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Abstract

A probabilistic framework for registering generalised point sets comprising
multiple voxel-wise data features such as positions, orientations and scalar-
valued quantities, is proposed. It is employed for the analysis of magnetic
resonance diffusion tensor image (DTI)-derived quantities, such as fractional
anisotropy (FA) and fibre orientation, across multiple subjects. A hybrid Stu-
dent’s t-Watson-Gaussian mixture model-based non-rigid registration frame-
work is formulated for the joint registration and clustering of voxel-wise
DTI-derived data, acquired from multiple subjects. The proposed approach
jointly estimates the non-rigid transformations necessary to register an un-
biased mean template (represented as a 7-dimensional hybrid point set com-
prising spatial positions, fibre orientations and FA values) to white matter
regions of interest (ROIs), and approximates the joint distribution of voxel
spatial positions, their associated principal diffusion axes, and FA. Specific
white matter ROIs, namely, the corpus callosum and cingulum, are analysed
across healthy control (HC) subjects (K=20 samples) and patients diagnosed
with mild cognitive impairment (MCI) (K=20 samples) or Alzheimer’s dis-
ease (AD) (K=20 samples) using the proposed framework, facilitating inter-
group comparisons of FA and fibre orientations. Group-wise analyses of the
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latter is not afforded by conventional approaches such as tract-based spatial
statistics (TBSS) and voxel-based morphometry (VBM).

1. Introduction1

Group-wise registration of multi-dimensional unstructured point sets com-2

prising different types of data such as directional/axial and scalar-valued3

quantities is useful for a variety of medical imaging and computer vision4

applications. This study proposes a probabilistic approach for group-wise5

registration of generalised point sets comprising positions, associated axial6

orientations and scalar-valued measures. This is achieved through formu-7

lation of a hybrid mixture model (HdMM), combining suitable probability8

distributions to model disparate data features within a cohesive framework.9

As an exemplar application, the proposed framework is employed for the10

joint registration and clustering of magnetic resonance (MR) diffusion tensor11

image (DTI)-derived data, acquired from multiple subjects. The generality12

of the proposed framework however, makes it suitable for registering other13

types of hybrid point sets comprised of feature vectors containing principal14

curvatures, surface normals, integral descriptors, etc. High-dimensional fea-15

ture vectors are in general more descriptive (than spatial positions alone, for16

example) and discriminative when establishing correspondences, due to the17

low probability of matching all features for non-corresponding points.18

MR-DTI has found widespread use for studying structural changes within19

brain white matter (WM), and the potential of such changes as biomarkers for20

dementia and other neurodegenerative diseases. DT fields are estimated from21

diffusion weighted images (DWIs), which encode diffusion of water molecules22

along different gradient directions. MR-DTIs use a diffusion tensor model23

(Basser et al., 1994) that, under some assumptions, can be related to lo-24

cal tissue microstructure. They aid in voxel-wise quantification of diffusion25

characteristics, which may be expressed in terms of principal eigenvectors and26

eigenvalues of the estimated diffusion tensors. Tissue microstructure affects27

local diffusion properties. For example, water diffuses preferentially parallel28

to the major axis of a fibre bundle, as opposed to perpendicular to it and,29

consequently, gives rise to the sense of tissue anisotropy commonly observed30

in major WM tracts. Fractional anisotropy (FA), a measure frequently em-31

ployed to describe tissue anisotropy (Pierpaoli and Basser, 1996), represents32

the degree of directional dependence in diffusion at a specific voxel. The pri-33

mary eigenvector of a diffusion tensor represents the preferred direction for34
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the diffusion of water at any given voxel, and is often interpreted as reflecting35

the local fibre orientation within tissue.36

Region of interest (ROI)-based analyses have been used to assess changes37

in local (Salat et al., 2005) and global (Cercignani et al., 2001) tissue diffusion38

properties. A limitation of such approaches is the need to accurately delin-39

eate ROIs across multiple patients’/subjects’ images. Consequently, they40

are affected by low reproducibility, leading to discrepancies across studies.41

Tract-based spatial statistics (TBSS) (Smith et al., 2006) and voxel-based42

morphometric (VBM) approaches (Ashburner and Friston, 2000) are suit-43

able alternatives that are fully automatic and enable analysis of localised44

changes to FA and other diffusion measures, across the entire WM volume.45

The quality of non-rigid registration used in VBM significantly influences46

the subsequent voxel-wise analysis. To overcome this issue, (Smith et al.,47

2006) proposed the widely used TBSS approach, which ensures that registra-48

tion quality has less influence on subsequent statistical analysis of FA (and49

other diffusion-derived quantities). TBSS constructs an alignment invariant50

mean FA skeleton following registration of subjects’ FA images to a template.51

Neighbouring voxels located perpendicular to the skeleton are identified for52

each subject, and the highest FA values are assigned to each skeleton voxel.53

The resulting projections to the skeleton enable statistical analysis across54

multiple subjects.55

Alternative probabilistic techniques that jointly register and cluster WM56

fibre trajectories (obtained from diffusion tractography), and which enable57

quantitative analysis of diffusion measures over fibre pathways (rather than58

voxel-wise quantification), have also been proposed. For example, registra-59

tion of curves and fibre bundles using diffeomorphisms and currents, and60

a statistical framework to assess variability in geometry and fibre density61

across a population, was proposed in (Durrleman et al., 2009), (Durrleman62

et al., 2011). Maddah et al. (2008) employ a Gamma mixture modelling63

framework to register fibre trajectories by establishing probabilistic corre-64

spondences, and jointly cluster them into representative fibre bundles. The65

authors also note therein, through use of a suitable fibre tract atlas as a prior66

during the clustering procedure, correspondences may be estimated across fi-67

bre trajectories obtained from multiple subjects, thereby enabling statistical68

analysis of FA and other diffusion quantities across populations. Similarly,69

(Mayer et al., 2011) proposed a supervised approach for joint registration70

and segmentation WM tracts, wherein, the iterative closest fiber algorithm71

(Mayer and Greenspan, 2008) was used to register fibre sets between a manu-72
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ally annotated tractography atlas and a subject’s reconstructed set of fibres.73

The resulting segmentation was subsequently refined using a probabilistic74

boosting tree-based classifier. In (Zvitia et al., 2010), the authors propose a75

combined adaptive mean shift and Gaussian mixture model (GMM) formu-76

lation to jointly cluster fibre trajectories into compact fibre sets, and subse-77

quently register fibre sets obtained from multiple subjects. The registration78

of two clustered fibre sets is formulated as a problem of aligning two distinct79

GMMs, analogous to point set registration using GMMs (Jian and Vemuri,80

2005). Similar approaches to clustering fibre trajectories across a population,81

using spectral embedding, have also been proposed (O’Donnell and Westin,82

2007), facilitating the estimation of WM atlases and enabling automatic seg-83

mentation of major WM tracts. An unbiased, group-wise, whole-brain trac-84

tography registration approach was proposed by (O’Donnell et al., 2012).85

Kernel density estimation was used to approximate the probability distribu-86

tion of fibre trajectories within each brain and the overall distribution of the87

atlas, was modelled as a mixture of the former. Alignment of WM tracts was88

achieved by minimizing an entropic measure defined on the atlas distribution.89

In a follow up study ODonnell et al. (2017), this group-wise registration ap-90

proach was combined with their previous work on spectral clustering of fibre91

trajectories, to formulate an end-to-end automated framework for automated92

WM tract identification, thereby enabling statistical analyses of DTI-derived93

quantities. Garyfallidis et al. (2015) proposed a linear registration framework94

to align WM bundles directly in the space of streamlines. They also demon-95

strated the viability of their approach to construct bundle specific atlases.96

In a recent study (Benou et al., 2018), novel descriptors called Fiber-Flux97

Diffusion Density (FFDD), which jointly describe fibre bundle geometry and98

diffusivity measures were proposed, to facilitate localized quantification of99

WM fibre bundles. Additionally, a FFDD dissimilarity measure was formu-100

lated and a novel registration framework (based on the fast marching method)101

for WM tract-profiles was proposed, enabling inter-subject comparisons and102

group-wise statistical analysis. Such techniques are however, dependent on103

the tractography algorithm employed to estimate fibre trajectories, introduc-104

ing an additional potential source of error, and typically require some degree105

of user intervention (to define seeds for streamline generation for example).106

Applications of the various methods described above have included, for107

example, identification of relationships between mild cognitive impairment108

(MCI) and Alzheimer’s disease (AD), and localised changes to WM diffusion109

characteristics. For example, in (Zhang et al., 2007), ROI-based analysis110
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was used to identify significant reduction in FA in the cingulum for patients111

diagnosed with MCI and AD, relative to healthy controls (HC). In (Medina112

et al., 2006), VBM was used to identify significant reduction in FA in poste-113

rior regions of the brain, for MCI and AD patient groups, using VBM. While114

(Liu et al., 2011) used the TBSS-approach and found reduced FA in the115

cingulum, corpus callosal and inferior/superior longitudinal fasiculus tracts,116

among others.117

This study proposes a probabilistic approach to enable statistical anal-118

ysis of diffusion-derived measures, as an alternative to existing VBM- and119

TBSS-based approaches. The latter are based on non-rigid registration of120

subjects’ FA images to a standard space to perform such analysis. Instead,121

our approach uses group-wise non-rigid point set registration based on a122

novel mixture modelling framework, which approximates the joint probabil-123

ity density of: (1) spatial positions (of voxel centroids within a region/tract124

of interest), (2) primary diffusion axes (henceforth referred to as fibre orien-125

tations for brevity), and (3) fractional anisotropy, estimated at the voxels of126

interest. The proposed framework is flexible and can be used to model other127

diffusion-derived data such as mean/radial diffusivity, relative anisotropy,128

tensor-eigenvalues, etc. — a functionality also afforded by TBSS. However,129

the proposed approach also enables analysis of the variation in fibre orienta-130

tions, across multiple subjects, which is not possible with conventional TBSS131

and VBM approaches.132

Statistical analysis of fibre orientations across multiple subjects and com-133

parisons between patient groups was pursued in a previous study (Schwartz-134

man et al., 2005). Here, the authors followed a VBM-style approach where135

DTIs from multiple subjects were spatially normalized to a reference template136

using a spline-based tensor interpolation approach together with a tensor re-137

orientation mechanism designed to preserve the principal diffusion direction.138

Subsequently, Watson distributions were fitted by maximum likelihood es-139

timation to the fibre orientations observed across a group, at each voxel,140

independently. This provides a measure of the mean orientation and disper-141

sion, observed across the group of subjects. A drawback of such an approach142

however, is the need to choose a single, appropriate template, for spatial143

normalization, which is particularly difficult for images exhibiting varying144

degrees of pathology-induced morphological changes. All subsequent reg-145

istrations performed and correspondences estimated are biased towards the146

chosen template. VBM-based approaches in general, are dependent on the ac-147

curacy of non-rigid registration and the exact estimation of correspondences,148
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to ensure validity in the subsequent voxel-wise statistical analyses. TBSS149

and our proposed approach are less restrictive in this regard. Registration of150

