
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 7 9 7 3/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

S ulim a n,  B., Fe a t h e r s to n,  C. A. a n d  Kenn e dy, D. 2 0 1 9.  A hyb rid  m e t hod  for  m o d elling

d a m a g e  in co m posit e s  a n d  it s  effec t  on  n a t u r al  fr eq u e n cy. Co m p u t e r s  a n d  S t r uc t u r e s

2 1 3  , p p .  4 0-5 0.  1 0.10 1 6/j.co m p s t r u c.20 1 8.12.00 3  

P u blish e r s  p a g e:  h t t p s://doi.o rg/10.10 1 6/j.co m p s t r u c.20 1 8.12.00 3  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 

 

 

1 

 

 

A hybrid method for modelling damage in composites and its effect on natural 1 

frequency 2 

B. Suliman, C.A. Featherston, D. Kennedy* 3 
 4 

School of Engineering, Cardiff University, 5 

Queen’s Buildings, The Parade, Cardiff, CF24 3AA, United Kingdom 6 

<SulimanBS, FeatherstonCA, KennedyD>@cardiff.ac.uk 7 

 8 
*Corresponding author 9 

 10 

Keywords: vibration; composite; isotropic; damage; exact stiffness; finite element 11 

Abstract 12 
Delamination is a frequent cause of failure in laminated structures, reducing their overall stiffness and hence 13 

their critical buckling loads. Delaminations tend to grow rapidly in postbuckling, causing further reductions in 14 

structural strength and leading ultimately to sudden structural failure. Many studies have investigated the effects 15 

of delaminations on buckling and vibration of composite structures. Finite element analysis is often used to 16 

model complex geometries, loading and boundary conditions, but incurs a high computational cost. The exact 17 

strip method provides an efficient alternative approach using an exact dynamic stiffness matrix based on a 18 

continuous distribution of stiffness and mass over the structure, so avoiding the implicit discretization to nodal 19 

points in finite element analysis. However due to its prismatic requirements, this method can model damaged 20 

plates directly only if the damaged region extends along the whole length of the plate. This paper introduces a 21 

novel combination of exact strip and finite element analysis to model more complex cases of damaged plates. 22 

Comparisons with pure finite element analysis and a previous smearing method demonstrate the capability and 23 

efficiency of this hybrid method for a range of isotropic and composite plates. The effect of damage on the 24 

lowest natural frequency is studied. 25 

1  Introduction 26 

Minimizing the mass of an aircraft's structure through the use of composites reduces the cost of materials and 27 

manufacturing, as well as fuel consumption and atmospheric emissions. Delamination is one of the most 28 

frequent causes of failure in composite laminate structures, particularly those subjected to compressive loads. 29 

Delaminations reduce overall compressive stiffness and can grow rapidly during  postbuckling, potentially 30 

leading to sudden structural failure [1]. They can also cause significant reductions in the associated natural 31 

frequencies of the structure. Many researchers have investigated the effects of damage on the buckling or 32 

vibration behaviour of composite structures. Pekbey and Sayman [2], Lee and Park [1] and Cappello and Tumino 33 

[3] studied the interaction between local and global buckling and the location and size of a delamination. They 34 

concluded that the critical buckling load and the lowest natural frequency are decreased by increasing the 35 

delamination size or by moving the delamination depth towards the mid-thickness of the plate, with a transition 36 

from global to local mode shapes. Pre- and post-buckling behaviour of a delaminated composite laminate was 37 

examined by Karihaloo and Stang [4] who introduced guidelines for assessing the threat posed by interlaminar 38 

matrix delamination. They identified the possible source of discrepancy between the predicted and measured 39 

critical compressive stress at which the delamination buckled. Liu et al. [5] explored the postbuckling behaviour 40 

of flat composite plates with two through-the-width delaminations under compressive loading. Based on finite 41 

element results, they concluded that multiple delaminations significantly reduce the global buckling and 42 

collapse loads while the initial delamination length has little effect on the global buckling. Nikrad et al. [6] 43 

introduced a layerwise theory to investigate the postbuckling behaviour and delamination growth of 44 

geometrically imperfect composite plates. Different boundary conditions including through-the-width and edge 45 

delaminations and locations were considered. This research elaborated points that designers need to carefully 46 

consider during the computational simulation stage. Yazdani et al. [7] presented a first-order shear deformation 47 

theory, based on the finite element method, for modelling multi-layered composite laminates. This method was 48 

used to investigate the effect of delaminations in laminates with curvilinear fibres. The study revealed that the 49 

theory is effective when analysing variable stiffness composite laminates.  Szekrényes [8] studied the 50 
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displacement and stress fields in symmetrically delaminated, layered composite plates subjected to bending 51 

using third-order shear deformation plate theory. The study showed better results than those obtained by second-52 

order shear deformation theory. However, differences were found when analysing normal and transverse shear 53 

stresses.  54 

In recent years, the majority of the research carried out in this field has used finite element analysis (FEA) to 55 

model laminates incorporating one or more damaged regions[3, 7, 9-13]. FEA provides a versatile approach, 56 

capable of handling complex geometries and many combinations of load and boundary conditions for a range 57 

of damage shapes. However, even with today’s computer hardware, this type of analysis still often comes at a 58 

high computational cost. During an aircraft’s preliminary design stage when many alternative configurations 59 

and load cases need to be considered, fast and reliable analysis tools are required. The exact strip method [14] 60 

provides an efficient alternative approach using an exact dynamic stiffness matrix based on a continuous 61 

distribution of stiffness and mass over the structure, so avoiding the discretization to nodal points that is implicit 62 

in FEA. However due to its requirement for the geometry of the structure to be prismatic, the exact strip method 63 

can model damaged plates directly only if the damaged region extends along the whole length of the plate. 64 

