			We	model	the	system	as	a	continuous	
time	Markov	 chain	 (Figure	7)	where	𝑋(𝑡) = 𝑖	(for	𝑖 = 1, 2, 3, …)	when	 there	 are	
𝑖	patients	waiting	for	service	 in	the	system	and	the	server	(staff	member)	 is	on	
(available	 to	serve	or	busy	working)	at	 time	𝑡.	 	 In	addition,	 let	𝑋(𝑡) = 𝐷	denote	
that	the	server	is	down	(e.g.	suffers	workload	burnout	and	is	unavailable)	at	time	
t.		
	

	
	
	

	
Figure	7:	Markov	chain	for	the	catastrophic	service	breakdown	model	
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For	𝑗 = 𝐷, 0, 1, 2, …	let	𝑝P = lim
<→A

𝑃	[𝑋(𝑡) = 𝑗].		To	obtain	steady-state	probabilities	
𝑝P ,	consider	the	following	balance	equations:	
	
	 𝛼(𝑝B + 𝑝" + ⋯) = 𝛽𝑝�	
	 	
	 											𝛽𝑝� + 𝜇𝑝" = (𝜆 + 𝛼)𝑝B	
	
	 											𝜇𝑝& + 𝜆𝑝B = (𝜆 + 𝛼 + 𝜇)𝑝"	
	
	 											𝜇𝑝� + 𝜆𝑝" = (𝜆 + 𝛼 + 𝜇)𝑝&	
	
	 											𝜇𝑝� + 𝜆𝑝& = (𝜆 + 𝛼 + 𝜇)𝑝�	
	
	 	 	 						⋮	
	
From	 the	 first	 equation	 we	 have	𝑝� = 𝛼/(𝛼 + 𝛽)	since	𝑝B + 𝑝" + ⋯ = 1 − 𝑝� .	
Multiplying	 the	 second	 equation	 by	 1,	 third	 by	𝑧,	 fourth	 by	𝑧&	and	 so	 on,	 and	
summing	up	with	obtain:	
	
	 𝛽𝑝� +

�(�(l):�m)
l

+ 𝜆𝑧𝜓(𝑧) = (𝜆 + 𝛼 + 𝜇)𝜓(𝑧) − 𝜇𝑝B		 	 	
	
where	𝜓(𝑧) = 𝑝B + 𝑝"𝑧 + 𝑝&𝑧& + 𝑝�𝑧� + ⋯	We	 note	 that	 unlike	 typical	moment	
generating	functions,	here	𝜓(1) = 1 − 𝑝� .		Rearranging	we	obtain:	
	

𝜓(𝑧) =
𝜇𝑝B − 𝑧𝛽𝑝� − 𝑝B𝜇𝑧

𝜇 + 𝜆𝑧& − 𝜆𝑧 − 𝛼𝑧 − 𝜇𝑧																																																														(25)	

	
The	only	unknown	in	(25)	is	𝑝B.			However	standard	approaches	such	as	𝜓(0) =
𝑝B	and	𝜓(1) = 𝛽/(𝛼 + 𝛽)	do	 not	 yield	 a	 solution	 for	𝑝B.	 	We	note	 that	𝜓(𝑧)	is	 a	
continuous,	 differentiable,	 bounded,	 and	 increasing	 function	 over	𝑧 ∈ [0,1]	and	
from	(25)	is	of	the	form	𝜙(𝑧) = 𝐴(𝑧)/𝐵(𝑧)	where	𝐴(𝑧)	and	𝐵(𝑧)are	polynomials	
corresponding	 	 to	 the	 numerator	 and	 denominator	 of	 the	 equation.	 	 	 If	 there	
exists	𝑧∗ ∈ [0,1]	such	 that	𝐵(𝑧∗) = 0,	 then	𝐴(𝑧∗) = 0	otherwise	 it	 violates	 the	
condition	 that	𝜓(𝑧)	is	 a	 bounded	 and	 increasing	 function	 over	𝑧 ∈ [0,1].	 	 By	
setting	the	denominator	of	𝜓(𝑧)	in	(25)	to	zero,	we	obtain:	
	

