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In this paper, a novel Voronoi-Visibility (VV) path planning algorithm, which integrates the merits of 

a Voronoi diagram and a Visibility graph, is proposed for solving the Unmanned Surface Vehicle (USV) 

path planning problem. The VM (Voronoi shortest path refined by Minimising the number of waypoints) 

algorithm was applied for performance comparison. The VV and VM algorithms were compared in ten 

Singapore Strait missions and five Croatian missions. To test the computational time, a high-resolution, 

large spatial dataset was used. It was demonstrated that the proposed algorithm not only improved the 

quality of the Voronoi shortest path but also maintained the computational efficiency of the Voronoi 

diagram in dealing with different geographical scenarios, while also keeping the USV at a configurable 

clearance distance 𝑐 from coastlines. Quantitative results were generated by comparing the Voronoi, 

VM and VV algorithms in 2,000 randomly generated missions using the Singapore dataset.  
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1. INTRODUCTION.  Path planning for Unmanned Surface Vehicle (USV) navigation is a 

challenging problem due to the complexities of USV dynamics, environmental disturbances 

(Niu et al., 2016a), computational efficiency (Niu et al., 2016b), collision avoidance (Savvaris 

et al., 2014; Szlapczynski, 2015) and timing constraints. Typical path planning algorithms can 

be classified into four categories: roadmap approaches, cell decomposition, potential fields and 

bug algorithms.  

  The goal of roadmap approaches is to reduce an N-dimensional configuration space to a set 

of one-dimensional paths for searching. These approaches attempt to capture free-space 

connectivity by constructing a graph. The roadmap approaches include the probabilistic 

roadmap method (Yuan et al., 2015), the rapidly exploring random tree (Kuffner and Latombe, 

2000; Moon and Chung, 2015), the expansive space planner (Hsu et al., 1997) and the random 

walk planner (Carpin and Pillonetto, 2005; Lu et al., 2016). Computational geometry-based 

methods comprise another branch of roadmap-based approaches, which include the Voronoi 

diagram (Wu et al., 2013) and the Visibility graph (Kaluder et al, 2011; Zimmermann and 

Konig, 2016).   Another category of path planning is cell decomposition (Iswanto et al., 2016), 

which includes the exact and approximate cell decomposition approaches. The exact cell 

decomposition approach is also known as trapezoidal decomposition and comprises three main 

steps: (1) decomposing the free space into trapezoidal and triangular cells; (2) processing the 

adjacency relation between the cells; and (3) finally finding the optimal path. The approximate 

cell decomposition approach is also called the quadtree decomposition approach, which 

subdivides the mixed obstacle and free regions into four quarters and repeats the subdividing 

process iteratively. At a certain level of resolution, only the cells whose interiors lie entirely in 

the free space are used. Thereafter a graph-search algorithm can be directly applied to find a 



path from the starting point to the goal or target point, such as the well-known A* algorithm 

(Campbell et al., 2012). This solution has been evaluated for underwater obstacle avoidance 

experimentally (Phanthong et al., 2014).  

  The potential field is popular mainly due to the low computational load it requires for 

trajectory generation and can hence produce trajectories in real-time. Moreover, planning and 

control are merged into one function and the potential field can be directly coupled to a control 

algorithm. However, the potential field method also has its drawbacks: it may be trapped in 

local minima in the potential field (Rezaee and Abdollahi, 2014). Due to this local minima 

limitation, it has mainly been used for local path-planning. 

  Finally, the bug algorithm and its variants are a category of path planning methods which 

assume limited knowledge of the environment. One example of the bug algorithm is the insect-

inspired ‘bug’ algorithm, which assumes that only the direction to the goal is known and that 

local range measurement is available. This bug algorithm can be summarised in three steps: (1) 

heading towards the goal; (2) following obstacles until the vehicle can head towards the goal 

again; and (3) repeating the previous two steps until the goal is reached. The efficiency of the 

bug algorithm for robot path planning using range sensors was presented by Buniyamin et al. 

(2011). The bug algorithm is an obstacle avoidance method for local path planning (Loe, 2008; 

Tam et al., 2009; Lazarowska, 2015; Polvara et al., 2018).  

  The remainder of this paper is organised as follows: A literature review of the roadmap 

method is presented in Section 2. The problem of developing a path planning algorithm in 

complex geographic scenarios is presented in Section 3. The methodology of the proposed 

algorithm is described in Section 4. In Section 5, the proposed algorithm, Voronoi algorithm 

and the VM algorithm are compared in terms of total distance and computational efficiency. 

Finally, the Voronoi, VM and VV algorithms are evaluated in 2,000 Singapore missions for 

quantitative comparison. Section 6 concludes the paper. 

