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ABSTRACT With the development of Internet, malware has become one of the most significant threats.
Recognizing specific types of malware is an important step towards effective removal. Malware visualization
is an important branch of malware static analysis techniques, where a piece of malware is turned into
an image for visualization and classification. Despite great success, it is still difficult to extract effective
texture feature representations for challenging datasets. Existing methods use global image features which
are sensitive to relative code locations. In this paper, we present a new learning framework to obtain more
discriminative and robust feature descriptors. The proposed method works with existing local descriptors
such as LBP (Local Binary Patterns) and dense SIFT (Scale-Invariant Feature Transform), by grouping them
into blocks and using a new bag-of-visual-words (BoVW) model to obtain robust features, which are more
flexible than global features and more robust than local features. We evaluate the proposed method on three
malware databases. Experimental results demonstrate that the obtained descriptors lead to state-of-the-art
classification performance.

INDEX TERMS malware visualization, image texture, feature descriptors, malware classification.

I. INTRODUCTION

Malware (e.g. viruses, worms and Trojan horses) has become
one of the most significant threats on the Internet. With the
help of generation tools, it becomes easy to generate new
malware, resulting in a very rapid increase in the number
of malware. AV test reported that around 81,598,221 new
malware samples were obtained in 2017, a 14% increase
compared to the previous year. Among all these malware
attacks, over 67% targeted Windows systems [1]. It has
caused serious threat. For example, the ransomware “Wan-
naCry” spread over 100 countries in the world and caused
damage of 8 billion US dollars. Furthermore, those new
variant malicious code files have similar behavior as benign
files, making them harder to be detected, which has posed a
significant challenge to anti-virus vendors. Although various
analysis techniques have been studied to deal with malware
variants, they are not sufficient to address increasing avoid-
ance techniques applied in malware. New analysis techniques

are still demanded to improve the analysis efficiency. Among
different techniques, malware visualization has recently been
proposed as an effective approach.

In this paper, we propose a new method that classifies
malware families using malware visualization. The method
transforms malware binary files to grayscale images. To
obtain discriminative features, we present a new learning
framework which is formulated as a multi-layered model
to characterize and analyze malware images using bag-of-
visual-words (BoVW). Starting from existing local descrip-
tors (LBP or dense SIFT), we group them into blocks and
build histograms. The extracted features are more flexible
than global features (e.g. GIST) and more robust than local
features. We evaluate the proposed method on three datasets,
which are all from the Windows platform. Experimental re-
sults demonstrate that the obtained descriptors are robust and
discriminative, which lead to state-of-the-art classification
performance, outperforming existing methods.
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The rest of the paper is organized as follows. Related work
is reviewed in Section 2. Section 3 gives an overview of our
learning framework. Section 4 conducts comparative exper-
iments on three datasets and analyzes the results. Finally,
conclusions are drawn in Section 5.

II. RELATED WORK
Various malware analysis and classification methods have
been proposed, including signature-based detection [2], [3],
behavior-based methods [4], [5], instruction frequency-based
methods [6]–[10], opcode-sequence based methods [11]–
[13], etc.

Among them, some techniques help analysts analyze mal-
ware with feature visualization. Based on the observation that
control flow information could be used to identify malware
variants, Cesare and Yang [14] developed a control flow
graph based malware classification method. Trinius et al. [15]
explored two visualization techniques, namely treemaps and
thread graphs, to visualize the behavior of malicious software
by abstracting in different levels the behavior captured in
controlled environments, with an aim to help human analysts.
Saxe et al. [16] presented a visual analytic approach to
analyze and visualize system calls shared among different
malware samples. Their system provides two visualization
user interfaces, namely a map-like interface showing the
overall similarity among samples, and a linked interface
to highlight both the similarities and differences between
selected samples. Hu et al. [17] developed a system to handle
a large number of malware samples efficiently. Each malware
sample is represented using their function-call graph, so that
finding similar malware samples from the database to a new
malware sample can be formulated as a graph matching
problem. They further developed an efficient algorithm for
searching in the graph database. These methods often use
graphs to represent malware, and/or provide high-level vi-
sualization of malware to assist analysts.