𝑧∗ =
(𝜆 + 𝜇 + 𝛼) − �(𝜆 + 𝜇 + 𝛼)& − 4𝜆𝜇

2𝜆 																																																
	
Setting	the	numerator	of	𝜓(𝑧)	in	(25)	to	zero,	we	get:	
	

𝑝B =
𝛼𝛽𝑧∗

(𝛼 + 𝛽)𝜇(1 − 𝑧∗)													

	
By	substituting	for	𝑧∗	we	obtain	𝑝B	as:	
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𝑝B =
𝛼𝛽

𝜇(𝛼 + 𝛽) t
𝜆 + 𝜇 + 𝛼 − �(𝜆 + 𝜇 + 𝛼)& − 4𝜆𝜇
𝜆 − 𝜇 − 𝛼 + �(𝜆 + 𝜇 + 𝛼)& − 4𝜆𝜇

u																									(26)												

	
Furthermore,	by	rearranging	terms	in	(25),	we	get	the	function	𝜓(𝑧)	as:	
	

									𝜓(𝑧) =
𝛼𝑝B(1 − 𝑧) − 𝑧𝛼𝛽/(𝛼 + 𝛽)
𝜆𝑧& − (𝜆 + 𝜇 + 𝛼)𝑧 + 𝜇 																																																													(27)									

	
We	 now	 derive	 some	 steady-state	 performance	 measures.	 	 Let	𝑃� 	be	 the	
probability	that	a	patient	is	lost	(moved	to	another	server	or	healthcare	setting)	
and	𝑊	be	 the	 average	 response	 (or	 sojourn)	 time	 for	 patients	 that	 are	 served.		
Let	𝐿	be	 the	 time-averaged	number	of	 requests	 for	service	 in	 the	system	 in	 the	
long	run	(note	that	it	includes	the	downtimes	when	there	are	no	requests	in	the	
system).		By	definition:	
	
	 𝐿 = 0𝑝� + 0𝑝B + 1𝑝" + 2𝑝& + 3𝑝� + ⋯	
	
and	that	can	be	written	as	𝐿 = 𝜓D(1).		By	taking	the	denominator	of	𝜓(𝑧)	in	(27)	
and	 letting	𝑧 = 1,	we	get	 the	average	number	of	patient	requests	 in	 the	system	
as:	
	

𝐿 =
1
𝛼 �
𝜆𝛽 − 𝜇𝛽 + 𝑝B𝜇(𝛼 + 𝛽)

𝛼 + 𝛽 �	

	
The	 number	 of	 requests	 that	 are	 dropped	 per	 unit	 time	 in	 steady	 state	 is	
𝛼(1𝑝" + 2𝑝& + 3𝑝� + ⋯ ) = 𝛼𝐿.	 	Hence	 the	 fraction	of	 requests	 that	entered	 the	
queue	and	were	dropped	when	the	server	left	is	𝛼𝐿/(𝜆(1 − 𝑝�).	The	probability	
that	 an	 arriving	 patient	will	 complete	 service,	 given	 it	 arrived	when	 the	 sever	
was	on,	is	given	by	(conditioning	on	the	number	of	requests	seen	upon	arrival):	
	

					O�
𝑝P

1 − 𝑝�
� �

𝜇
𝜇 + 𝛼�

PQ"A

PVB

=
𝜇

𝜇 + 𝛼
1

1 − 𝑝�
𝜓 �

𝜇
𝜇 + 𝛼� =

𝜇
1 − 𝑝�

𝛽 − 𝑝B(𝛼 + 𝛽)
𝜆(𝛼 + 𝛽) 	

	
Therefore,	 the	 rate	 at	 which	 patients	 exit	 the	 queue	 for	 that	 staff	 member	 is	
𝜇𝛽/(𝛼 + 𝛽) − 𝜇𝑝B.	 	 	 Since	 the	 drop	 rate	 (derived	 earlier)	 is	𝛼𝐿	,	 we	 can	 write	
𝜇(𝛽/(𝛼 + 𝛽)) − 𝜇𝑝B 	= 𝜆(1 − 𝑝�) − 𝛼𝐿 .	 	 	 	 Thus	 the	 loss	 probability	 is		
(𝜆𝑝� + 𝛼𝐿)/𝜆	and	by	substituting	for	𝑝�	we	obtain	𝑃� 	in	terms	of	𝐿	as:	
	

