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Abstract: Wind power has the characteristic of daily similarity. Furthermore, days with 
wind power variation trends reflect similar meteorological phenomena. Therefore, wind 
power prediction accuracy can be improved and computational complexity during 
model simulation reduced by choosing the historical days whose numerical weather 
prediction information is similar to that of the predicted day as training samples. This 
paper proposes a new prediction model based on a novel dilation and erosion (DE) 
clustering algorithm for wind power generation. In the proposed model, the days with 
similar numerical weather prediction (NWP) information to the predicted day are 
selected via the proposed DE clustering algorithm, which is based on the basic 
operations in mathematical morphology. And the proposed DE clustering algorithm can 
cluster automatically without supervision. Case study conducted using data from Yilan 
wind farm in northeast China indicate that the performance of the new generalized 
regression neural network (GRNN) prediction model based on the proposed DE 
clustering algorithm (DE clustering-GRNN) is better than that of the DPK-medoids 
clustering-GRNN, the K-means clustering-GRNN, and the AM-GRNN in terms of day-
ahead wind power prediction. Further, the proposed DE clustering-GRNN model is 
adaptive.  
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1 Introduction 
Wind power is currently attracting increased attention globally as a renewable and clean source of 
energy. However, because of the intermittency and randomness of wind power, accurate wind power 
prediction is crucial to ensure the transient stability of the power grid [1]. Accurate wind power 
prediction can also increase the marketing power of wind producers [2, 3]. The various wind power 
prediction methods can be classified into three categories: physical methods, statistical methods, and 
intellectual learning methods [4-6]. Physical methods are based on the topography of the plant. 
Statistical methods are driven by historical data modeling approaches [7-9], such as Kalman filter 
[10], and ARMA modeling [11]. Intellectual learning methods establish a nonlinear relationship 
between the input data and the output power by employing an artificial intelligence approach [12-15], 
such as artificial neural networks [16-18], support vector machine [2], or hybrid statistical models 
[19-21].  

It is well known that wind power generation fluctuates with weather conditions [22], particularly 
wind speed and direction. Seasonal changes and the alternation of day and night result in certain days 
having similar weather conditions. Besides, in meteorology and climatology, a method of forecasting 
based on finding past occasions that are analogous to the current weather situation, called "Analogue 
Method (AM)", has a history of more than 20 years [23-25]. Meanwhile, these days with similar 
meteorological phenomena also have similar wind power variation trends [26]. Therefore, choosing 
such historical days whose numerical weather prediction (NWP) information is similar to that of the 
predicted day as training samples can improve the wind power prediction accuracy and reduce the 
computational complexity during model simulation.  

Clustering algorithms are an effective tool in this area [27]. Clustering refers to the process of 
dividing a dataset into several categories according to the similarity and distance between the data 
without information a priori [28-30]. Because there are no prior assumptions about the number and 
structure of clusters, clustering analysis is an unsupervised learning method [31, 32]. Existing 
clustering algorithms predominantly include hierarchical based clustering, partition based clustering, 
density based clustering, grid based clustering, or model based clustering techniques [33, 34]. 
However, most of these algorithms need to specify the number of clusters, k, in advance, and 
determining k is very difficult. Zhou et al. [35], Wei et al. [36] and Řezanková and Húsek [37] found 
k by setting a clustering validity value, and using the merge or split rule to increase or decrease k to 
its optimal value. Sun et al. [38] obtained a series of eigenvalues via spectral decomposition of the 
data affinity matrix, and then used eigenvalue difference analysis to determine k. Zhang et al. [39] 
determined k and the initial cluster centers by identifying high-density regions using Neighbor 
Sharing Selection (NNS). Xie et al. [40] determined k by constructing a decision map of sample 
distances relative to sample densities. Muneeswaran et al. [41] proposed a method that does not need 
to specify k in advance, instead it automatically obtains k during clustering. 

This paper proposes a novel clustering algorithm based on dilation and erosion (called the DE 
clustering algorithm) that can automatically determine the number of clusters, k. In the DE clustering 
algorithm, the sample dataset is processed into a binary matrix that is then dilated and eroded to 
obtain a new matrix. The number of clusters, k, is then determined by classifying the connected data 
points with value “1” in the new matrix. Finally, the sample dataset is divided into k clusters by 
calculating the distance between each data and the cluster centers, which are the mean values of the 
data in the obtained clusters. The number of clusters, k, is obtained automatically, and the proposed 
algorithm classifies the sample dataset without supervision. The feasibility and efficiency of the 
proposed algorithm have been verified on data from the UCI datasets. 

