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31 Abstract 

32

33 Human skin progenitor cells will form new hair follicles, although at a low efficiency, when 

34 injected into nude mouse skin. To better study and improve upon this regenerative process, we developed 

35 an in vitro system to analyze the morphogenetic cell behavior in detail and modulate physical-chemical 

36 parameters to more effectively generate hair primordia. In this three-dimensional culture, dissociated 

37 human neonatal foreskin keratinocytes self-assembled into a planar epidermal layer while fetal scalp 

38 dermal cells coalesced into stripes, then large clusters, and finally small clusters resembling dermal 

39 condensations.  At sites of dermal clustering, subjacent epidermal cells protruded to form hair peg-like 

40 structures, molecularly resembling hair pegs within the sequence of follicular development. The hair peg-

41 like structures emerged in a coordinated, formative wave, moving from periphery to center, suggesting 

42 that the droplet culture constitutes a microcosm with an asymmetric morphogenetic field. In vivo, hair 

43 follicle populations also form in a progressive wave, implying the summation of local periodic patterning 

44 events with an asymmetric global influence. To further understand this global patterning process, we 

45 developed a mathematical simulation using Turing activator-inhibitor principles in an asymmetric 

46 morphogenetic field. Together, our culture system provides a suitable platform to 1) analyze the self-

47 assembly behavior of hair progenitor cells into periodically arranged hair primordia, and 2) identify 

48 parameters that impact the formation of hair primordia in an asymmetric morphogenetic field. This 

49 understanding will enhance our future ability to successfully engineer human hair follicle organoids.

50

51

52 Key words

53 Skin reconstitution, tissue engineering, hair follicle, periodic pattern formation, organogenesis 
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54 Introduction

55

56 The basic tenet of plastic surgery is the restoration of form and function. However, replacing skin 

57 and functional appendages remains challenging. The hair follicle is a mini-organ, which, in association with 

58 the attached sebaceous gland, plays a crucial role in skin moisture, thermal regulation, protective 

59 sensation, and aesthetic appearance. For burn patients, the loss of pilosebaceous units leads to dry, brittle 

60 skin which is more susceptible to injury. While transplantation is currently the best option for hair follicle 

61 replacement, the process requires a large number of donor follicles, which burn patients typically lack, 

62 and targets only the scalp. The ability to tissue engineer an unlimited source of pilosebaceous units for 

63 transplantation, either singly or appropriately patterned within bioengineered skin, would provide a 

64 much-needed solution for many patients.

65 Multiple different approaches have attempted to produce reconstituted skin with hair in mouse 

66 and human.1 In the mouse, we demonstrated that dissociated epidermal and dermal cells from newborn 

67 mouse skin self-assemble in vitro into multilayered skin organoids containing placodes and dermal 

68 condensates, the two stem cell populations necessary for hair follicle development.2, 3 When grafted onto 

69 a full thickness dermal wound on a nude mouse, the cultured organoids formed mature, cycling hair 

70 follicles within a planar skin configuration. Transcriptomic analysis of the murine skin organoids has 

71 identified factors that can rescue the hair forming ability of adult mouse cells.4 However, similar success 

72 with human cells has been more difficult. Adult human scalp cells will produce new follicles in in vivo 

73 mouse models, albeit at low rates.5, 6 The use of fetal, rather than adult, scalp enhances the efficiency of 

74 human hair follicle regeneration but a persistent lag time of three months to follicle formation indicates 

75 that more must be understood about follicular morphogenesis.7, 8 Despite several different approaches,  

76 efficient, large-scale, therapeutic tissue engineering and transplantation of reconstituted human skin with 

77 pilosebaceous units remains a challenge to the field. 

78 There are two different strategies to produce hair follicles from dissociated cells. One is to use 3D 

79 printed tissue scaffolds and place cells at key positions for further morphogenesis;9 the other is to rely on 

80 the self-organizing ability of skin progenitor cells.4 Different progenitor cell states can be utilized for the 

81 self-organizing strategy, such as induced pluripotent cells (iPS).10 On some occasions, cells need “help” to 

82 interact with other cells or require particular molecular signals to move forward to the next stage. 

83 Currently, in the emerging field of synthetic biology, methods are under development to provide cells with 

84 “help” in topological arrangement 11, 12 or molecular signaling at the right time and place.13 
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85  But, to effectively adopt the synthetic biology approach, we must learn more about organoid 

86 cultures made of cells from different ages, locations, or species, so we can apply key molecules to restore 

87 hair forming ability.4 To this end, we sought to develop a three-dimensional, culture system in which 

88 different types of skin progenitors, such as epidermal- or dermal-like somatic cells, embryonic stem cells, 

89 or iPS cells, can be guided to form ectodermal organs in a planar configuration (Fig. S1).14 We hope that 

90 this culture model may serve as a platform to identify the critical factors needed, step by step, for the 

91 development of individual ectodermal organs. Here, we present our progress toward the formation of 

92 human hair follicle organoids. Within this in vitro model, we observed two distinct and novel phenomena. 

93 First, hair peg-like structures emerged after only four days in culture and possessed molecular and cellular 

94 characteristics similar to authentic human hair pegs. Second, the formative process of periodic patterning 

95 was quite apparent: dissociated dermal cells assembled into stripes, clusters, then distinct dermal 

96 condensations, followed by epidermal “stalks” with dermal papilla-like “caps”. The process reproducibly 

97 began at the droplet boundary and emanated as a circumferential wave toward the center of the culture.  

98 In vivo, periodic hair and feather placodes form in a progressive wave, propagating in different 

99 directions depending on body site (e.g., scalp and trunk). This implies that the process is a combination of 

100 local periodic patterning events and an asymmetric global influence that make the morphogenetic field 

101 asymmetric. The local periodic patterning event may involve chemical and mechanical feedback between 

102 cells and their environment.15, 16 Several models have been proposed, ranging from chemical-based 

103 reaction-diffusion models to ones where the “reactants” are cells themselves to mechanochemical 

104 models which couple cell interactions with chemical signals.17-19  The self-organizing patterns observed 

105 experimentally in our culture system resemble patterns most simply illustrated by the Turing activator-

106 inhibitor model.20, 21 The global behavior of the system can be described by the occurrence of a Turing 

107 instability on an asymmetric morphogenetic field. Such asymmetry is speculated to be caused by 

108 mechanical or chemical forces or uneven cell proliferation or death.22, 23  

109 The droplet culture system described here provides a unique opportunity to study both periodic 

110 patterning and global events in human hair follicle formation. The formation of hair peg-like structures 

111 occurs more rapidly than other current methods and, yet, is slow enough to permit the analysis and 

112 optimization of the sequence of cellular events. Mathematical modeling of the formation wave in the hair 

113 peg population allows us to analyze the self-assembly process and predict conditions that may enhance 

114 organoid formation. Translationally, this culture system provides proof of concept that structures 

115 resembling human hair follicle precursors can be engineered in vitro in a time-efficient manner and serves 
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116 as a platform to identify the optimal conditions with which to efficiently engineer human hair follicles for 

117 transplantation. 
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118 Methods

119  

120 In vitro hair follicle reconstitution assay

121 Epidermal and dermal cells were enzymatically and mechanically separated from neonatal 

122 foreskin and second trimester fetal scalp (estimated gestational age (EGA) 17-19 weeks), respectively.  

123 2x106 cultured neonatal foreskin keratinocytes and 3x106 fresh fetal scalp dermal cells were resuspended 

124 in 140 ul of F12:DMEM (1:1) medium with 5% FBS and P/S/A and plated as a droplet on a 6-well cell culture 

125 insert. The droplets were incubated at 37°C and 5% CO2 for 4-7 days. Growth factors were added daily.  

126 See supplemental methods for details.  

127

128 Patch assay

129 2x106 neonatal foreskin keratinocytes and 3x106 fetal scalp dermal cells were injected 

130 subcutaneously into the deep dermis of 6-12 week old hairless nude mice.  Subcutaneous nodules with 

131 formed hair follicles were harvested 8 weeks later.