WM regions defined by hybrid point sets (comprising voxel positions, asso-151

ciated fibre orientations and FA values) across subjects, is achieved using a152

group-wise rigid, and subsequent non-rigid point set registration procedure,153

based on a HdMM. In the proposed approach, correspondence probabilities154

are estimated by approximating the joint probability density of position,155

fibre orientation and FA, which are iteratively revised as the registration156

progresses. Consequently, three distinct sources of information are leveraged157

to guide the registration of an unbiased, study-specific atlas (iteratively re-158

vised as the registration progresses), onto each subject’s WM tract/ROI. The159

evolving soft correspondences provide model-based estimates for the mean fi-160

bre orientation and FA value (for a given population) at each component in161

the mixture model and help mitigate any misalignment incurred during reg-162

istration.163

1.1. Motivation and Contributions164

The primary motivation for this study is to enable quantitative compar-165

isons of both voxel-wise scalar-valued (such as FA) and vector-valued (such as166

position and orientation) DTI data, across multiple subjects. Although the167

proposed framework is used to analyse voxel-wise diffusion-derived quantities168

in this study, the method itself is not intrinsically dependent on voxel-wise169

(or structured grid-wise) data, i.e. the framework could be used to register170

and analyse unstructured data as well. The proposed hybrid mixture model171

approximates the joint probability density function (PDF ) of spatial posi-172

tions, associated fibre orientations and FA values, using Student’s t, Watson173

and Gaussian distributions, respectively. The proposed approach models the174

PDF of fibre orientations, rather than the directions of the observed primary175

diffusion eigenvectors, which tend to be random (as diffusion tensors are an-176

tipodally symmetric). To the best of our knowledge, this is the first study to177

formulate such a hybrid mixture model-based registration framework, which178

employs Watson distributions to model fibre orientations.179

2. Methods180

2.1. Pre-processing181

MR-DWIs were acquired for 60 subjects (20 HC, 20 MCI, 20 AD), as182

part of prospective cohort of the VPH-DARE@IT project (vph-dare.eu).183
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All images used in this study were acquired using identical protocols: 2184

diffusion-weighted b-values (0, 800), with diffusivity gradients applied along185

32 directions; image size of (240×240×120) slices, 2.5mm thick in the right-186

left, anterior-posterior and inferior-superior directions, respectively. DTIs187

were estimated from these for each subject using TORTOISE v 2.5.0 (Pier-188

paoli et al., 2010), which employs state-of-the-art algorithms for motion and189

eddy current correction, correcting B0 susceptibility induced EPI distortions190

and B-matrix re-orientation artefacts. Tensor-fitting was then achieved us-191

ing iRESTORE (Chang et al., 2012), based on non-linear iterative least-192

squares. TORTOISE registers each subject’s DWIs to their corresponding193

T2-weighted structural MRI during the aforementioned pre-processing steps.194

As the latter were acquired at resolutions of (1.5×1.5×1.5mm), all estimated195

DTIs (and correspondingly, DTI-derived images) were up-sampled relative to196

their raw DWIs. Finally, tensor-derived measures such as the eigenvector and197

fractional anisotropy images were also estimated using TORTOISE.198

Figure 1: Nifty-Reg used to propagate labels for WM regions of interest from JHU-ICBM-
DTI-81 atlas to each subject in AD, MCI and HC groups. Images depict propagation of
the corpus callosum label from the atlas to subjects in AD, MCI and control groups.

The proposed framework is flexible and can consider the entire WM vol-199
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ume as the region of interest, eliminating the need for pre-processing steps200

in the form of a priori definition of the ROIs (using atlas-based label prop-201

agation for example). However, such an automated approach to analysing202

the entire WM volume across multiple subjects carries significant computa-203

tional burden. Consequently, for the purpose of this study, we restrict our204

attention to two WM regions, namely, the cingulum and corpus callosum.205

An atlas-based label propagation approach is used to segment the WM ROIs206

from all subjects’ FA images. The fractional anisotropy image of the JHU-207

ICBM-DTI-81 atlas 1 (Mori et al., 2008) - (Hua et al., 2008) is non-rigidly208

registered to each subject’s FA image (following an initial affine alignment),209

using Nifty-Reg v 1.3.9 (Ourselin et al., 2001), (Modat et al., 2010), a de-210

formable image registration algorithm based on cubic B-splines. Following211

FA image registration, the segmented labels for the cingulum and corpus cal-212

losum defined on the atlas (available along with the FA atlas), are resampled213

to the space of each subject’s FA image. In this way, labels delineating the214

cingulum and corpus callosum in the atlas image, are propagated to each215

subject’s image, segmenting the ROIs (as illustrated in Fig. 1).216

1Available at: http://www.loni.usc.edu/ICBM/Downloads/Downloads˙DTI-81.shtml
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2.2. Algorithm Overview217

Figure 2: Summary of steps involved in the proposed framework to jointly register and
cluster hybrid point sets comprising spatial positions, fibre orientations and FA values, for
a WM tract/ROI. Dashed box outlines the two stages of the proposed algorithm.

The steps involved in the proposed approach are summarised by Fig. 2.218

For a group of k = 1...K subjects to be analysed (e.g. comprising control,219

MCI and AD sub-groups), their tract segmentations, eigenvector and FA im-220

ages were used to construct hybrid point sets Dk, where each data point is a221

7-dimensional vector denoted as dki = [xki,nki, fki]. Here xki represents the222

spatial co-ordinate, nki represents the primary diffusion eigenvector and fki223

denotes the FA value for the ith voxel, in the kth subject’s image. xki are224

consequently, densely distributed points within the volumes/ROIs. The re-225

sulting hybrid point sets were, subsequently, jointly registered and clustered226
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by fitting an M -component hybrid mixture model (comprising Student’s t,227

Watson and Gaussian distributions) to the data. This was achieved over228

two stages (as depicted in Fig. 2): (1) Group-wise rigid registration of the229

hybrid point sets Dk and mean template M construction; and (2) Group-230

wise non-rigid registration, wherein the mean template estimated in stage231

1 was non-rigidly registered to each sample from all patient groups simul-232

taneously. The similarity transformation and the non-rigid transformation,233

corresponding to stage 1 and 2 of the algorithm respectively, are both repre-234

sented by Tk throughout this study. For the former, Tk = [sk,Rk, tk]. Here,235

sk,Rk, tk represent the scaling, rotation and translation (for the kth sam-236

ple), respectively, estimated in stage 1. These are used to align the hybrid237

point sets to the estimated mean template and initialise the subsequent non-238

rigid registration step (stage 2) by correcting global pose differences across239

the data set. Stage 2 of the algorithm estimates non-rigid transformations240

Tk, defined by a linear combination of radial basis functions (with a Gaus-241

sian kernel). Together with a Gaussian kernel, the basis function weights242

Wk estimated define point-wise displacements that map the mean template243

to each sample within a subject group. In both stages of the algorithm,244

estimation of the desired registration parameters was accompanied by the245

joint clustering of positions, orientations and FA values. The parameters to246

be estimated for each of the j = 1...M components of the hybrid mixture247

model include: {mp
j , σ

2
p, νj} = Θp, which represent mean spatial positions,248

their variance and the degrees of freedom, respectively, for the Student’s t-249

distributions; {md
j , κj} = Θn, which represent the mean fibre orientations250

and concentration around the means, respectively, for the Watson distribu-251

tions; {mf
j , σ

2
f} = Θf , which denote the mean FA values and FA variance,252

respectively, for the Gaussian distributions; and πj which denote the mix-253

ture coefficients. Following non-rigid registration, the study-specific mean254

template estimated (for each WM ROI) M thus comprises positions, mp
j ,255

orientations md
j and FA values mf

j .256

2.3. Joint Probabilistic Model of Position, Orientation and Anisotropy257

The problem of joint registration and clustering of hybrid point sets is258

formulated as one of maximum likelihood parameter estimation, using a hy-259

brid mixture model that approximates the joint PDF of spatial positions (of260

voxel centroids), fibre orientations, and fractional anisotropy. By assuming261

voxel positions, fibre orientations, and FA values to be independent and iden-262

tically distributed (i.i.d), for each subject and across multiple subjects, the263
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joint PDF can be approximated as a product of the individual conditional264

densities (Bishop, 2006) for position, orientation and FA. Consequently, by265

considering all data points dki ∈ Dk, from all K subjects, to be i.i.d. the con-266

ditional probability of an observation being sampled from an M -component267

HdMM is given by equation 1a. The set of all transformations (similarity268

or non-rigid) is represented by Tk ∈ T; Θp represents the set of model pa-269

rameters associated with the Student’s t-distributions S, used to model the270

distribution of voxel spatial positions; Θn represents the parameters of the271

Watson distributions W (modelling fibre orientations); Θf denotes the set272

of parameters of the Gaussian distributions N (modelling FA); and πj ∈ Π273

represents the set of mixture coefficients, of the HdMM. Here and through-274

out, subscript j = 1...M denotes mixture components and the choice of275

distributions indicated earlier will be justified later in this Section. Using276

equation (1a) the log-likelihood function is formulated as shown in equation277

(1b), which defines the cost function to be optimised with respect to the mix-278

ture model and transformation parameters {Θp,Θn,ΘfΠ,T} ∈ Ψ, to jointly279

register and cluster the hybrid point set data Dk ∈ D.280

p(dki|Θp,Θn,Θf ,Tk) =
M∑
j=1

πjS(xki|Θp,Tk)W(nki|Θn,Tk)N (fki|Θf ,Tk)