Conti et al. [18] put forward a method to classify raw
binary data into binary fragments of different primitive types
such as text, machine instructions, image data and audio data.
Nataraj et al. [19] did the pioneering work of using malware
visualization for malware analysis. It allows researchers to
understand the structures of malware binary files without
disassembling. In the paper, a malware binary is represented
as a vector of 8 bit unsigned integers, which is then organized
into a 2D array and visualized as a grayscale image by
treating integers as pixel intensities. In Nataraj’s method, it
obtains the image’s GIST descriptor, a global texture descrip-
tor, and classifies malware images using machine learning. It
obtains a high accuracy (0.98) on the dataset (25 families,
9,458 images). However, when applied to a larger malware
dataset (36 families, 12,278 images [20]), the accuracy is
not satisfactory (only 0.89). Inspired by Nataraj’s method,
Han et al. [25] proposed a new method by converting bi-
nary files into images and generating entropy graphs. The
method obtains malware images using the same approach
as Nataraj’s method and improves Nataraj’s classification

method by classifying malware families based on the entropy
graph similarity. They claim that their method is as good as
Nataraj’s method.

Although malware images look like usual grayscale im-
ages, they are fundamentally different. When the same code
appears in different sections of the malicious file, the overall
malware image will be changed. Simply using a global
texture descriptor as in [19] does not work well for malware
images, especially for those samples containing interference
information. Thus in this paper, we develop a new method
to obtain more robust descriptors in more challenging cases,
for example, when the malware samples are too similar in
different families or too different in the same family.

III. METHODOLOGY
In this paper, we propose a new framework for malware
classification based on malware visualization, where a piece
of malware is first converted into an image.

A. MALWARE VISUALIZATION
To turn a malware executable into an image, we first treat its
binary code as a sequence of 8-bit unsigned integers in the
range of 0 to 255 inclusive. Each value is directly interpreted
as the intensity of the pixel, where 0 is black and 255 is
white. The sequence is then structured into an 2D array to
form an image. Following Nataraj’s method, the width of
the image varies according to the binary file size [19]. Some
examples of malware images are shown in Figure 1. Those
are from Agent.fyi, Instantacess, Dialplatform and Fakerean
families from top left to bottom right. It can be seen that
images from the same family exhibit similarity. In this paper,
we use Nataraj’s method to visualize malware binary files
and propose a new method to extract effective texture feature
representations which achieves higher accuracy.

Figure 1: Examples of malware images.
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B. MULTI-LAYER LEARNING FRAMEWORK
After converting binary files into images, image-based de-
scriptors are used for classification. We first introduce the
symbols used as follows.

Suppose a training malware image set D = {dij} con-
tains images that belong to n families (i = 1, . . . , n, j =
1, 2, . . . , Ni where Ni is the number of malware images in
the ith malware family). Given a new malware image, the
problem is to classify it into its correct family. Let fij be
the image feature for dij , which can be global image features
(such as GIST descriptors) defined on the image as a whole,
or local features (such as LBP or dense SIFT) defined in
local neighborhoods around some pixels. Since variants of
the same malware family may have similar code appearing in
different locations, global features are unable to handle such
cases effectively. Local features are more robust in such cases
but can be more sensitive to small changes of code.

In this paper, we present a bag-of-visual-words (BoVW)
model, with the basic idea originally from the bag-of-words
(BoW) model in natural language processing. For the BoW
model, a dictionary is first built that contains all the words
(excluding stop words) from the collection of documents.
Each document is then compactly represented using a vector
with each element representing the number of times the
corresponding word appears in the document. The BoW
model greatly simplifies the representation, as neither the
order of words in the document, nor the contextual relation-
ships between words are taken into account. Although such
loss of information is most criticized for natural language
processing, we argue that in our problem of image-based
malware classification, ignoring the order of visual words
is indeed more beneficial, since it extracts useful malware
image features and handles the differences among variants of
the malware with interference information.