									𝑃� =
𝛼𝐿(𝛼 + 𝛽) + 𝜆𝛼

𝜆(𝛼 + 𝛽) 																																																																																		(28)									

	
	
Finally,	 using	 Little’s	 law	 we	 can	 derive	𝑊 	in	 the	 following	 manner.	 	 The	
expected	 number	 of	 patient	 requests	 in	 the	 system,	 when	 the	 server	 is	 on,	 is	
𝐿/(1 − 𝑝�).		In	steady	state,	of	these	requests	a	fraction	(𝜆(1 − 𝑝�) − 𝛼𝐿)/	𝜆(1 −
𝑝�)	will	only	receive	service.			Therefore	the	average	response	time	at	the	server,	
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as	 experienced	 by	 patients	 who	 do	 receive	 service,	 is	 given	 by	𝐿/	𝜆(1 − 𝑝�)&,	
which	yields:	
	

										𝑊 =
𝐿(𝛼 + 𝛽)&

𝜆𝛽& 																																																																																													(29)									

	
To	illustrate	the	model,	we	perform	some	numerical	examples	based	on	the	ED	
under	 consideration.	Arrivals	 follow	a	Poisson	process	with	mean	 inter-arrival	
time	of	92	minutes	and	with	an	overall	mean	service	time	of	84	minutes,	so	𝜆 =
1/92, 𝜇 = 1/84.	 	 From	 our	 empirical	 study	 (Figures	 1	 and	 2)	 for	 the	 highest	
levels	 of	 workload	 (in	 excess	 of	 11	 patients	 waiting),	 there	 is	 an	 apparent	
increase	 again	 in	 service	 times,	 or	 conversely	 a	 drop-off	 in	 staff	 productivity.		
From	 our	 ED	 data,	we	 compute	 that	 the	 proportion	 of	 time	when	 the	 number	
waiting	for	service	per	server	exceeds	11	patients	is	1.8%.		In	turn	this	equates	
to,	on	average,	a	period	of	940	minutes	between	successive	occasions	where	12	
or	 more	 patients	 are	 waiting.	 	 Hence	 to	 illustrate	 the	 use	 of	 the	 catastrophic	
breakdown	 of	 service	 model,	 we	 take	𝛼 = 1/940	and	 with	𝛽	taking	 a	 range	 of	
values	between	100	and	400	minutes.			
	
Figures	8	and	9	show	the	corresponding	plots	of	𝐿	(average	number	of	patients	
in	 the	 system)	 and	𝑊	(average	 patient	 sojourn	 time)	 respectively.	 	 They	 help	
show	that	as	the	duration	of	time	that	the	server	is	off	increases	(i.e.	𝛽	increases),	
the	number	of	patients	able	to	be	served	by	that	member	of	staff	decreases,	and	
thus	 as	 the	 system	 becomes	 less	 congested	 sojourn	 times	 also	 decrease.		
However	 this	 is	 at	 the	 expense	 of	 increased	 numbers	 of	 patients	 lost	 to	 the	
system.	 	The	 relationship	𝛽,	𝐿	and	𝑊	is	however	non-linear	as	 clearly	 shown	 in	
both	plots.		
																																

										 	
	

Figure	8:	Plot	of	mean	number	of	patients	in	the	system,	𝐿,	for	different	values		
of	𝛽	(with	𝜆 = 1/92, 𝜇 = 1/84	and	𝛼 = 1/940)		
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Figure	9:	Plot	of	mean	patient	response	(sojourn)	time,	𝑊,	for	different	values		

of	𝛽	(with	𝜆 = 1/92, 𝜇 = 1/84	and	𝛼 = 1/940)		
	
	
6.		Conclusions	
	
Motivated	 by	 an	 empirical	 study	 of	 staff	 behaviours	 in	 an	 Emergency	
Department	(ED),	 this	paper	builds	on	the	 literature	to	more	 formally	consider	
queueing	theory	models	for	explicit	consideration	of	situations	when	the	time	it	
takes	 a	 resource	 to	 serve	 for	 a	 patient	 depends	 on	 the	 current	 state	 of	 that	
queueing	 system,	 specifically	 the	workload	 as	measured	 by	 the	 current	 queue	
length	 for	 service.	 	 	 Our	 study	 indicates	 that	 service	 times	 decrease	 with	 an	
increase	 in	workload.	 	By	 staff	working	 faster,	 the	ED	 increases	 its	 throughput	
when	 it	 is	 busy.	 	 	 The	 implications	 are	 that	 the	 adaptive	 behaviour	 of	 the	
healthcare	 workforce	 increases	 the	 overall	 process	 flow	 of	 patients	 that	 one	
might	have	not	have	otherwise	observed	if	assuming	a	fixed	single	service	time	
distribution.	
	