Butler et al. [15] extended the method to study thin film buckling of a thin sublaminate caused by near surface 65 

delamination. Although the present paper focuses on illustrations in vibration, with a view to future 66 

identification of damage via non-destructive measurements of changes in natural frequencies, its methodology 67 

can be readily applied to the related eigenproblems of critical buckling. 68 

The aim of this study is to introduce a novel hybrid approach which can be used to improve the ability of the 69 

exact strip method to model more complex cases of damaged plates. This approach comprises a combination of 70 

the exact strip method and finite element theory, denoted VFM (VICON [16] and Finite element Method). An 71 

outline of the exact strip method is given in section 2 below. Section 3 introduces the hybrid approach in which 72 

the undamaged part of the structure is modelled using the exact strip method, therefore taking advantage of its 73 

efficiencies, while the damaged area is modelled using FEA, allowing the more complex geometry in this area 74 

to be represented, whilst minimising the additional degrees of freedom which need to be introduced and hence 75 

the computational cost. In section 4, damaged isotropic and composite plates are studied for different sized 76 

delaminations at different locations in plane and through the thickness. For validation purposes and to 77 

demonstrate the efficiency of this technique, a comparison is made with both pure FEA and a smearing technique 78 

based on the exact strip method previously presented by Damghani et al. [17]. The solution time predictions in 79 

section 5 demonstrate the computational efficiency of the proposed method.     80 

2 Exact strip method 81 

Damghani et al. [18] studied the critical buckling of composite rectangular plates with through-the-length 82 

delaminations using exact stiffness analysis and an iterative search known as the Wittrick–Williams algorithm 83 

[19]. The simplest form of the exact theory assumes sinusoidal buckling or vibration mode shapes in the 84 

longitudinal direction, with all three components of the displacement varying sinusoidally along any 85 

longitudinal line with a half-wavelength 𝜆 which divides exactly into the plate length 𝑙. This is illustrated in 86 

Figure 1 which shows the perturbation edge displacements and nodal lines of a plate during buckling or 87 

vibration. Edge displacements are multiplied by exp(𝑖𝜋𝑥 𝜆) ∗ cos (2𝜋𝑛𝑡⁄ ), where 𝑛 is the frequency and 𝑡 is 88 

time. This is the approach adopted in the computer program VIPASA [20] .    89 

In cases where in-plane shear loading is present and the mode is skewed, however, the desired support conditions 90 

will not be satisfied, limiting the applicability of the VIPASA analysis. In these instances a VICON (VIpasa 91 

with CONstraints) analysis is utilized [16].  The key difference between VICON and VIPASA analysis is that 92 

VICON introduces Lagrangian multipliers to couple sinusoidal responses with different values of half-93 

wavelength 𝜆, yielding a series solution which satisfies constraints such as simply supported end conditions 94 

[21]. It is noted that the VICON analysis models an infinitely long structure whose end supports repeat at 95 

intervals of 𝑙, mimicking typical aerospace wing and fuselage panels. The VICON stiffness matrix comprises a 96 

series of VIPASA stiffness matrices and assumes that the deflections of an infinitely long plate assembly can 97 

be expressed as a Fourier series  98 
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Figure 1. Rectangular plate, showing perturbation edge displacements and nodal lines 

 𝑫𝑎 = ∑ 𝑫𝑚𝑒𝑥𝑝 (𝑖𝜋𝑥 𝜆𝑚)                         ⁄∞𝑚=−∞  

             

(1) 

where Da is the nodal displacement amplitude vector of the plate assembly, Dm are the displacement amplitude 99 

vectors from a series of VIPASA analyses, 100 

𝜆𝑚 = 𝑙𝜉 + 2𝑚 , (0 ≤ 𝜉 ≤ 1;  𝑚 = 0,±1,±2,… , ±𝑞)              (2) 

and the plate structure is assumed to have a mode shape that repeats at intervals of 𝐿 = 2𝑙 𝜉.⁄  The perturbation 101 

force vectors Pa are similarly defined as  102 

𝑷𝑎 = ∑ 𝑲𝑚𝑫𝑚𝑒𝑥𝑝 (𝑖𝜋𝑥 𝜆𝑚⁄ )∞𝑚=−∞               (3) 

where 𝐊𝑚 is the VIPASA stiffness matrix for 𝜆 = 𝜆𝑚.  The VICON stiffness equations relating 𝐊𝑚, 𝐃𝑚, 𝐏𝑚 103 

and the Lagrangian multipliers 𝐏L are thus expressed as 104 

[  
   
   
   𝑙𝑲0 𝟎 𝟎 𝟎 𝟎 …  𝟎 𝑬0𝐻𝟎 𝑙𝑲1 𝟎 𝟎 𝟎 …  𝟎 𝑬1𝐻𝟎 𝟎 𝑙𝑲−1 𝟎 𝟎 …  𝟎 𝑬−1𝐻𝟎 𝟎 𝟎 𝑙𝑲2 𝟎 …  𝟎 𝑬2𝐻𝟎 𝟎 𝟎 𝟎 𝑙𝑲−2 …  𝟎 𝑬−2𝐻⋮ ⋮ ⋮ ⋮ ⋮ ⋱  ⋮ ⋮𝟎 𝟎 𝟎 𝟎 𝟎 … 𝑙𝑲−𝑞 𝑬−𝑞𝐻𝑬0 𝑬1 𝑬−1 𝑬2 𝑬−2 …  𝑬−𝑞 𝟎 ]  