A novel prediction model that incorporates the DE clustering algorithm, called the generalized 
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regression neural network based on dilation and erosion clustering (DE clustering-GRNN) is also 
proposed. The validity and efficiency of this proposed DE clustering-GRNN model have been 
evaluated on data from January 2012 to June 2012 of Yilan wind farm in northeast China and NWP 
data from European Centre for Medium-range Weather Forecasts (ECMWF). To further verify the 
effectiveness of the proposed model, GRNN without clustering and two commonly used clustering 
algorithms, DPK-medoids clustering and K-means clustering, were used to predict wind power 
generation with the same dataset. Besides that, due to the meteorological similarity is the basis of the 
clustering in this paper, a AM-GRNN model was used in the case study to evaluate the new method. 
The simulation results indicate that proper clustering analyses before prediction can significantly 
improve the prediction accuracy, and the performance of the DE clustering-GRNN model is better 
than that of the other prediction models. And DE clustering algorithm can perform clustering 
automatically, which makes it more suitable for applications of wind farms. 

The remainder of this paper is organized as follows. Section 2 describes the proposed DE 
clustering algorithm, and Section 3 experimentally verifies its efficacy using the UCI datasets. 
Section 4 outlines the proposed DE clustering-GRNN model for wind power generation prediction 
and compares it to several other prediction models. Section 5 presents concluding remarks. 
 
2 Underlying theory of dilation and erosion in mathematical morphology 

Dilation and erosion are not only the basic operations in mathematical morphology [42] but also 
the foundation of all complex morphological transformations [43-45]. Dilation can be stated in a 
simplified, intuitionist manner as moving a structural element B in an image A, such that when A and 
B have an intersection, the set of all points that the original point B goes through is the result of B 
dilation A. The intuitive explanation for erosion is that when B is completely contained in A, the set 
of points that the original point B goes through is the result of B erosion A.  

Fig. 1 shows an example of dilation and erosion. The shaded section (defined as A) in Fig. 1(a) 
represents the “foreground pixels,” and the remainder represents the “background pixels.” The 
shaded section in Fig. 1(b) is the structuring element, B. The shaded section in Fig. 1(c) is the 
mapping of structuring element B. Fig. 1(d) is the result after B dilation A. It can be easily seen that 
dilation makes A larger and the dark parts in Fig. 1(d) comprise the expanded pixels relative to A. Fig. 
1(e) is the result after B erosion A. Erosion shrinks A and the dark part comprises the remaining 
pixels relative to A [46]. Dilation expands an image and erosion shrinks it [47]. 

 

  
(a) 
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(b)                 (c) 

 
(d)                  (e) 

Fig. 1. Example of the dilation and erosion processes 
 
Dilation is used to fill holes in an image and the small concave parts of the image edge. Erosion can 
remove areas that are smaller than the structuring element from the image. If there is a tiny 
connection between two objects, we can separate them via erosion when the structuring element is 
sufficiently large [48].  
 
3 Proposed dilation and erosion clustering algorithm 

Cluster analysis divides the sample sets into several clusters based on a similarity measure. The 
samples in the same cluster are as similar as possible, whereas the samples in different clusters are as 
dissimilar as possible. In general, the smaller the distance of two groups of data, the greater the 
degree of similarity. Thus, datasets with a small distance should be classified into the same cluster. 

When a binary image is imported into MATLAB, it is displayed as a two-dimensional binary 
matrix that only contains 0 (white) and 1 (black). Therefore, we can transform the original dataset 
into a binary matrix and perform dilation and erosion on it to form a cluster. Based on the idea above, 
a new clustering algorithm, called the dilation and erosion (DE) clustering algorithm, is presented. 
 
3.1 Two-dimensional dataset clustering 

When an unclassified dataset comprises n groups of two-dimensional (2D) data, we convert the 
two data of each group into two positive integers, and then use them to set up a 2D matrix. 
Consequently, each group containing two positive integers can correspond to a point in the specified 
2D matrix. Setting the value of these points in the 2D matrix equal to “1” and the others equal to “0,” 
a 2D binary matrix containing the original data information, called A, is obtained. This matrix only 
includes “0” and “1”. By dilating A with a 2D circular structuring element B, a new 2D binary matrix, 
A1, can be generated. Connecting nearby points with value “1” in A1, removing very small areas and 
separating the tiny connected areas by eroding A1 with a new structuring element C (whose radius is 
larger than B by “1”), results in the generation of a new 2D binary matrix, A2. Subsequently, some 
connected areas, which are separated from each other, can be obtained by removing the relatively 
small connected areas from A2. Moreover, the number of clusters is equal to the number of 
remaining connected areas. 
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Next, the groups of data corresponding to the points with value “1” in each connected area are 
extracted and placed into one cluster. The mean value of the data in each cluster is then defined as the 
clustering center. Subsequently, the original dataset can be classified into corresponding clusters 
according to the Euclidean distance between each element and the clustering centers. 