 

 

2. LITERATURE REVIEW.  This work focuses on the roadmap-based path planning approach. 

The advantage of using the Voronoi diagram as a roadmap, among which the Visibility graph 

prevails, is its efficiency. The Voronoi diagram can be constructed in just 𝑂(𝑛𝑙𝑜𝑔(𝑛)) time, 

where 𝑛 is the number of the vertices and 𝑂 notation is used in Computer Science to describe 

the complexity of an algorithm in terms of the execution time or space required in the worst-

case scenario. The fastest-known algorithm for constructing the Visibility graph takes 𝑂(𝑛2) 
time (Ghosh and Mount, 1991) and has 𝑂(𝑛2) edges in the worst case. Since the Voronoi 

diagram has 𝑂(𝑛) edges, searching a Voronoi diagram-based roadmap is much faster than 

searching a Visibility graph. Another advantage of the Voronoi diagram is that the constructed 

roadmap keeps the path as far away from the obstacles as possible; in contrast, the Visibility 

graph keeps the path as close to the obstacles as possible, since the Visibility graph uses the 

edges of the obstacles as candidate paths. However, the disadvantage of the Voronoi diagram 

is that the generated path may be far from optimal in terms of distance. Therefore, to take 

advantage of the computational efficiency of the Voronoi diagram, the generated path must be 

refined. 

  A general method for refining a path obtained from a roadmap-based on classical numerical 

optimisation techniques has been proposed (Kim et al., 2003). Dijkstra’s search algorithm 

(Dijkstra, 1959) was proposed to determine an optimal path and the edges that are closer to the 

obstacles will be assigned higher costs. However, this method does not generate an optimal 

path, since the path is constrained to the edges in the roadmap. A B-Spline approximation 

method was used to improve the smoothness of the path obtained from the roadmap (Ibarra-

Zannatha et al., 1994). In the work of Wein et al. (2007), a new diagram called the 𝑉𝑉(𝐶) 

diagram was proposed. The 𝑉𝑉(𝐶) diagram integrated the Visibility graph and the Voronoi 



diagram while also keeping the path away from the obstacle with a clearance distance 𝑐, which 

is a configurable value. However, as this algorithm is Visibility graph-based, the processing 

time is 𝑂(𝑛2𝑙𝑜𝑔⁡(𝑛)), which is impractical for large spatial datasets. In the work of Masehian 

and Amin-Naseri (2004), the Voronoi diagram, Visibility graph and potential field were 

integrated into a single architecture to provide a parametric trade-off between the safest and 

shortest paths, and the resulting generated paths were shorter than in the Voronoi and potential 

field methods and faster than in the Visibility graph. However, this algorithm is very 

complicated and still contains bumps and rudimentary turns; hence, the algorithm is not ideal 

for USVs in dynamic environments. A VM (Voronoi shortest path refined by Minimising the 

number of waypoints) algorithm was proposed by Bhattacharya and Gavrilova (2008). The 

generated path was ultimately smoothed by using a corner-cutting technique. It was 

demonstrated that the proposed algorithm reduced the length of the Voronoi path and still kept 

the computational efficiency as low as 𝑂(𝑛𝑙𝑜𝑔(𝑛)). Another rapid path re-planning algorithm 

was proposed by Candeloro et al. (2017) based on the Voronoi algorithm. However, the path 

generation was limited to only the edges of the Voronoi diagram.  

  In this work, a new algorithm, named the Voronoi-Visibility (VV) algorithm, is proposed that 

combines the Voronoi diagram and the Visibility graph, taking advantages of the strengths of 

each to produce an optimal solution in terms of safety navigation, path distance and 

computational cost. To benchmark its performance, the proposed algorithm was compared with 

the VM algorithm in terms of path length and computational time.  

 

 

3. PROBLEM STATEMENT.  Research on path planning algorithms for USVs to operate in 

complex geographical scenarios has mainly focused on two challenges: (1) ensuring high 

computational efficiency in processing large spatial datasets, and (2) maintaining clearance 

distances from obstacles, such as island coastlines.  

  3.1.  Large spatial dataset.  A detailed high-resolution navigation chart would improve the 

accuracy of the path planning result but also cause a computational burden. For example, there 

are 98 islands in the Singapore Strait and 114 islands along the included Croatian coastline, as 

shown in Figures 1 and 2, respectively. By querying high-resolution island data for the 

Singapore Strait, it was found that there were around 4,128 vertices for representing the 

Singapore islands. Considering the large number of vertices, even the fastest Visibility graph 

algorithm would incur a computational cost of 𝑂(𝑛2) time and an edge number of 𝑂(𝑛2) in 

the worst case. Each segment must be checked to determine whether it intersects with any 

island coastline, such that processing such a large amount of data would increase the roadmap 

construction time and path searching time significantly. It is therefore impractical to use the 

Visibility graph directly due to its inefficiency. 