132

133 Immunostaining, lentiviral vectors, and live cell imaging

134 See supplemental methods. 

135

136 Mathematical modeling

137 A reaction-diffusion model was developed to simulate the interaction of two, as of yet, 

138 experimentally unidentified, different morphogen populations. Details, equations, and parameter 

139 definitions are included in supplemental methods.
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140 Results 

141

142 Human fetal scalp dermal cells induce the self-organization of hair peg-like structures in droplet culture

143 Dissociated neonatal human foreskin keratinocytes and 17-19 week EGA human fetal scalp dermal 

144 cells were mixed and co-cultured in three-dimensional droplets (Fig. 1A). Within 24 hours, the epidermal 

145 and dermal cells segregated into two layers, with epidermal cells adhering to the cell culture insert 

146 membrane at the base of the droplet and dermal cells overlying the keratinocytes in a more superficial 

147 layer (Fig. 1B). Around 48 hours, dermal cells began to organize, forming a trabecular mesh pattern, which 

148 then evolved into punctate cell clusters. By 72 hours, keratinocytes abutting the dermal clusters 

149 rearranged into a concentric pattern and, within 96 hours, keratinocyte “stalks” protruded, against 

150 gravity, into the droplet space, in association with a dermal cell “cap”, (Fig. 1B, Movie S1A-C). In 

151 comparison with 17-week EGA fetal scalp sections, the newly formed structures resemble early hair pegs, 

152 a stage in follicle development in which the invaginating keratinocytes protrude downward into the 

153 dermal plane, guided by the dermal papilla (Fig. 1C). Of note, while there was a clear and early segregation 

154 of epidermal and dermal cells, we frequently encountered scattered, large, intensely keratin-positive cells 

155 interspersed within the dermal layer, which exhibited characteristics consistent with terminally 

156 differentiated, anucleated keratinocytes. These “cells” do not appear to participate in the morphological 

157 events. 

158 Dermal fibroblasts are known to self-aggregate in non-adherent culture. To demonstrate that the 

159 hair peg-like structures were not an artifact of the culture system or simply a result of dermal fibroblast 

160 self-aggregation, human fetal scalp dermal cells, in the absence of foreskin keratinocytes, were cultured 

161 under identical conditions. Fetal scalp dermal cells also formed a trabecular pattern but did not form any 

162 three-dimensional structures (Fig. 1D). Similarly, adult dermal cells, from hair-bearing adult scalp, were 

163 cultured with neonatal foreskin keratinocytes. Adult scalp dermal cells formed thick, dense sheets. 

164 Neither combination produced hair peg-like structures. 

165

166 Hair peg-like structures in vitro displayed cytoarchitecture and molecular markers similar to those 

167 observed in vivo.  

168 Under defined conditions, epidermal and dermal cells rapidly self-assembled and transitioned 

169 through stages reminiscent of follicular development to form hair peg-like structures but failed to progress 

170 further in vitro. To verify that the human neonatal foreskin keratinocytes and human fetal scalp dermal 

171 cells possessed full regenerative potential, the same ratio of epidermal and dermal cells was injected 
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172 subcutaneously into nude mice in a traditional patch assay.2 Eight weeks later, complete hair follicles, 

173 including hair shafts, were clearly visible in the subcutaneous tissue encircling a central keratinized mass 

174 (Fig. 1E). Immunostaining with human-specific antibodies confirmed that cells of the epidermal outer root 

175 sheaths and dermal papillae were of human origin (Fig. 1E). 

176 Akin to hair pegs in developing fetal skin, the reconstituted hair peg-like structures were keratin-

177 14 positive and keratin-10 negative (Fig. 2A). Keratin-10 and involucrin, markers of suprabasal cells, were 

178 expressed in all cells of the epidermal sheet except the basal layer, consistent with normal patterns of 

179 epidermal stratification (Fig. 2A). While epidermal cells originally stratified with basement membrane 

180 facing the insert, the polarity of stratification was altered once epidermal downgrowth began, with 

181 epidermal “stalks” and associated dermal “caps” projecting upwards into the culture through more 

182 differentiated layers of epidermis.  We suspect this is due to physical limitations of the droplet culture 

183 system.  Keratinocytes of the epidermal stalk expressed K17, K18, and E-cadherin, all known to be 

184 expressed in the inner or outer root sheath layers of mature follicles, though at the hair peg stage, distinct 

185 epidermal sheath layers have not yet formed and less is known about the expected locations for 

186 expression of these proteins (Fig. 2A).  Some of the larger hair peg-like structures displayed longer, curving 

187 epidermal stalks, which when viewed at the right angle, appeared to possess a central keratin-positive 

188 core surrounded by concentrically-oriented epidermal cells, possibly indicating progression in 

189 development towards the bulbous peg stage (Fig. 2A).  These advanced hair peg-like structures occurred 

190 infrequently, however, making further characterization difficult.   

191 p63, a marker of epidermal stem cells, was initially present in all keratinocytes at 24 hrs. As is seen 

192 in normal hair follicle development, p63 expression became limited to the basal layer following epidermal 

193 stratification and p63-positive cells were reproducibly noted at the leading edge of the epidermal stalk, 

194 adjacent to the dermal cap (Fig. 2B). PCNA immunostaining demonstrated active cell division in both the 

195 epidermal basal layer and the leading edge of the stalk, while the remaining epidermal cells within the 

196 stalk were quiescent (Fig. 2B). The presence of focal, replicating epidermal progenitor cells at the leading 

197 edge of the stalk suggests that localized proliferation may contribute to downgrowth and we hypothesize 

198 that these proliferating cells may be putative hair matrix cells. However, we cannot rule out the possible 

199 contribution of cell migration from the adjacent stratified epidermis in hair peg formation and the 

200 mechanism by which epidermal downgrowth occurs is not yet known. 

201 Consistent with a dermal lineage, dermal cap cells synthesized collagens I and III (Fig. 2C). 

202 Basement membrane proteins, collagen IV and laminin, typically located at the interface between 

203 epidermal and mesenchymal cells within the hair follicle, were present at the junction of epidermal stalk 
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204 and the dermal cap (Fig. 2C, Movie S2A).  Furthermore, the dermal cap cells associated with the hair peg-

205 like structures displayed markers also present in the dermal condensate and dermal papilla. The dermal 

206 cap was composed of a heterogeneous mixture of dermal cells with a central compartmentalized area 

207 positive for alpha-smooth muscle actin (α-SMA, Fig. 2C, Movie S2B). While alkaline phosphatase is a classic 

208 marker of the murine dermal papilla and is expressed in the dermal papillae of 17-week human fetal scalp, 

209 there is limited and conflicting data regarding the expression of alkaline phosphatase versus α-SMA in 

210 human dermal papilla cells in culture. Some publications show persistent alkaline phosphatase expression 

211 in cultured human dermal papilla cells but others demonstrate rapid loss of alkaline phosphatase 

212 expression and upregulation of α-SMA expression.24-29 In reality, the expression of dermal papilla marker 

213 genes is easily influenced by culture conditions. In our system, α-SMA expression was present while 

214 alkaline phosphatase expression was not. Versican, another commonly used marker for the dermal 

215 condensate and papilla, was strongly expressed in the dermal cap (Fig. 2B, C).  While these dermal caps 

216 represent the developmental progression of dermal stripes to clusters to condensations and dermal 

217 papillae-like aggregates, which can functionally induce hair-peg like structures, we believe they are 

218 incomplete or immature dermal papillae because they express some, but not all, dermal papilla molecular 

219 markers and induce the formation of hair peg-like structures instead of complete hair follicles. 

220

221 The formation of hair peg-like structures in vitro mimics the sequential stages of development in vivo

222 Foreskin keratinocytes and fetal scalp dermal cells progressed through stages similar to native 

223 hair follicle development.30 Between 48 and 72 hours in culture, epidermal cells underlying focal dermal 

224 cell collections formed a concentric pattern, distinct from the cobblestone pattern of the surrounding 

225 epidermal sheet (Fig. 2D, Movie S3A,B).31 β-catenin, known to be expressed in the epidermal placode and 

226 required for hair follicle morphogenesis, was focally enriched in epidermal cells abutting the clustered 

227 dermal cells, but absent from the adjacent epidermis at the time of epidermal downgrowth (Fig. 2E).32-34 

228 Cells within the dermal clusters expressed CD34, a marker of the human dermal condensate and early 

229 dermal papilla (Fig. 2E).35 The formation of hair germ-like structures and, then, hair peg-like structures 

230 ensued between 72-96 hours in culture. 