The specific steps used in the DE clustering algorithm are as follows (see Fig. 2): 
(1) Normalize all of the original data. There are n groups of data（xi , yi），i = 1, 2, 3, …, n, in the 

original dataset. Normalize all the data using Eq. (1): 

min min

max min max min

ˆ ˆ= ,i i
i i

x x y yx y
x x y y

− −
=

− −
           (1)  

(2) Process the data using Eq. (2): 

1 2ˆ ˆ= ( )+1, y ( ) 1i i i ix fix x q fix y q′ ′× = × +         (2) 

where fix is the truncated integral function, and jq  (j=1,2) are suitable integers according to the range 

of the original dataset. 

(3) Obtain the 2D binary matrix. Define A as a 1 2+1 1q q∗ +（ ）（ ） matrix. For matrix A, ' ',i iA x y（ ）=1，

i=1,2,3, …, n, and the remaining points are zero. Therefore, A is a 2D binary matrix containing 
only ones and zeros. 

(4) Perform dilation. Select a 2D circular structuring element B with radius r. Matrix A is converted 
to a new matrix A1 by dilating with B. 

(5) Perform erosion. Set a new 2D circular structuring element C whose radius is 1+r. Matrix A1 is 
converted to a new matrix A2 by eroding with C. 

(6) Determine the number of clusters, k. Display A2 as a binary image in MATLAB, the number of 
relatively large connected areas in the image is the number of clusters. The number of clusters 
can also be obtained by removing the relatively small connected areas from A2.  

(7) Determine the clustering center, kH . Extract the groups of data ' ',kj kjx y（ ） corresponding to 

points with value “1” in each remaining area in A2 and place them in one cluster. The clustering 
centers are the mean values of the data in these clusters. 

(8) Cluster the original dataset. Classify every group data of the original dataset according to the 

Euclidean distance between itself and clustering centers, kH . 

Fig. 3 is a diagrammatic drawing of the proposed DE clustering algorithm for 2D data. 
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Fig. 2. Flowchart of the proposed DE clustering algorithm for 2D data 
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Fig. 3. Diagrammatic drawing for the proposed DE clustering algorithm for 2D data 
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3.2 m-dimensional dataset clustering 
When the unclassified dataset comprises n groups of m-dimensional data, we also can convert 

the data in each group into positive integers, and then use them to set up an m-dimensional (m-D) 
matrix. Each set of group data contains m positive integers corresponding to a point in the specified 
m-D matrix. Setting the value of these points equal to “1” in the m-D matrix and the others equal to 
“0,” an m-D binary matrix A containing the original data information is constructed with entries “0” 
or “1.” By dilating A with an m-D structuring element B, a new m-D binary matrix A1 is generated. 
Then, a new m-D binary matrix A2 is built by eroding A1 with a new structuring element C, whose 
radius is larger than B by “1.” Subsequently, in accordance with the steps in Section 2.1, the original 
dataset is clustered. 
 
3.3 Experimental evaluation of the DE clustering algorithm on the UCI datasets 

In this section, the feasibility and the performance of the proposed DE clustering algorithm are 
demonstrated on three different UCI datasets. The details of these datasets are given in Table 1. In the 
table, it can be seen that different datasets have different dimensions. The algorithm was tested using 
MATLAB. 

 
Table 1 Details of the UCI datasets 

Datasets Number  
of samples 

Dimensions True number of 
clusters  

Far_4k2 
Haberman 
Iris 

400 
306 
150 

2 
3 
4 

4 
2 
3 

 
Because of the different spatial distributions and sample sizes of these datasets, we chose different 
parameters for the different datasets. The selected parameters of the three datasets are shown in Table 
2. 
 

Table 2 Parameters of the UCI datasets 
Datasets qi Radius r of B 
Far_4k2 
Haberman 
Iris 

q1=q2=200 
q1=q2=50, q3=30 
q1=q4=30, q2=25, q3=20 

7 
6 
3 

 
The mean value of two dimensions for the Far_4k2 datasets are 5.364 and 5.4836. As they are 
approximately equal to each other, we chose q1=q2=200. Based on the fact that the mean value of 
three dimensions for the Haberman datasets are 52.45, 62.85, and 4.03, we set q1=q2=50 and q3=30. 