   
   
   
×

[  
   
   
   
𝑫0𝑫1𝑫−1𝑫2𝑫−2⋮𝑫𝑀𝑷𝐿 ]  

   
   
   
 =    

[  
   
   
   
𝑷0𝑷1𝑷−1𝑷2𝑷−2⋮𝑷𝑀𝟎 ]  

   
   
   
                                     (4) 

where a superscript H denotes the Hermitian transpose. 𝐄𝑚 are the constraint matrices for the bay 0 ≤  𝑥 <  𝑙   105 

and contain terms of the form  exp (𝑖𝜋𝑥 𝜆𝑚⁄ ). Details of their derivation are given by Anderson et al. [16]. 106 

The stiffness matrix in Eq. (4) may be partitioned as 107 



 

 

 

4 

 

 

𝑲𝑉𝐼𝐶𝑂𝑁 = [𝑲 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴          𝑪𝑯 𝑪                 𝟎       ]                                 (5) 

where 108 

𝑲 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴 =
[  
   
   
 𝑙𝑲0 𝟎 𝟎 𝟎 𝟎 …  𝟎𝟎 𝑙𝑲1 𝟎 𝟎 𝟎 …  𝟎𝟎 𝟎 𝑙𝑲−1 𝟎 𝟎 …  𝟎𝟎 𝟎 𝟎 𝑙𝑲2 𝟎 …  𝟎𝟎 𝟎 𝟎 𝟎 𝑙𝑲−2 …  𝟎⋮ ⋮ ⋮ ⋮ ⋮ ⋱  𝟎𝟎 𝟎 𝟎 𝟎 𝟎 … 𝑙𝑲−𝑞]  

   
   
 
            (6) 

and 109 𝑪 = [𝑬0 𝑬1 𝑬−1 𝑬2 𝑬−2 ⋯ 𝑬−𝑞]      (7) 

Because the VIPASA stiffness matrices (unlike their FEA counterparts) account exactly for the effects of 110 

member loads and vibration, 𝐊𝑉𝐼𝐶𝑂𝑁 is a transcendental function of load factor or frequency, and its eigenvalues 111 

(i.e. critical buckling loads or natural frequencies) are found iteratively using the Wittrick-Williams algorithm 112 

[19]. 113 

 114 

Figure 2. Smeared model for a laminate of length 𝑙, width 𝐵 and thickness ℎ, having an embedded rectangular 115 

delamination of length 𝑑 = 𝜇𝑙 and width 𝑏, reproduced from [17]. 116 

 117 
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 118 

Figure 3. Damaged plate modelled by VICON and FEA (VFM). 119 

This approach was extended by Damghani et al. [17] to cover non-prismatic scenarios including composite 120 

plates with embedded rectangular delaminations through the introduction of a smearing method (SM) in which 121 

the non-prismatic portion of the structure is replaced by an equivalent prismatic portion whose component strips 122 

have equal length 𝑙 as shown in Figure 2.  123 

3 The hybrid method VFM 124 

In this paper, a novel combination of VICON and FEA is used to more accurately model isotropic and composite 125 

plates with either through-the-length damage or embedded damage which causes reduced stiffness in a localised 126 

area, for instance due to delaminations or matrix cracking. The proposed approach, denoted VFM (VICON and 127 

Finite element Method), uses FEA to model the longitudinal portion of the plate containing the damage as shown 128 

in Figure 3, and VICON analysis to more efficiently model the remainder of the plate. Thus VICON is used to 129 

calculate the dynamic stiffness matrices for the undamaged regions, while the FE method is used to calculate 130 

the static stiffness and mass matrices for the damaged rectangular strip. Embedded damage is modelled by 131 

including elements with different stiffness properties within this strip. Delamination within the plane of the plate 132 

is modelled by creating separate elements for the portions above and below the delamination region, with 133 

thicknesses dependent on the depth of the delamination. 134 

ABAQUS/Standard [22] was used in all cases to validate the results obtained from VFM. Models were 135 

constructed using a four noded shell element with reduced integration and using five degrees of freedom per 136 

node (S4R5) homogeneous continuum shell elements. A rectangular mesh was used with the same number and 137 

size of elements to model the strip containing the centrally located rectangular delamination as was used for the 138 