231 Live cell confocal imaging of the droplet culture was developed to visualize the cell-cell 

232 interactions and collective cell movements during hair peg formation. Visual discrimination between 

233 epidermal and dermal cells was achieved using epidermal-specific promoters. Lentiviral transduction to 

234 express lineage-specific fluorescent markers did not perturb hair peg development in vitro (Fig. S2). A view 

235 from the top of a two-color, live cell culture droplet demonstrated distinct spherical dermal caps is shown 
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236 in the Supplement Material (Fig. S2, Movie S4). Nuclei of cells at the periphery of the dermal cap exhibited 

237 a curved morphology and cells near the center of the dermal cap displayed increased local cell motion 

238 while cells at the periphery were more stationary, suggesting a heterogeneity of dermal cell function. In 

239 contrast, cells within the epidermal sheet remained static. Three-color live imaging distinguished K14+ 

240 epidermal cells (yellow), p63+ epidermal precursor cells (magenta), and dermal cells (cyan) within the hair 

241 peg and adjacent epidermal sheet (Fig. S2, Movie S5A, B). As seen in static confocal images, p63 positive 

242 cells were noted within the epidermal sheet as well as the epidermal stalk of the hair peg. Several strongly-

243 positive p63 cells were present at the leading edge of the epidermal stalk, abutting the dermal cluster and 

244 1-2 cells were consistently noted at the opposite pole of the dermal cluster, a unique position which could 

245 suggest an instructive role in directional epidermal downgrowth.  

246

247 Hair peg-like structure formation in the organoid droplet culture displays spatiotemporal patterning 

248 Large-scale dermal cell patterns within the droplet culture demonstrated a spatiotemporal 

249 progression, which initiated at the droplet periphery and advanced towards the center (Fig. 3A). At 24 

250 hours post-plating, dissociated dermal cells remained distributed in a homogeneous layer without a 

251 distinct macroscopic pattern. Over the next 12 hours, dermal cells coalesced into long undulating stripes 

252 of higher dermal cell density. By 48 hours in culture, long stripes had subdivided into shorter stripes and, 

253 over time, short stripes became rounded, CD34-positive dermal clusters (Fig. 2F). Between 72 and 96 

254 hours, hair peg-like structures formed (Fig. 3B), first at the droplet periphery. In addition to forming 

255 earliest, elongated structures approximating more mature hair peg-like structures formed more densely  

256 at the periphery (Fig. 3C, D). Centrally, dermal aggregates were 60% larger in diameter, which correlated 

257 with the formation of less mature hair peg-like structures and, in many cases, abnormal aggregates 

258 possessing multiple epidermal stalks (Fig. 3D). The formative wave of “long stripe - short stripe - rounded 

259 cluster – peg-like structure” advanced from the periphery towards the center of the droplet, with each 

260 new change in morphology, and the stripe and spot patterns are reminiscent of the periodic patterns 

261 predicted by Turing activator-inhibitor principles.36, 37

262

263 Mathematical modeling simulates the observed spatiotemporal patterns 

264 Reaction-diffusion systems are capable of spontaneously producing sustained spatial patterns. 

265 Specifically, spots, stripes and labyrinthine patterns are all possible within the framework of diffusion-

266 driven instability, known as Turing patterns. Once formed, generally only one of these patterns is selected 

267 and remains fixed.38 In contrast, in our droplet culture, multiple distinct patterns occur simultaneously 
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268 and are formed in serial progression at different locations within the droplet. As mentioned, such 

269 patterning complexity can arise from several different sources.  We chose to use a reaction-diffusion 

270 description because the transition between spots and stripes is well understood.38, 39   Critically, in two 

271 dimensions, Turing patterns can produce spots and/or stripes, but typically not at the same time.21 It is 

272 simply the competition between the quadratic and cubic terms of the activator kinetics that determine 

273 which pattern mode is obtained.21 Thus, if the correct pattern kinetics are chosen to produce in phase, or 

274 out of phase, concentration patterns, then any Turing system can be guided to give rise to spots and/or 

275 stripes.  Further, a parameter’s influence is extremely local in Turing patterns.22 Thus, all we require to 

276 convert a system from spots to stripes is to use a gradient that influences the competition between the 

277 cubic and quadratic term. Hence, this is a completely general and robust mechanism for producing such 

278 dynamics. Based on this, we propose that an asymmetric spatiotemporal gradient is present to explain 

279 the mixed spectrum of patterns within the space (organoid droplet) and the transition of patterns over 

280 time. The work implies that the droplet represents an asymmetric morphogenetic field. Indeed, in 

281 embryonic development, hairs and feathers form in propagative waves in different body domains, rather 

282 than simultaneously.40-42 This gave us the motivation to develop a simulation of Turing patterning 

283 occurring in an asymmetric morphogenetic field (Fig. 3E). 

284 To make the simulation model more broadly applicable, we purposely assigned the morphogens 

285 generic activator or inhibitor functions, rather than focusing on specific signaling molecules (please refer 

286 to the supplemental methods for a more detailed description). Critically, this work is not about specifying 

287 the exact underlying kinetics. Indeed, we do not have sufficiently detailed information to determine the 

288 system to this accuracy. The specific use of our model is to highlight that the transition seen in the 

289 experiments can be captured, quite generally, using a simple radially symmetric, linear, time dependent 

290 gradient. The observed result could be obtained in an infinite number of more complicated ways. 

291 However, our results have put a lower bound limit on the complexity required to make a model consistent 

292 with the observed results.

293 Since we observe that hair peg-like structures first form in the periphery, the asymmetry suggests 

294 that the activator becomes increasingly sensitive to the inhibitor morphogen , at the periphery, or, 𝑣
295 alternatively, the activator becomes decreasingly sensitive to the activator’s self-activation response. 

296 Such a gradient can easily arise as the experimental droplet is anisotropic, and could be due to chemical 

297 signaling (e.g. growth factors) or physical forces in nature, or both. Thus, the principles of Turing activator 

298 and inhibitor remain the same, but in different regions we anticipate the field can be heterogeneously 

299 predisposed with parameters that favor or suppress periodic patterning. As time progresses, the gradient 
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300 increases toward the periphery (bottom simulations of figure “simulation”), and patterns transit from 

301 labyrinthine stripes to spots (top simulations of figure “simulation) (Fig. 3E). The spatiotemporal 

302 heterogeneity is modeled as a linear spatial gradient that increases at the droplet boundary and fixes over 

303 time (Fig. 3E, Movie S6). The visualization of the gradient exhibits itself as a hair peg formative wave 

304 traveling from the periphery towards the center of the field, matching experimental results observed in 

305 the droplet cultures. Critically, the proposed asymmetry could be wrapped up inside the equations, but 

306 this would obscure the essential requirement of a spatio-temporal gradient appearing. Thus, we choose 

307 to be explicit with the addition of such complexity.

308

309 A platform to modulate hair peg morphogenesis in vitro

310 To increase the number of hair peg-like structures and to stimulate development beyond the hair 

311 peg stage, we modulated multiple parameters within the droplet culture system. The greatest number of 

312 hair peg-like structures per droplet culture was generated with a 150 ul volume droplet, 5% FBS 

313 concentration, and epidermal to dermal cell ratio of 2:3 (Fig. 4A). An average of 286 hair peg-like 

314 structures (±138) per cm2 with an interfollicular distance of 350 μm was produced under optimal 

315 conditions (Fig. 4B). For comparison, endogenous hair pegs from 17 week fetal scalp are spaced, on 

316 average, 235 μm apart. The in vitro hair peg-like structures were similar in overall shape to hair pegs of 17 

317 week fetal scalp but exhibited significantly different structural proportions. The reconstituted hair peg-

318 like structures possessed shorter, narrower keratinocyte stalks and wider dermal caps while the height of 

319 the dermal cap remained consistent with endogenous fetal hair pegs (Fig. 4B). Native fetal scalp exhibited 

320 hair pegs of various epidermal stalk heights. The reconstituted hair peg-like structures were, on average, 

321 shorter than the endogenous hair pegs but more closely resembled the shorter, early hair pegs in native 

322 skin, suggesting that, according to normal developmental patterns, the reconstituted hair peg-like 

323 structures could be expected to elongate further before transitioning to the bulbous peg stage. However, 

324 our reconstituted hair peg-like structures failed to progress further when they were maintained for three 

325 additional days in culture. Clearly, other factors are required. 