The simulation results are shown in Fig. 4. The Far_4k2 datasets can be divided into four 
clusters, and the Haberman datasets can be divided into two clusters. The Iris dataset can be divided 
into three clusters, as shown in Table 3. These numbers of the clusters are completely consistent with 
the true numbers of clusters in Table 1. As the number of dimension of the Iris dataset is four (greater 
than three), its classification result is difficult to display graphically.  
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(b) Haberman 

Fig. 4.Simulation results of the Far_4k2 and Haberman datasets 
 

Table 3 Simulation results of Iris dataset 
Cluster Cluster one Cluster two Cluster three 

Number of samples in 
each cluster 

4739 19410 759 

 
 
4 Wind power prediction and results analysis 

4.1 Wind power prediction model 
Wind power generation fluctuates with weather conditions, particularly wind speed and direction. 
Dong et al. [26] showed that the days with similar wind power variation trends also have similar 
meteorological phenomena. Therefore, the historical days with similar NWP meteorological 
information were classified into one cluster by the DE clustering algorithm, and the data in the 
cluster to which the prediction day belongs were selected as the training samples. Then, the 
generalized regression neural network (GRNN) model was established, with the NWP information as 
input and wind power as output. The NWP information includes air pressure, wind speed, 
temperature, and sine and cosine values of wind direction. The NWP information of the predicted 
day is sent to the trained model to obtain the wind power prediction. The wind power prediction 
method based on cluster analysis is shown in Fig. 5. 
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Fig. 5. Wind power prediction method based on cluster analysis 

 
Therefore, there are three steps in the wind power generation prediction: clustering with three 
different algorithms to extract the training data; and then building power prediction model by GRNN 
using the selected training data; finally, wind power prediction using the GRNN model. GRNN 
model here can be replace by any other models in the field of wind power prediction. 
In this section, we classify the NWP information of the historical days with three different clustering 
algorithms respectively and compare the prediction results from actual wind farm. The prediction 
results are based on the three different clustering algorithms of the same prediction model. The three 
different clustering algorithms are the proposed DE clustering algorithm, and two existing commonly 
used clustering algorithms—the DPK-medoids clustering algorithm and the K-means clustering 
algorithm. 
 
4.2 Database description 

Data from January 2012 to June 2012 of Yilan wind farm in Heilongjiang Province, in the 
northeast of China, including the wind power from the wind farm and the NWP data from the 
high-resolution atmospheric model of ECMWF (ECMWF- HRES) [49], were used for analysis, 
modeling, and prediction in this case study.  

The longitude and latitude coordinates of Yilan wind farm are, east longitude 129.71°-129.73° 
and north latitude 46.23°-46.57°. The map of the location of Yilan wind farm in Heilongjiang 
Province, Fig.16, is attached in Appendix as a reference. The wind power used in this case study is 
from the first stage of the wind farm (Ⅰ), which has 33 wind turbines (each 1.5MW). The wind 
power of the whole wind farm with a temporal resolution of 15 min was collected from the 
Supervisory Control and Data Acquisition (SCADA) system. The temporal resolution of the NWP 
data from ECMWF was 1h. In order to meet the requirement of the State Grid of China, it was 
interpolated to 15min temporal resolution before the modeling in this case study. 

There are two stages in the modeling: clustering to select the training data, building power 
prediction model by the selected training data. After the modeling, June 30, 2012, was chosen to 
evaluate the performance of the different prediction models. That is, the final input and output of the 
completed prediction model are the NWP data of June 30, 2012 and the corresponding wind power 
prediction values, which will be compared with the actual power. So June 30, 2012 is named the 
predicted day. 

In clustering stage, all of the weather data, from January 01, 2012 to June 30, 2012, is used to 
identify the cluster which the predicted day (June 30, 2012) belongs to.  

NWP information of every day can be seen as a data object that is expressed as an 
eight-dimensional vector X=[Pav, Vmin, Vmax, Tmin, Tmax, Dsin, Dcos, Vmean], called the daily NWP vector. 
The respective meaning of the eight components is as follows: daily average air pressure, daily 
minimum wind speed, daily maximum wind speed, daily minimum temperature, daily maximum 
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temperature, daily average wind direction sine value, daily average wind direction cosine value, and 
daily mean wind speed. Every component of the NWP daily vector needs to be normalized. To do 
this air pressure, wind speed, and temperatures are divided by the maximum value in history. 

To reduce the amount of calculation, we selected three components from vector X for clustering. 
Meanwhile, because the goal of meteorological data classification is to improve the prediction 
accuracy of wind power, the three most relevant components were chosen after comparing the 
relevance of the eight components and wind power, respectively. Finally, Vmin, Vmax, and Vmean were 
selected for clustering. 

After the clustering, the days whose NWP information is similar to the predicted day are chosen 
and forwarded to train the prediction model. 

The Train and Test Datasets of the prediction model are illustrated below: 
Train Datasets: the NWP and power information of the days chosen from the clustering above, 

including wind speed, sine of wind direction, cosine of wind direction, temperature, air pressure, 
power. The temporal resolution is 15min. 