VFM model, in order to achieve the maximum possible equivalence between the two. The element size was 139 

specified based on the results of a convergence study to determine the minimum mesh density needed for 140 

accurate results. 141 

Figure 4 (a) shows how VFM is used to model a plate with a centrally located embedded rectangular 142 

delamination. The nodes marked with circles (●) at the boundaries between the VICON and FE regions, and at 143 

the boundary of the delamination, are treated as master nodes. Those at the same locations and marked with 144 

stars (*) are treated as slave node whose displacements and rotations are constrained to match those of the master 145 

nodes. The blue line shows the regions where boundary conditions are applied. Each node in the strips modelled 146 

using exact strip method (●) or the FE equations (∗) is assumed to have the degrees of freedom of vertical 147 

displacement 𝑤, rotation about the 𝑥-axis 𝜃𝑥 and rotation about the 𝑦-axis 𝜃𝑦. At the constraint locations 𝑤 and 148  𝜃𝑥 are forced to be equal at the shared nodes. However, it was found that coupling 𝜃𝑦 made no difference to 149 
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the results. Figure 4 (b) is an example of the way ABAQUS is used to model a plate to include the same number 150 

and size of elements that VFM used to model the strip containing a centrally located rectangular delamination. 151 

In both methods the displacements at the edges of the plates are constrained to apply simply supported boundary 152 

condition of the plates, i.e. in-plane displacements on the x and y axes and vertical out-of-plane displacement. 153 

The Wittrick-Williams algorithm is used to find the critical buckling loads and natural frequencies for the 154 

damaged plate. 155 

The hybrid global dynamic stiffness matrix of the plate is formed by using Lagrangian multipliers to couple the 156 

VICON and FEA components, as follows: 157 

 

(a) 

 

 

(b) 

Figure 4. Identical plates containing embedded delaminations modelled by (a) VFM (b) ABAQUS. 158 
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y 
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𝑲𝐺𝑙𝑜𝑏𝑎𝑙 = [  
   𝑲  𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴    𝟎       𝑪1𝐻𝟎        𝑲𝐹𝐸         𝑪2𝑇𝑪1    𝑪2    𝟎   ]  

            (8) 

Here the constraint matrix 𝐂1 includes coefficients from the series solution illustrated in Eq. (1), while 𝐂2 159 

includes coefficients of -1, to equate the displacements and rotations at the master and slave nodes. 𝐂1 also 160 

includes any support conditions in the undamaged regions. 𝐂2
T is the transpose of  𝐂2 and  𝐊𝐹𝐸 is the FEA 161 

dynamic stiffness matrix for the damaged rectangular strip and takes the form 162 𝑲𝐹𝐸 = 𝒌 − 𝑛𝟐𝒎           (9) 

 163 
(a) 164 

 165 
(b) 166 

Figure 5. Plate containing centrally located (a) through-the-length damage, (b) embedded rectangular damage. 167 
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where 𝑛 is the frequency and 𝐤 and 𝐦 are the static stiffness matrix and equivalent mass matrix of the damaged 168 

rectangular strip. Four noded rectangular elements are used with three degrees of freedom at each node, namely 169 

out-of-plane displacement and rotation about the 𝑥 and 𝑦 axes. The equations used for the calculation of 𝐤 and 170 𝐦 are detailed by Przemieniecki [23]. 171 

 172 
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(c) 

 
(d) 

Figure 6. Plots of lowest natural frequency (𝜔1) of isotropic plates against width ratio (𝛽 𝑏⁄ ) for centrally 173 

located damage using VFM, ABAQUS and VICON or SM. (a) Through-the-length damage (𝑑 = 𝑙) and 𝑓 =174 0.75. (b) Through-the-length damage (𝑑 = 𝑙) and 𝑓 = 0.25. (c)  Embedded rectangular damage, (𝑑 = 0.5𝑙) 175 

and 𝑓 = 0.67. (d)  Embedded rectangular damage, (𝑑 = 0.5𝑙) and 𝑓 = 0.3. 176 

4 Numerical results   177 

In order to validate the proposed model, the natural frequencies of a range of simply supported isotropic and 178 

composite plates containing through-the-length and embedded damage have been determined using VFM, SM, 179 

VICON analysis and the FEA software ABAQUS [22]. The damage modelled includes areas of reduced 180 
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stiffness and delaminations. However, contact modelling is ignored in this work but will be considered in future 181 

work to enhance the accuracy of the proposed technique. Figure 5 illustrates cases of plates containing centrally 182 

located through the length and embedded damage. For simplicity, a rectangular damage shape is assumed to 183 

illustrate the hybrid method. Circular and elliptical regions of damage could be modelled by refining the mesh 184 

in the FEA strip.  185 

 186 

4.1 Reduced stiffness isotropic plates   187 

Figure 6 details the results of analyses for isotropic plates having length 𝑙 = 100 mm, width 𝑏 = 100 mm and 188 

thickness ℎ = 1 mm with material properties Young’s modulus 𝐸 = 110 kNmm−2, density 𝜌 = 2.3 ×189 10−6 kgmm−3 and Poisson's ratio 𝜈 = 0.3. Damage is assumed to occur over a centrally located rectangular 190 

region of length 𝑑 (0 ≤ 𝑑 ≤ 𝑙) and width  𝛽 (0 ≤ 𝛽 ≤ 𝑏), and is represented generically by a stiffness reduction 191 

factor 𝑓 (0 ≤ 𝑓 ≤ 1). VFM, ABAQUS and VICON were used to find the lowest natural frequencies of isotropic 192 

plates with through-the-length damage (𝑑 = 𝑙). Figures 6 (a) and (b) show a perfect match is achieved between 193 