(1a)

ln p(D|Ψ) =
K∑
k=1

Nk∑
i=1

ln p(dki|Θp,Θn,Θf ,Tk) (1b)

P t
kij =

πjp(dki|Θt
p,Θ

t
n,Θ

t
f ,Tk)

M∑
l=1

πlp(dki|Θt
p,Θ

t
n,Θ

t
f ,T

t
k)

(1c)

(1d)
Q(Ψt+1|Ψt) =

K∑
k=1

Nk∑
i=1

M∑
j=1

P t
kij

[
lnπj +Q(Θt+1

pj
,Tt+1

k |Θ
t
pj
,Tt

k)

+Q(Θt+1
nj
,Tt+1

k |Θ
t
nj
,Tt

k) +Q(Θt+1
fj
,Tt+1

k |Θ
t
fj
,Tt

k)
]
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Algorithm 1 Hybrid Mixture Model: HdMM
Inputs: Group of hybrid point sets Dk=1..K, number of mixture

components M, max.iterations

Outputs: Set of HdMM parameters {Θp,Θn,Θf} ∈ Ψ, soft

correspondences

1: INITIALIZATION

2: Initialize M, σ2
p, σ

2
f using K-means clustering.

3: All πj = 1/M and νj = 3.0, κj = 1.0
4: procedure Stage 1 EM:

5: Group-wise rigid registration(Dk,Θp,Θn,Θf ,Π,Tk) . EM
initialized

6: while Iteration < max.iterations do
7: Compute Pkij . E-step
8: Update Rk, sk, tk . M-step
9: Update Θp,Θn,Θf . M-step

10: end while
11: return Θp,Θn,Θf ,Π,Tk

12: end procedure
13: Estimated mean template M, mixture coefficients Π and similarity trans-

formations {Tk}k=1...K initialise Stage 2.
14: procedure Stage 2 EM:

15: Group-Wise Non-Rigid Registration(Dk,Θp,Θn,Θf ,Π,Wk) . EM
non-rigid initialized

16: while Iteration < max.iterations do
17: Compute Pkij . E-step
18: Update Wk . M-step
19: Update M, σ2

p, νj,Θn,Θf . M-step
20: Update spatial positions of each Dk

21: end while
22: return Θp,Θn,Θf ,Π,Wk

23: end procedure

A tractable approach to maximising equation 1b is achieved using the281

expectation-maximisation (EM) framework (Dempster et al., 1977), which282

iteratively alternates between: the expectation (E)-step, which evaluates the283

mixture component membership probabilities as shown in equation 1c (i.e.284

posterior probabilities P t
kij, that define soft correspondences and are expec-285
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tations of the latent variables in the model) for the observed data, given286

an estimate of the model parameters Ψt, at the tth EM-iteration; and the287

maximisation (M)-step, which uses the computed posterior probabilities P t
kij288

to maximise the conditional expectation of the complete-data-log-likelihood289

function Q (refer to equation 1d), with respect to each model parameter,290

resulting in revised estimates Ψt+1. As shown in equation 1d, Q for the hy-291

brid mixture model can be expressed as a sum of contributions from each292

distribution and corresponding data feature (i.e. position, orientation and293

FA), denoted, Q(Θt+1
p |Θt

p), Q(Θt+1
n |Θt

n), Q(Θt+1
f |Θt

f ), respectively. The com-294

plete algorithm for the proposed hybrid mixture model, to jointly register295

and cluster a group D of hybrid point sets, is summarized in Algorithm 1.296

Subsequent sections discuss each probability distribution and estimation of297

their associated parameters, within the proposed framework, in more detail.298

2.4. Mixture Model for Primary Diffusion Axes299

In addition to modelling the spatial distribution of voxels defining ROIs,300

the proposed approach also deals with axial data distributed over the S 2
301

sphere, i.e. fibre orientations defined by primary diffusion eigenvectors.302

GMMs and TMMs, comprising Gaussian and Student’s t-distributions, re-303

spectively, are inappropriate for clustering such data and consequently, a304

mixture of Watson distributions, also defined over the spherical domain, is305

employed in this study. While Von-Mises-Fisher distributions are frequently306

used for clustering directional data, they are unsuitable for axial data, as307

they lack of antipodal symmetry. Watson distributions on the other hand,308

are naturally suited to model diffusion data as they are antipodally symmet-309

ric (i.e. the probability density is the same along an axis in either direction)310

and as the aim here is to model the PDF of diffusion axes at correspond-311

ing spatial locations, rather than any specific direction along the axes (Jupp312

and Mardia, 1989). They are fully defined by two parameters, namely, the313

mean/principal axis (±md, about which the distribution is rotationally sym-314

metric) and a scalar concentration parameter κ. The latter describes the315

degree of concentration about the mean axis of the distribution, with high316

values indicating high concentration. The PDF of a Watson distribution317

with mean direction md and concentration κ is expressed as equation 2a,318

for antipodally symmetric 3D unit vectors ±n. Here, M(·) represents the319

Kummer function. Watsons are in general more flexible than Fisher distri-320

butions as there is no positivity constraint on κ and they can be used to321

model both directional and axial data. (Bijral et al., 2007) proposed an ef-322
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ficient EM-based clustering framework for axially-distributed data, using a323

WMM, employed in this study to cluster fibre orientations.324

p(±n|md, κ) = M(
1

2
,
D

2
, κ)−1 expκ(m

dTn)2 (2a)

p(N|Θn) =
K∑
k=1

Nk∑
i=1

ln
M∑
j=1

πjp(±nki|md
j , κj) (2b)

The joint likelihood of the diffusion eigenvectors ±nki ∈ Nk observed325

across all Nk points in all K hybrid point sets, given Watson distributions326

with mean directions and concentrations {md
j , κj}j=1...M ∈ Θn, is evaluated as327

shown in equation 2b. Here, Nk ∈ N denotes the set of all observed diffusion328

vectors across the entire population. It is important to note at this point329

that, as the clustering of fibre orientations is initially performed jointly with330

rigid registration of the hybrid point sets Dk, the estimated rotations R
(t)
k at331

the tth EM-iteration, are applied to the current estimate of the mean fibre332

orientations md(t)

j , prior to the evaluation of the posterior probabilities Pkij,333

and concentrations κj, in the E- and M-steps, respectively. Additionally, for334

the estimation of md
j the inverse of the estimated rotations RT

k were applied335

to their corresponding sample’s diffusion eigenvectors nki, to align the kth336

sample to the current estimate of the mean template (refer to equation 3c).337

(3a)Q(Θt+1
n |Θt

n) =
K∑
k=1

Nk∑
i=1

M∑
j=1

P
(t)
kij ln p(±nki|R(t)

k md(t)

j , κ
(t)
j )

(3b)
Q(Θt+1

n |Θt
n) =

K∑
k=1

Nk∑
i=1

M∑
j=1

[P
(t)
kij ln p(±nki|R(t)

k md
j , κj) +

λj(1− (R
(t)
k md

j )
TR

(t)
k md

j )]

md(t)

j −

K∑
k=1

Nk∑
i=1

P
(t)
kij((R

T (t+1)

k nki)
Tmd(t)

j )RT (t+1)

k nki

||
K∑
k=1

Nk∑
i=1

P
(t)
kij((R

T (t+1)

k nki)Tmd(t)
j )RT (t+1)

k nki||
= 0 (3c)
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[
M ′(κj)

M(κj)

](t+1)

=

K∑
k=1

Nk∑
i=1

P
(t)
kij(n

T
kim

d(t+1)

j )2

K∑
k=1

Nk∑
i=1

P
(t)
kij

(3d)

κ
(t+1)
j ≈ 1

2

 1− [
M ′(κj)
M(κj)

](t+1)D

[(
M ′(κj)
M(κj)

)2](t+1) − [M ′(κj)
M(κj)

](t+1)

 (3e)

Maximum likelihood estimates for the associated parameters are evalu-338

ated at each M-step of the algorithm by maximising the expectation of the339

complete data likelihood (equation 3a), with respect to md
j and κj, subject340

to the constraint md
j
T
md

j = 1 (Bijral et al., 2007). This is achieved by max-341

imising the Lagrangian form of Q shown in equation 3b. Mean directions md
j342

are estimated numerically, using fixed-point iteration, to solve the non-linear343

equation (shown in equation 3c) obtained from differentiating Q (3b) with344

respect to md
j . κj on the other hand is approximated (refer to equation 3e)345

using the continued fraction representation for the ratio of, the derivative346

of the Kummer function and the function itself, i.e.
M ′(κj)
M(κj)

(equation 3d).347

In a recent study (Sra and Karp, 2013) derived two-sided bounds for ap-348

proximating κ, particularly useful when dealing with high dimensional data.349

However, for 3D data (as in this study) the approximation presented in equa-350

tion 3e is sufficient (as noted by (Bijral et al., 2007),(Sra and Karp, 2013)).351