Test Datasets: the NWP and power information of June 30, 2012, including wind speed, sine of 
wind direction, cosine of wind direction, temperature, air pressure, power. The power here is used to 
evaluate the performance of the data mining method. The temporal resolution is 15min. 

Timescale of prediction: 1 day.  
Prediction steps: 96. 
 

4.3 Clustering and simulation results 
Firstly, we classify the NWP information of the historical days with three different clustering 
algorithms respectively for the predicted day. And then, different clustering results are compared and 
analyzed. 
 
4.3.1 The DE clustering algorithm 
According to the DE clustering algorithm in Section 2, the DE clustering procedure includes the 
following steps: 

(1) Normalize all the original data. There are 182 groups of data x zi i i（ ,y , ），i=1,2,3,…,182, in the 

original dataset. Normalize all the data according to Eq. (1). 
(2) Process the data using Eq. (2) and setting the parameters q1=40, q2=60, q3=50. 

(3) Obtain the 2D binary matrix. Define A as a 41 61 51∗ ∗  matrix. For matrix A, 'x zi i iA ′ ′（ ,y , ）=1，

i=1,2,3,…, n, and the remaining points are zero. Therefore, A is a 3D binary matrix containing 
only ones and zeros. 

(4) Dilation. Select a 3D circular structuring element B with radius r=4 . Matrix A is converted to a 
new matrix A1 by dilating with B. 

(5) Erosion. Set a new 3D circular structuring element C with radius r=4 . Matrix A1 is converted to 
a new matrix A2 by eroding with C. 

(6) Determine the number of clusters. When A2 displayed as a binary image in MATLAB, the 
number of relatively large connected areas in the image is the number of clusters. The clustering 
result is shown in Fig. 6. 
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Fig. 6. Clustering result 

 
(7) Determine the clustering center and cluster the original dataset. Calculate the mean of each 
cluster as its clustering center and classify the 182 historical days according to the Euclidean distance 
between itself and the clustering centers. Then, the historical days are divided into three clusters: the 
first cluster consists of 78 days, the second cluster has 39 days, and the third cluster has 65 days. The 
predicted day belongs to the second cluster. 
 
4.3.2 The DPK-medoids clustering algorithm 
Xie et al. [40] proposed the DPK-medoids clustering algorithm. The algorithm defines the local 

density iρ of point xi as the reciprocal of the sum of the distance between xi and its t nearest 

neighbors. The new distance iδ of point xi is defined as well, and then the decision graph of a point 

distance relative to its local density is plotted. The points with higher local density and apart from 
each other located at the upper right corner of the decision graph, which are far away from the 
remaining points in the same dataset, are chosen as the initial seeds for K-medoids, such that the 
seeds will be in different clusters and the number of clusters of the dataset is automatically 
determined as the number of initial seeds. 

Following classification of the 182 historical days based on the DPK-medoids clustering 
algorithm, the result shown in Fig. 7 was obtained. The number of clusters can either be three or four. 
The details are as follows. 
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Fig. 7. The decision graph 

 
Three clusters: In Fig. 7, the upper right corner of curve 1 has three points, 70th day, 105th day, 
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142th day, representing three clustering centers. The 182 historical days are divided into three clusters 
with the first cluster comprising 95 days, the second cluster 39 days, and the third cluster 48 days. 
The predicted day belongs to the third cluster.  

Four clusters: In the upper right corner of curve 2 in Fig. 7, there are four points, 9th day, 70th day, 
105th day, and 142nd day, representing four clustering centers. The 182 historical days are divided 
into four clusters, with the first cluster comprising 50 days, the second cluster 45 days, the third 
cluster 39 days, and the fourth cluster 48 days. The predicted day belongs to the fourth cluster. 
 
4.3.3 The K-means clustering algorithm 
The K-means clustering algorithm [26, 50, 51] is one of the most classic dynamic clustering 
algorithms. Its basic idea is to divide each sample into the nearest category, which is then clustered 
according to the distance. It uses the nearest neighbor rule, the squared error sum, as a criterion 
function. The value of this criterion function changes with the cluster k. The optimal number of 
clusters is determined by the inflection point of the curve, which is the relation of the criterion 
function and the number of clusters, k. Fig. 8 shows the result of classification of the 182 historical 
days using the k-means cluster algorithm. 

 

2 3 4 5 6
0.0

0.4

0.8

1.2

1.6

2.0

C
rit

er
io

n 
fu

nc
tio

n

K

Inflection point 1
Inflection point 2

Inflection point 3

 
Fig. 8. Relationship between the criterion function and the number of clusters, k 

 
The degree of turning at the inflection point k=3 is not obvious; therefore, k=4 and k=5 are also 
selected as the number of clusters to avoid erroneous judgment.  

When the number of clusters k=3, the first cluster comprises 88 days, the second cluster 57 days, 
and the third cluster 37 days. The predicted day belongs to the second cluster.  

