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Abstract—Estimating energy costs for an industrial pro-
cess can be computationally intensive and time consuming,
especially as it can involve data collection from different
(distributed) monitoring sensors. Industrial processes have an
implicit complexity involving the use of multiple appliances
(devices/ sub-systems) attached to operation schedules, elec-
trical capacity and optimisation setpoints which need to be
determined for achieving operational cost objectives.

Addressing the complexity associated with an industrial
workflow (i.e. range and type of tasks) leads to increased
requirements on the computing infrastructure. Such require-
ments can include achieving execution performance targets per
processing unit within a particular size of infrastructure i.e.
processing & data storage nodes to complete a computational
analysis task within a specific deadline. The use of ensemble-
based edge processing is identified to meet these Quality of
Service targets, whereby edge nodes can be used to distribute
the computational load across a distributed infrastructure.
Rather than relying on a single edge node, we propose the
combined use of an ensemble of such nodes to overcome
processing, data privacy/ security and reliability constraints.
We propose an ensemble-based network processing model to
facilitate distributed execution of energy simulations tasks
within an industrial process. A scenario based on energy
profiling within a fisheries plant is used to illustrate the use of
an edge ensemble. The suggested approach is however general
in scope and can be used in other similar application domains.

Keywords-Edge computing, Energy Efficiency, Internet of
Things, Industrial Processes

I. INTRODUCTION

The integration of industrial workflows/ processes with
edge devices provides numerous opportunities in automa-
tion, optimisation, intelligent manufacturing and smart in-
dustry, moving towards an on-demand service model. This
leads to potentially new revenue models and facilitates
industrial transformation. Integration of manufacturing in-
dustries with Cloud-based analysis has been extensively
investigated, considering the abundance of potential data
generated from sensors integrated into industrial processes.
Edge computing can represent a new solution to enhance
and complement cloud-based data centers with support for
real-time analysis of such data, enabling distributed exe-
cution of tasks and enabling support for security/ privacy
policies. Significant work has emerged in recent years on
how edge devices can be used to extend the capability of
cloud-based analysis for other latency sensitive applications,

such as health care, security, smart cities, traffic control,
transportation, production automation and many others all
looking into how to implement the edge/fog models [1].

There are a number of industries and businesses which act
as energy prosumers (both users and producers) often located
close to large urban centres. To survive, they must be innova-
tive in their business practices, controlling their cost base by
the use of intelligent techniques for managing their energy
consumption (a major factor in operational expenditure). For
example, the fish processing industry is going through a
paradigm shift from a unidirectional, demand driven industry
with large centralised power generation to a market driven
operational environment making use of smart grids, where
supply and demand will be balanced with variable and
intermittent renewable energies in a more localised manner.
This will require intelligent systems to enable end users to
satisfy demand within the peaks and troughs of the energy
market. Therefore, supporting energy efficiency in industrial
plants represents a prime objective for energy policy at
regional, national and international levels. Studies have also
indicated that although people and organisations are often
aware of the benefits of using energy more efficiently, a
variety of social, cultural, and economic factors often prevent
them from doing so [2], [3].

Energy optimisation demonstrates real time use of sensor
data, where a number of parameters need to be optimised
based on a particular model representation. Based on such
real-time readings from sensors it has become possible for
site managers to take decisions in order to reduce energy
consumption. As sensors can provide readings within an
interval of 15-30 minutes, it is necessary for any simulation/
optimisation to also be carried out over a similar interval.
The efficiency of the optimisation process depends on the
capacity of the computing infrastructure used to execute
demand analysis tasks. There has also been recent focus
on the integration of sensor networks with decentralised dis-
tributed systems based on the emergence of various network
and IP-based technologies, where monitoring devices do not
simply act as sensors, but feature computational, storage, and
networking resources. Decentralized processing of data on
Internet of Things (IoT) devices supported by cloud tech-
nologies and virtualization has proved to be an efficacious
method for reducing communication overheads and data



transfer times in an IoT context. To realize decentralized
data processing, an orchestrated use of computational and
storage resources is needed in order to process IoT data
closer to data sources and service consumers (i.e., end users
or data sinks) [4], [5], [6]. Grouping of edge devices and
resources based on (logical) proximity and/ or geographic
location in order to mitigate risks and vulnerabilities and to
address security and performance indicators is referred to as
an “edge-ensemble”.