VICON and ABAQUS for all widths of through-the-length damage. For 0 ≤ 𝛽 ≤ 0.4𝑏, VFM is also seen to 194 

match these results. However, as the damage width increases, i.e. for 𝛽 > 0.4𝑏, VFM predicts higher natural 195 

frequencies than both VICON and ABAQUS albeit with a maximum difference of only 1.55% at 𝛽 = 𝑏. This 196 

is believed to be due to the increasing element size used in the finite element part of the VFM model. Figures 6 197 

(c) and (d) present the first natural frequencies of isotropic plates containing embedded rectangular damage of 198 

length 𝑑 = 0.5𝑙 with different severities 𝑓, as calculated using VFM, ABAQUS and SM. Excellent agreement 199 

is demonstrated between VFM and ABAQUS in modelling the embedded damage. In SM the embedded 200 

rectangular damage is modelled indirectly, see Figure 2. This leads to very good agreement with the other 201 

methods when the plate vibrates globally (0 ≤ 𝛽 ≤ 0.3𝑏), but when the plate vibrates locally (𝛽 > 0.3𝑏) SM 202 

predicts a fictitious conservative local behaviour. 203 

4.2 Delaminated composite plates 204 

Figure 7 compares the lowest natural frequencies for a delaminated composite plate of length 𝑙 = 100 mm, 205 

width 𝑏 = 100 mm and thickness ℎ = 4 mm and material properties Young’s moduli 𝐸1 = 110 kNmm−2,  206 𝐸2 = 10 kNmm−2, shear moduli 𝐺12 = 𝐺13 = 𝐺23 = 5 kNmm−2, major Poisson's ratio 𝜈12 = 0.33 and density 207 𝜌 = 4480 × 10−6 kgmm−3. The composite comprises 32 unidirectional plies of thickness 0.125 mm in the 208 

sequence [0/45/-45/90/90/-45/45/0/0/45/-45/90/90/-45/45/0]S. Embedded delaminations of width 𝛽 (0 ≤ 𝛽 ≤209 𝑏) and two different lengths (𝑑 = 0.25𝑙 and 𝑑 = 0.5𝑙) are added at two different depths (0.25ℎ and 0.5ℎ) below 210 

the top surface. The plates are analysed using VFM, ABAQUS and SM. 211 

Figures 7 (a) and (b), in which the delamination length 𝑑 = 0.25𝑙 show very good agreement between VFM 212 

and ABAQUS with maximum differences of 1.88% and 3.4% for delamination depths 0.25ℎ and 0.5ℎ, 213 

respectively, occurring when 𝛽 = 𝑏. In Figures 7 (c) and (d), where the delamination length 𝑑 = 0.5𝑙, the 214 

maximum difference is less than 3.3% when 0 ≤ 𝛽 ≤ 0.7𝑏 for both cases of delamination depth. The difference 215 

reaches 6.3% when 𝛽 = 𝑏 for delamination depth 0.25ℎ and is slightly lower for delamination depth 0.5ℎ. 216 

Again, this is believed to be due to the increasing element size used in the finite element part of the VFM model. 217 

As in section 4.1, SM gives very good agreement with the other methods when the plate vibrates globally, e.g. 218 

when 0 ≤ 𝛽 ≤ 0.4𝑏 in Figures 7 (a) and (c), but with increasing differences between the predicted natural 219 

frequencies for wider delaminations when the panel vibrates locally. As the delamination depth is moved to the 220 

mid-thickness (Figures 7 (b) and (d)), the global mode remains dominant for wider delaminations and SM shows 221 

better agreement with the other methods. 222 

Figure 8 shows normalised mode shape plots of the lowest natural frequency for two cases from Figure 8 223 

obtained from ABAQUS, VFM and SM. For the mid-thickness delamination in Figure 8 (a), the three methods 224 

give almost identical mode shapes. But in Figure 8 (b), where the delamination is closer to the top surface, 225 

ABAQUS and VFM show good agreement with a maximum difference of 3% in the magnitude of the out of 226 

plane displacement, while SM gives a fictitious through-the-length local mode. These findings are further 227 

illustrated by the cross-section mode plots in Figure 9. 228 
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(c)  
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Figure 7. Plots of lowest natural frequency (𝜔1) of composite plates against width ratio (𝛽 𝑏⁄ ) for centrally 229 

located embedded rectangular delaminations, using VFM, ABAQUS and SM. (a) Delamination length 𝑑 =230 0.25𝑙, depth 0.25ℎ. (b) Delamination length 𝑑 = 0.25𝑙, depth 0.5ℎ. (c) Delamination length 𝑑 = 0.5𝑙, 231 

depth 0.25ℎ. (d) Delamination length 𝑑 = 0.5𝑙, depth 0.5ℎ. 232 
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 (a) (b) 