Thus we propose to use local features, along with a
new multi-layer learning framework based on bag-of-visual-
words (BoVW) to improve the robustness of malware image
features. The first layer is local feature extraction where ex-
isting local texture descriptors can be used. The second layer
is local feature descriptor grouping. The third layer extracts
representative features from groups in the second layer, and
the final layer produces the general feature representation of
the image. The pipeline is illustrated in Figure 2.
Layer 1 (Local Feature Extraction): Features represent
characteristics of texture images, such as frequent pattern
occurrences. Our framework works with different local fea-
tures. In this paper, we consider two typical features, namely
local binary patterns (LBP) and dense SIFT. We briefly
describe them below for completeness.

Definition 1: LBP (Local Binary Patterns) turns a local
center pixel grayscale value into a binary pattern that encodes
the relationship of the pixel with its local neighborhood. Each
neighboring pixel is set to 1 or 0 according to whether the
grayscale value of the pixel is larger than the value of the
central pixel [21]. For a given malware image dij , fij is a
collection of LBPc value for each center pixel c. LBPc is an

integer defined as

LBPc =

P−1∑
p=0

s(gp − gc)2
p (1)

where gc and gp are the grayscale values of the center pixel
c and its pth neighbor, P is the number of neighboring pixels
and

s(x) =

{
1 if x ≥ 0,

0 if x < 0,

which provides a binary output (0 or 1). fij is a matrix, which
presents the local features.

fij =

T⋃
t=1

LBPpt
(2)

where t = 1, 2, . . . , T , T is the number of patch centers and
pt is a patch center.

Our experiments show that the neighborhood radius and
number of neighbor pixels have little influence on malware
recognition. Thus, we choose radius R = 1 (i.e. 3 × 3
windows), comparing the grayscale value of the central pixel
with its 8 neighboring pixels. In this case P = 8, so
LBPc ∈ [0, 255].

Definition 2: Dense SIFT calculates a SIFT descriptor
determined by Lowe’s algorithm at every location [22]–
[24]. It collects features at each location and scale in an
image, which helps increases recognition accuracy. It splits
an image into small patches, and each patch is further spilt
into smaller bins. The feature is then computed as gradient
magnitude histograms in 8 orientations of bins. As the sliding
window moves, it computes gradient histograms of each local
neighborhood of the image. Finally, it obtains the image
feature descriptors using cascaded connection functions.
Layer 2 (Feature Grouping): Although direct use of global
features and local features can reflect overall structures of
malware images, sometimes, they may not be reliable or
robust. In malware code, the position of some code can be
changed and some nonsensical code is often added in the
files. Therefore, some distinctive local features, not necessar-
ily in the same location, can be essential for classification.
To make the features more robust, on the second layer,
we split an image into many blocks of features, with each
block containing m × m centers (m = 16 is used in our
experiments). Denote by xu,v the local feature at relative
position (u, v) in the block, the description for each feature
block X is given in Equation 3:

X =

x11 . . . x1m

...
...

...
xm1 . . . xmm

 (3)

Denote by X = {Xi} the set of feature blocks.
Layer 3 (Representative Feature Selection): We cluster all
the feature blocks from all the training images into k centers
c̃i (i = 1, 2, . . . , k) using k-means clustering, which are
considered as visual words. This provides an effective way
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Figure 2: A multi-layer feature extraction model.

to summarize block descriptors and suppress the impact of
noise and outliers in the feature space.

x11 . . . x1m

...
...

...
xm1 . . . xmm


⇒

c̃1...
c̃k


Since we are only concerned with obtaining a representative
set of feature blocks, we randomly select a small subset
(0.5% in our experiments) of blocks for clustering. This
makes the computation much more efficient while maintain-
ing the performance.
Layer 4 (BoVW Feature Descriptor Representation). The
purpose of this layer is to obtain a robust feature represen-
tation for malware images, suppressing unreliable features.
Following a BoVW model, for each block Xi ∈ X in the
input image, we compute the Euclidean distance between
it and each cluster center c̃j . The center with the minimum
distance is selected and decides the cluster the block belongs
to. The histogram of all the chosen clusters forms the feature
vector v of the image:

v = hist(
⋃

Xi∈X
argminj ‖ c̃j −Xi ‖) (4)

where hist(·) is the histogram operator. v can be viewed
as a general feature descriptor and used for classification.
For a given test image, we apply Layers 1 and 2 to obtain
feature blocks, and Layer 4 to calculate the global feature
representation. Layer 3 is only needed in the training stage.