We describe how an edge ensemble-based infrastructure
can be used to scale out energy simulation of a fish
processing industrial workflow. Our application workflow
performs real-time energy optimisation and makes use of
multiple edge resources to carry out simulation(s). In this
work, we determine which of these techniques can be
executed in-transit or at the network edge in the presence of
multiple constraints such as execution time and quality of
results. Such discrete time energy simulation can be used
to model heating, cooling, lighting, ventilation and other
energy flows within an industrial site. In particular, we show
how an edge-resource ensemble can be efficiently used for
running and deploying distributed EnergyPlus simulation-
based optimisation in a fish processing plant to meet a
number of energy related objectives. The reminder of this
paper is organised as follows: sections I, II and III introduce
and explain the notion of an edge-ensemble, providing a key
motivation for our research and analysing several related
approaches. Section VI presents the model we make use
of and explains how the edge resource ensemble has been
utilized in our scenario. The evaluation of our implemented
system is presented in section VII. We conclude and identify
future work in section VIII.

II. RELATED WORK

Edge computing builds on the significant growth in IoT
infrastructures where heterogeneous and networked devices
collaborate to achieve particular data monitoring/ processing
objectives [7]. Fog cells have been utilised as a solution for
grouping IoT devices based on vicinity , i.e., single IoT de-
vice coordinating a group of other IoT devices and provides
benefits related to security, performance and data analysis.
Such fog cells can lead to the development of IoT services
to process data in close vicinity to data sources/ sinks as
an alternative to the traditional usage of cloud systems. The
use of Fog (edge) cells can reduce communication delays,
facilitating a more efficient utilization of computational,
storage, and networking resources. Application scenarios
include supporting pre-processing of data streams from
sensor nodes [8], or data processing in smart systems [9].

Edge computing involves aspects related to mobility, geo-
distribution, low latency, and a communication network [10].
Determining appropriate models for aggregating compu-
tational capacity from IoT devices is complex, therefore
virtual machines can be deployed in order to serve as a

capacity extension. In edge processing, performance metrics
associated with quality of service such as network latency
are key objectives which can be fulfilled by the use of
cloudlets, and which can bring edge capacity closer to IoT
and mobile devices. Complementary to edge computing,
Cloud of Things [11] aligns with in-network capability as an
interaction between IoT and Cloud Computing. Operations
on data (such as data sample or filtering) as it is being
transmitted from an IoT device to a Cloud data center can
be carried out using in-transit processing, thereby reducing
data volumes and limiting the size of the data being moved
across the network [12], [13], [14].

Recently researchers have investigated the integration of
WSNs (Wireless Sensor Networks) with large-scale dis-
tributed computing infrastructures to support data analysis
and decision support. Examples include an architecture
for integrating Cloud computing and WSNs [15], Sensor-
Web [16], SensorGrid [17], [18], Sensor-Cloud infrastruc-
ture [19], the BodyCloud architecture [20] and use of wire-
less sensors in buildings [21] etc. These approaches can vary
complexity from: (i) development of specialist middleware
approaches that can aggregate capability across a range
of different (often heterogeneous) sensors; (ii) operating
system-based approaches that attempt to support commonly
used operations on sensor devices; (iii) gateway/ hub based
approaches which involve integrating data across different
sensor nodes (supporting sensor fusion, for instance) before
an aggregate data stream is send to a cloud platform.

SensorGrid is a middleware-based framework for pro-
viding approximate answers to aggregate queries on sum-
marized sensor network data based on data compression
and approximation paradigms. Aggregate queries are the
basis for achieving Online Analytical Processing (OLAP)
over sensor network readings in Data Grid environments.
OLAP has a number of interesting applications for eScience,
covering aspects such as visualization of scientific data,
multi- dimensional analysis of data streams, privacy of
multi-dimensional data [17], [18], etc.