Figure 8. ABAQUS, VFM and SM plots of the normalised mode shape of the lowest natural frequency for a 233 

composite plate containing an embedded rectangular delamination. (a) Delamination length 𝑑 = 0.5𝑙, 234 

depth 0.5ℎ, width 𝛽 = 0.5𝑏, see Figure 7 (d). (b) Delamination length 𝑑 = 0.5𝑙, depth 0.25ℎ, width 𝛽 = 0.6𝑏, 235 

see Figure 7 (c). 236 

4.3 Effect of delamination location 237 

In sections 4.1 and 4.2 VFM was validated for modelling centrally located damage. The effects of lengthwise 238 

and widthwise positions (𝑥, 𝑦) of the delamination on the lowest natural frequency of a plate will now be studied 239 

using VFM and ABAQUS. Figure 10 shows a plate containing embedded delaminations 𝐷1, located 240 

at (𝑎𝑥 , 𝑏 2⁄ ), and 𝐷2, located at (𝑙 2, 𝑎𝑦⁄ ). 241 

Figure 11 shows the results of this analysis for composite plates containing embedded delaminations with 242 

lengths 𝑑 = 0.25𝑙, 0.5𝑙 and 0.75𝑙, width 𝛽 = 0.2𝑏, at depths 0.25ℎ and 0.5ℎ, plotted against the widthwise 243 

location 𝑎𝑦. Figure 12 demonstrates the effect of changing the lengthwise position 𝑎𝑥 for delaminations of 244 

length 𝑑 = 0.25𝑙 and 0.5𝑙, width 𝛽 = 0.2𝑏 and 0.4𝑏, at depths 0.25ℎ and 0.5ℎ. All cases clearly show a 245 

reduction in the lowest natural frequency as the delamination moves toward the centre of the plate. The analyses 246 

demonstrate that VFM can handle any possible location and depth of delamination, for both through-the-length 247 

and embedded damage. Excellent agreement is seen between VFM and FEA for all the cases studied. The  248 
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(a) 250 

 251 

(b) 252 

 253 

(c) 254 

Figure 9. ABAQUS, VFM and SM cross-section plots of the normalised mode shape of the lowest natural 255 

frequency for a composite plate containing an embedded rectangular delamination. (a) Delamination length 𝑑 =256 0.5𝑙, depth 0.5ℎ, width 𝛽 = 0.5𝑏, see Figure 7 (d). (b) Top and (c) bottom regions when delamination 257 

length 𝑑 = 0.5𝑙, depth 0.25ℎ, width 𝛽 = 0.6𝑏, see Figure 7 (c). 258 
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 259 

Figure 10. Plate containing arbitrarily located embedded delaminations. 260 
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(c) 

Figure 11. Plots of the lowest natural frequency (ω1) of a composite plates against the widthwise position 262 𝑎𝑦/𝑏 of an embedded rectangular delamination. 263 

1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

0 0.2 0.4 0.6 0.8 1

ω
1

(H
z)

ay / b

VFM, d=0.5l, depth h/4, β=0.2b ABAQUS, d=0.5l, depth h/4, β=0.2b

VFM, d=0.5l, depth h/2, β=0.2b ABAQUS, d=0.5l, depth h/2, β=0.2b

900

950

1000

1050

1100

1150

0 0.2 0.4 0.6 0.8 1

ω
1

(H
z)

ay / b

VFM, d=0.75l, depth h/4, β=0.2b ABAQUS, d=0.75l, depth h/4, β=0.2b

VFM, d=0.75l, depth h/2, β=0.2b ABAQUS, d=0.75l, depth h/2, β=0.2b



 

 

 

17 

 

 

 
(a) 

 
(b) 

1020

1040

1060

1080

1100

1120

1140

1160

1180

0 0.2 0.4 0.6 0.8 1

ω
1

(H
z)

ax / l

VFM,d=0.25l, depth h/4, β=0.2b ABAQUS,d=0.25l, depth h/4, β=0.2b

VFM, d=0.25l, depth h/4, β=0.4b ABAQUS, d=0.25l, depth h/4, β=0.4b

900

950

1000

1050

1100

1150

1200

0 0.2 0.4 0.6 0.8 1

ω
1

(H
z)

ax / l

VFM, d=0.25l, depth h/2, β=0.2b ABAQUS,  d=0.25l, depth h/2, β=0.2b

VFM,  d=0.25l, depth h/2, β=0.4b ABAQUS, d=0.25l, depth h/2, β=0.4b



 

 

 

18 

 

 

 
(c) 

 
(d) 

 264 

Figure 12. Plots of lowest natural frequency (𝜔1) of a composite plate against the lengthwise position 𝑎𝑥/𝑙 of 265 

an embedded rectangular delamination. 266 
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maximum difference between VFM and FEA was 2.67% for a centrally located delamination with 𝑑 = 0.5𝑙,  267 𝛽 = 0.4𝑏 and depth 0.5ℎ. 268 

4.4 Effect of aspect ratio on plate containing embedded delamination 269 

Figure 13 illustrates the effect of changing the delamination size for plates with different aspect ratios 𝒃 𝒍⁄ , while 270 

Figure 14 shows the reductions in the lowest natural frequency against the aspect ratio. The frequencies are 271 

normalized with respect to those of the undamaged plate (𝜷 𝒃⁄ = 𝟎). The maximum difference between VFM 272 

and ABAQUS results is just 2.84%. The figures show decreased natural frequencies with increased delamination 273 

size and with larger aspect ratios. The degradations in natural frequency tend to be smaller for square plates. 274 

5 Solution time 275 

Anderson et al [16] demonstrated the computational efficiency of the VICON analysis. Williams and Anderson 276 