  
Figure 1. Singapore islands. Figure 2. Croatia islands. 



 

  3.2.  Clearance distance.  Map data may occasionally be inaccurate. Figure 3 shows an 

example of a Croatian island representing data obtained from the Global Self-Consistent 

Hierarchical High-Resolution Shorelines (GSHHS) dataset. However, an overlay of the island 

data onto a Google map (Figure 4) shows inconsistent profiles among the different map 

providers. The average distance between the two coastline profiles was around 200 metres. 

Accordingly, path planning algorithms should account for the problem of map inaccuracy when 

keeping the USV away from island coastlines with a safe clearance distance, and the clearance 

distance can also keep the USV away from crowded environments near coastlines. 

 

 

    

Figure 3. Croatian island. Figure 4. Illustration of data inaccuracy on a 

Croatian island. 

 

4. METHODOLOGY.  The methodology of the proposed algorithm is presented in this section, 

which is organised as follows: Section 4.1 summarises the architecture of the proposed 

algorithm. Section 4.2 presents the environmental dataset used in the research. Voronoi 

collision-free roadmap generation is described in Section 4.3, while Voronoi shortest path 

generation is presented in Section 4.4. Next, the Visibility graph generation approach is 

presented in Section 4.5. Finally, the combined VV algorithm is introduced in Section 4.6. 

  4.1.  Algorithm architecture.  The architecture of the proposed VV approach is shown in 

Figure 5. This algorithm includes four parts: collision-free Voronoi roadmap generation, 

Voronoi-based path planning, Visibility graph generation and VV path planning.  

  In the collision-free Voronoi roadmap generation stage, coastlines are expanded by the 

coastline expanding algorithm, and the expanded coastlines keep the subsequently generated 

roadmap at a clearance distance 𝑐 from the original coastlines. The expanded coastline data are 

then processed by the Voronoi diagram method and the unreachable paths are removed, which 

produces the collision-free Voronoi roadmap. In the Voronoi shortest path generation stage, 

the starting point and the destination are inserted into the Voronoi roadmap and Dijkstra’s 

search algorithm is applied to generate the Voronoi shortest path. In the Visibility graph 

generation stage, the Voronoi shortest path is processed using the Visibility graph. Finally, 

Dijkstra’s search algorithm is again applied to search for the VV shortest path. 

  4.2. Environmental dataset.  In this paper, full-resolution (f) data from the Global Self-

Consistent Hierarchical High-Resolution Shorelines (GSHHS) dataset are used. The full-

resolution dataset has the highest resolution level among those of GSHHS, including high-

resolution (h), intermediate-resolution (i), low-resolution (l) and crude-resolution (c). The 

resolution is less than 100 metres. Real navigation data not only provide a real simulated 

environment but can also be used to demonstrate the efficient computing capability of the 

proposed algorithm.  
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Figure 5. The architecture of the VV path planning algorithm. 

 

  4.3.  Voronoi roadmap generation with clearance 𝑐 .  Collision-free Voronoi roadmap 

generation includes three steps: (1) expanding the coastlines, (2) applying the Voronoi diagram 

algorithm and (3) removing the unreachable paths. 

  4.3.1.  Coastline expanding algorithm.  To ensure the safety of the USV, each island coastline 

is expanded by 𝑐 metres, which is configurable and can be specified by the users depending on 

their requirements.  
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Figure 6. Coastline expanding algorithm. 

 

  The coastline expanding algorithm was realised by calculating the position of each expanded 

coastline endpoint. In Figure 6, the coastline 𝐴 − 𝐵 − 𝑃⁡is expanded to 𝑎 − 𝑏 − 𝑝,⁡ and the 

expanding distance is 𝑐 metres. The segment 𝐴 − 𝐵 is parallel to the segment 𝑎 − 𝑏, and their 



distance is 𝑐 metres. The segment 𝐵 − 𝑃 is parallel to the segment 𝑏 − 𝑝, with a distance of  𝑐 

metres. The positions of points 𝐴, 𝐵 and 𝑃 are denoted by 𝐴(𝑥𝐴, 𝑦𝐴), 𝐵(𝑥𝐵, 𝑦𝐵) and 𝑃(𝑥𝑃, 𝑦𝑃), 
respectively. 