326 Although we have not been able to achieve more mature hair follicle formation, the self-

327 organization of periodically arranged hair peg-like structures from dissociated cells is a remarkable 

328 process. Detailed analysis of the process enables this droplet culture to serve as a platform for large-scale 

329 screening of experimental conditions to optimize in vitro follicle formation. We identified four possible 

330 signals that might support developmental progression: 1) increased dermal signaling for epidermal 

331 downgrowth (Shh, Tgfβ2), 2) stronger dermal papilla inductivity (Wnt7a, FGF2), 3) inhibition of premature 
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332 keratinocyte differentiation (protein kinase C (PKC), Noggin, retinoic acid receptors (RAR)), and 4) 

333 stimulation of keratinocyte differentiation and/or stratification (FGF2, FGF7/10). 43-50

334 Exogenous growth factors were added to the culture medium every 24 hours. A range of 

335 concentrations was tested for each protein; results for the concentration which produced the greatest 

336 effect are shown (Fig. 4C). Thus far, none of the added factors have resulted in progression to the next 

337 stage, the bulbous hair peg. However, a detailed analysis of dermal cap and epidermal stalk width, height, 

338 and area identified significant changes mediated by the added growth factors, which, with more 

339 investigation, may hold the key to stimulating true follicle formation in culture. Cap and stalk sagittal areas 

340 maintained a linear relationship with the total cap and stalk volumes, emphasizing the radial symmetry of 

341 these structures and allowing us to simplify analysis by measuring the area of each structure at the 

342 midpoint corresponding to maximal width (Fig. S3). During the early peg to bulbous peg transition, the 

343 dermal cap becomes more compact and is encapsulated by the base of the elongating epidermal sheath.30 

344 The addition of 1 μM Shh stimulated epidermal downgrowth, resulting in longer epidermal stalks, as well 

345 as a change in the dermal cap shape, with an increased width and cap-stalk overlap, suggesting that Shh 

346 may stimulate dermal cell migration proximally along the epidermal stalk or, conversely, epidermal stalk 

347 displacement of dermal cap cells (Fig. 4C). The protein kinase C inhibitors, chelerythrine chloride and 

348 bisindolylmaleimide I, produced a similar effect, with increased epidermal stalk length and overall stalk 

349 area, as well as increased dermal cap area and cap-stalk overlap. FGF2, in combination with Shh, 

350 decreased dermal cap height and area and the retinoic acid receptor antagonist ER50891 enhanced total 

351 stalk area. Though subtle changes were evident when exogenous factors were added, they were 

352 insufficient to alter the gross morphology of the hair peg-like structure and push development into the 

353 bulbous peg stage. 

354

355

356

357
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358 Discussion

359

360 The ability to tissue engineer human hair follicles for transplantation would eliminate a treatment 

361 gap for numerous patients. Over the years, our group’s research has focused on the morphogenesis of 

362 skin appendages. Recently, we examined the self-organizing behavior of dissociated epidermal and 

363 dermal newborn mouse cells and their ability to reconstitute functional follicles.4  Similar studies of human 

364 follicular morphogenesis have been difficult to achieve, due to the low efficiency of follicle formation from 

365 readily-available adult cells and the long time to follicle formation. Here, we demonstrated the production 

366 of human hair peg-like structures in vitro from a well-defined mixture of progenitor cells. In this three-

367 dimensional organoid droplet culture, dissociated neonatal epidermal and fetal dermal cells progressed, 

368 via self-organization, through the following reproducible and recognizable stages akin to early follicle 

369 development to reach cellular configurations similar to hair pegs in situ: (1) mixed dissociated cells, (2) 

370 cell sheets, (3) dermal stripes and clusters, (4) dermal clusters with associated epidermal placode-like 

371 collections, and (5) distinct hair peg-like structures with spatial periodicity.30  The developmental process 

372 proceeded rapidly within 96 hours and was dependent on epidermal:dermal cell ratio and factor 

373 concentration, suggesting the need for an appropriate balance of epithelial-mesenchymal signaling 

374 factors or cell-cell interactions.  This in vitro culture system demonstrates the initiation and rapid 

375 progression of early stages of human follicle-like development.  It also shows that human and mouse cells 

376 utilize different morphogenetic paths in the morphospace of epidermal-dermal multicellular 

377 configurations and may explain why it has been difficult to achieve robust human hair reconstitution. We 

378 hypothesize that the differences between human and mouse hair follicle reconstitution may be due to 

379 three factors: epidermal cell plasticity, the inducing ability of dermal cells, and morphogenetic field 

380 competence. 

381 1) The plasticity of foreskin keratinocytes is known to wane with prolonged culture, resulting in 

382 reduced hair follicle formation.51 We hypothesized that a loss of epidermal plasticity inhibited further 

383 follicle organoid development in vitro beyond the peg stage. Protein kinase C (PKC) and retinoic acid 

384 pathways play a role in epidermal differentiation and stratification during skin development.  Excessive 

385 retinoic acid causes cessation of hair follicle development at the germ stage in mice, while inhibition of 

386 PKC promotes folliculogenesis from adult mouse cells.4, 47, 49 The addition of PKC inhibitors and an RAR 

387 antagonist exhibited positive effects on the length and diameter of the epidermal stalk but was insufficient 

388 to drive further folliculogenesis, suggesting that other factors are required for progressive development. 

389 We suspect that the less primitive epigenetic state of the keratinocytes used may be the molecular basis 
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390 for suboptimal competence. In future studies, we will search for factors that can “reprogram” these 

391 keratinocytes or use more responsive keratinocytes. 

392 2) The inducing ability of dermal cells is a second critical component for folliculogenesis. The 

393 dermal papilla releases multiple factors, which participate in epidermal-mesenchymal signaling during 

394 folliculogenesis. Shh and Tgfβ are necessary for epidermal downgrowth and mice which lack Shh signaling 

395 possess hair follicles which are stalled at the germ/peg stage.43, 44 The addition of Shh to the droplet 

396 cultures stimulated additional epidermal downgrowth but did not cause structural progression to the 

397 bulbous peg stage. We also examined Wnt7a and FGF2, which have been shown to maintain proliferation 

398 and inductivity in cultured murine dermal papilla cells.45, 46 Yet, we did not observe significant progress in 

399 organoid development. The dermal papilla-like cells in our culture do not appear fully functional as they 

400 can only support the induction of hair peg-like structures, not mature follicles. However, this system 

401 provides a promising platform for the continued search for factors or conditions which enhance 

402 inductivity. 

403  3) The morphogenetic field, comprised of epidermal cells, dermal cells and extracellular matrix 

404 together, must enter a competent stage for periodic patterning to begin. The developing embryo is a 

405 heterogeneous morphogenetic field with anisotropic growth in which chemical factors, cell types, and 

406 mechanical forces are unevenly distributed in three spatial dimensions and one temporal dimension. 

407 Here, our organoid culture demonstrates obvious asymmetry within the droplet, as patterns began at the 

408 periphery and migrated centrally. Labyrinthine stripes of dermal cells were noted initially, which 

409 subsequently transformed into periodically arranged dermal cell clusters. Both stripes and dermal clusters 

410 can be produced by a simple Turing model and can reflect an intermediate stage of the final periodic 

411 patterns if there is an uneven morphogenetic field.38 What can account for the difference in progression 

412 through the periodic patterning process? While a simple generic radial gradient effected by one 

413 component may be sufficient for a Turing activator-inhibitor system to produce the pattern here, it may 

414 not be sufficient to produce the complex spatiotemporal patterning transitions we observed 

415 experimentally.36, 37 Here, we purposely designed a generic model, to have wider conceptual application. 

416 Simulation with mathematical modeling suggests similar patterning sequences can be achieved through 

417 uneven chemical signaling activities52 (e.g., higher concentration of activator morphogens at the droplet 

418 periphery or higher sensitivity of cells at the droplet periphery) or uneven mechanical forces53 (e.g., 

419 cellular tension or matrix rigidity favor periodic formation at the droplet periphery). The mathematical 

420 and experimental models presented here will help us identify the molecular basis of these patterning 

421 processes in the analyzable droplet in vitro and in the complex developing embryo in vivo in the future.
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422 In vivo, chicken feather buds form exquisite hexagonal patterns progressively from the midline to 

423 the flank. Earlier works have suggested this results from a local Turing event and a global propagating 

424 event.54  However, the nature of the global even is unknown. This is part of the motivation for this study, 

425 to use the organoid droplet to understand more about the nature of the sequential appearance of hair or 

426 feather primordia. It is timely that a paper reporting a global Eda wave spreading from the midline to the 

427 flank is just reported, which suggests Eda induces FGF20, followed by dermal cell aggregate formation, 

428 thus facilitating Turing patterning via mechano-chemical coupling.55 Based on this and other studies, we 

429 propose a new integrated understanding that a Turing periodic patterning occurs with or without a global 

430 propagation mechanism. The global mechanism can be chemical or mechanical in nature, as long as it can 

431 tilt the Turing activator / inhibitor system ratio.56  The asymmetric morphogenetic field in the organoid 

432 culture studied here presents a good model to further test how this global asymmetry mechanism works.