When the number of clusters k=4, the first cluster comprises 75 days, the second cluster 26 days, 
the third cluster 37 days, and the fourth cluster 44 days. The predicted day belongs to the fourth 
cluster.  

When the number of clusters k=5, the first cluster comprises 41 days, the second cluster 24 days, 
the third cluster 22 days, the fourth cluster 37 days, and the fifth cluster 58 days. The predicted day 
belongs to the fourth cluster. 

 
4.3.4 Analysis of the different clustering algorithms 

The clustering results from the different algorithms are shown in Table 4. As can be seen, the 
number of clusters of the DPK-medoids clustering algorithm and the K-means clustering algorithm 
are uncertain and need artificial participation. In contrast, the proposed DE clustering algorithm does 
not need the number of clusters to be specified beforehand, and clustering is automatically carried 
out without manual involvement. 

 
Table 4 Clustering results for the different clustering algorithms 
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Clustering algorithm Number of 
clusters 

Number of samples in 
each cluster 

Cluster to which the predicted 
day belongs 

DE  3 78/39/65 Second 
DPK-medoids 3 95/39/48 Third 

4 50/45/39/48 Fourth 
K-means 3 88/57/37 Second 

4 75/26/37/44 Fourth 
5 41/24/22/37/58 Fourth 

 
4.4 Wind prediction results analysis 
 
4.4.1 Performance of the different clustering algorithms in wind power prediction 

Based on the clustering algorithms above, the data about the cluster to which the predicted day 
belongs was selected and applied to train a GRNN model. The number of samples in the predicted 
dataset was 96. There were six classifications from the three clustering algorithms above to be used 
to predict the predicted day’s wind power generation, respectively. 

The GRNN without the clustering prediction model, which was trained using all the historical 
samples, was considered as the reference model. Compared with this reference model, the model 
training time is much faster after clustering, which is about 1.2s, and the time of the reference model 
is about 7.7s. Table 5 shows the normalized root mean squared error (NRMSE) of all the prediction 
results. The prediction results of these prediction models are intuitively shown in Fig. 9, and the 
prediction errors are depicted in Fig.10. 

 
Table 5 Prediction errors of the different models 

Prediction model Number  
of clusters 

NRMSE (%) 

GRNN without clustering  1 13.9 
DE clustering-GRNN  3 7.9 
DPK-medoids clustering-GRNN 3 13.0 

4 13.0 
K-means clustering-GRNN 3 13.7 

4 8.9 
5 9.2 
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Fig. 9. Wind power prediction of the different models 
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Fig. 10. Curves and distributions of the prediction errors of the different models 
 

Table 6 Percentages with the minimal prediction error of the different models 
Prediction model Number  

of clusters 
percentages with the 
minimal error (%) 

GRNN without clustering  1 14.6 
DE clustering-GRNN  3 47.9 
DPK-medoids clustering-GRNN 3 11.5 
K-means clustering-GRNN 4  26.0 

 
For the K-means based models, there are three different NRMSEs in Table 5 because of the different 
classifications. For further explanation, the corresponding three prediction curves are shown in Fig. 
11. 
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Fig. 11. Wind power prediction of the K-means clustering algorithm 
 
The following deductions can be made from the Table 5-6 and Figs.9-11 above:  

(1) Whether from NRMSE or from the error distribution, it can be seen that the prediction 
performance from the GRNN without clustering model is the worst. GRNN without clustering 
model can only predict the trend of the power, but not reflect the volatility of the power. The 
NRMSE of This is because that the training data of this model is all the historical samples. There 
is a large amount of information low related to the predicted day, which increases the 
generalization ability of the model and reduces the learning ability for special situation. Besides, 
it is worth mentioning that this large amount of training data not only does not improve the 
prediction accuracy, but also greatly slows down the training speed of the model. 
Therefore, it is clear that clustering of the training samples is necessary. 

(2) Table 5 and Fig. 9 b) show that the proposed DE clustering-GRNN model generates the lowest 
NRMSE among the six prediction models based on the clustering algorithm. Moreover, the DE 
clustering-GRNN model exhibits the best prediction capability not only based on the NRMSE 
value but also on the prediction curves in Figs. 9. When the prediction model is the proposed DE 
clustering-GRNN model, the prediction curve is close to the actual curve.  

(3) Based on the prediction error curves in Fig.10 a), it can be seen that the errors from DE 
clustering-GRNN model is minimal most of the time. The percentages with the minimal error are 
showed in Table 6. The percentage with the minimal error of DE clustering-GRNN model is 
47.9%, which is much larger than the other three percentages.  
At the same time, Fig.10 b) gives the distributions of prediction errors. It can be observed that the 
prediction errors from DE clustering-GRNN model are distributed within a small error range, [0, 
1.25). Moreover, the number in the minimum prediction error interval from this model is 55, 
which is the biggest compared to the other three models. 