In [19], the authors propose a Sensor-Cloud infrastructure
which can manage physical sensors accessible over a net-
work. The Sensor-Cloud Infrastructure virtualizes a physical
sensor on the Cloud computing platform, enabling such vir-
tual sensors to be dynamically grouped and provisioned on-
demand, primarily through a portal server interacting with (i)
provisioning server performing resource management; and
(ii) a monitoring server recording the state of real/virtual
sensors.

SAaaS [22] is a cloud-enabled SaaS architecture for
the management of wireless sensor and actuator networks
(WSAN). SAaaS is a software stack that implements the
following main functionalities: use of specialist (W)SNs,
smartphones or other devices endowed with sensors and/or
actuators, and their enablement for interoperation and man-
agement in a cloud environment. It also enables exploita-



tion of volunteer-based methods for node involvement,
along with interfaces for federating SAaaS Clouds, either
volunteer-based or those at a commercial organisation.

There is also significant work in support adaptation of
IoT/sensor devices based on their operating environment.
This includes provisiong for specialist operating systems
(the most popular of which is Contiki/CoAP) which enable
dynamic modification of code running on sensor nodes
within a network. Extensions to this work have included
LooCI (LOOsely coupled Component Interfaces) which sup-
port integration of software components executing across
different sensor nodes. Edge nodes can also be viewed
as hosting environments for code, the adaptation of which
can change the functionality of such nodes dynamically.
Examples of sensor-hosted, lightweight Virtual Machine en-
vironments include DAViM (Dynamically Adaptable Virtual
Machine) [23], and Mate [24] – a Java byte-code interpreter
that executed over Contiki. Mate breaks an application into
capsules that can be distributed throughout the network at
runtime. This approach is similar to the Fog cells idea being
proposed in this paper.

This paper aims to determine how a edge ensemble could
be use for a particular application use case from the area
of fish processing industry. We utilise an edge ensemble
to deploy EnergyPlus simulation instances and make use
of an actual deployment to conduct energy optimisation
within an edge distributed infrastructure. A key focus is on
the use of a group of edge resources to enable: (i) fault
tolerance, i.e. ensuring that failure/unavailability of edge
resources can be compensated for by other nodes in the
group; (ii) concurrency through the use of multiple resources
within a group to improve performance; (iii) aggregation of
different types of resources to offer service enactment at the
network edge, with each resource offering different types of
computational functions.

III. APPROACH

Energy costs represent a significant portion of operational
expenditure in many industrial processes, it is therefore
necessary to make use of intelligent techniques for man-
aging energy demand – both production and consumption
is important. This is also the case for the fish processing
industry, where in order to improve efficiency and enable
more active monitoring of operations, energy management
systems have been developed that provide advanced con-
trols such as motion sensors and other wireless sensors
and metering devices that allow a high frequency of data
capture. Such devices also enable automated generation and
instant distribution of receiver-tailored and pre-processed
information (raw data, consumption trends, deviation alarms,
etc.), which can subsequently be used to improve operational
processes within the industrial plant. Smart metering devices
can perform triggered measurement and recording of elec-
tricity, water, or gas consumption at different levels within

a built environment/ facility (sub-metering) and allow for
remote access to the consumption data (e.g. using power
line, GSM, or standard wired communication protocols).
In such systems, it is also possible to dynamically alter
the rate at which data capture takes place, and in some
instances provide mechanisms for automated actuation of
systems within the industrial plant.

In such real-time energy systems, time associated with
carrying out the energy optimisation process represents a key
aspect for those managing the industrial process, aiming to
minimise time and generate optimised set-points (identifying
particular control objectives that need to be met by the indus-
try managers). The time parameter is also important in real-
time optimisation where delays can bring additional costs for
the managers especially when site related parameters (such
as temperature, occupancy, ice-flake, cold room, box-washer
consumption, etc.) are frequently changing. The complexity
of this process increases depending on the size of the fish
processing site involved. In practice, such an optimisation
process will require multiple executions of an optimisation
simulation, using software such as EnergyPlus, with different
parameter ranges. We consider two key parameters here: (i)
Complexity of the industrial model has a direct impact on
the overall simulation time; (ii) Simulation period, i.e. the
time interval over which the energy optimisation is carried
out, which can range from 1 week to 1 year, for instance.
Therefore, the computing infrastructure required to support
such complexity must comply with two parameters:

• Time-to-complete: An optimisation plan needs to be
completed by a particular deadline. Assuming that
sensors can deliver readings every 15 minutes, the
optimisation process also needs to be carried out over
an equivalent period. Each new execution uses as input
the last configuration of the industrial process and set
points (for various control outputs) associated with the
industrial site.