433 With two cellular components, the initial epidermal and dermal cell ratio will influence the final 

434 stable position in the morpho-space of two-component multi-cellular assemblies.4 The initial conditions, 

435 determined by the probability of cell collision and the relative strength of cell adhesion, control the initial 

436 multi-cellular configuration. In the human cell culture droplet, epidermal-matrix adhesions appear to 

437 dominate, leading to the formation of the epidermal layer first. Dermal-dermal interactions are stronger 

438 than epidermal-dermal adhesions, leading to the formation of dermal stripes and dermal clusters. 

439 However, during morphogenetic processes, there can be “qualitative changes” of cellular collectives. 

440 Following the formation of dermal condensations, epidermal-dermal condensate adhesion increases and 

441 can induce the formation of hair peg-like structures, up to the extent that epidermal basement membrane 

442 polarity is reversed. Thus, the high resolution analysis of the process of hair peg formation provides an 

443 excellent opportunity to fine tune key cellular events. 

444 In summary, we have demonstrated that human fetal scalp dermal cells, in association with 

445 competent epidermal cells, can direct the rapid regeneration of human hair peg-like organoids in vitro. 

446 The opportunity to study the asymmetric spatiotemporal sequence of periodic patterning within the 

447 droplet provides insights into the self-organizing behavior of skin progenitor cells. Furthermore, this in 

448 vitro culture system provides an opportunity to study ways to restore and optimize hair follicle 

449 regeneration from easily-obtainable adult dermal cells and may support the production of complete hair 

450 follicles for transplantation in the future. 57 
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562 Figure Legends

563

564 Figure 1. Human neonatal foreskin keratinocytes and fetal scalp dermal cells self-organized to form hair 

565 peg-like structures in vitro.

566

567 A. Schematic of the in vitro hair follicle reconstitution assay. Follicular organoids, composed of epidermal 

568 (green) and dermal cells (red), protrude from a multi-layered keratinocyte sheet (green). hNFKs = human 

569 neonatal foreskin keratinocytes, hFSDs = human fetal scalp dermal cells. 

570 B. Serial brightfield and confocal images of the culture droplet taken every 24 hours demonstrated the 

571 formation of periodically arranged three-dimensional configurations by 96 hours, corresponding to hair 

572 peg-like structures composed of an epidermal stalk and dermal cap. Whole mount confocal images in the 

573 second and third rows, with pancytokeratin denoting epidermal cells in green and nuclei in red, were 

574 taken from the periphery of the droplet, as represented by the white dotted box in the brightfield image 

575 in the first row. In the second row, the white dotted line demarcates the periphery of the droplet. The 

576 fourth row of images are triple-stained sections, with pancytokeratin (panCK) marking epidermal cells 

577 (green), vimentin marking dermal cells (red), and nuclei (blue) stained with TO-PRO-3 iodide. The scale 

578 bar is the same for all images per row. The large green lobules in the 48 hours sample are dead cell artifacts 

579 which have trapped the fluorescent antibody. (n=25)

580 C. In vitro structures at 96 hours (left panel) resembled hair pegs found in 19 week human fetal scalp (right 

581 panel). p63 is a marker of epidermal progenitor cells. (n=25)

582 D. Human fetal scalp dermal cells alone and adult scalp dermal cells mixed with neonatal foreskin 

583 keratinocytes did not produce any hair peg-like structures after 96 hours in culture. The images are taken 

584 from the periphery of the culture droplet, as exemplified by the black dotted box in B. hASDs = human 

585 adult scalp dermal cells.

586 E. When injected subcutaneously into a nude mouse, human neonatal foreskin keratinocytes and fetal 

587 scalp dermal cells produced mature hair follicles composed of cells of human origin. Pancytokeratin 

588 (green) and vimentin (cyan) antibodies are human-specific. Sections of mouse skin were included to 

589 confirm species-specificity of the antibodies (bottom panels). (n=3)
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594 Figure 2. Hair peg-like structures formed in vitro expressed appropriate epidermal and dermal markers 

595 and progressed through reproducible stages reminiscent of early hair follicle development.

596

597 A. Staining of sections of hair peg-like structures with keratin-14 (green) demonstrated clear separation 

598 between epidermal and dermal cells (top left).  Consistent with patterns of keratin expression in human 

599 fetal scalp, epidermal cells within the in vitro hair peg-like structures did not express keratin-10 (red). 

600 Involucrin (green), a marker of keratinocyte terminal differentiation, was highly expressed in only a 

601 portion of the epidermal sheet, which, along with keratin-10 expression, suggests stratification (bottom 

602 left). Involucrin also strongly marked cells believed to be terminally-differentiated, anuclear corneocytes 

603 that became inappropriately trapped within the dermal cell cap.  The epidermal stalks were keratin-17 

604 (green), keratin-18 (magenta), and E-cadherin (green) positive (whole mount, top right).  Several of the 

605 larger hair peg-like structures appeared to have epidermal stalks with central lumens and concentrically 

606 organized keratinocytes, marked by keratin 14 (green) (whole mount, bottom right). 

607 B.  At 24 hours, all keratinocytes expressed p63 (green), a marker of epidermal stemness (sections, top 

608 panel). By 72 and 96 hours, p63 positive cells were localized to the basal layer of the epidermal sheet and 

609 the leading edge of the epidermal stalk abutting the dermal cap (middle panel). 96-hour images are whole 

610 mount specimens. PCNA-positive (green), actively proliferating cells were present within the basal layer 

611 of the epidermal sheet, the epidermal stalk at the interface with the dermal cap, and the periphery of the 

612 dermal cap, similar to 17-week second trimester human fetal scalp (sections, bottom panel). 

613 C. The cells of the dermal cap expressed collagen I (green, section and whole mount) and collagen III 

614 (green, whole mount) (top left). K10 = keratin-10.  Collagen IV (red) and laminin-332 (green), markers of 

615 the dermal papilla basement membrane, were expressed at the interface between epidermal and dermal 

616 cells within the hair peg-like structures in vitro (whole mount, bottom left). PanCK = pancytokeratin, nuc 

617 = nuclei, vim = vimentin.  α-SMA (green), a marker of human dermal papilla cells in culture, was expressed 

618 within the center of the dermal cap (whole mount, top right). Human dermal papilla cells in vivo express 

619 alkaline phosphatase (alk phos (green), left image), a marker which is typically lost during in vitro culture.  

620 The dermal cap was also positive or versican, a commonly-used dermal condensate or dermal papilla 

621 marker (whole mount, bottom right).

622 D. Serial optical sections of a dermal aggregate at 48 hours imaged at increasing droplet depths 

623 demonstrated a rounded, dense dermal cluster atop an epidermal sheet with concentrically-arranged 

624 nuclei, reminiscent of the epidermal placode.
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625 E. β-catenin was expressed throughout the epidermal sheet at 48 hours but was restricted to those 

626 epidermal cells associated with the dermal cap by 72 hours (sections, top panels). Dermal cells within the 

627 dermal cap were positive for CD34, a marker of the early dermal papilla stem cell (bottom panels). The 

628 48-hour image is a whole mount specimen. All other images are sections.

629 All staining was performed on multiple hair peg-like structures from at least three biological replicates. 
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657 Figure 3. Collectively, a stripe-to-dot formative gradient forms from the center to periphery of the 

658 culture droplet and suggests a Turing periodic pattering process on an asymmetric field.

659

660 A. Brightfield images of a single culture droplet taken every 12 hours demonstrated the formation of an 

661 initial trabecular pattern, which then gave way to the periodically arranged stripes and cell clusters (top 

662 row). Line drawings created from brightfield images (middle row) and a schematic where red represents 

663 dermal cells and green represents epidermal cells (bottom row) emphasize the transitions in distinct 

664 periodic patterns as they relate to developmental stages. (n=4)

665 B. High-power magnification demonstrates the hair peg-like architecture under brightfield imaging. (n=4)

666 C. The field was divided into five concentric zones. Anatomic hair peg-like structures developed at a higher 

667 density in zones 4-5, toward the periphery of the droplet. In paired t-test comparisons, the average density 

668 of hair peg-like structures at the periphery of the culture droplet was statistically different from more 

669 central zones (*p<0.05).  Error bars represent standard error of the mean. (n=11)

670 D. Dermal clusters of a smaller diameter were more likely to be associated with single stalked hair peg-

671 like structures than were larger dermal clusters found at the center of the droplet. Average cluster 

672 diameter is plotted. Paired t-test comparisons were used to examine statistically significant differences 

673 between groups. Error bars represent standard error of the mean. *p<0.05, **p<0.01. (n=3)

674 E. Numerical simulations of reaction-diffusion equations are presented in the methods section. The top 

675 row illustrates how the density of activator (u) alters over time, with darker colors presenting high density 

676 regions and lighter colors representing low density regions. The bottom row illustrates the radially 

677 symmetric spatiotemporal gradient field that alters the properties of the reaction-diffusion equations 

678 heterogeneously across the domain. As time increases, the value of the field at the boundary increases to 

679 a maximum value and the gradient gets steeper. We see that as the gradient steepens, the activator 

680 pattern transitions from spots at the periphery to labyrinthine patterns in the center, which recapitulates 

681 the in vitro periodic patterns. Additional parameter values are given in Table S3.
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689 Figure 4. Modulation of hair peg morphogenesis in vitro.