(4) For the K-means based models, the prediction results depend on the selection of k. The NRMSE 
in Table 5 and the prediction curve in Fig. 11 indicate that when k = 4, the prediction 
performance is best. 
 

4.4.2 Comparison with AM for wind power prediction 
   Because the DE clustering algorithm presented in this paper is based on the meteorological 
similarity, an Analogue Method (AM) based prediction model, called AM-GRNN, was used here to 
evaluate its performance in wind power prediction. 
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The AM is based on the principle that two similar states of the atmosphere lead to similar local 
effects. Thus, the AM consists of searching for a certain number of past situations in meteorological 
data, in such a way that they present similar properties to that of a target situation for any chosen 
variables [52]. Many AM techniques exist and have been compared in detail in the literature, with a 
wide range of energy-related applications [23, 53, 25]. In the present analysis, the traditional AM was 
used to extract the historical days whose NWP information is similar to that of the predicted day as 
training samples of the GRNN model. These historical days can be called “analogs” in AM 
algorithm. 

The metric in the traditional AM used to rank the quality of an analog is defined as follows [23, 
53]: 

�|𝐹𝐹𝑡𝑡,𝐴𝐴𝜏𝜏|� = ∑ 𝑤𝑤𝑖𝑖
𝜎𝜎𝑓𝑓𝑖𝑖

�∑ (𝐹𝐹𝑖𝑖,𝑡𝑡+𝑗𝑗 − 𝐴𝐴𝑖𝑖,𝜏𝜏+𝑗𝑗)2�̃�𝑡
𝑗𝑗=−�̃�𝑡

𝑁𝑁𝑣𝑣
𝑖𝑖=1         (3) 

Where 𝐹𝐹𝑡𝑡 is the current NWP forecast for the time step 𝑡𝑡 at a certain location, 𝐴𝐴𝜏𝜏 is an analog 
forecast for the time step 𝜏𝜏 of the training period (𝜏𝜏 corresponding to the same time steps as 𝑡𝑡 but 
on a different day) and at the a certain location, 𝑁𝑁𝑣𝑣 and 𝑤𝑤𝑖𝑖 are the number of physical variables 
and their weights, respectively, 𝜎𝜎𝑓𝑓𝑖𝑖 is the number of standard deviation of the time series of the 
historical forecasts of a given variable, �̃�𝑡 is an integer equal to half with of the time window over 
which the metric is compute, and 𝐹𝐹𝑖𝑖,𝑡𝑡+𝑗𝑗 and 𝐴𝐴𝑖𝑖,𝑡𝑡+𝑗𝑗are the values of the analog and the forecast in 
the time window for given variable.  

The goal of AM here is to find n historical days (analogs) of the NWP variables (chosen among 
the NWP with the highest correlation with the wind power, Vmin, Vmax, and Vmean in this case 
study) that were similar with that of the predicted day. Therefore, 𝑁𝑁𝑣𝑣 = 1 and �̃�𝑡 = 0 in Eq. (3). The 
weight 𝑤𝑤 is calculated by the correlation coefficient with the wind power: 

𝑤𝑤 = [0.715, 0.807, 0.938]                          (4) 
 

After obtaining the n analogs by calculating Eq. (3), the NWP information data in the analogs 
were selected as the training samples of the GRNN model. The wind power prediction method based 
on traditional AM (AM-GRNN model) is shown in Fig. 12. The number of analogs n is a parameter 
need to calibrate [23, 25]. In the present analysis, n is set based on the criterion function NRMSE. 
The NRMSE values are computed with different n from 1 to 60, shown in Fig.13. It is shown that 
NRMSE decreases with increasing n at the beginning, tends to be stable value after n=25. Therefore, 
n=25 is chosen as the optimal value to obtain the best analogs and prediction for AM-GRNN model, 
which is used to compare with the proposed DE clustering-GRNN model. 
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Fig. 12. AM-GRNN prediction model flowchart 
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Fig. 13. The NRMSE values from n=1 to n=60 

 
Table 7 shows the NRMSEs from the proposed DE clustering-GRNN and AM-GRNN. The 

prediction results of these prediction models are shown in Fig. 14, and the prediction errors are 
depicted in Fig.15. 