Better approximations for κj may be obtained using numerical techniques352

such as Newton’s method, however, at the expense of significant increase in353

computational burden.354

2.5. Mixture Model for Fractional Anisotropy355

The distribution of voxel-wise FA in WM ROIs across a population, is356

modelled using a univariate GMM. GMM was chosen as the resulting model-357

predicted FA values at the estimated spatial correspondences, across subjects,358

is guaranteed to be normally distributed — a useful property for subsequent359

statistical analyses, as noted in (Smith et al., 2006), where the authors also360

show that FA values at corresponding spatial positions across populations are361

indeed approximately normally-distributed. Additionally, GMMs are com-362

putationally efficient, as analytical solutions exist for revising estimates of363

the associated model parameters (mean mf
j and variance σ2

f of FA), at each364

EM-iteration. Assuming the observed FA values fki at voxels in ROIs, across365
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a group of subjects Fk ∈ F are i.i.d, the joint log-likelihood log p(F|Θf ), is366

expressed as equations 4a, 4b. Consequently, the conditional expectation of367

the complete data log likelihood Q, maximised with respect to the model pa-368

rameters associated with the Gaussian distributions in the mixture, is given369

by equation 4c (only terms dependent on mf
j and σ2

f are retained in Q). As370

GMM-based clustering of FA values is performed jointly with the registra-371

tion of WM ROIs, and clustering of voxel positions and the associated fibre372

orientations, the influence of a Gaussian component in the mixture model373

is automatically limited to its local neighbourhood. This helps ensure that374

only voxels in close proximity to each other contribute significantly to the375

estimation of mean FA values at each mixture component. Estimates for376

the GMM parameters mf
j and σ2

f in the M-step of the algorithm are derived377

analytically, as shown in (Bishop, 2006).378

p(Fk|mf
j , σ

2
f ) =

Nk∏
i=1

M∑
j=1

πjN (fki|mf
j , σ

2
f ) (4a)

ln p(F|Θf ) =
K∑
k=1

ln p(Fk|Θf ) (4b)

Q(Θt+1
f |Θ

t
f ) = −1

2

K∑
k=1

Nk∑
i=1

M∑
j=1

P t
kij

[(fki −mf
j )

2

σ2
f

]
(4c)

2.6. Rigid Alignment and Template Construction379

Previously, we proposed a group-wise rigid point set registration frame-380

work based on Student’s t-mixture model (Ravikumar et al., 2016), (Raviku-381

mar et al., 2018), which exploits the inherent robustness of Student’s t-382

distribution for robust registration of shapes in the presence of missing data383

and significant proportions of outliers. Additionally, in a more recent study384

(Ravikumar et al., 2017) we proposed a variant of the hybrid mixture model-385

based registration framework formulated in this study. In (Ravikumar et al.,386

2017) Von-Mises-Fisher distributions were used in place of the Watson distri-387

butions used in this study, to model directional data such as surface normal388

vectors, for rigid and non-rigid shape registration. A Watson distribution-389

based variant of (Ravikumar et al., 2017) is employed in the present study390

as an initial step, to rigidly align WM ROIs (hybrid point sets representing391

voxel centroid positions, fibre orientations and FA values), segmented from392
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all subjects’ images, whilst simultaneously estimating a mean model. The393

latter subsequently serves as an unbiased, study-specific template for non-394

rigid registration. Rigid group-wise registration is preferred to a pair-wise395

approach as it enables estimation of a mean template and the desired sim-396

ilarity transformations in an unbiased manner. Rigid alignment also helps397

initialise the subsequent non-rigid registration by recovering global differ-398

ences in pose between sample shapes, and establishes soft correspondences399

across subjects.400

Group-wise point set registration using mixture models assumes that the401

point sets to be aligned are transformed observations of a central mixture402

model (which we refer to as the mean template) (Gooya et al., 2015). Con-403

sequently, the optimal transformations that align the template to the group404

of shapes are those that maximise the likelihood of the data (or equivalently,405

minimise the negative log-likelihood function). The desired similarity trans-406

formations are thus iteratively refined along with the template itself at each407

M-step of the algorithm. The main differences between EM-based estima-408

tion of parameters for TMMs and GMMs are: (1) TMMs have two associated409

latent variables (as opposed to just one with GMMs, which represent the mix-410

ture component membership of the data), whose expectations are evaluated411

in the E-step and used to compute a set of corrected posterior probabilities412

P ?
kij, estimated identically to (Ravikumar et al., 2016), (Ravikumar et al.,413

2018) (refer to the Appendix); and (2) Student’s t-distributions are defined414

by three parameters (as opposed to two for Gaussians). The additional pa-415

rameter is referred to as the degrees of freedom/shape parameter ν, which is416

responsible for controlling the heaviness of the tails of the distribution (and417

consequently, the degree of robustness to outliers). The behaviour of the418

t-distribution tends towards that of a Gaussian as ν →∞.419

log p(X|Θp,T) =
K∑
k=1

Nk∑
i=1

log
M∑
j=1

πjS(xki|Tk(m
p
j), σ

2
p, νj) (5a)

(5b)Q(Θt+1
p ,Tt+1|Θt

p,Tt) ∝ −
1

2σ2
p

K∑
k=1

Nk∑
i

M∑
j=1

P ?t
kij‖xki − skRkm

p
j − bk‖2

The joint PDF of voxel positions xki ∈ Xk, across all K subjects in420

a group (denoted, Xk ∈ X), is given by equation 5a (assuming they are421

i.i.d transformed observations of a TMM). In equation 5a, Tk represents the422
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similarity transformation (comprising rotation Rk, scaling sk and translation423

bk), to align the positions mp
j defining the mean template, to the kth sample424

in the group. In our recent work (Ravikumar et al., 2016), (Ravikumar et al.,425

2018), we showed that the form of Q to be maximised, to estimate the desired426

similarity transformations Tk ∈ T and mixture component parameters Θp,427

is given by equation 5b. Closed form expressions are derived for the M-428

step update equations of all TMM and transformation parameters, which429

are presented in the Appendix. Fibre orientations and FA are invariant to430

translation bk and scaling sk, consequently, these transformation parameters431

are estimated identically as in (Ravikumar et al., 2016), (Ravikumar et al.,432

2018). Although the former are rotationally dependent, the contribution of433

fibre orientations to the estimation of Rk is ignored as the direction of the434

observed diffusion eigenvectors tend to be random. Consequently, rotations435

Rk are derived based on the spatial positions of hybrid point sets alone,436

by optimising the form of Q shown in equation 5b, similar to (Ravikumar437

et al., 2016), (Ravikumar et al., 2018). However, following estimation of438

the desired rotations Rk at each EM-iteration, the current estimate of the439

mean template is transformed by rotating both spatial positions mp
j and440

their associated fibre orientations md
j , to align it with the kth sample in the441

group. Additionally, it is important to note that, while the fibre orientations442

and FA values are ignored in the derivation of the desired transformation443

parameters, they are intrinsic to the estimation of the posterior probabilities444

Pkij at each E-step of the algorithm. Consequently, they drive the estimation445

of soft correspondences, which in turn affect the transformations evaluated446

at each M-step of the algorithm.447

2.7. Non-rigid Point Set Registration448

Coherent point drift (CPD) (Myronenko and Song, 2010) is a well known449

pair-wise, non-rigid point set registration technique based on motion coher-450

ence theory. The spatial transformation between two point sets is considered451

to be an initial position (of the moving point set) plus some unknown dis-452

placement (or velocity) function mapping it to the target point set. This un-453

known transformation is regularized using Tikhonov regularization, to ensure454

estimation of a smooth displacement function, and is expressed in the Repro-455

ducing Kernel Hilbert Space (RKHS). Using variational calculus, Myronenko456

and Song (2010) showed that the optimal displacement function under such457

smoothness constraints, can be expressed as a linear combination of kernel458

functions (i.e. Gaussian radial basis functions). Similarly, our approach also459
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employs Gaussian radial basis functions to parametrize the non-linear trans-460

formation, and the associated basis function weights are estimated by max-461

imising the likelihood function using EM (similar to estimation of rotation,462

translation and scaling, in the rigid registration approach discussed in the463

previous section). CPD models the target point set as a transformed obser-464

vation of the source point set (i.e. the point set to be registered). The latter465

is consequently considered to represent the centroids of a Gaussian mixture466

model, which is fit to the former using EM, and the transformation necessary467

to register the source to the target set is estimated as parameters of the mix-468

ture model. In addition to the Gaussian components in the mixture model,469

CPD incorporates a uniform distribution component to model noise/outliers470

present in the data. This confers added robustness to the registration pro-471

cess. However, a user-defined parameter is used to balance the weight of the472

uniform distribution component relative to its Gaussian counterparts, which473

needs to be tuned for different applications and data sets, for optimal regis-474

tration. To ameliorate the need for parameter tuning, we employ Student’s475

t-distributions in place of the Gaussian and uniform distributions used in476

CPD and re-formulate the approach in a group-wise non-rigid registration477

framework. As stated previously, the robust nature of t-distributions makes478

them well suited to registration applications requiring automatic robustness479

to outliers. A similar approach for pair-wise registration of 2D/3D point sets480

was proposed previously, by (Zhou et al., 2014).481

The mean tract template estimated during the initial group-wise rigid482

registration step (discussed in section 2.6), is non-rigidly registered to each483

patient group (AD, MCI and HC) independently. The desired non-rigid484

transformations are defined with respect to the templateM as: M+ vk(M)485

(considering spatial positions mp
j alone), where v is a displacement func-486

tion mapping the template to the kth sample in the group. In (Myronenko487

and Song, 2010) the authors show that the desired displacement field is con-488

strained to be smooth by employing Tikhonov regularization (or regularizing489

the norm of v, expressed in RKHS). This forces points in close proximity, to490

move together. Regularization of this nature is akin to employing a prior on491

the displacement field of the form p(v) = exp−
λ
2
φ(v), where φ(v) represents the492