690

691 A. Here, we examine the conditions that can influence the number, size and progression of the hair peg-

692 like structures. Hair peg-like structures formed more frequently when culture medium contained 5% FBS 

693 and when an epidermal to dermal cell ratio of 2:3 was used. The average 

694 number of hair peg-like structures formed per condition is plotted, with error bars representing standard 

695 error of the mean and statistical significance assessed with paired t-tests. *p<0.05. (n=6)

696 B. The in vitro hair peg-like structures (black bars) show similar architecture to hair pegs in 17 week human 

697 fetal scalp (gray bars). However, the average stalk height, stalk width, and cap width of the in vitro hair 

698 peg-like structures were significantly smaller. While the in vitro hair peg-like structures formed at regular 

699 intervals, there was a larger average inter-follicular distance than is found in fetal scalp tissue. An asterisk 

700 denotes a p-value of < 0.05, when compared to native human fetal scalp, via paired t-tests. Error bars 

701 represent standard error of the mean. (n=5)

702 C. The addition of growth factors to the droplet cultures caused significant changes in certain aspects of 

703 the epidermal stalk and dermal cap dimensions, but did not induce further development into a bulbous 

704 peg structure. Dimensions measured: 1) epidermal stalk width, 2) epidermal stalk length, 3) epidermal 

705 stalk area at the structure midpoint, 4) dermal cap width, 5) dermal cap height, 6) epidermal stalk-dermal 

706 cap overlap, and 7) dermal cap area at the structure midpoint. Growth factors: A) negative control, B) Shh 

707 1 μg/ml, C) Tgfβ2 0.5 μg/ml, D) RAR antagonist ER50891 1 μM, E) FGF7 + FGF10 1 μg/ml, F) FGF2 1 μg/ml, 

708 G) FGF2 + Shh 1 μg/ml, H) FGF2 + Wnt7a 1 μg/ml, I) PKCi 660 nM chelerythrine chloride and 10 nM 

709 bisindolylmaleimide I, and J) Noggin 1 μg/ml. All measurements were normalized to the negative control 

710 and average dimensions are shown. Error bars represent standard error of the mean. Statistical 

711 significance between two groups was calculated using paired t-tests. An asterisk denotes a p-value < 0.05, 

712 compared to the negative control without added factors. (n≥3)

713
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38 Supplemental Methods

39

40 Tissues and cells

41 Neonatal foreskin was obtained from the Cooperative Human Tissues Network (Nashville, TN). 

42 Second trimester fetal scalp skin, 17-19 weeks estimated gestational age (EGA), was obtained from 

43 Novogenix, Inc. (Los Angeles, CA) or Advanced Bioscience Resources (Alameda, CA). The tissues were 

44 incubated in 0.5% dispase overnight at 4°C. The epidermis and dermis were then mechanically separated 

45 using fine forceps and incubated in 0.35% collagenase I at 37°C for 30 minutes with occasional mixing. FBS 

46 was added to stop digestion. The epidermal and dermal cells were released from the surrounding matrix 

47 by pipetting with a glass pipette. The cells were passed through a 70 μm filter and centrifuged at 180xg 

48 for 5 minutes to remove debris. The epidermal cells were resuspended and cultured in CnT-PR medium 

49 (ZenBio) with penicillin, streptomycin, and amphotericin B (P/S/A) on plates treated with Coating Matrix 

50 (Life Technologies). Media was replaced every 4 days and cells were split at 80% confluency for a 

51 maximum of 4 weeks. The dermal cells were incubated in RBC lysis buffer (154 mM NH4Cl, 10 mM KHCO3, 

52 0.1 mM EDTA, pH 7.2) at room temperature for 5 minutes and recentrifuged. RBC lysis was repeated once 

53 if needed and the cell pellet was washed with 1xPBS, resuspended in DMEM (Corning, 10-013), and kept 

54 at 4°C briefly before use the same day. 

55  

56 In vitro hair follicle reconstitution assay

57 2x106 neonatal foreskin keratinocytes and 3x106 fetal scalp dermal cells were resuspended in 

58 120 μl of F12:DMEM (1:1) medium (Gibco Ham’s F-12 Nutrient Mix, ThermoFisher; DMEM, Corning) with 

59 5% FBS and P/S/A for a final volume of 140 μl and plated as a droplet on a 6-well cell culture insert set 

60 into a matching 6-well plate (Falcon). 1.8 ml of 1:1 medium was added to the well. The droplets were 

61 incubated at 37°C and 5% CO2 for 4-7 days. Growth factors were added to the culture droplet at the 

62 following concentrations daily: 1 μg/ml and 10 μg/ml sonic hedgehog (Shh, recombinant human, 

63 Peprotech), 0.5 μg/ml transforming growth factor beta 2 (Tgfβ2, recombinant human, Millipore), 1 μM 

64 retinoic acid receptor (RAR) antagonist ER 50891 (R&D Systems), 1 μg/ml fibroblast growth factors (FGF) 

65 2, 7, and 10 (recombinant human, Miltenyi, Life Technologies, R&D Systems, respectively), 1 μg/ml Wnt7a 

66 (human recombinant, R&D Systems), 660 nM chelerythrine chloride and 10 nM bisindolylmaleimide I 

67 protein kinase inhibitors (PKCi, Millipore), 1 μg/ml and 10 μg/ml Noggin (human recombinant, Peprotech), 
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68 10 μg/ml Dkk1 (human recombinant, R&D Systems). 4% PFA or 100% methanol was added directly to the 

69 cell insert and well to fix the droplet cultures overnight at 4°C for immunostaining.

70

71 Patch assay

72 2x106 neonatal foreskin keratinocytes and 3x106 fetal scalp dermal cells were resuspended in 50 

73 μl F12:DMEM (1:1) with 5% FBS and injected subcutaneously into the deep dermis of 6-12 week old 

74 hairless nude mice (NU/NU, Charles River). The nude mice were housed under standard conditions and 

75 were sacrificed for biopsy at 8 weeks post-injection. This protocol complied with ethical regulations 

76 regarding animal experimentation and was approved by the University of Southern California IACUC 

77 committee.

78

79 Immunostaining

80 Immunostaining was performed on fixed droplet cultures as whole mount specimens or paraffin-

81 embedded sections. Antibodies are listed in Table S1. Images were taken with Zeiss LSM 510meta and 780 

82 confocal microscopes. 

83

84 Lentiviral vectors

85 The following vector genome plasmids were cloned from the stock plasmid pCCL-MU3-IRES-eGFP 

86 (courtesy of Paula Cannon, USC): pCCL-EF1α-GAP-eGFP, pCCL-K14-H2B-mOrange2, pCCL-MU3-H2B-

87 mOrange2, pCCL-MU3-H2B-mCerulean3, and pCCL-p63-H2B-eGFP. Promoters and fluorescent proteins 

88 were amplified from human genomic DNA or plasmids purchased from Addgene. Primers are listed in 

89 Table S2. 

90 293T cells at 50-60% confluency were transfected with 10 μg vector genome plasmid, 10 μg of 

91 packaging construct ΔR8.2 (P. Cannon, USC), and 2 μg envelope plasmid pCMV-VSVG (P. Cannon, USC) 

92 using the calcium phosphate method.51 10mM sodium butyrate was added to fresh media 16 hours post-

93 transfection and removed after 8 hours. Virus-containing media was collected at 36 hours post-

94 transfection, sterile filtered, and ultracentrifuged on a 20% sucrose cushion at 25,000 rpm and 4°C for 1.5 

95 hours before storing at -20°C for up to 30 days or -70°C indefinitely. 