 
Table 7 Prediction errors of DE clustering-GRNN and AM-GRNN 
Prediction model NRMSE (%) 

DE clustering-GRNN  7.9 
AM-GRNN 9.7 
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Fig. 14. Wind power prediction of DE clustering-GRNN and AM-GRNN 
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a)                                           b) 

Fig. 15. Curves and distributions of the prediction errors of DE clustering-GRNN and AM-GRNN 
 

Table 7 and Fig.14 show that, compared with AM-GRNN model, the proposed DE 
clustering-GRNN model exhibits the better prediction capability. And based on the prediction error 
curves in Fig.15, it can be seen that the prediction errors from DE clustering-GRNN model are 
distributed within a smaller error range [0, 1.25), while that of AM-GRNN model is [0, 1.5). And, the 
number in the minimum prediction error interval from DE clustering-GRNN model is 55, while this 
number of AM-GRNN model is only 46. 

In addition to these prediction performances compared to the proposed DE clustering-GRNN 
model, the AM-GRNN model cannot automatically predict because some parameters in Eq. (3) 
cannot be chosen automatically [25], such as the number of analogs n in the present analysis. This 
number is likely dependent on the length of the training period and the available analog predictors, 
and cannot be generalized for other data sets [23]. In this paper, the value of n is set to 25 based on 
the criterion function NRMSE, but obviously it does not necessarily apply to other different 
applications. For the new application, the value of n needs to be re-selected according to the new data 
set or the new criterion. This operation is not adaptive and increases the workload and time of the 
modeling. 
 
4.4.3 Evaluation of the predictions  

In summary, the comparison and statistical test results reveal the following:  
(1) Using the correct clustering algorithm to choose the historical days whose NWP information is 

similar to the predicted day as the model training samples can improve the prediction accuracy.  
(2) Existing clustering algorithms, especially the K-means clustering algorithm, cannot guarantee a 

unique and optimal prediction because of their dependence on the artificial selection of k. 
(3) There are some shortcomings of the traditional AM when it is used for wind power prediction. 

For instance, the prediction model based on traditional AM is not adaptive and cannot predict 
automatically. 

(4) The proposed DE clustering-GRNN model gives the best performance among the prediction 
models used in this paper, not only because of the high prediction accuracy, but also because it 
can cluster automatically without supervision, and its k does not need to be specified in advance. 

 
5 Conclusions 

This paper proposed a wind prediction model based on a novel dilation and erosion (DE) 
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clustering algorithm, which has its foundation in mathematical morphology. The proposed model 
first classifies the historical days with similar NWP meteorological information into the same cluster 
based on the DE clustering algorithms. Then, samples of the cluster to which the predicted day 
belongs are used to train the GRNN, which is then used to predict the wind power. The feasibility of 
the proposed model was verified using numerical weather prediction (NWP) data and actual wind 
power data from a wind farm. 

Compared to the GRNN without the clustering prediction model, the prediction results show that 
the GRNN with a suitable cluster method is more effective in terms of the improving accuracy of 
day-ahead wind power prediction, and can reduce the training time of modeling. In order to verify 
and compare the prediction performance of the proposed DE clustering-GRNN model, some 
prediction models based on existing algorithms—DPK-medoids clustering-GRNN, and K-means 
clustering-GRNN—were used with the same sample data. And, AM-GRNN model, which is based 
on the traditional AM algorithm, was also be applied in the case study to evaluate the proposed DE 
clustering-GRNN. 

According to the comparison results, it can be observed that: 1) in the clustering stage, the 
proposed DE clustering algorithm can effectively cluster the NWP data; 2) in the prediction stage, 
the proposed DE clustering-GRNN model can have a good prediction accuracy. Therefore, the new 
proposed DE clustering-GRNN model is suitable in the field of day-ahead wind power prediction. 

A major advantage of the DE clustering algorithm is that it does not need the number of clusters 
to be specified beforehand and it can perform clustering automatically without external supervision. 
These excellent qualities make the output of this clustering algorithm unique and optimal, and the 
prediction model based on this clustering algorithm adaptive. 

In fact, converting the dataset to a binary matrix is not the only way of data processing in the DE 
clustering algorithm. As future work, we plan to convert the dataset to a greyscale matrix and cluster 
the dataset according to the gray boundary. Besides, it would be useful to discuss the prediction 
errors when the weather pattern is different for getting more information of the relationship between 
the wind power and the meteorological data. Hence, as a continuation, we can do more research with 
more innovative data analysis and data mining techniques. 
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Appendix 
Data from January 2012 to June 2012 of Yilan wind farm in Heilongjiang Province, in the northeast 
of China, were used in this case study. The longitude and latitude coordinates of Yilan wind farm are, 
east longitude 129.71°-129.73° and north latitude 46.23°-46.57°. Fig.16 is the map of the location of 
Yilan wind farm in Heilongjiang Province. The wind power used in this case study is from the first 
stage of the wind farm (Ⅰ), which has 33 wind turbines (each 1.5MW). 
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Fig. 16. The map of the location of Yilan wind farm in Heilongjiang Province 
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