• Results quality: An optimisation process, as identified
in this study, involves running a number of EnergyPlus
simulations. Depending on the complexity of the site
and the period to simulate, a time interval is associ-
ated with each simulation. If suitable computational
resources are not available, it may become necessary
to sacrifice the quality of results and complete only
a part of the required rounds of simulation in order
to comply with the time deadline. Returning a partial
optimisation result may have a twofold impact: (i) it
reduces the number of resources needed to carry out the
simulation/ optimisation; (ii) it influences the accuracy
of the energy optimisation plan.

For instance, if a computing resource provider decides
to stop the optimisation process after a certain number of
simulations – lower quality results are returned to the user.



IV. EDGE ENSEMBLE AND SIMULATION

In this section we explain the overall process of the fish
processing industry with particular emphasis on appliance
consumption, simulation constraints and the use of edge
resource ensembles. Our hypothesis is that an edge ensemble
can support the execution of a workflow with a better per-
formance, higher security and lower cost. An edge ensemble
is therefore formed based on a number of functional criteria
related to proximity, cost, performance and security.

• Proximity: the edge resources are identified based on
geographical proximity (i.e. same building) facilitating
advantages related to cost, latency and security.

• Cost: an edge ensemble can represent a more cost
efficient solution and can bring significant benefits in
relation to cost. While a regular edge system would use
resources dispersed geographically, an edge ensemble
can be formed based on cost constraints where the
ownership of the edge resources can lead to reduced
costs. An example is where a building user will form
an ensemble with all the devices that exist within
the building, obtaining a no cost (i.e. no additional
resources need to be acquired from external sources)
computing ecosystem.

• Performance (Latency): an edge ensemble can reduce
the latency associated with data transfer due to proxim-
ity between the resources in the ensemble (i.e. distance
measured in terms of no. of hops or aggregate transfer
time/delay).

• Security: using an ensemble will reduce security impli-
cations as data will not be transferred outside of a local
network (intranet).

A. Simulations with EnergyPlus

The simulation process represents a part of the optimi-
sation workflow where simulation instances are launched
using a number of different what-if scenarios, using different
input parameter range(s). In the fish processing plant being
considered here, this is achieved by the use of specialised
software applications such as EnergyPlus, Simlink, Transys
etc [25], [26]. This technique involves reducing the number
of EnergyPlus instances by reducing the number of itera-
tions (loops) used within this simulation. As EnergyPlus
execution needs to be carried out over a particular time
frame, we can limit the number of iterations based on
the time available, thereby leading to a reduction in time
over which EnergyPlus executions are carried out (within
some pre-defined error threshold). In addition, EnergyPlus
can be used as an energy simulation engine employing a
simultaneous load/system/plant simulation methodology. In
load calculation, various methods are available to calculate
heat conduction through envelopes and then a heat balance
method for zone load. Moreover, EnergyPlus makes use of
a modular, loop-based method to simulate HVAC systems

Figure 1: Overall simulation workflow for determining the
optimised schedule

(cold rooms, compressors) which helps accelerate the mod-
eling of an industrial process [27]. Through the use of a
“Setpoint Manager” in EnergyPlus, many different kinds of
parameters, such as supply air temperature and cold room
temperature can be controlled and this function enables the
implementation of a supervisory control capability.

The output of the simulation process are the optimised
control set-points which make use of energy consump-
tion forecasts (taking account of both energy produc-
tion/availability and price/cost). These outputs can be used
to determine the corresponding schedule of appliances, i.e.
time intervals over which appliances should be turned on/off.
An illustration of the overeall process involved is outlined in
Figure 1 and additional description of the process is provided
in Section VI.