regularization term and λ controls the trade-off between registration accuracy493

and smoothness of the deformation field. The prior on the displacement field494

is incorporated into the TMM, resulting in a log-likelihood function expressed495

as equation 6a. As stated previously, (Myronenko and Song, 2010) show that496
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the function v, which maximises the data likelihood, can be expressed as a497

linear combination of radial basis functions (refer to equation 6b). Conse-498

quently, to register the study-specific mean template to each sample from499

all patient groups simultaneously, the objective function to be maximised500

with respect to the basis function weights wkj ∈Wk, is expressed as shown501

in equation 6c, where G represents the Gaussian kernel/Gram matrix. The502

basis function weights required to register the study-specific mean template503

to each sample are estimated as shown in 6d, by computing the derivative of504

Q with respect to the weights, similarly to (Myronenko and Song, 2010). In505

equation 6d Ps
k =

Nk∑
i=1

P ?t
kij, P

T
k is the transpose of the posterior probability506

matrix for the kth sample, diag is a diagonal matrix, and I is the identity507

matrix. Subsequently, the mean template is deformed to match each kth508

sample (in the entire population) as described by equation 6e.509

(6a)log p(X|Θp) =
K∑
k=1

Nk∑
i=1

log
M∑
j=1

πjS(xki|vk(mp
j), σ

2, νj) +
λ

2
φ(vk)

vk(q) =
M∑
j=1

wkjG(q−mp
j) (6b)

(6c)

Q(Θt+1
p ,Wt+1

k |Θ
t
p,W

t
k) =

− 1

2σ2
p

Nk∑
i=1

M∑
j=1

P ?t
kij‖xki − (mp

j + vk(mp
j))‖2 +

λ

2
WT

kGWk

(6d)W
(t+1)
k = [diag(Pst

k )G + λσ2
pI]
−1[PT t

k Xk − diag(Pst

k )Mt]

M
(t+1)
k = Tt

k(M
t
k,W

t
k) = Mt

k + GWt
k (6e)

Following convergence of the non-rigid registration step, a study-specific510

mean template comprising, mean spatial positions, mean fibre orientations511

and mean FA values (representative of the entire population of AD, MCI and512

HC subjects), is estimated. Additionally, point-wise displacements mapping513

this mean template to each sample in the entire population (as described514
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by equation 6e), is also obtained, thereby establishing the spatial correspon-515

dences used for any subsequent inter-group statistical comparisons. These516

correspondences play a similar role to the mean FA skeleton estimated in517

TBSS. In addition to these spatial correspondences, we also compute“model-518

predicted” values for FA and fibre orientation, at each correspondence, for all519

subjects. These model-predicted values are probabilistic weighted averages520

of the FA values and fibre orientations associated with the voxels in the orig-521

inal DTI-derived FA and eigenvector images (i.e. the original hybrid point522

sets). The weighted averages are assigned to each spatial correspondence523

point and are analogous to the ‘soft/probabilistic spatial correspondences’524

estimated in previous studies, such as (Hufnagel et al., 2008), (Gooya et al.,525

2015) for example. Here, the weights are defined by the posterior probabil-526

ities estimated for each voxel, of each subject’s original FA and eigenvector527

images (Pkij), following non-rigid registration. Equations describing the es-528

timation of model-predicted FA values and fibre orientations are included in529

the Appendix (refer to equations 19a - 19b). Although point set registration530

techniques are typically employed to register 3D point sets (comprising only531

spatial positions) representing the surface/boundary of an object, this study532

incorporates additional image-based features (such as fibre orientations and533

FA values), that enable registration of dense point sets, defined by voxel534

centroids located at the boundary of, and within a region of interest.535

3. Results and Discussion536

3.1. Rigid Registration Accuracy537

Rigid registration accuracy of the proposed framework and the robust-538

ness of Student’s t-distributions to outliers is assessed using synthetic data539

comprising point sets containing positions, associated fibre orientations and540

FA values. The synthetic data set was generated by rigidly transforming541

a corpus callosum hybrid point set by varying amounts. Four distinct syn-542

thetic samples (Samples 1-4) were generated in this manner from the original543

ground truth point set (referred to as Sample 0), as illustrated by Fig. 3.544
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Figure 3: Synthetic corpus callosum data set comprising: Sample 0, the ground truth
hybrid point set; and Samples 1-4, which are rotated and modified versions of Sample 0.

The rigidly transformed point sets were also modified by the addition of545

varying proportions of random outliers (comprising positions, orientations546

and FA values). Fibre orientations associated with the outliers were gen-547

erated from normalized 3D points. While their FA values were uniformly548

sampled within the range [0.2, 0.8]. The FA values associated with the voxels549

of each modified hybrid point set were also varied by ±0.1, relative to the550

ground truth point set. This was necessary in order to emulate real data551

as FA values typically vary at corresponding anatomical locations, between552

subjects. This process was repeated 10 times, to generate 10 unique syn-553

thetic data sets (each comprising one ground truth and 4 modified, unique554

samples), which were subsequently rigidly aligned using the proposed Wat-555

son distribution-based HdMM algorithm (i.e. 10 distinct registration exper-556
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iments). Random rotations and proportions of outliers were generated for557

each experiment, within the range of [−30◦, 30◦] and [2%, 5%], respectively558

(as illustrated in Fig. 3). Table 1 summarises the mean ground truth eu-559

clidean distances between Samples 1-4 and Sample 0 across all 10 experiments560

(prior to registration), and the axes about which rotations were applied to561

generate each sample in each experiment. The average rigid registration er-562

rors following alignment of the synthetic data sets (with M = 2000 mixture563

components) using the proposed framework are also reported in Table 1.564

Rigid registration accuracy was evaluated by: (a) computing the in-565

trinsic distance between the estimated and ground truth rotations (Huynh,566

2009), for easy interpretation of the rotation errors (θerr), in degrees (refer to567

equation 7); and (b) computing the mean Euclidean distance (ED) between568

(transformed) Samples 1-4 and Sample 0 (averaged across all points). Ta-569

ble 1 summarises average rotation and Euclidean distance errors (computed570

across all 10 experiments). Point-wise Euclidean distances are first evaluated571

between each modified sample (Samples 1-4) and Sample 0, following rigid572

registration, and subsequently averaged across all points. The resulting mean573

Euclidean distance is then averaged once again across all 10 experiments and574

is reported in Table 1.575

(7)θerr = arccos

[
tr((Rg

k(RkR
T
1 )T )− 1

2

]

Table 1: Summary of rigid registration errors across 10 experiments using synthetic corpus
callosum data sets.

Sample #
Rotated
Around

Ground Truth
Euc. Dist.
(mm.)

Rot. Err.
(degrees)

Euc. Dist.
(mm.)

1 x,y 43.57 ± 19.85
0.06 ±

0.03
0.34 ±

0.15

2 y,z 42.85 ± 13.12
0.05 ±

0.03
0.30 ±

0.16

3 z,x 42.77 ± 8.74
0.04 ±

0.03
0.23 ±

0.13

4 x,y,z 35.52 ± 17.19
0.04 ±

0.03
0.25 ±

0.17
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The average Euclidean distance errors reported in Table 1 indicate that576

the proposed Watson-based HdMM framework achieved very low errors (de-577

spite the presence of random outliers) as all values are substantially lower578

than the voxel size of the original eigenvector and FA image (refer to section579

2.1), from which the ground truth corpus callosum hybrid point set (sample580

0) was generated. Robustness to outliers may be attributed to the con-581

stituent t-distributions in the HdMM, modelling spatial positions. Similarly582

the proposed approach was also able to accurately recover the applied ground583

truth rotations, resulting in very low rotation errors for all samples (as shown584

in Table 1), relative to the magnitude of the rotations applied to generate585

the synthetic data set. The proposed approach therefore, is considered to586

successfully approximate the joint density of position, fibre orientation and587

FA, for the synthetic corpus callosum data set, and accurately recover the588

applied rigid transformations.589
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3.2. Model Quality590

Figure 4: Model quality evaluated for the corpus callosum, independently for AD, MCI and
HC groups, using M = 2000 mixture components. Rows one and two: RMSE of FA and
standard deviations of the same computed across subjects; Rows three and four: Angular
errors for fibre orientations (in radians) and standard deviations of the same computed
across subjects.

The ability of the HdMM to model DTI-derived quantities was assessed591

using clinical data, acquired from the VPH-DARE@IT prospective cohort,592

described in section 2.1. Specifically, model quality was quantified by eval-593

uating the similarity between the estimated correspondences (resulting from594

non-rigidly registering the the unbiased study-specific mean template to each595
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sample from all patient groups) and the nearest neighbour voxels in the corre-596

sponding subject’s original FA and eigenvector images. FA accuracy is quan-597

tified as the root-mean-squared error (RMSE), evaluated between the model-598

predicted and original voxel-wise FA values, across all correspondences, for599

each subject. The group-wise average error (for each subject group) of FA600

was subsequently computed. The minimum arc length (measured in radians)601

between two unit vectors is used to measure the accuracy of local fibre orien-602

tation in a similar manner. As discussed in section 2.4, the proposed frame-603

work models axial data rather than directional data. When computing fibre604

orientation errors, corresponding unit vectors between the model-predicted605

and original voxel-wise eigenvectors are first identified. This is achieved by606

evaluating their scalar product and ensuring it is positive — i.e. if the dot607

product is negative, the antipodal counterpart of the model-predicted vector608

is used instead. The resulting measure thus quantifies the angular error in609

fibre orientation between the model-predicted and original voxel-wise data610

(in the eigenvector image), for each subject. These measures represent reg-611

istration residuals which describe the quality of correspondences established612

by the proposed HdMM (i.e. how well the HdMM can model the observed613

DTI-derived data), and only indirectly reflect registration ‘accuracy’. To pro-614

vide a more general view of registration accuracy, the mean-squared distance615

(MSD, formulated as shown in the Appendix), quantifying spatial position616

errors was also evaluated between the registered study-specific mean template617

and the original hybrid point sets from all patient groups (Note: MSD values618

were evaluated between dense volumetric point sets). It is important to note619

that the model-predicted values for FA and fibre orientation assigned to the620

spatial correspondences established using the proposed approach, are proba-621

bilistic in nature (as discussed in section 2.7). Consequently, they reflect the622

DTI-derived quantities of voxels located in the local spatial neighbourhood623

of the correspondences.624
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Figure 5: Model quality evaluated for the cingulum, independently for AD, MCI and HC
groups, using M = 1500 mixture components. Rows one and two: RMSE of FA and
standard deviations of the same computed across subjects; Rows three and four: Angular
errors for fibre orientations (in radians) and standard deviations of the same computed
across subjects.