  To determine the expanded line segments 𝑎 − 𝑏 − 𝑝 , the expanding algorithm needs to 

calculate the position of 𝑏(𝑥𝑏 , 𝑦𝑏). The angle bisector of angle 𝜃𝐴𝐵𝑃 is denoted by line 𝑏𝑜. The 

Line-Of-Sight (LOS) angle of line 𝑏𝑝 is denoted by θ𝑝𝑏𝑚 and the LOS angle of line 𝑏𝑎 is 

denoted by θ𝑎𝑏𝑚. 

  First, 𝜃𝑎𝑏𝑚 and 𝜃𝑝𝑏𝑚 are calculated using Equations (1) and (2), respectively. 

𝛳𝑎𝑏𝑚 = 𝑎𝑡𝑎𝑛⁡(
𝑦𝑎 − 𝑦𝑏
𝑥𝑎 − 𝑥𝑏

) (1) 

 

𝛳𝑝𝑏𝑚 = 𝑎𝑡𝑎𝑛⁡(
𝑦𝑝 −⁡𝑦𝑏
𝑥𝑝 −⁡𝑥𝑏

) (2) 

  The angle 𝛳𝑜𝑏𝑝 and the length of 𝐵𝑏 are calculated using Equations (3) and (4), respectively. 

𝛳𝑜𝑏𝑝 =⁡
𝛳𝑎𝑏𝑚 −⁡𝛳𝑝𝑏𝑚

2
 

(3) 

 

|𝐵𝑏| = ⁡
𝑐

𝑠𝑖𝑛⁡(𝛳𝑜𝑏𝑝)
 (4) 

  Next, position  𝑏(𝑥𝑏 , 𝑦𝑏) is calculated by Equations (5) and (6), respectively. 
𝑥𝑏 =⁡𝑥𝐵 − |𝐵𝑏| × cos⁡(𝛳𝑜𝑏𝑝 + 𝛳𝑝𝑏𝑚) (5) 

 

𝑦𝑏 =⁡𝑦𝐵 − |𝐵𝑏| × sin⁡(𝛳𝑜𝑏𝑝 +⁡𝛳𝑝𝑏𝑚) (6) 

   Using the coastline expanding algorithm, all the expanded coastline point positions can be 

calculated in 𝑂(𝑛) time. Figure 7 shows an example of expansion with one of the Singapore 

islands. The expanded distance is 𝑐 = 200 m. 

  
Figure 7. Illustration of coastline expanding algorithm. 

 

  4.3.2. Voronoi roadmap generation.  The Voronoi roadmap was built in 𝑂(𝑛𝑙𝑜𝑔(𝑛)) time. For 

implementation, the Delaunay triangulation should be created first, after which the Voronoi 

diagram should be generated from it. The procedure has been included in the built-in MATLAB 

function ‘voronoin’; the voronoin function can be expressed in Equation (7). 
[𝑣, 𝑐𝑒] ⁡= ⁡𝑣𝑜𝑟𝑜𝑛𝑜𝑖𝑛(𝑥, 𝑦) (7) 

where the inputs 𝑥  and 𝑦  represent the longitude and latitude of all the coastline points, 

respectively. Outputs 𝑣  and 𝑐𝑒  store the Voronoi node information and Voronoi cell 

information, respectively. By processing 𝑣 and 𝑐𝑒, the adjacency matrix 𝐹 can be obtained. 



The edge weights for any connected pair of node 𝑖 and node 𝑗, denoted as 𝐹(𝑖, 𝑗) and 𝐹(𝑗, 𝑖), 
are equal to 1. Unconnected pairs will have edge weights of 0. Figure 8 depicts the Voronoi 

diagram of an obstacle.  

   
Figure 8. The Voronoi diagram of a polygon.  

  

  4.3.3. Removing unreachable paths.  In Figure 8, segments 23-11, 23-25, 23-22, 22-24, 12-

22, 12-10, 12-13, 13-8, and 13-29 are not reachable because they cross obstacles. Two types 

of paths must be removed: (1) path segments that intersect with the coastlines, and (2) paths 

that are connected to those nodes that fall inside the island profile. 
  

 

  

 
Figure 9. Voronoi roadmap of polygon obstacles.  Figure 10. Collision-free roadmap of polygon 

obstacles.  

  



  
Figure 11. The Voronoi roadmap of Singapore 

islands.  

Figure 12. Collision-free roadmap of Singapore 

islands.  

 

  Voronoi diagrams of obstacles and Singapore islands are shown in Figures 9 and 11, 

respectively. When unreachable paths are removed, the roadmap becomes much clearer, as 

shown in Figures 10 and 12. Since checking the clearance of one Voronoi edge needs 

O(𝑙𝑜𝑔(𝑛)) time and the Voronoi diagram has O(𝑛) edges, removing all unreachable paths 

requires O(𝑛𝑙𝑜𝑔(𝑛)) time. The adjacency matrix 𝐹 must be updated accordingly. Assuming a 

removed path 𝑖𝑗, the values of 𝐹(𝑖, 𝑗) and 𝐹(𝑗, 𝑖) will be updated to 0. 