B. Workflow Approximation

We identify the following edge-ensemble approxima-
tion techniques applicable to the appliance optimisa-
tion/scheduling process:

EnergyPlus loop reduction: This technique implies the
reduction in the number of EnergyPlus instances by updating
the looping mechanism. As a simulation refers to period to
simulate and the number of loops to be repeated, we can
reduce the number of loops in order to reduce the number
of EnergyPlus execution time while keeping the quality of
results in a reasonable error interval. The error rate is: err =
1/ 1

times , where times(loops) is the number of iterations
over which the simulation is repeated.

Artificial Neural Networks (ANN): Such method
involves the use of learning strategies and algorithms for
replacing the EnergyPlus simulation. An ANN is trained
on historical data and used to replace the EnergyPlus
simulation – acting as a functional approximator for



EnergyPlus. The corresponding error rate is based on the
size and variability of historical data and on the efficiency
of the ANN algorithm. The error rate is approx.0.001.

Parameter value skipping: Based on a set of parame-
ters that the simulation requires, this methods reduces the
number of the parameter values which are used as input for
the EnergyPlus simulation. The corresponding error rate of
this method is based on the skipping interval. The associated
error rate is k

100 , where k is the number of parameter values
skipped.

• Execution time without approximation techniques:
total time = n ∗m ∗ time;

• Execution time with approximation techniques
total approx. time = (n ∗ m ∗ total time) − (k ∗
total time), n represents total number of parameters
values, m is the number of parameters, and k represents
the number of parameter values skipped;

• error rate = k
100

Parameter interval reduction: From the interval
associated with a parameter we reduce the interval limits
so the simulation would use only values from a defined
centrality of the intervals. The error of this method depends
on the remaining number of parameter values to use as
input in the simulation. The error rate is: n+k

100 , where n is
the number of the total parameters and k is the number of
intervals reduced.

• Execution time without approximation techniques:
total time = n ∗m ∗ time;

• Execution time with approximation techniques
total approx. time = (n ∗ m ∗ total time) −
((n − k) ∗ total time), n represents total number of
parameters values, m is the number of parameters,
and k represents the number of parameter intervals
reduced;

• error rate=n+k
100 ;

V. EDGE ENSEMBLE MODELING

We consider a set of edge resources E =
{e1, e2, e3, .., em}, where each edge resource ei has CPU,
storage capacity and a type. We call an edge-ensemble
Ee, any sub-set Ee = {e1, e2, e3, .., es}, Ei ∈ E, that is
formed based on pre-established functional criteria such as
proximity, latency and cost. A simulation job is structured
as a set of simulation task instances S = {i1, i2, i3, ..., ip}.
We use an edge ensemble Ee = {e1, e2, e3, .., es}, Ei ∈ E,
where on each edge ensemble resource ei we allocate a
simulation instance ij . From the total p simulation instances,
p will be submitted for execution on the edge resources
existing within the ensemble Ei. To enable replication and
make more efficient use of Ee we also consider that a
simulation instance sj can be replicated t times over the

Figure 2: In edge computational layers

s edge resources in the ensemble Ei. We consider that all
simulation task instances need to be accommodated within
an ensemble and that the deployment of tasks outside the
ensemble is limited (this is assumed to improve potential
utilisation of edge resources). We consider different types
of simulations, per appliance, per building and per site,
oi refers to per appliance tasks, pi refers to per building
simulation tasks and si refers to per site simulation tasks.
The scenario associated with the simulation process is
presented in Figure 3.

VI. MILFORD HAVEN PILOT PROJECT

Milford Haven port is considered the largest energy port,
situated in the West of the UK, and the largest handler of
oil and gas with capability of delivering about 30% of UK
gas demand. The Milford Haven site also manages a fish
processing plant where large quantities of fish are stored
and delivered to other factories and supermarkets. In the
port there are four main buildings producing energy from
local Photo Voltaic (PV) systems and consume energy from
the solar farm and from the national grid. Such buildings
are: Packaway, K SHed, M Shed, F Shed. In the Packaway
building (main port building) there are several appliances
consuming energy: ice flake machine, ice store freezer, box
washing machine, lighting systems, smart meter also PV
generation solar system. The port also has a solar farm with
∼5Megawatt PV power capacity containing about 20000
panels that in combination with the local PVs provide the
required quantity of electricity for the port. To optimise the
entire site energy process including operating appliances,
a simulation process is required where various input and
output variables are optimised in order to meet a set of
objectives.