Results summarizing the ability of the proposed framework to model DTI-625

derived quantities across all 60 subjects are presented in Fig. 4 - Fig. 7 and626

Tables 2 - 7. Fig. 4 and Fig. 5 help visualise the spatial distribution of mean627

registration errors and the standard deviations of FA values and fibre ori-628

entations observed across subjects within each patient group, for the corpus629

callosum and cingulum, respectively. We would like to highlight that while630

samples from all patient groups were registered simultaneously, the registra-631
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tion errors presented in Fig. 4 - Fig. 7 and Tables 2 - 7 alone were evaluated632

for each patient group separately. This was done in order to identify any633

group-specific trends that exist in the registration accuracy afforded by the634

proposed approach. In Fig. 4 and Fig. 5 the RMSE values of FA were635

computed by averaging across subjects in each group, at each corresponding636

position. Similarly, the standard deviations were also evaluated point-wise637

across subjects for each group. The depicted mean angular errors were av-638

eraged across subjects, quantifying the fibre orientation accuracy at each639

corresponding position, and point-wise estimates for the standard deviations640

in fibre orientation were also evaluated. The presented standard deviations641

in Fig. 4 and Fig. 5 aid in interpretation of the error measures evaluated,642

and provide a frame of reference, for both WM regions. The spatial dis-643

tribution of the variation in FA across subjects within each patient group,644

was evaluated as follows: (a) the nearest neighbour voxel in the original hy-645

brid point sets were first identified based on the spatial positions estimated646

by non-rigid registration of the study-specific mean template, to each cor-647

responding sample ; (b) the FA values associated with the voxels identified648

for each subject were in turn used to compute the standard deviation across649

subjects, within each patient group; and (c) these values were subsequently650

mapped on to the study-specific mean template estimated for the corpus cal-651

losum and cingulum, for easy comparison with the registration errors plotted652

in a similar manner, as shown in Fig. 4. Similarly, the standard deviations653

in fibre orientations about the mean, were also evaluated across subjects,654

within each patient group, for both WM regions. Here, the difference be-655

tween the mean fibre orientation estimated at each correspondence point in656

the study-specific mean template, and the nearest neighbour voxels identified657

(refer to (a) above) in the original hybrid point sets, was evaluated as the658

minimum arc length (in radians) between each other. This in turn was em-659

ployed to compute the standard deviation in fibre orientations and visualize660

their spatial distribution across both WM regions.661

Based on these results, the proposed HdMM is considered to establish662

valid correspondences across patients, as the estimated fibre orientation and663

FA errors are low across the majority of correspondences. Fibre orientation664

errors were consistently < 0.2 radians across most correspondences for both665

WM ROIs (refer to first and third row in Fig. 4). FA errors meanwhile, were666

< 0.1 for the corpus callosum and cingulum (refer to second and fourth row in667

Fig. 4), across all patient groups. For the former WM region, FA errors below668

0.1 were produced for > 92% of all established correspondences. While for669
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the latter, all correspondences, had errors below 0.1. Fibre orientation errors670

were < 0.2 across > 94% of correspondences estimated for both WM ROIs,671

in all patient groups. Errors of this magnitude are considered reasonable as672

the model-predicted FA values and fibre orientations evaluated at correspon-673

dences are based on the soft-assignment approach (refer to section 2.7), using674

the estimated posterior probabilities. Consequently, they reflect weighted av-675

erages of FA and fibre orientations of neighbouring voxels. FA variations of676

≈ 0.1 may occur due to partial volume effects at WM-GM and WM-CSF677

interfaces (Smith et al., 2006), particularly when WM tracts/ROIs are very678

thin compared to the voxel size (often the case following dementia-related679

atrophy of brain tissue), potentially further contributing to the observed er-680

rors. Additionally, significant variations in DTI-data in a select few cases681

within individual patient groups may be another source of the high average682

errors evaluated, in a small proportion of correspondences. These results are683

further supported by the standard deviations of FA and fibre orientations684

depicted in Fig. Fig. 4 and Fig. 5, which highlight the high degree of vari-685

ation in FA and fibre orientations (across subjects), respectively, relative to686

the corresponding errors evaluated across both WM regions.687

These results are further verified by the histograms of errors in fibre688

orientation and FA presented in Fig. 6 and 7, respectively, summarising the689

correspondence-wise errors evaluated for each subject in the population. In690

this case, fibre orientation errors were computed as in preceding experiments,691

while FA errors were evaluated as the root-squared-error (RSE) between692

the model-predicted values and the closest voxels in the corresponding FA693

images. In general, high errors occur at only a few correspondences, across694

both the cingulum and corpus callosum. Registration errors for the AD and695

MCI groups were higher than for the HC group for both ROIs. This is696

attributed to the presence of varying degrees of pathology-induced changes697

in a few subjects in these groups, verified by Figs. 6 and 7, and by computing698

region-wise mean and standard deviations of FA and fibre orientation errors,699

presented in Tables 3 - 7.700

Tables 2 - 7 report the average spatial position, fibre orientation and FA701

errors evaluated across correspondences and subjects. Statistically signifi-702

cant reduction in mean spatial position errors across experiments conducted703

using differing model complexities (i.e. different number of mixture compo-704

nents) are highlighted in bold in Tables 2 and 5, considering a significance705

level of 5%. In Tables 4 and 7 the reported mean FA errors were estimated706

by first computing the RMSE, this time averaging across correspondences,707
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and subsequently computing the mean RMSE across subjects. Tables 3 and708

6 summarise the mean angular error values, first averaged across correspon-709

dences and subsequently across subjects. These alternate error measures are710

presented to assess model quality of the HdMM across regions, and comple-711

ment the correspondence-wise errors presented in Fig. 4 - 5. From Tables 2712

- 7, the number of mixture components required to adequately characterise713

the entire population was identified as M = 1500 and M = 2000 for the cin-714

gulum and corpus callosum, respectively. The fibre orientation and FA errors715

depicted in Fig. 4 - 5 were evaluated using these values. All subsequent inter-716

group statistical analyses conducted employed these model complexities for717

the respective WM regions.718

Table 2: Model quality of HdMM for the cingulum, assessed in terms of the mean spatial
position error evaluated across correspondences and subjects, using the MSD metric, for
each patient group, and for varying model complexities. Bold values indicate statistically
significant reduction in errors.

# Mixture Components
Spatial Position Error: MSD (mm.)

AD MCI HC
500 0.86 ± 0.11 0.84 ± 0.09 0.82 ± 0.09
1000 0.73 ± 0.10 0.72 ± 0.08 0.71 ± 0.08
1500 0.67 ± 0.09 0.66 ± 0.07 0.64 ± 0.07
2000 0.65 ± 0.09 0.63 ± 0.07 0.62 ± 0.07

Table 3: Model quality of HdMM for the cingulum, assessed as the mean fibre orienta-
tion error evaluated across correspondences and subjects, for each patient group, and for
varying model complexities.

#
Mixture Components

Mean Fibre Orientation Error (radians)
AD MCI HC

300 0.11 ± 0.10 0.08 ± 0.02 0.07 ± 0.02
600 0.09 ± 0.08 0.07 ± 0.02 0.06 ± 0.01
1200 0.09 ± 0.08 0.06 ± 0.01 0.06 ± 0.01
1500 0.08 ± 0.08 0.06 ± 0.01 0.05 ± 0.01
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Table 4: Model quality of HdMM for the cingulum, assessed as the average RMSE of FA
evaluated over correspondences and averaged across subjects, for each patient group, and
for varying model complexities.

#
Mixture Components

Mean RMSE of FA
AD MCI HC

300 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01
600 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01
1200 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01
1500 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01

Table 5: Model quality of HdMM for the corpus callosum, assessed in terms of the mean
spatial position error evaluated across correspondences and subjects, using the MSD met-
ric, for each patient group, and for varying model complexities. Bold values indicate
statistically significant reduction in errors.

# Mixture Components
Spatial Position Error: MSD (mm.)

AD MCI HC
500 1.15 ± 0.17 1.14 ± 0.10 1.09 ± 0.12
1000 0.99 ± 0.15 0.98 ± 0.09 0.94 ± 0.10
1500 0.91 ± 0.13 0.90 ± 0.08 0.85 ± 0.09
2000 0.86 ± 0.12 0.85 ± 0.07 0.81 ± 0.08

Table 6: Model quality of HdMM for the corpus callosum, assessed as the mean fibre
orientation error evaluated across correspondences and subjects, for each patient group,
and for varying model complexities.

#
Mixture Components

Mean Fibre Orientation Error (radians)
AD MCI HC

500 0.13 ± 0.19 0.10 ± 0.14 0.06 ± 0.01
1000 0.13 ± 0.19 0.13 ± 0.16 0.05 ± 0.01
1500 0.12 ± 0.19 0.09 ± 0.13 0.05 ± 0.01
2000 0.12 ± 0.18 0.09 ± 0.13 0.05 ± 0.01
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Table 7: Model quality of HdMM for the corpus callosum, assessed as the average RMSE
of FA evaluated over correspondences and averaged across subjects, for each patient group,
and for varying model complexities.