Motivated	by	our	empirical	study	and	similar	previously	published	 findings,	an	
analytical	queueing	model,	namely	an	M/G/1-type	model	has	been	 considered,	
which	is	able	to	capture	some	of	the	observed	server	behaviours	as	opposed	to	
classical	 queueing	 theory	 models	 with	 assumed	 constant	 service	 rates.	 The	
model	 allows	 for	 two-speeds	 of	 service,	 with	 thresholds	 (numbers	 of	 patients	
waiting	 for	 service)	 at	 which	 the	 service	 rate	 switches.	 From	 our	 numerical	
results,	the	immediate	implication	of	this	paper	is	that	the	adaptive	behaviour	of	
the	 healthcare	 workforce	 will	 result	 in	 potentially	 different	 levels	 of	 system	
performance	than	one	might	have	otherwise	predicted	if	assuming	a	fixed	single	
service	time	distribution.		
	
Having	explored	staff	behaviours	in	relation	to	service	speed	and	workload,	we	
then	 considered	 the	 related	 issue	 of	workload	 fatigue	 and	 service	 breakdown.		
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Indeed	 there	 is	 a	 sizeable	 medical	 literature	 on	 staff	 burnout	 caused	 by	
prolonged	and	sustained	high	levels	of	demand	for	care	and	resulting	workload.		
In	 this	 paper,	 we	 capture	 this	 server	 behaviour	 through	 a	 queueing	 system	
model	 which	 incorporates	 service	 breakdown	 resulting	 in	 patients	 being	
released	 from	 that	 resource	 and	 having	 to	 be	 treated	 by	 other	 staff	 or	
transferred	 to	 a	 different	 healthcare	 setting.	 We	 call	 this	 system	 catastrophic	
service	 breakdown,	 to	 distinguish	 it	 from	a	 server	with	 vacation.	We	 illustrate	
use	of	the	catastrophic	service	breakdown	model	applied	to	the	empirical	study	
for	the	ED	under	investigation.	
	
The	 research	 presented	 in	 this	 paper	 helps	 to	 demonstrate	 the	 importance	 of	
more	 accurately	 capturing	 server	 behaviours	 in	 workload-dependent	
environments,	and	the	 impact	 this	has	on	the	overall	system	performance.	 It	 is	
hoped	that	this	paper	might	help	spawn	an	emergence	of	behavioural	queueing	
systems	literature,	retaining	the	role	that	queueing	theory	plays	within	our	field	
but	with	enhanced	consideration	of	behaviours	when	constructing	such	models.	
More	 immediate	 natural	 extensions	 to	 this	 work	 would	 be	 to	 consider	 the	
development	of	analytical	models	with	multiple	switching	thresholds	covering	a	
range	of	underlying	distributions	and	assumptions,	such	as	prior	related	work	by	
Zhernovyi	 (2012)	 and	 Baër	 et	 al.	 (2014),	 and	 to	 allow	𝛼	in	 the	 catastrophic	
model	 to	 be	 a	 function	 the	 number	 of	 patients	 waiting	 for	 service	 𝑖 .		
Furthermore,	 it	would	be	useful	 to	examine	 the	generalizability	of	our	 findings	
by	studying	other	EDs,	or	indeed	across	different	healthcare	settings,	to	ascertain	
whether	 workforce	 adaptive	 behaviour	 is	 a	 common	 feature	 and	 to	 begin	 to	
understand	 factors	 that	 influence	 switching	 thresholds	 and	 productivity.	 	 	 To	
help	 progress	 this,	 future	 planned	work	will	 include	 academic	 colleagues	with	
expertise	in	ethnography.		
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