More precisely, taking LBP as local features, the proposed
method can be summarized by Algorithm 1 (one-off process
only needed for training) and Algorithm 2 (feature extraction
for an input image).

IV. EXPERIMENTS
To evaluate the performance of the multi-layer learning
framework, comprehensive comparisons are made with well-
known methods. Experiments are conducted on three mal-
ware image datasets: MalingA dataset used in Nataraj’s pa-
per [19], Nataraj’s malware album on his personal website [3]
(referred to as MalingB), and the malware dataset from the
CNCERT Labs. MalingA has 25 families and 9,458 malware
images. MalingB is larger, with 36 families and 12,278
malware images. The CNCERT dataset has 10 families and
15,000 malware binary files. Among these datasets, MalingA
and MalingB are provided directly as malware images, and
we convert malware binary files from the CNCERT dataset
to images. In this paper, the block size when building the

4 VOLUME ,
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Algorithm 1 (Training Stage, involving Layers 1-3): Obtain
the feature blocks X of training malware images dij from the
training set D, and work out the cluster centers {c̃k}.
Input: malware image training set D:
Output: features X with respect to training malware images

dij , and cluster centers {c̃k}.
for each i ∈ [1, n] do
//n : the number of malware families;
for each j ∈ [1, Ni] do

//Ni: the number of training examples for the ith

family;
Calculate local LBP features fij =

⋃
LBPpt

;
Split fij into blocks using an m×m grid, each is Xt;
Add Xt to the feature set X ;

end for
end for
Take a subset of X as X̃ ;
Work out cluster centers {c̃k} = Kmeans(X̃ )

Algorithm 2 (Feature Extraction Algorithm, involving Lay-
ers 1, 2 and 4): Calculate global feature vector v for an input
image.

Input: malware image it:
Output: the global feature v with respect to the histogram

of cluster numbers.
Use Layers 1 and 2 (see Algorithm 1) to obtain feature
blocks X .
Initialize the histogram h : ht = 0, t = 1, 2, . . . , k.
for Xj ∈ X do
j = argminj ‖ c̃k −Xj ‖
hj ⇐ hj + 1

end for
v = h∑

j hj

BoVW model is 16× 16, i.e. m = 16.

A. EXPERIMENTAL RESULTS ON MALINGA
We first performed experiments on the same dataset (Ma-
lingA) as used in [19]. Nataraj’s method [19] extracts GIST
features of malware images, and uses a KNN (K-nearest
neighbor) classifier and a random forest (RF) classifier to
classify the test data. The GIST feature is a global feature
based on Gabor filters. Each malware image is split into a
4×4 grid, and it uses a steerable pyramid with 8 orientations
and 4 scales to obtain several filtered images. A feature is
obtained by computing the absolute average deviation of
transformed values from the mean within a small window of
the filtered images. The GIST features are then obtained by
cascade connection of those features.

To provide a fair comparison, we perform 10-fold cross
validation and randomly run the algorithms for 10 times
and report the average accuracy for classification of images
in the test set. Table 1 gives the results of GIST [19] and

the proposed method (multi-layer LBP using LBP as local
descriptors, block size 16 × 16). In this experiment, we set
the number of cluster centers k = 100. We also compare with
baseline LBP and Dense SIFT without our proposed block-
based multi-layer approach.

For KNN, we report the performance using KNN with
K = 2, and random forest with the number of trees ntrees set
to 25 as empirically these give better performance. According
to Table 1, for MalingA, using GIST [19] features obtains the
best accuracy of 0.98, which is identical to Nataraj’s reported
result [19]. Using the proposed method (multi-layer LBP
and multi-layer dense SIFT) in the same dataset, it can get
the best accuracy of 0.99 which is a little better than GIST
features, but reasonable given the accuracy is already high.
These methods also give similar performance with the RF
classifier.

B. EXPERIMENTAL RESULTS ON MALINGB

MalingB is a larger dataset with more malware images and
families. In order to compare the proposed method with
original global and local descriptors, we report the results
of the new BoVW model (multi-layer LBP and multi-layer
dense SIFT) as well as results using GIST [19], baseline LBP
and dense SIFT (as shown in definition 1 and definition 2).
The testing results are shown in Table 2. Again we set the
number of cluster centers k = 100, and the number of trees
for the random forest (RF) classifier to 25.