#
Mixture Components

Mean RMSE of FA
AD MCI HC

500 0.11 ± 0.03 0.11 ± 0.02 0.10 ± 0.01
1000 0.10 ± 0.03 0.10 ± 0.02 0.09 ± 0.01
1500 0.09 ± 0.03 0.09 ± 0.03 0.08 ± 0.004
2000 0.09 ± 0.03 0.08 ± 0.03 0.07 ± 0.01

Figure 6: Histograms of fibre orientation errors for each subject in AD, MCI and HC
groups, evaluated between established correspondences and ground truth voxels.

Results in Fig. 6 and 7 indicate that the proposed framework achieves719

low fibre orientation and FA errors at each estimated correspondence, for all720
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subjects in the HC group (for both WM ROIs). The estimated correspon-721

dences were less accurate for two cases in the AD group (for both cingulum722

and corpus callosum) and for one case in the MCI group (only corpus cal-723

losum), which is attributed to significant variation in fibre orientations and724

FA values in these cases and ROIs, relative to the remaining samples in their725

corresponding patient groups. As discussed previously, this may be a re-726

sult of varying degrees of pathology-induced changes in these cases relative727

to the rest of their group. Consequently, the accuracy of the HdMM when728

fitting to these few cases, is reduced. The proposed framework, however,729

established accurate correspondences for the remaining samples in the AD730

and MCI groups across both WM ROIs. The high deviations from the mean731

fibre orientation errors in the corpus callosum for these groups (Table 6)732

are thus attributed to the outlier subjects identified from the corresponding733

histograms (Fig. 6). Similarly, for the cingulum, the high standard devia-734

tions observed for the AD group are attributed to the two subjects mentioned735

above. However, no apparent outliers were identified in the MCI group based736

on the registration errors and, by extension, the mean FA and fibre orien-737

tation errors reported in Tables 4 and 3, are low and consistent with their738

corresponding histogram plots (Fig. 7 and Fig. 6).739
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Figure 7: Histograms of root-squared-error (RSE) of FA for each subject in AD, MCI and
HC groups, evaluated between established correspondences and ground truth voxels.

The foregoing results suggest the proposed framework established valid740

correspondences for both WM ROIs across all subjects in the HC group and741

for the majority of cases in the AD and MCI groups. This is indicative of the742

ability of the proposed HdMM to approximate the joint PDF of positions,743

fibre orientations and FA values across multiple subjects.744

3.3. Group Comparisons745

The ability of the proposed framework to identify significant differences746

between patient groups was assessed by comparing each pair of patient groups747

in terms of the variation in FA. These results were compared with those ob-748

tained from the widely used TBSS approach. Un-paired two-sample t-tests,749

assuming equal variances, were performed to compare FA values at corre-750

sponding spatial positions between patient groups. The procedure proposed751
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in (Benjamini and Yekutieli, 2001) was used to correct for multiple compar-752

isons by controlling the false discovery rate (FDR) for the set of hypothesis753

tests. The desired FDR was fixed at 1% for all experiments. However, no754

statistically significant reduction in FA was identified between any of the755

groups, using the proposed approach, TBSS and VBM.756

Interquartile ranges (IQRs) for the mean FA values estimated using each757

approach were also evaluated to provide a quantitative means of comparing758

the range of estimated FA values for both WM ROIs. This measure is adopted759

as it provides a robust means of assessing dispersion in data. IQRs are760

summarised in Table 8 for both WM ROIs, from which we infer that all761

three methods do indeed show similarities in the range of estimated mean762

FA values, for the corpus callosum. Conversely, for the cingulum, while763

VBM and the proposed approach show similar IQRs, the ranges estimated764

for TBSS are lower. This is because TBSS models the central skeleton of765

the ROI, and there is substantial variation in FA between the center and766

peripheral regions of cingulum region. Consequently, the variation in mean767

FA values in the skeleton voxels is lower in comparison to the entire ROI (as768

modelled by VBM and HdMM).769

Table 8: Interquartile ranges for mean FA values estimated using each approach for both
WM ROIs.

Method
Corpus Callosum:
IQR of mean FA

Cingulum:
IQR of mean FA

AD MCI HC AD MCI HC
HdMM 0.24 0.24 0.24 0.17 0.16 0.16
TBSS 0.20 0.21 0.21 0.08 0.08 0.09
VBM 0.21 0.21 0.21 0.14 0.13 0.14

As discussed previously, the primary advantage of the proposed HdMM770

framework is its ability to model fibre orientations and facilitate their compar-771

ison across multiple subjects, which is not offered by conventional approaches772

such as TBSS and VBM. Furthermore, the proposed method does not require773

extraction of fibre trajectories using tractography in order to model fibre ori-774

entations as it operates directly on the raw DTI-derived eigenvectors, unlike775

state-of-the-art approaches such as those proposed in (Garyfallidis et al.,776

2015) and (ODonnell et al., 2017). Inter-group statistical comparisons of777

the angular deviation in fibre orientations, relative to study-specific mean778
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template, were also conducted. Here, the angular deviation of the model-779

predicted fibre orientations at each spatial correspondence was first evalu-780

ated relative to the corresponding mean fibre orientation (for patients from781

all groups), as the minimum arc length between unit vectors. Subsequently,782

these deviations were compared between each pair of patient groups, while783

correcting for multiple comparisons using FDR. However, as with the FA784

analyses, no statistically significant differences were identified.785

The proposed HdMM for the joint registration and clustering of data com-786

prising positions, orientations and scalar-valued features (such as FA) shows787

promise for statistical analysis of diffusion derived measures across multiple788

subjects and patient populations. Although the inter-group statistical com-789

parisons conducted to analyse the variation in FA and fibre orientations re-790

vealed no significant differences between patient groups, our results matched791

those obtained using TBSS and VBM, in the case of the former. This may792

be due to the underlying nature of the data as the samples used throughout793

this study were part of the prospective cohort of the VPH-DARE@IT project.794

Consequently, it is possible that no significant differences in FA and fibre ori-795

entation exist in the WM ROIs considered, between the subjects assigned to796

the AD, MCI and HC groups. However, we believe the proposed approach797

still holds merit due to the flexibility it affords, as: (a) it enables analysis of798

various scalar-valued diffusion measures (although just FA was considered in799

this study), similar to existing approaches such as TBSS and VBM; and (b)800

also permits analysis of local fibre orientation, defined by primary diffusion801

axes, a capability not afforded by existing techniques. Although approaches802

based on clustering of fibre trajectories enable such analyses, they require803

diffusion-tractography derived fibres to do so. The present work ameliorates804

this need and acts directly on the raw eigenvector images. Additionally, our805

approach is not restricted to a specific anatomical region or analysing voxel-806

wise (or structured grid) data and may be employed to jointly register and807

cluster unstructured data as well.808

A current limitation of the proposed approach is it only enables anal-809

ysis of DTI data generated using a single tensor model. However, the pro-810

posed HdMM framework could be imbued with greater flexibility by replacing811

the Watson distributions with the Kent or the general 8-parameter Fisher-812

Bingham distribution, to model multi-fibre (or crossing fibre) regions by fit-813

ting to orientation distribution functions obtained from high angular diffusion814

images. Extensions to the Von-Mises-Fisher mixture model for example, have815

been proposed previously to accommodate antipodal symmetry and model816
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diffusion ODFs (McGraw et al., 2006).817

The sensitivity and discriminative capacity of the proposed framework818

in comparison to existing approaches requires further investigation and val-819

idation, which will be the subject of future work. Natural extensions to the820

proposed framework include whole WM volume analysis across multiple sub-821

jects, WM parcellation, and automatic region-of-interest analysis, to name822

a few. As discussed previously, the proposed approach can be employed to823

analyse the entire WM volume across subjects, i.e. a priori definition of ROIs824

is not required, though the computational burden at present is substantial.825

Such an approach naturally leads to the unsupervised parcellation of WM826

into distinct clusters defined by the centroids of the HdMM, across multiple827

subjects. This in turn provides a mechanism for automatic ROI-type analy-828

ses, as the generated clusters for each subject will correspond to similar WM829

regions in terms of spatial position, fibre orientation and FA (or some other830

scalar measure of interest). Furthermore, by employing a suitable prior/atlas831

containing pre-defined labels for WM tracts of interest, the presented frame-832

work could be employed for automatic tractography segmentation (similar833

to (O’Donnell and Westin, 2007)). The proposed approach can also be em-834

ployed to track and identify localised changes in WM over time for a single835

subject, resulting from the progression of neuro-degenerative disorders such836

as dementia, for example. Although WM changes in the brain were consid-837

ered in this study, the generic nature of the proposed framework permits its838

application to other organs exhibiting tissue anisotropy, such as cardiac dif-839

fusion data, and modelling bone micro-architecture. Additionally, it can be840

employed for a variety of other applications, such as vessel centerlines-based841

image registration, as demonstrated by our recent study (Bayer et al., 2018).842

4. Conclusions843

In this study, a Watson-distribution based hybrid mixture model was pre-844

sented for jointly registering and clustering DTI-derived data from multiple845

subjects and patient populations. This approach was shown to model the846

observed fibre orientations and FA values accurately for all subjects within847

the HC group, for both of the studied WM ROIs, namely, the cingulum and848

corpus callosum. Registration to subjects in AD and MCI groups was suc-849

cessful for the majority of cases, with two in the former and one in the latter850

resulting in high registration errors, due to significant pathology induced851

changes in these cases. Group comparisons of FA values in the WM ROIs852
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using the proposed approach showed no statistically significant reductions in853

FA between the AD, MCI and HC groups, as with TBSS and VBM. Similarly,854

no significant variations in fibre orientation were identified between patient855

groups. However, the proposed method has potential for use in a variety of856

applications involving statistical analysis of diffusion data. Its generic and857

flexible nature make it well suited to a variety of other computer vision and858

medical image analysis tasks, such as: point set registration with the inte-859

gration of surface normals, vessel-based image registration, joint registration860

and clustering of geometries with associated velocity fields (estimated from861

computational fluid dynamic simulations for example) and texture mapping,862

to name a few. The fidelity and extensibility of the proposed framework is863

thus compelling as a general tool for multi-dimensional medical image anal-864

ysis.865
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Appendix874

M-step update equations for the Student’s t-distribution parameters in875

the HdMM and rigid registration parameters at the (t + 1)th EM-iteration,876

discussed in section 2.6, are derived by maximizing the complete data log-877

likelihood Q(Θt+1
p ,Tt+1|Θt

p,Tt) with respect to each parameter as follows:878

• Estimation of TMM centroids µµµj at the (t+ 1)th EM-iteration:

Q(Θt+1
p ,Tt+1|Θt

p,Tt) = −1

2

∑
k,i,j

P ?t
kij∆kij +O.T. (8a)

∆kij =
(xki − skRkµµµj − tk)

T (xki − skRkµµµj − tk)

σ2
(8b)
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O.T. summarizes terms in Q independent of µµµj.