[24] demonstrated additional computational savings for point symmetric structures and for laterally periodic 277 

cross-sections. Kennedy et al. [25] again detailed the computational efficiency of exact strip analysis, comparing 278 

the program VICONOPT [26] with the FEA program STAGS. Numerical examples, including a composite 279 

blade stiffened panel and a ring-stiffened laminated cylinder, confirmed that for comparably converged 280 

solutions, VICONOPT was typically between 102 and 104 times faster than FEA. 281 

For damaged structures, exact strip analysis can only be used when the damage is through-the-length. When 282 

modelling embedded damage, Damghani et al. [17] compared the computational efficiency of SM against FEA. 283 

A similar assessment will now be made for VFM. 284 

 285 

 

Figure 13. The effect of delamination width 𝛽 on the lowest natural frequency for a plate with a centrally 286 

located delamination of length 𝑑 = 0.5𝑙, having different aspect ratios (𝑏 𝑙⁄ ). 287 
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Figure 14. Plots of normalized first natural frequency against aspect ratio (𝑏 𝑙⁄ ) for a plate with a centrally 288 

located delamination of length 𝑑 = 0.5𝑙 and different widths 𝛽. 289 

Based on the computational time requirements previously established for VICON analysis [24, 25] and 290 

considering only out-of-plane behaviour, the solution time required for one iteration of the Wittrick-Williams 291 

algorithm is proportional to 292 𝑊𝐿 = 12𝐶′𝜇𝑁 (𝐵2 × 23 + 𝐵𝑟 × 22 + 43 𝑟2) + 12𝐶𝑁𝐹𝐸 (𝐵𝐹𝐸2 + 𝐵𝐹𝐸𝑟 + 13 𝑟2) + 16𝐶𝑟3  (10) 

 𝐶 and 𝐶′ are time constants for real and complex arithmetic respectively, 𝜇 is the number of VIPASA matrices 293 

used in Eq. (4) and 𝑟 is the number of constraints applied. The nodes are assumed to be numbered to minimise 294 

the bandwidth of the VIPASA and FEA matrices [24]. 𝑁 and 𝐵 are the order and bandwidth of each VIPASA 295 

matrix, while 𝑁𝐹𝐸 and 𝐵𝐹𝐸 are the order and bandwidth of the FEA matrix. 296 

5.1 Application to VFM 297 

Figure 15 (a) shows a plate modelled using VFM. The central portion of the plate is modelled using a finite 298 

element mesh of 32 elements (4 × 8). The edge portions are modelled using the exact strip method. The form of 299 

the global dynamic stiffness matrix is shown in Figure 15 (b). Applying Eq. (10) shows that the VFM and pure 300 

FEA analysis times are, respectively, 7.02 and 29.85 times longer than that of the pure VICON analysis. Thus 301 

for through-the-length damage there is a clear computational advantage in using VICON analysis over FEA. In 302 

the case of embedded damage, for which pure VICON analysis cannot be used, VFM provides an accurate 303 

alternative to pure FEA and is about 4 times faster. 304 
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(a) 

 
(b) 

Figure 15. (a) Damaged plate modelled in VFM. (b) Form of the global dynamic stiffness matrix. 306 

 307 

6 Conclusions  308 

A novel technique (VFM) combining the exact strip method with finite element theory (VFM) has been 309 

developed to enable the modelling of more complex geometries of damage than the previous smearing method 310 

whilst retaining a computational advantage over finite element analysis. To prove the effectiveness of this 311 

method, isotropic and composite plates containing through the length and embedded rectangular damage, 312 

including delamination, have been examined. VFM has been shown to efficiently handle geometries of damage 313 

that the previous exact strip models could not handle. It also shows better agreement with finite element analysis 314 

than a previous smearing method which, whilst giving accurate and efficient results for cases of damage where 315 

the plates vibrate globally, gives conservative results when the plate undergoes local vibration. 316 



 

 

 

22 

 

 

Acknowledgements 317 

This work was supported by the Libyan Ministry of Higher Education. 318 

References 319 

[1] S. Y. Lee and D. Y. Park, "Buckling analysis of laminated composite plates containing delaminations 320 

using the enhanced assumed strain solid element," International Journal of Solids and Structures, vol. 321 

44, pp. 8006-8027, 2007. 322 

[2] Y. Pekbey and O. Sayman, "A numerical and experimental investigation of critical buckling load of 323 

rectangular laminated composite plates with strip delamination," Journal of Reinforced Plastics and 324 

Composites, vol. 25, pp. 685-697, 2006. 325 

[3] F. Cappello and D. Tumino, "Numerical analysis of composite plates with multiple delaminations 326 

subjected to uniaxial buckling load," Composites Science and Technology, vol. 66, pp. 264-272, 2006. 327 

[4] B. L. Karihaloo and H. Stang, "Buckling-driven delamination growth in composite laminates: 328 

Guidelines for assessing the threat posed by interlaminar matrix delamination," Composites Part B: 329 

Engineering, vol. 39, pp. 386-395, 2008. 330 

[5] P. F. Liu, S. J. Hou, J. K. Chu, X. Y. Hu, C. L. Zhou, Y. L. Liu, et al., "Finite element analysis of 331 

postbuckling and delamination of composite laminates using virtual crack closure technique," 332 

Composite Structures, vol. 93, pp. 1549-1560, 2011. 333 

[6] S. F. Nikrad, S. Keypoursangsari, H. Asadi, A. H. Akbarzadeh, and Z. T. Chen, "Computational study 334 

on compressive instability of composite plates with off-center delaminations," Computer Methods in 335 