As can be seen, the performance of RF and KNN are
similar. The traditional GIST [19] feature in this case only
achieves 0.910 accuracy (KNN where K = 1) and 0.883
accuracy (RF where ntrees = 25). When we use local
features directly, the performance is similar with dense SIFT
producing slightly better result (0.936 for KNN with K = 1
and 0.926 for RF). On the contrary, our multi-layer method
performs much better, with multi-layer dense SIFT achieving
0.974 and multi-layer LBP achieving 0.970, which are much
better than GIST [19], dense SIFT and LBP. In addition, our
new method has got 0.966 accuracy using an RF classifier
which is also better than alternative methods. Comparing
Table 2 with Table 1, the results of GIST [19], dense
SIFT and LBP methods are not satisfactory on the MalingB
dataset whereas our new method has much more stable
performance. We further investigate why the existing global
method (GIST [19]) performs well on MalingA but poorly
on MalingB. We can find that malware files are sometimes of
substantially different file sizes and some malware images in
the same family may include different icons (e.g. the Benign
family as shown in Figure 3 (left)). Moreover, some malware
images in the same family have very different textures (e.g.
the Luder family as shown Figure 3 (right)). Those more
difficult cases are not included in MalingA but appear in other
more challenging datasets. That is why GIST [19], dense
SIFT and LBP features are worse than the proposed method.
For further analyzing the results, we perform the confusion
analysis in the following subsection.
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Table 1: Comparison of classification results on the MalingA dataset.

Classifier KNN (K = 2) RF (ntrees = 25)
GIST [19] 0.980 0.990

Dense SIFT 0.978 0.982
LBP 0.976 0.986

Multi-layer dense SIFT 0.990 0.987
Multi-layer LBP 0.981 0.989

Table 2: Comparison of classification results on the MalingB dataset.

Classifier KNN (K = 1) RF (ntrees = 25)
GIST [19] 0.910 0.883

Dense SIFT 0.936 0.926
LBP 0.877 0.901

Multi-layer dense SIFT 0.974 0.966
Multi-layer LBP 0.970 0.966

Table 3: Details of the MalingB-sub dataset.

family name image numbers
Autorun.K 95

Benign 365
Fakerean 381
Luder.B 509

Obfuscator.AD 142
Skintrim.N 80

Virut.A 133
Virut.AC 269
Virut.AK 571

Figure 3: Two examples of challenging malware families in MalingB.

C. CONFUSION ANALYSIS
To better analyze the behavior of different methods, we
first select 9 families, 2,545 malware images from MalingB
not included in MalingA to form a subset (which we call
MalingB-sub), as shown in Table 3. MalingB-sub includes
malware families that are more confusing.

We perform experiments using GIST [19] and multi-layer
LBP features with an RF classifier. The results with KNN
are similar, which are omitted to avoid repetition. In the
experiment, we perform 10-fold cross validation and ran-
domly run the algorithms for 10 times and report every
result and average accuracy using RF (ntrees = 25) in
Table 4. As can be seen, multi-layer LBP is much better than
GIST [19]. In order to show the confusion details, we give
the confusion matrix when it achieves the best result 0.914
using the GIST [19] feature, as shown in Table 5. We can find
that the most confusing families are the Benign family and
the Luder.B family. In addition, 11.8% instances of Virtut.A
family are misclassified into Virut.AK. There is also a 2.6%
error rate in the classification of the Fakerean family. In

comparison, the confusion matrix of the proposed method
with multi-layer LBP is shown in Table 6 when it achieves
0.945 accuracy. A comparison of Table 5 and Table 6 shows
that Fakerean and Virtut.A families are classified completely
correctly with the proposed method. The results of Benign
and Luder.B family classification are also improved, which
demonstrates the robustness of the proposed method.