  4.4. Voronoi shortest path generation.   

  4.4.1. Insertion of starting point and destination.  Assuming there are 𝑁 nodes generated by 

the Voronoi diagram, the starting point and the destination point are added to the Voronoi nodes 

as node 𝑁 + 1 and node 𝑁 + 2. Matrix 𝐹  is then expanded from size 𝑁 × 𝑁  to size (𝑁 +
2) × (𝑁 + 2). The nearest reachable Voronoi nodes to the starting point and destination point 

are denoted as node 𝑁 + 1 and node 𝑁 + 2, respectively.  

  4.4.2. Dijkstra’s search algorithm.  The element of matrix 𝐹 should be changed from 1 to the 

Euclidean distance of the two corresponding nodes, as shown in Table 1, where 𝑆 denotes the 

closest Voronoi node to the starting point node 𝑁 + 1, 𝐷 denotes the closest Voronoi node to 

the destination point node 𝑁 + 2, 𝐿 represents the length between two nodes, for example, 

𝐿𝑆,𝑁+1 represents the length between 𝑆 and 𝑁 + 1. Dijkstra’s search algorithm is then applied 

to search for the shortest path from node 𝑁 + 1 to node 𝑁 + 2. Assuming the starting point is 

(103.9, 1.21) and the destination point is (103.65, 1.25), the path produced by Dijkstra’s search 

algorithm is shown in Figure 13. It can be seen that the Voronoi shortest path is far from optimal 

and it must be refined. 

 
Table 1. The adjacency matrix 𝐹 with length information.  

 

 … 𝑆 𝐷 … 𝑁 + 1 𝑁 + 2 

… … 0 0 … 0 0 
𝑆 0 0 0 0 𝐿𝑆,𝑁+1 0 
𝐷 0 0 0 0 0 𝐿𝐷,𝑁+2 

… … 0 0 … 0 0 
𝑁 + 1 0 𝐿𝑁+1,𝑆 0 0 0 0 
𝑁 + 2 0 0 𝐿𝑁+2,𝐷 0 0 0 

 



  
Figure 13. Voronoi shortest path. 

  

  4.5. Visibility graph generation.  To refine the Voronoi shortest path, the Visibility graph is 

applied. A waypoint is denoted as 𝑤𝑖 on the Voronoi shortest path, where (𝑖 = {1. .𝑚}) and 𝑚 

is the number of waypoints. It must first be verified whether the line segment 𝑤𝑖𝑤1⁡has an 

intersection with the expanded coastlines. If there is no intersection, the adjacency matrix will 

be updated by 𝐹𝑖,1 =⁡𝐿𝑖,1. The same operation is repeated with all line segments in the roadmap 

by two nested loops (see the pseudocode shown in Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. The pseudocode of the Visibility graph.  

 

  The Visibility graph has⁡O(𝑚2) edges, and the construction of the collision-free Visibility 

graph requires O(𝑚2𝑙𝑜𝑔(𝑛))  time. After applying the Visibility graph algorithm, the VV 

roadmap is obtained, as shown in Figure 15. The Visibility graph generates more possible paths 

to the Voronoi roadmap, which changes the path topology; for example, path sailing on a 

different side of an obstruction may occur in VV.  

Function Visibility graph (𝑉𝑃, 𝐹) 

Assume 𝑉𝑃 is the Voronoi path, which has 𝑚 waypoints.  

For 𝑖 = 1:𝑚 

  For 𝑗⁡ = 1:𝑚 

     Check if line segment 𝑉𝑃(𝑖, 𝑗) has intersection with the coastlines or not. 

   If yes, continue. 

   If no, update 𝐹(𝑖, 𝑗) = 𝐿(𝑖, 𝑗). 

  end 

end 



 
Figure 15. VV roadmap. 

  

  4.6. Voronoi-Visibility shortest path generation.  Dijkstra’s search algorithm is applied again 

to search for the shortest path from the VV roadmap. The Voronoi and VV shortest paths are 

shown in Figure 16(a). It is found that the VV path is 27.24% shorter than the Voronoi path. In 

addition to having a shorter distance, the produced path also meets the safety condition of 

clearance distance from the expanded coastlines. To illustrate the effectiveness of the safety 

condition, Figure 16(b) shows a detailed, enlarged view of a small region in Figure 16(a) (the 

blue box). The VV path maintains the clearance distance from the original coastlines, meaning 

that the path generated by the proposed algorithm is safe for the USVs to operate in. 