Applied Mechanics and Engineering, vol. 310, pp. 429-459, 2016. 336 

[7] S. Yazdani, W. J. H. Rust, and P. Wriggers, "Delamination growth in composite laminates of variable 337 

stiffness," International Journal for Numerical Methods in Engineering, vol. 108, pp. 1406-1424, 2016. 338 

[8] A. Szekrényes, "Application of Reddy's third-order theory to delaminated orthotropic composite 339 

plates," European Journal of Mechanics, A / Solids, vol. 43, pp. 9-24, 2014. 340 

[9] T. Park, S. Y. Lee, and G. Z. Voyiadjis, "Finite element vibration analysis of composite skew laminates 341 

containing delaminations around quadrilateral cutouts," Composites Part B: Engineering, vol. 40, pp. 342 

225-236, 2009. 343 

[10] S. Devendiran, K. Manivannan, K. Venkatesan, A. T. Mathew, A. Thakur, and V. Ashish Chauhan, 344 

"Free vibration of damaged and undamaged hybrid CFRP/GFRP composite laminates," International 345 

Journal of Mechanical Engineering and Technology, vol. 8, pp. 349-360, 2017. 346 

[11] Z.-X. Wang, P. Qiao, and J. Xu, "Vibration analysis of laminated composite plates with damage using 347 

the perturbation method," Composites Part B: Engineering, vol. 72, pp. 160-174, 2015. 348 

[12] I. N. Jayatilake, W. Karunasena, and W. Lokuge, "Finite element based dynamic analysis of multilayer 349 

fibre composite sandwich plates with interlayer delaminations," Advances in Aircraft and Spacecraft 350 

Science, vol. 3, pp. 15-28, 2016. 351 

[13] X. W. Wang, I. Pont-Lezica, J. M. Harris, F. J. Guild, and M. J. Pavier, "Compressive failure of 352 

composite laminates containing multiple delaminations," Composites Science and Technology, vol. 65, 353 

pp. 191-200, 2005. 354 

[14] D. Kennedy, M. Fischer, and C. A. Featherson, "Recent developments in exact strip analysis and 355 

optimum design of aerospace structures," Proceedings of the Institution of Mechanical Engineers, Part 356 

C: Journal of Mechanical Engineering Science, vol. 221, pp. 399-413, 2007. 357 

[15] R. Butler, A. T. Rhead, W. Liu and N. Kontis, "Compressive strength of delaminated aerospace 358 

composites", Philosophical Transactions of The Royal Society A, vol. 370, pp. 1759-1779, 2012. 359 

[16] M. S. Anderson, F. W. Williams, and C. J. Wright, "Buckling and vibration of any prismatic assembly 360 

of shear and compression loaded anisotropic plates with an arbitrary supporting structure," International 361 

Journal of Mechanical Sciences, vol. 25, pp. 585-596, 1983. 362 

[17] M. Damghani, D. Kennedy, and C. Featherston, "Global buckling of composite plates containing 363 

rectangular delaminations using exact stiffness analysis and smearing method," Computers and 364 

Structures, vol. 134, pp. 32-47, 2014. 365 

[18] M. Damghani, D. Kennedy, and C. Featherston, "Critical buckling of delaminated composite plates 366 

using exact stiffness analysis," Computers and Structures, vol. 89, pp. 1286-1294, 2011. 367 



 

 

 

23 

 

 

[19] W. H. Wittrick and F. W. Williams, "A general algorithm for computing natural frequencies of elastic 368 

structures," Quarterly Journal of Mechanics and Applied Mathematics, vol. 24, pp. 263-284, 1971. 369 

[20] W. H. Wittrick and F. W. Williams, "Buckling and vibration of anisotropic or isotropic plate assemblies 370 

under combined loadings," International Journal of Mechanical Sciences, vol. 16, pp. 209-239, 1974. 371 

[21] F. W. Williams and M. S. Anderson, "Incorporation of Lagrangian Multipliers into an algorithm for 372 

finding exact natural frequencies or critical buckling loads," International Journal of Mechanical 373 

Sciences, vol. 25, pp. 579-584, 1983. 374 

[22] DS Simulia Inc. ABAQUS Standard Manual (version 6.10). 2012. 375 

[23] J. S. Przemieniecki, Theory of Matrix Structural Analysis: Dover, 1985. 376 

[24] F. W. Williams and M. S. Anderson, "Buckling and vibration analysis of shear-loaded prismatic plate 377 

assemblies with supporting structures, utilizing symmetric or repetitive cross-sections. In: Aspects of 378 

the Analysis of Plate Structures - A Volume in Honour of W.H. Wittrick (ed. D. J. Dawe, R. W. 379 

Horsington, A. G. Kamtekar and G. H. Little), Oxford, 1985, pp. 51-71. 380 

[25] D. Kennedy, F. W. Williams, and M. S. Anderson, "Buckling and vibration analysis of laminated panels 381 

using viconopt," Journal of Aerospace Engineering, vol. 7, pp. 245-262, 1994. 382 

[26] F. W. Williams, D. Kennedy, M. S. Anderson, and R. Butler, "VICONOPT - Program for exact 383 

vibration and buckling analysis or design of prismatic plate assemblies," AIAA Journal, vol. 29, pp. 384 

1927-1928, 1991. 385 

 386 