D. COMPARISON WITH HAN’S METHOD
We also compare the proposed method with Han’s
method [25] using a random forest classifier with ntrees

set to 25. This method is based on Nataraj’s image-based
approach but uses entry graph based features instead. On
the MalingA dataset, it can get the accuracy 0.985 with
appropriate threshold value 0.75, which is consistent with
their paper and close to the performance of the proposed
method (0.99). When applied to more challenging MalingB
dataset, as shown in Table 7, the best classification accuracy
of Han’s method [25] is only 0.908 (with the threshold set to
0.75), which is clearly worse than our results.

E. EXPERIMENTAL RESULTS ON THE CNCERT
DATASET
The third dataset is from CNCERT Labs, which contains
a set of 10 families, 15,000 binary files and corresponding
assembly files. We turn the binary files into malware images
according to Narataj’s method [19]. In the experiment, we
compare GIST [19] with multi-layer LBP descriptor using
both a KNN classifier and an RF classifier. The results are
shown in Table 8. The method [19] achieves better per-
formance with the RF classifier, and the average accuracy
obtained is 0.929 (ntrees = 25). Our multi-layer LBP method
achieves better average accuracy of 0.935. The accuracy of
Han’s method is 0.901 [25] with the threshold value set to
0.75.

F. DISCUSSIONS ABOUT PARAMETER SETTINGS
We perform further experiments to analyze the performance
of the proposed method with different parameter settings. In
the second layer, the features need to be split into m × m
blocks, where the number of m is very important. If m is too

6 VOLUME ,
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Table 4: The classification performance on the MalingB-sub dataset.

Classifier RF (ntrees = 25)
No. 1 2 3 4 5 6 7 8 9 10 average accuracy

GIST [19] 0.914 0.886 0.910 0.867 0.906 0.882 0.906 0.894 0.906 0.89 0.896
Multi-layer LBP 0.951 0.948 0.95 0.953 0.949 0.938 0.95 0.949 0.952 0.947 0.9488

Table 5: The confusion matrix on MalingB-sub with the GIST [19] feature (accuracy = 0.914)

malware family Autorun.K Benign Fakerean Luder.B Obfuscator.AD Skintrim.N Virut.A Virut.AC Virut.AK
Autorun.K 1 0 0 0 0 0 0 0 0

Benign 0 0.667 0 0.303 0 0 0 0 0.03
Fakerean 0 0 0.974 0 0 0 0 0 0.026
Luder.B 0 0.102 0 0.837 0 0 0 0 0.061

Obfuscator.AD 0 0 0 0 1 0 0 0 0
Skintrim.N 0 0 0 0 0 1 0 0 0

Virut.A 0 0 0 0 0 0 0.882 0 0.118
Virut.AC 0 0 0 0 0 0 0 1 0
Virut.AK 0 0 0 0 0 0 0 0 1

Table 6: The confusion matrix on MalingB-sub with our multi-layer LBP feature (accuracy = 0.945)

malware family Autorun.K Benign Fakerean Luder.B Obfuscator.AD Skintrim.N Virut.A Virut.AC Virut.AK
Autorun.K 1 0 0 0 0 0 0 0 0

Benign 0 0.73 0 0.27 0 0 0 0.027 0.027
Fakerean 0 0 1 0 0 0 0 0 0
Luder.B 0 0.078 0 0.922 0 0 0 0 0

Obfuscator.AD 0 0 0 0 1 0 0 0 0
Skintrim.N 0 0 0 0 0 1 0 0 0

Virut.A 0 0 0 0 0 0 1 0 0
Virut.AC 0 0 0 0 0 0 0 1 0
Virut.AK 0 0 0 0 0 0 0 0 1

Table 7: Comparison of three methods on MailingB dataset

Method Han’s method (with given threshold) Proposed method Nataraj’s method (GIST [19])0.5 0.75 0.8 0.9 Multi-layer SIFT Multi-layer LBP
Accuracy 0.763 0.908 0.882 0.796 0.966 0.966 0.910

Table 8: Classification results on the CNCERT dataset.