  
(a) (b) 

Figure 16. VV and Voronoi shortest paths. 

5. NUMERICAL SIMULATION. 

  5.1. Voronoi diagram-based path planning algorithm for comparison.  For comparative 

purposes, the VM path planning algorithm was assessed against the proposed method. The 

rationale for choosing the VM algorithm for comparison was that the VM is considered one of 

the main authentic solutions in this area. As in the proposed algorithm, in VM, the coastlines 

are first expanded, after which the starting point and destination point are inserted into the 

roadmap. Dijkstra’s search algorithm is then applied to search for the shortest path between the 

starting point and the destination point. The difference between the VV and VM algorithms is 

that once the Voronoi shortest path is generated, the VM algorithm will refine the path by 



minimising the number of waypoints on the Voronoi path instead of applying the Visibility 

graph and Dijkstra’s search algorithm.  

  The procedure for minimising the number of waypoints is as follows: For a waypoint 𝑤𝑖 on 

the Voronoi shortest path (𝑖 = {1. . 𝑚 − 2}), where 𝑚  is the number of waypoints on the 

Voronoi shortest path, the line segment 𝑤𝑖𝑤𝑖+2 is checked to determine whether it has an 

intersection with the expanded coastlines. If not, then 𝑤𝑖+1 is removed from the shortest path, 

and the process is repeated from waypoint 𝑤𝑖+2. If so, then  𝑤𝑖+1 is retained and considered 

the next waypoint for processing. The Voronoi, VM and VV shortest paths are shown in Figure 

17. Here, it is shown that the VV shortest path saves 12.76 % more of the total length than does 

the VM path. Figure 18 shows the Voronoi, VM and VV shortest paths with the Voronoi 

diagram and the Visibility graph in the background. The Visibility graph generates more 

available paths and makes it possible for the USV to travel on another side of the islands, hence 

saving path length when compared to the VM algorithm.  

 
Figure 17. Comparison of Voronoi, VM and VV shortest paths. 

 

  
(a) (b) 



  
(c) (d) 

Figure 18. Comparison of Voronoi, VM and VV shortest paths (In (b), zone one and zone two are represented 

by blue rectangles, which are zoomed in (c) and (d)). 

 

  5.2. Ten USV mission scenarios in Singapore. All the simulations were carried out on a 2.7 

GHz Intel Core i7-6820HK processor with 16.0 GB. The programmes were implemented using 

Matlab R2016b. In this stage, the proposed VV algorithm was compared with the VM 

algorithm for ten Singapore mission scenarios in terms of path length and computational time. 

  5.2.1. Path length comparison. The comparison of the path lengths is shown in Table 2. The 

clearance distance was set to be 100 metres. Each mission had different starting and destination 

end-points. The path length saved varied from 5.84% to 13.38%. The Voronoi, the VM and the 

VV shortest paths of Missions No. 3 and No. 10 are shown in Figures 19 and 20, respectively. 

It can be seen that the Voronoi shortest paths are far from optimal: although the VM path 

planning algorithm refined the Voronoi shortest path, in terms of path length, its performance 

was not as good as the proposed VV path planning algorithm.  

 
Table 2. The comparison of the VV and VM algorithms in ten Singapore missions 

 

Mission No. Starting point Destination 
VM path 

length(km) 

VV path 

length(km) 

Saved 

distance 

1 (103.90,1.21) (103.65,1.25) 32.952 28.747 12.76% 

2 (103.95,1.25) (103.78,1.08) 29.147 27.445 5.84% 

3 (103.95,1.15) (103.65,1.25) 42.161 36.520 13.38% 

4 (103.68,1.30) (103.90,1.23) 29.092 26.326 9.51% 

5 (103.74,1.30) (103.90,1.23) 22.765 20.072 11.83% 

6 (103.85,1.25) (103.75,1.05) 26.806 25.164 6.12% 

7 (103.70,1.25) (103.80,1.23) 12.680 11.740 7.41% 

8 (103.65,1.27) (103.98,1.30) 40.599 38.113 6.12% 

9 (103.95,1.20) (103.65,1.25) 38.214 34.281 10.29% 

10 (103.95,1.30) (103.65,1.25) 39.891 34.874 12.85% 

 



  
(a) (b) 

  
(c) (d) 

Figure 19. The comparison of Voronoi, VM and VV shortest paths in Singapore Mission No.3 (In (b), zone 

one and zone two are represented by blue rectangles, which will be zoomed in (c) and (d)). 
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(c) (d) 

Figure 20. The comparison of Voronoi, VM and VV shortest paths in Singapore Mission No.10 (In (b), zone 

one and zone two are represented by blue rectangles, which will be zoomed in (c) and (d)). 