The evaluation is based on the Packaway building which is
the main building and contains several appliances consuming



energy: a flake ice machine, ice store freezer, box washing
machine, lighting systems and smart meter. There are four
storage room in the Packaway building and each storage
room has a double tube lighting system. The box washing
machine has a power capacity of 50kWh and it works only
when fish storage boxes are cleaned during the day. Ice
storage is under operation all the time in order to meet the
demands for fish storage with the quantity required. The
Packaway building has installed a PV System on the roof
of the building with 50kW panels that feed the building
at day time. They have a total power output of 275W per
panel with two DC-AC inverters. The list of appliances in
Packaway and associated constraints are presented in Table I

VII. EVALUATION

In our evaluation we have the following objectives: (a)
investigate how to complete a bag of EnergyPlus tasks under
no criteria or policies for tasks allocation (i.e. execute tasks
on any available computational resource); (b) investigate
how to execute jobs on an edge-ensemble basis where the
task execution is distributed on ensemble of edge resources
and (c) investigate the edge-ensemble with replication ap-
proach where sub-tasks are allocated on the resources in the
ensemble, making use of a replication mechanism.

Figure 3: Simulation scenario

A. Simulation scenarios

In the Packaway pilot optimisation we have used the
following objectives: (i) reduce electrical energy consump-
tion and (ii) reduce total carbon emissions from the plant.
These objectives relate to reducing energy consumption
needed, whilst maintaining normal operation of all ap-
pliances involved in the the fish processing process. The
Packaway energy consumption is the total consumption of
all appliances used: (i) cold room consumption (Ec), (ii)
ice flake consumption (Ei), (iii) box washer consumption
(Eb) and (iv) lighting system consumption (El), therefore

energy consumption function can be described as follows: E
= Ec+Ei+Eb+El, where E represents total energy consumed
by the factory facility. In a simulation scenario, we are
interested to determine what is the optimum consumption
and optimum appliance set-point to use in the application
scheduling decision process. The range of decisions are
as follow: (i) Schedule appliances, (ii) Use for operation,
(iii) Store in battery, (iv) Sell to national grid (i.e. return
generated energy to the national grid via an inverter) or (v)
a combination of these options such as: Sell and Store.

B. Experiments

This section presents the overall setup for our infrastruc-
ture for evaluation purposes, identifying the scenarios and
results that show the benefits of using an edge ensemble
approach.

C. Configuration of Testbed and Scenarios

The CometCloud [28] federation has been deployed on
CloudLab [30] which is a distributed testbed for the com-
puter science research community. We generally considered
two types of resources:(i) resources at the Cloud that are
located within the well-provisioned data center and are
far away from the data source. (ii) Edge resources which
are located within proximity of the data source. Hierarchy
Token Bucket (HTB) has been utilized to set the bandwidth
between resources and emulate geographic distribution of
the resources. Thus, 40 Mbit/s and 120 Mbit/s has been
considered for the network connection between source and
core, and source and edge, respectively.

To model the various scenarios, we used the characteris-
tics of Amazon EC2 VM instances in our model. Summary
of resource characteristics have been shown in table II.

Based on the computational capabilities at the edge and
core resource, we considered three different types infrastruc-
ture:

• Core Resources: That are located within well-
provisioned data centers. We considered 8 instance of
c4.4xlarge VMs for our core infrastructure.

• Edge Clouds: These are small-scaled cloud resources
located at the edge of the network. 3 c4.4xlarge VMs
has been allocated to create our edge clouds.

• Edge Devices: These are IoT devices that are located
very close to the data source and within the indus-
trial fish factory. Compared to edge clouds and core
resources, these devices are weaker with small amount
of computational capabilities. Hence, we allocated 24
c4.2xlarge VMs for edge devices. Each VM represents
one IoT device.

Our infrastructure network of devices is depicted in Fig-
ure 4.