96 Human neonatal foreskin keratinocytes were transduced with lentiviral vector, which was 

97 removed 4-8 hours later. The foreskin keratinocytes were cultured for at least 2 weeks before 

98 fluorescence could be strongly visualized. 10 μl virus was added directly to the in vitro hair reconstitution 

99 assay droplet at the time of plating for transduction of dermal cells. 
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100  Live cell imaging

101 Live cell confocal imaging was performed after 72 hours of culture. The cell culture insert 

102 membrane, including the culture droplet with transduced cells, was removed from the insert frame, 

103 suspended between silicone columns, and held in place with magnets inside a 6-cm glass-bottom cell 

104 culture dish (Electron Microscopy Sciences, 70674-52) modified with a glass coverslip inserted into the lid 

105 to place the cells at the appropriate focal distance for confocal or two-photon imaging. The entire volume 

106 of the culture dish was filled with hair follicle reconstitution assay medium and the dish was sealed with 

107 silicone caulk to maintain a lentivirus-free outer surface. The culture was imaged on a Zeiss LSM 5 Pascal 

108 microscope with a heated stage set to 37°C. A z-stack image was collected every 10 minutes. 

109

110 Software analysis

111 Confocal images were processed with ImageJ software. Z-stack confocal images and live cell 

112 imaging z-stack series were converted into videos using Bitplane’s Imaris software. 

113

114 Statistical analysis

115 The statistical significance of differences in means was calculated using a two-sample T-test. 

116 Variance was calculated using the F-test. A p-value of <0.05 was considered significant. All error bars 

117 represent standard error of the mean. All experiments were performed in triplicate, at a minimum. 

118

119 Mathematical modeling

120 We use the following reaction-diffusion model to simulate the interactions of two, as yet, 

121 experimentally unidentified, different morphogen populations, denoted  and . Because of their roles in 𝑢 𝑣
122 the equations  is termed the activator (existence of  promotes the production of more  and ) and  𝑢 𝑢 𝑢 𝑣 𝑣
123 is termed the inhibitor (existence of  causes a reduction in the production of ). In turn, the cells read 𝑣 𝑢
124 the local concentrations of the activator and inhibitor and determine their fate accordingly. The 

125 simulations take place on a circular two-dimensional domain of radius , centred at the orgin. We define 10

126 the standard polar distance from the origin, , in terms of the Cartesian coordinates  as . 𝑟 (𝑥,𝑦) 𝑟 = 𝑥2 + 𝑦2

127 The equations are, thus,

128

129
∂𝑢∂𝑡 = 𝐷𝑢∇2𝑢 + 𝑃𝑢 𝑢2𝑢2 + 𝑘2

1

1

1 + 𝐺(𝑟,𝑡)𝑣 ― 𝑢,
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130
∂𝑣∂𝑡 = 𝐷𝑣∇2𝑣 + 𝑃𝑣 𝑢2𝑢2 + 𝑘2

2

+ 𝑠𝑣― 𝑣,
131

∂𝑢∂𝑛 = 0 =
∂𝑣∂𝑛 on the boundary,

132 𝐺(𝑟,𝑡) = {𝛼 + 𝑟𝛽𝑡,  0 ≤ 𝑡 < 𝑡𝑓,𝛼 + 𝑟𝛽𝑡𝑓,  𝑡 ≥ 𝑡𝑓.

133 In addition to the standard reaction-diffusion framework we have included a linear 

134 spatiotemporal gradient . The gradient is radially symmetric; it starts flat at time zero and slowly 𝐺
135 increases at the boundary over time. At time  the gradient reaches its maximum value and freezes 𝑡𝑓
136 allowing the simulation to relax to a final heterogeneous steady state. This gradient modulates the 

137 inhibitor effect of the morphogen  on , maximising its effect on the boundary.𝑣 𝑢
138 Additional parameter values are given in Table S3. All unit dimensions are arbitrary, but 

139 consistent. The initial conditions for all populations were uniform random numbers with mean set to the 

140 largest positive uniform steady state when , and, hence, . The equations were simulated using 𝑡 = 0 𝐺 = 𝛼
141 a finite element Runge-Kutta method and the domain was discretised into 25970 domain elements. Note 

142 that the boundary conditions are specified to be zero-flux conditions, meaning that no substances are 

143 able to leak out of the domain. Initially, the time step was 10-3, which was decreased as required to satisfy 

144 a relative step error tolerance of 10-6. After a simulation was completed the simulation was repeated with 

145 double the initial domain elements and half the time step to guarantee convergence, through observing 

146 that the result did not change.
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147 Supplemental Figures, Movies, and Tables

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162 Figure S1.  A generic working model for planar skin reconstitution with hair formation.  Epidermal and 

163 dermal cells are mixed and plated on tissue culture insert in high cell density as a droplet.  Different 

164 epidermal and dermal cells can be used, those derive from newborn skin, adult skin, adult hair follicle, 

165 and ES or iPS derived cells. 
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179

180

181 Figure S2. Live cell imaging of hair peg-like structures.

182 A. Overexpression of fluorescent proteins did not affect the ability to form hair peg-like structures. In this 

183 image, epidermal cell nuclei were marked with green fluorescent protein and dermal cell nuclei were 

184 preferentially marked with orange fluorescent protein. The dotted line outlines the epidermal stalk. Epi = 

185 epidermal, D = dermal, E = epidermal. (n=7)

186 B. A still image from a two-color live imaging video (Fig. S5A), looking down from the top of the culture 

187 droplet, demonstrates a dermal cap. p63-positive keratinocyte nuclei are magenta, dermal cell nuclei are 

188 cyan. Epi SC = epidermal stem cell. (n=5)

189 C. A single lateral image taken from a three-color live imaging video (Fig. S5B) demonstrates a hair peg-

190 like structure. Keratinocyte nuclei are orange, p63-positive keratinocyte nuclei are magenta, and dermal 

191 cell nuclei are cyan. (n=5)
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203

204 Figure S3. Reconstituted hair peg-like structures displayed radial symmetry.

205 Cap and stalk sagittal areas maintained a linear relationship with the total cap and stalk volumes, 

206 emphasizing the radial symmetry of these structures and allowing us to simplify analysis by measuring the 

207 area of each structure at the midpoint corresponding to maximal width.
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224 Movie S1. Three-dimensional z-stack reconstructions of human hair peg-like structures formed in 

225 culture.

226 A. Whole mount confocal z-stack images of multiple hair peg-like structures immunostained with keratin-

227 14 (green), vimentin (red), and TO-PRO-3 iodide (nuclei, blue) demonstrate the periodic patterning and 

228 formation of distinct structures within a 425 μm2 area. Cells within the keratinized sheet were difficult to 

229 stain with pancytokeratin due to poor antibody penetration. 

230 B. Whole mount confocal z-stack images of hair peg-like structures immunostained with pancytokeratin 

231 (green) and propidium iodide (nuclei, red) demonstrate the spherical configuration of the dermal cap and 

232 the tubular structure of the epidermal stalk. Sandwiching of the whole mount culture beneath a coverslip 

233 for confocal imaging caused the hair pegs to appear bent or flattened against the keratinocyte sheet. 

234 C. Higher magnification view of a single reconstituted human hair peg-like structure immunostained with 

235 pancytokeratin (green) and propidium iodide (nuclei, red).  Note epidermal cells start to wrap around the 

236 dermal cap.

237

238

239 Movie S2. Three-dimensional z-stack reconstructions of reconstituted human hair peg-like structures 

240 demonstrate markers of dermal papilla gene expression.

241 A. Whole mount confocal z-stack imaging demonstrates α-SMA staining in a central location within the 

242 dermal cap of a hair peg-like structure.  α-SMA (green), propidium iodide (red).

243 B. Whole mount confocal z-stack imaging demonstrates the presence of extracellular collagen IV at the 

244 epidermal-dermal interface.  CD34 - an early dermal papilla marker (green), collagen IV (red), TO-PRO-3 

245 iodide (blue).  The large green lobules are artifacts representing dead cells which have trapped the dye.  

246

247 Movie S3. Three-dimensional z-stack reconstructions of epidermal placode-like structures and dermal 

248 clusters at 48 hours.

249 A. Whole mount confocal z-stack imaging demonstrates multiple dermal clusters atop a keratinocyte 

250 sheet and altered keratinocyte arrangement pattern around the dermal clusters. Pancytokeratin (green), 

251 propidium iodide (red).  The large green lobules are artifacts representing dead cells which have trapped 

252 the dye.  

253 B. Whole mount confocal z-stack imaging demonstrating vimentin-positive immunostaining of the dermal 

254 clusters at 48 hours post-plating. Vimentin (red), TO-PRO-3 iodide (blue).