   

  5.2.2. Computational time comparison.  The computational times of the Voronoi, VM and 

VV algorithms were compared. As shown in Table 3, the Voronoi algorithm needed the least 

computational time. The VM approach costs more time than the Voronoi algorithm, which was 

less than 0.1 second, and the VV algorithm needed the longest time. Comparing the 

computational time between VV and VM, it was found that the extra computational time was 

less than 2.2 seconds. The extra computational time was proportional to the number of the 

waypoints on the Voronoi path. Because the complexity of the fastest way to build the 

Visibility graph is O(𝑛2), the Visibility graph was applied to the Voronoi shortest path, whose 

vertices number 𝑚 between 44 and 107, instead of being applied to the entire map, whose 

vertices number 4128. Note that the code implemented in this research did not include any 

optimization technique to accelerate the computation. Moreover, according to the simulations 

of Bhattacharya and Gavrilova (2008), when applying the Visibility graph to a map with 1866 

vertices, the computational time will be longer than 60 seconds. However, the computation 

time with the proposed VV algorithm ranges from 0.784 seconds to a maximum of 2.179 

seconds, corresponding to 9.5% to a maximum 26% of extra time. The proposed VV algorithm 

therefore maintained the same level of computational efficiency as that of the Voronoi path 

planning algorithm. 

 
Table 3. Computational time comparison of the Voronoi, VM and VV shortest path planning algorithms in the 

Singapore missions. 

 

Mission 

No. 

Voronoi 

computational 

time 𝑡𝑉 

(seconds) 

VM 

computational 

time 𝑡𝑉𝑀 

(seconds) 

VV 

computational 

time 𝑡𝑉𝑉 

(seconds) 

Number 

of 

waypoints 

on the 

Voronoi 

path 𝑚 

Number 

of 

island 

vertices 

𝑛 

𝑡𝑉𝑉 −⁡𝑡𝑉𝑀 

(seconds) 

1 8.237 8.254 10.034 94 4128 1.780 

2 8.128 8.136 9.035 53 4128 0.899 

3 8.188 8.205 10.264 105 4128 2.058 

4 8.149 8.163 9.869 92 4128 1.706 

5 8.235 8.245 9.243 58 4128 0.997 

6 8.281 8.373 9.292 58 4128 0.919 

7 8.244 8.253 9.037 44 4128 0.784 

8 8.294 8.380 10.449 107 4128 2.069 



9 8.221 8.238 10.207 103 4128 1.969 

10 8.241 8.258 10.436 105 4128 2.179 

 

  5.3. Five USV mission scenarios in Croatia. To test the performance of the proposed 

algorithm in different spatial scenarios, the proposed algorithm was compared with the VM 

algorithm in five Croatian mission scenarios, as shown in Table 4. The saved distance was 

between 0.64% and 10.47%. The clearance distance was again set to 100 metres. The results 

of the three algorithms for Missions No. 3 and No. 4 are shown in Figures 21 and 22, 

respectively. It can be seen that the proposed VV algorithm still saves travelling distance when 

compared with the VM algorithm in the Croatian scenario, which demonstrated the flexibility 

of the proposed algorithm in dealing with different geographical scenarios. Table 5 shows the 

computational time of the three algorithms. The time difference between the VV and VM 

algorithms is proportional to the number of waypoints on the Voronoi path, which is between 

9.260 seconds and 18.877 seconds. The time difference between the VV and VM algorithms 

in Croatia is longer than in the Singapore scenario because the Croatia scenario has a longer 

island coastline than Singapore and the number of Croatian island vertices is 12,022, which is 

about three times that of Singapore island vertices. According to the simulations of 

Bhattacharya and Gavrilova (2008), the Visibility graph algorithm will take more than 60 

seconds in the case of 1,866 vertices, while the proposed algorithm will take around 60 seconds 

in the case of 12,002 vertices, thus making the latter more computationally efficient than the 

former.   

 
Table 4. The comparison of the VV and VM algorithms in five Croatian missions. 

 

Mission No. Starting point Destination VM Path 

length(km) 

VV Path 

length(km) 

Saved length 

1 (14.45, 45.20) (14.50, 44.10) 136.464 131.118 3.92% 

2 (14.50, 44.80) (14.50, 44.10) 96.165 86.092 10.47% 

3 (14.60, 44.90) (14.50, 44.10) 100.239 91.059 9.16% 

4 (14.45, 45.20) (14.50, 44.30) 112.486 109.046 3.06% 

5 (14.45, 45.20) (14.60, 44.20) 120.786 120.013 0.64% 

 
Table 5. Computational time comparison of the Voronoi, VM and VV algorithms in Croatian missions. 