Our federated marketplace spans across all available re-
sources. Once a data processing request is inserted to our
federation, each available resource puts a bid on the job



Table I: Description of appliances

Appliance Power Rating Minimum Running Time Interruption Required Usage Required Start Time
Box washing machine 50 KWh 30 Not Possible Once a day Between (6:00-16:00)

Ice Flake machine 30kWh 60 Possible Twice a day Between (6:00-16:00)
Cold storage room 30kWh 180 Possible Twice a day Between (0:00-23:45)

Lighting system 25 W/per tube 60 Possible Twice a day Between (0:00-23:45)

Table II: Resource Properties
Resource Type vCPU ECU Memory Price ($/Hour)

c4.2xlarge 8 31 15 0.464
c4.4xlarge 16 62 30 0.928

Figure 4: Infrastructure Setup.

which is based on the status of the resources, i.e., whether
they are able to process such request or not.

D. Experiments

For the use case, we considered that there are multiple
buildings in the industrial site requesting to evaluate and
optimise their energy consumption. Considering the Milford
Haven site, three types of jobs have been considered in this
work. Table III summarize the characteristics of different job
types. To eliminate imposed cost limitation on the system,
budget has been chosen high enough for the jobs. Hence,
the deadline is the only limiting factor in our experiments.
Table IV collects the estimated execution time of the job on
two available VM types.

Table III: Job Information.

JobType Data Size(MB) Budget Deadline(s) Tasks†

JobType1 50 20 120 16
JobType2 100 30 150 24
JobType3 150 40 180 32

† – A job is composed of a set of tasks

In total we explore four different scenarios in this work,
as listed below:

• Traditional Approach- Core Only (T-C): In this
scenario, Core resources are used to complete a bag
of EnergyPlus tasks under no criteria or policies for

Table IV: Time to completion of EnergyPlus job types.

JobType c4.2xlarge c4.4xlarge

JobType1 160 s 80 s
JobType2 200 s 100 s
JobType3 240 s 120 s

tasks allocation. We assume that a bag of tasks is sub-
mitted for execution on one of the available resources.
One of the Core resources which can process the job
within deadline and budget is picked randomly. In this
scenario, edge clouds and edge ensemble clusters are
disabled.

• Traditional Approach- Edge and Core Only (T-E-C):
In this scenario we enabled all of the edge resources
(edge cloud and devices within edge ensemble clusters)
to contribute to task execution. However, since edge
devices within edge ensemble clusters are operating
individually, their computational capabilities are not
enough to process the job within the deadline. Hence,
in practice edge devices cannot execute any of the jobs
and only edge clouds and core resource can execute the
requests.

• Edge Ensemble (EE): In this scenario, the edge clouds
and core resources are disabled. However, IoT devices
are able to (dynamically) create edge ensemble clusters.
We create three edge ensemble clusters (each has 8
VMs). Although these devices are not powerful enough
to process the job as stand alone resource within the
deadline, the cluster of devices are powerful enough to
process the jobs within deadline.

• Edge Ensemble Replication (EER): This strategy is
similar with the edge-ensemble approach (EE) where
subtasks are allocated on the resources in the ensemble
devices but adding a replication mechanism where
another ensemble devices within the cluster is also used
to ensure that the tasks execution are replicated on other
edge devices within the same ensemble cluster. This
would be implemented based on different probabilities
of failure (failure models, i.e. stack models). In this
scenario, part of the jobs are replicated to overcome
failures. Hence each individual edge node executes
more tasks per job compared to previous scenario. In
case of failure at each device, the replica tasks can be
used for execution.

For all of the scenarios mentioned above, we conducted



the experiments and compared these scenarios using various
parameter ranges. In each experiment, 382 jobs were inserted
from source/BMS (Building Management System) to a fed-
erated marketplace, generated using a Poisson distribution.
Once a job was inserted in the federation, all of the avail-
able resources offered their services using a blind auction
mechanism. If edge ensemble clustering is enabled, one of
the devices within the cluster is responsible for offering the
services made available within the cluster. From all available
bids, we chose one of the services randomly and send the job
and its data to the corresponding resource(s) for processing.