Classifier KNN (K = 2) RF (ntrees = 25)
GIST [19] 0.918 0.929

Dense SIFT 0.921 0.926
LBP 0.882 0.901

Multi-layer dense SIFT 0.938 0.930
Multi-layer LBP 0.932 0.935

Han [25] 0.901 (threshold=0.75)

small, the number of blocks is huge. Therefore it takes long
time to obtain the feature descriptors and cluster those blocks.
On the contrary if m is too big, the BoVM features are not as
robust. In the MailingB dataset, we use 8 × 8, 16 × 16 and
32 × 32 block sizes respectively (see Table 9). 8 × 8 blocks
are too small, and the images are split into many blocks. They
consume so much time to extract features that we have to stop
it after 5 days. 32× 32 blocks are too big, and the results are
poor. The results using 16× 16 blocks are better and used in
all the experiments.

We further analyze the performance of the RF classifier
w.r.t. its parameter. Figure 4 presents curves showing the
classification accuracies of the original method [19] and
our learning framework using different numbers of trees
in the Random Forest classifier on MalingB. We test 10,
15, 20 and 25 trees and show the average accuracies in

Figure 4. The blue curve presents the GIST method [19]
and the other curves present multi-layer LBP and multi-layer
dense SIFT respectively. It can be seen that the red and
green curves are consistently higher than the blue one, which
means that the multi-layer learning framework outperforms
the GISTmethod [19]. The performance is generally stable
with changing number of trees, and we use 25 trees for fairer
comparison as different methods work generally well.
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Table 9: Classification results using different window size on the MailingB dataset

classifier KNN (K = 2) multi-layer LBP (ntrees = 25)
16× 16 32× 32 16× 16 32× 32

Multi-layer LBP 0.970 0.9054 0.966 0.9326

Figure 4: Classification accuracies of GIST [19] and the proposed method
with different setting (ntrees) using the RF classifier.

Using the proposed method, on the third layer, it needs
to cluster the feature blocks. For k-means clustering, the
number of clusters needs to be specified. We perform experi-
ments on the MalingB dataset with varying cluster number
k (see Figure 5). It shows four curves about multi-layer
dense SIFT classification using RF with 25 trees when the
number of clusters is chosen as 80, 100, 200 and 500. It
clearly demonstrates that the best performance is achieved
with k = 100, so this is used by default in our experiments.

Figure 5: The accuracies of multi-layer dense SIFT with different cluster
numbers.

G. DISCUSSION ABOUT SPLITTING STRATEGY
In Section III, the features are extracted firstly on the first
layer, which are then split into blocks on the second layer.
An alternative approach is to split images into blocks before
calculating LBP features. We test this and show compar-
ative results in Figure 6. The blue curve is according to
the multi-layer learning model in Section III (labeled as
“first_lbp_then_block”) and the blue one is the result of clas-

sification using the features obtained by switching the order
of the first two layers (labeled as “first_block_then_lbp”). It
clearly shows the benefit of performing LBP first, followed
by putting features into blocks.

Figure 6: The comparison of two multi-layer models

To investigate why this happens, according to the LBP
descriptor, there are some pixels on the border where feature
descriptors cannot be calculated. If we use the multi-layer
learning framework to obtain the features of each malware
image, the computed area is illustrated in Figure 7(left). If
we switch the steps of the first two layers, the pixels which
can be computed are shown in Figure 7(right), which contain
significant gaps between blocks with useful information. This
explains the significant performance drop in Figure 6. Since
dense SIFT uses a sliding window to compute all pixel
features, it does not suffer from this problem.

Figure 7: The analysis of two multi-layer models

V. CONCLUSION
In this paper, we propose a multi-layer learning framework
based on a bag-of-visual-words (BoVW) model to obtain
feature descriptors of malware images. The model can obtain
more robust features and achieve better classification accu-
racies even for more challenging datasets, compared with
other methods. One limitation of our method is its higher
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computational cost. In terms of time consumption, Han’s
method is faster than Nataraj’s method, which is further faster
than our method, because the proposed method needs to
split malware images into blocks and further cluster these
block features. For example, with our current unoptimized
code, it takes 3 days to perform the training and testing
on the entire MalingB dataset. In order to avoid malware
detection, malware authors may pack, obfuscate or encrypt
executables. If the malware execute files are packed, our
multi-layer learning framework will still produce consistent
results. However, if the malware is obfuscated or encrypted,
the proposed method can be interfered. We will resolve these
problems in the future.
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