 

Mission 

No. 

Voronoi 

computational 

time 𝑡𝑉 

(seconds) 

VM  

computational 

time 𝑡𝑉𝑀 

(seconds) 

VV 

computational 

time 𝑡𝑉𝑉 

(seconds) 

Number 

of 

waypoints 

on the 

Voronoi 

path 𝑚 

Number 

of 

island 

vertices 

𝑛 

𝑡𝑉𝑉 −⁡𝑡𝑉𝑀 

(seconds) 

1 46.148 46.223 64.727 192 12022 18.503 

2 44.953 44.953 54.253 90 12022 9.260 

3 45.432 45.473 54.770 94 12022 9.296 

4 45.260 45.327 60.211 164 12022 14.884 

5 45.244 45.313 64.187 190 12022 18.877 

 



  
(a) (b) 

  
(c) (d) 

Figure 21. The comparison of the Voronoi, VM and VV shortest paths in Croatian Mission No.3 (In (b), zone 

one and zone two are represented by blue rectangles, which are zoomed in (c) and (d)). 
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(c) (d) 

Figure 22. The comparison of the Voronoi, VM and VV shortest paths in Croatian Mission No.4 (In (b), zone 

one and zone two are represented by blue rectangles, which are zoomed in (c) and (d)). 

 

  5.4. Two thousand mission simulations in Singapore. In order to quantitatively analyse the 

influence of spatial factors, such as homogeneities of island distributions, on algorithm 

performance, a total of 2,000 missions were simulated with random missions in two sub-

regions of the map. In each sub-region, 1,000 pairs of random starting points and destinations 

were selected, as shown in Figures 23(a) and 23(b), respectively. Note that because the 

proposed algorithm was designed to deal with complex spatial scenarios, the randomly 

generated start points and destinations were only considered valid if the waypoint number with 

the VM algorithm was greater than one (excluding the starting point and destination). In other 

words, cases in which the direct paths between the start and end points were free of obstacles, 

were excluded from the analysis. In case one, the inter-island distances varied more 

significantly than in case two, because the spatial domain of case one was a mixture of close 

and far islands, while the inter-island distance was more homogeneous in case two.  

  The results are statistically represented in Figures 24 (case one) and 25 (case two). In case 

one, the path distance was 20%—25% shorter with the proposed VV method in 212 missions 

than with the Voronoi algorithm and 15% —20% shorter with VV in 143 missions than with 

the Voronoi algorithm. Overall, the proposed VV path saved more than 20% of the total length 

than the Voronoi path in 78% of the 1,000 missions in case one and saved more than 5% of the 

total length than with the VM algorithm in 56% of the 1,000 missions. In Figure 25, VV saves 

more than 20% of the total length than with the Voronoi path in 77.2% of the missions and 

saves more than 5% of the total length than with the VM algorithm in 34.7% of the missions. 

Comparing the results of Figures 24(b) and 25(b), it can be concluded that the VV algorithm 

has higher probability to save more in length in the case of a mixture of close and far islands 

than the case with homogeneous distance islands. Among these 2,000 missions, the length of 

VV will be the same as that of the VM algorithm in the worst case. However, the VM path is 

a subset of the VV roadmap, so that the VV path will never be longer than the VM path when 

applying Dijkstra’s algorithm to search for the shortest path in the VV roadmap.  

 



 
(a) 

 
(b) 

Figure 23. Mission area in case one (a) and case two (b) (Green circles are randomly selected start points and 

destinations). 

  
(a) (b) 

Figure 24. Comparison of Voronoi, VM and VV paths in case one. 

 

  
(a) (b) 

Figure 25. Comparison of Voronoi, VM and VV paths in case two. 

 

6. CONCLUSION.  In this paper, the coastline expanding algorithm, Voronoi diagram, 

Visibility graph and Dijkstra’s search algorithms were integrated to solve the problem of USV 

shortest path planning. By comparing the path length and the computational efficiency of the 

proposed VV algorithm with that of the VM algorithm in the Singapore Strait missions and the 

Croatian islands missions, it can be concluded that the proposed algorithm generates shorter 

paths than the VM algorithm and maintains the same level of computational efficiency as that 



of the Voronoi shortest path planning algorithm. Two thousand mission simulations were 

carried out, together demonstrating considerable performance improvement with the proposed 

algorithm, especially in the case of a mixture of islands with large inter-distance variations than 

those of islands with more homogeneous distributions. In this work, the proposed algorithm 

addressed the least distance path planning problem, which can be extended in future work by 

modifying the adjacent matrix using time consumption weights or energy consumption weights 

considering the sea current data to solve the problem of least time or least energy path planning.  
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