In order to evaluate the impact of using the edge ensemble
approach, we measured job acceptance ratio, which is the
ability of resources to accept and execute the jobs within
both deadline and budget constraints. Figure 5 demonstrates
the percentage of the jobs that the system is able to process.
Although edge devices within the edge ensemble are not
able to process the jobs within the deadline on their own
individually, once they form the edge ensemble cluster (form
a cluster containing 8 IoT devices) they create an aggregate
resource capable of undertaking task execution. Figure 5
shows that EE scenario is able to process all of the jobs
compared to T-C and T-E-C strategies which can process
around 32% and 52%, respectively. EER strategy performs
better compared to the traditional approach. However, since
EER replicates the task within a job by a factor of 2, part of
its resources are doing redundant executions and as a result
EER accepts around 72% of the jobs which is 28% less than
the EE approach.
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Figure 5: Job Acceptance Ratio.

Figure 6 compares the completion time of all jobs in the
system, calculated as the time since a job was inserted until
it was processed. It is observed that all of the accepted jobs
are completed before the required deadline. In general, edge
ensemble approaches (EE and EER) show more variance
compared to the traditional approaches since dividing tasks
across the available IoT devices causes concurrent execution
of the tasks, leading to jobs executing faster. However, the
average execution time in all strategies are similar because in
both EE and EER approaches, more jobs are accepted which
cause larger queue time for the accepted jobs. In conclusion,
in both EE and EER scenarios jobs have a large queuing
delay.
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Figure 6: Average Completion Time.

Next, we studied the data transfer time for these different
strategies. As shows in Figure 7, the inclusion of edge
resources can reduce the data transfer time because the
network connection between source and edge resource has
higher bandwidth. In T-E-C approach, since both of the core
and edge are available, the average data transfer time is lower
than T-C and higher than EE and EER strategies where core
resources are disabled.
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Figure 7: Data Tranfer Time.

Finally, we conducted another set of experiments and
included random failures in edge resource while the jobs
are being executed. This is motivated by the observation
that edge resources are likely to have the greatest churn rate
due to their limited battery life or configuration parameters.
Figure 8 presents the job acceptance ratio while 10%, 20%,
30% and 40% random failures are considered within such
edge resources. Other than EER scenario, as possibility of
the failure increases, the job acceptance ratio decreases since
failure causes less successful job completion, as expected.
In EER approach since each task is replicated by a factor
of two, it means that if one task fails, its replica will be
use instead. Hence, failures do not affect the job acceptance
ratio in EER. For example, EER strategy performs better
if possibility of failure exceeds 30%. These simulations can
be used to support capacity planning in a system comprising



edge resources, where the expected (or observed) failure rate
can be used to determine the number of replicas needed.
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VIII. CONCLUSIONS

Supporting cost effective operations of industrial pro-
cesses requires intelligent techniques for the controlling and
scheduling of available hardware and systems. Energy use
is a major factor in the overall operational costs of such
systems. Developing timely forecasts for energy consump-
tion and generation has a significant influence on managing
these costs. Recently available independent and wireless
sensor technologies provide finer grained (and higher fre-
quency) monitoring of operational parameters within indus-
trial processes, leading to improved capture and processing
of information (raw data, consumption trends, deviation
alarms, etc.). Edge-ensemble proposes a more close-to-
source method to aggragate available computational, storage,
and networking resources for supporting data captured from
such industry sensors/systems. Increasing use of IoT devices
within industrial processes, and subsequent use of data from
these to inform decision support, has also increased in recent
years. The approach proposed in this work can be directly
made use, enabling greater computational capacity to be
made available alongside the deployed IoT devices (near
the network edge).

Understanding how an ensemble (group) of edge re-
sources can be used at he network edge to support real-time
energy simulation has been investigated. Utilising multiple
resources within the ensemble enable: (i) distribution of
workload across different devices at the network edge,
enabling the dynamic formation of an edge resource compu-
tation/storage cluster; (ii) enable fault tolerance to be realised
through the replication of functions across edge resources.
We have presented the design and implementation of the pro-
posed approach and experimentally evaluated a number of
scenarios for supporting edge-ensemble based optimisation.
The experimental results show a number of benefits that our
system provides with regards to task completion and data

transfer. We demonstrate how edge-ensembles can represent
a reliable solution for coordinating a complex industrial
process. In addition, edge ensembles can enable a more
secure and efficient way to execute tasks with significant
improved coordination and reliability.
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