< ∂Q, ∂µµµj >= [−1

2

∑
k,i

P ?
kij∆

µµµj+∂µµµj
kij ]− [−1

2

∑
k,i

P ?
kij∆

µµµj
kij] (9a)

< ∂Q, ∂µµµj >=
∑
k,i

P ?
kij[(xki − skRkµµµj − tk)

T skRk]∂µµµj (9b)

< ∂Q, ∂µµµj >= 0 =⇒
∑
k,i

P ?
kij[(xki − skRkµµµj − tk)

T skRk] = 0 (9c)

∑
k,i

P ?
kijskR

T
k (xki − tk) =

∑
k,i

P ?
kijskR

T
kRkskµµµj (9d)

µµµj =

∑
k,i

P ?
kijs

−1
k RT (xki − tk)∑
k,i

P ?
kij

(9e)

• Estimation of model variance σ2:

∂Q

∂σ2
=

∂
∑
k,i,j

[−Pkij
2

[log(σ6)]− P ?kij
2

[∆kij]]

∂σ2
= 0 (10a)

=⇒
∑
k,i,j

−Pkij
3

σ
+ P ?

kij

(xki − skRkµµµj − tk)
T (xki − skRkµµµj − tk)

σ3
= 0

(10b)

σ2 =

∑
k,i,j

P ?
kij(xki − skRkµµµj − tk)

T (xki − skRkµµµj − tk)

3
∑
kij

Pkij
(10c)

• Estimation of translation tk:

< ∂Q, ∂tk >= [−1

2

∑
i,j

P ?
kij∆

tk+∂tk
kij ]− [−1

2

∑
i,j

P ?
kij∆

tk
kij] (11a)

< ∂Q, ∂tk >=
∑
i,j

P ?
kij[(xki − skRkµµµj − tk)

T ]∂tk (11b)

< ∂Q, ∂tk >= 0 =⇒
∑
i,j

P ?
kij(xki − skRkµµµj)

T =
∑
i,j

P ?
kijt

T
k (11c)
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tk =

∑
i,j

P ?
kijxki∑

i,j

P ?
kij

− skRk

∑
i,j

P ?
kijµµµj∑

i,j

P ?
kij

(11d)

Setting the first term as dk and the second term as mk we get:

tk = dk − skRkmk (11e)

• Estimation of strictly orthogonal rotation Rk: Using the lemma out-
lined in (Myronenko and Song, 2010), the optimal rotation matrix max-
imises tr(CT

kRk) where Ck represents a real covariance matrix (refer to
equation 12d).

x̃ki = xki − dk, m̃kj = µµµj −mk (12a)

Using equations (11e) and (12a) we get:

Q(Θt+1
p ,Tt+1|Θt

p,Tt) ∝
∑
i,j

P ?t
kij(x̃

T
kiRkm̃kj) (12b)

Q(Θt+1
p ,Tt+1|Θt

p,Tt) ∝
∑
i,j

P ?t
kij tr[m̃kjx̃

T
kiRk] (12c)

As equation (12c) must be maximised with respect to Rk,

Ck =
∑
i,j

P ?
kijx̃kim̃

T
kj (12d)

Rk = USVT , where U,V are unitary matrices computed by singular879

value decomposition of Ck and S = diag(1, 1, det(UVT )) is a diagonal880

matrix that prevents reflections.881

• Estimation of scaling sk:

∂Q

∂sk
= −1

2

∂
∑
i,j

P ?
kij∆kij

∂sk
= 0 (13a)

∑
i,j

P ?
kij

(x̃ki − skRkm̃kj)
T (Rkm̃kj)

σ2
= 0 (13b)

∑
i,j

P ?
kij[(x̃ki)

T (Rkm̃kj)] = sk
∑
i,j

P ?
kij[m̃

T
kjR

T
kRkm̃kj] (13c)

sk =
tr[m̃kjx̃

T
ki]Rk

tr[m̃kjm̃
T
kj]

=
tr[CT

kRk]

tr[m̃kjm̃
T
kj]

(13d)
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• Estimation of degrees of freedom νj:

Q(Θt+1
p ,Tt+1|Θt

p,Tt) =
∑
k,i,j

P t
kij[− log Γ(

νj
2

) +
1

2
νj log(

νj
2

)+

νj
2

[log(U t
kij)− U t

kij + Ψ(
νj +D

2
)− log(

νtj +D

2
)]] +O.T.

(14a)

O.T. summarizes terms in Q independent of νj.

∂Q

∂νj
= −Ψ(

νj
2

) + log(
νj
2

) + 1 +
1∑

k,i

P t
kij

∑
k,i

P t
kij(log(U t

kij)− U t
kij)+

Ψ(
νtj +D

2
)− log(

νtj +D

2
) = 0

(14b)

Equation (14b) is solved using Newton’s method to estimate the degrees882

of freedom νj.883

• Derivations for the M-step updates (refer to equations 3c - 3e) of the884

mean fibre orientation md
j and fibre concentration κj parameters asso-885

ciated with Watson distributions in the HdMM, presented in section886

2.4, are derived by maximizing the complete data log-likelihood Q (re-887

fer to equation 15a), with respect to each model parameter as follows:888

(Here M(κj) denotes the Kummer function).889

Q(Θt+1
n |Θt

n) =
K∑
k=1

Nk∑
i=1

M∑
j=1

Pkij log p(±nki|md
j , κj) + λj(1−md

j

T
md

j )

(15a)

< ∂Q, ∂md
j >= 0 =⇒ λjm

d
j = κj

K∑
k=1

Nk∑
i=1

Pkij(n
T
kim

d
j )nki (15b)

< ∂Q, ∂κj >= 0 =⇒ M ′(κj)

M(κj)

K∑
k=1

Nk∑
i=1

Pkij =
K∑
k=1

Nk∑
i=1

Pkij(n
T
kim

d
j )

2

(15c)
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md
j

T
md

j = 1 =⇒ λj = κj||
K∑
k=1

Nk∑
i=1

Pkij(n
T
kim

d
j )nki|| (15d)

Substituting equation (15d) in (15b) results in a non-linear equation
(16), which is solved numerically by fixed-point iteration.

md
j =

K∑
k=1

Nk∑
i=1

Pkij(n
T
kim

d
j )nki

||
K∑
k=1

Nk∑
i=1

Pkij(nTkim
d
j )nki||

(16)

Based on equation (15c), the ratio of the derivative of the Kummer
function to the function itself, is expressed as shown in equation (17a).
This ratio may be expressed as a continued fraction, as shown in equa-
tion (17b). Consequently, using equations (17a) and (17b), the con-
centration parameters κj can be approximated as shown in equation
(17d), by solving the linear equation (17c) (similarly to (Bijral et al.,
2007)).

M ′(κj)

M(κj)
=

K∑
k=1

Nk∑
i=1

Pkij(n
T
kim

d
j )

2

K∑
k=1

Nk∑
i=1

Pkij

(17a)

κjM
′(κj)

M(κj)
=

κj/2

(D/2)− κj +
(3/2)κj

(D
2
+1)−κj+....

(17b)

κjM
′(κj)

M(κj)
≈ κj/2

(D/2)− κj +
κjM ′(κj)
M(κj)

(17c)

κj ≈
1

2

[ 1− M ′(κj)
M(κj)

D

(
M ′(κj)
M(κj)

)2 − M ′(κj)
M(κj)

]
(17d)

• The mean-squared distance (MSD) metric (refer to equation (18)) is
used to assess registration errors in terms of spatial position. MSD val-
ues were evaluated between the correspondences established following
registration of the (study-specific) mean template, and the correspond-
ing original hybrid point sets (i.e. between the estimated correspon-
dences and the voxel centroids defining the WM ROIs). In equation
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(18) dmin(A,B) denotes the minimum Euclidean distance between each
point in sample A and sample B.

MSD = mean(mean(dmin(A,B)),mean(dmin(B,A))) (18)

• The “model-predicted” values for FA (f̂kj) and fibre orientation (n̂kj)
estimated at each established spatial correspondence, for each patient,
are weighted averages of the neighbouring voxels in their original DTI-
derived images (original hybrid point sets), where the weights are de-
fined by the estimated posterior probabilities following non-rigid reg-
istration of the study-specific mean template to each sample. These
values were estimated for FA and fibre orientation as described by equa-
tions 19a and 19b, respectively.

f̂kj =

Nk∑
i=1

Pkijfki∑
l

Pklj
(19a)

n̂kj =

Nk∑
i=1

Pkijnki∑
l

Pklj
(19b)
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