255

Page 39 of 77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

11

256 Movie S4. Live cell imaging of a reconstituted human hair peg-like structure.

257 Time-lapse movie highlighting dermal cell shape and movement within the dermal cap of a reconstituted 

258 human hair peg-like structure, as viewed from the top of a culture droplet.  The epidermal stalk is not 

259 visible in this view.  A z-stack image was recorded every 10 minutes from 101-103 hours post-plating and 

260 is replayed at a rate of 5 frames per second.  The entire culture descended along the z-axis during imaging, 

261 resulting in partial movement out of the focal plane over time.  p63-positive epidermal cells were labelled 

262 with nuclear eGFP fluorescent protein (magenta).  Dermal cells were labelled with nuclear mCerulean3 

263 fluorescent protein (cyan).  Note the varied dermal cell movement and nuclear shape within the dermal 

264 cap.  Few p63-positive epidermal cells are visible in this top-down view, as the epidermal stalk is obscured 

265 by the cells of the dermal cap.  However, reproducibly, 1-3 p63-positive epidermal cells were noted within 

266 the dermal cap, frequently at the apex, as seen here.

267

268 Movie S5. Live cell imaging of a reconstituted human hair peg-like structure.

269 Time-lapse movie of a reconstituted human hair peg-like structure, viewed from top-down (A) and lateral 

270 (B) orientations.  A z-stack image was recorded every 10 minutes from 83-85 hours post-plating and is 

271 replayed at a rate of 10 frames per second.  All epidermal nuclei were pre-labelled with mOrange2 

272 fluorescent protein (yellow).  p63-positive epidermal nuclei were labelled with eGFP (magenta).  Dermal 

273 nuclei were labelled with mCerulean3 fluorescent protein (cyan).  Note that the entire specimen drifts 

274 during imaging.  However, the epidermal cells within the epidermal sheet remain static, as evidenced by 

275 no change in positional relationship with adjacent epidermal cells.   The position of the dermal cap does 

276 move in space, relative to the epidermal sheet, because the epidermal stalk is flexible and sways within 

277 the droplet culture medium.   

278

279 Movie S6. Mathematical simulation of human hair follicle periodic pattern formation in vitro.

280 The changes in periodic patterning from long stripes to short stripes to punctate clusters, corresponding 

281 to dermal clusters and then hair peg-like structures, is represented here by a Turing-based mathematical 

282 simulation.  The periodic patterns form sequentially on the left, as the radially symmetric spatiotemporal 

283 gradient increases in the middle and right-sided diagrams.  

284

285

286

287
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288 Table S1.  Antibodies.

  Antibody Source Catalog Number Dilution

Alkaline phosphatase Abcam ab108337 1:100

α-SMA ThermoFisher MA1-37028 undiluted

β-catenin Sigma C7207 1:100

CD34 Millipore CBL496 1:100

Collagen I Abcam ab34710 1:100

Collagen III Abcam ab7778 1:100

Collagen IV Abcam ab19808 1:100

Cytokeratin 14/15/16/19 

(pancytokeratin)

Becton Dickinson 550951 1:100

Keratin-10 ThermoFisher MA5-11599 1:100

Keratin-14 ThermoFisher MS-115-P1 1:100

Laminin 5 Abcam ab14509 1:100

p63 Santa Cruz Sc-8343 1:100

PCNA Abcam ab92552 1:100

Propidium iodide Sigma P4170 1:1000

TO-PRO-3 iodide ThermoFisher T3605 1:500

Vimentin Cell Signaling 3390 1:100
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 Table S2. Primers for lentiviral vector construction 

 gDNA = genomic DNA

Table S3. Parameter values for equations (1)-(4).

Parameter Value Definition𝑃𝑢 1000 Strength of influence of activator on activator𝑃𝑣 100 Strength of influence of activator on inhibitor𝑘1 10 Activator sensitivity to activator𝑘2 10 Inhibitor sensitivity to activator𝑠𝑣 1 Inhibitor source 𝐷𝑢 2.5 × 10 ―4 Activator diffusion rate𝐷𝑣 1.25 × 10 ―2 Inhibitor diffusion rate𝛼 1.1 Basal level of gradient𝛽 1/250 Rate of gradient increase𝑡𝑓 150 Time after which the gradient stops evolving

Sequence Forward primer Reverse primer Amplified from Source

EF1α promoter ATAAATGAATTCGCTCCGGTGCCCGTCAG GCCCAGGAATTCTCACGACACCTGAAATGG plasmid RBW1 Chuong lab

p63 promoter TTCGGGGCTAGCGTAAGTAGGTTTTTTTTT TAAGCTGCTAGCGTTAGCTGTAAGATTGATC Human gDNA 293T cells

K14 promoter TTATATGAATTCCCCGGGCTCCGGAGCTTC GCTGGGGAATTCCTCGGGTAAATTGGAAAG Human gDNA 293T cells

H2B-mOrange2 TAGATTGCTAGCATGCCTGAACCC TAAGATGCTAGCTCACTTGTACAGC plasmid #57962 Addgene

GAP-eGFP TAGATTGGATCCATGCTGTGCTGTATG TAAGATGGATCCTTACTTGTACAGCTCG plasmid #14757 Addgene

H2B-eGFP TAAAATGCTAGCATGCCTGAGCCGGCCAAG GCCCGAGCTAGCTTACTTGTACAGCTCGTC RCAS-H2B-eGFP Chuong lab

H2B-mCerulean3 TTTATTGCTAGCATGCCAGAGCCAGCGAAG GGGTAGGCTAGCTTACTTGTACAGCTCGTC plasmid #55374 Addgene
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October 12th, 2018

Dear editor:

We are submitting the manuscript, entitled “Self-organizing hair peg-like 

structures from dissociated skin progenitor cells:  New insights for human hair 

follicle organoid engineering and Turing patterning in an asymmetric 

morphogenetic field,” for publication as a research article in Experimental 

Dermatology.

The quest to tissue engineer organs is at the forefront of translational research 

today.  Patients suffering from burns and those with alopecia would benefit 

greatly from the ability to tissue engineer replacement hair follicles.  While 

much work has been done in the mouse, human hair follicle regeneration has 

proven much more difficult.  We have developed an in vitro culture system, 

which supports the rapid regeneration of human hair peg organoids from 

human epidermal and dermal skin progenitor cells.  This culture system is 

easily perturbed and affords the unique opportunity to analyze self-assembly 

behavior in detail and modulate physical and chemical parameters to more 

effectively stimulate follicular regeneration. Furthermore, the model presents 

a great opportunity to study Turing patterning in an asymmetric 

morphogenetic field. We take a multi-disciplinary approach and develop a 

mathematical model to simulate and predict this type of behavior.

We made progress in developing a useful new platform for identifying 

molecules involved in human hair tissue engineering, in collective cell 

behavior during self-assembly of human hair primordia, and in progressive 

patterning of hair primordium population. The significance of this study 

would be of general interest to the readership of Experimental Dermatology. 

We have prepared this manuscript for the special issue on skin morphogenesis 

edited by Plikus and Chuong.

Because of the complexity of the work, currently we have 4752 words. I hope 

you can allow some flexibility of the word limit. 

This manuscript describes original work and is not under consideration of any 

other journal. We look forward to hearing your response. Thank you 

Sincerely,

Cheng-Ming Chuong
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Professor and
Laboratory Director
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e) Keywords: Skin reconstitution, tissue engineering, hair follicle, periodic pattern formation, 

organogenesis

f) Recommended reviewers:

Tissue engineering: 

Steven Boyce

University of Cincinnati

steven.boyce@uc.edu

Expert in engineered skin substitutes and regenerative medicine

Pattern: 

Philip Murray

University of Dundee

pmurray@maths.dundee.ac.uk

Expert in hair follicle growth patterning and modeling

g) None of the suggested referees has co-authored a publication during the past 4 years with any of the 

co-authors of the submitted manuscript.
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December 20th, 2018

Subject: Revision and resubmission of manuscript EXD-18-0381

Dear editors:

Thank you for your letter enclosing the reviewers’ comments and the opportunity to 

revise our manuscript entitled “Self-organizing hair peg-like structures from 

dissociated skin progenitor cells:  New insights for human hair follicle organoid 

engineering and Turing patterning in an asymmetric morphogenetic field.” We 

appreciate the insightful comments and the suggestions from you and the reviewers. 

We have carefully reviewed the comments, and responded to them point-by-point. 

As suggested, we also updated the discussion with recent papers. The reviews have 

been very helpful and the manuscript has improved. The length is a little bit over the 

limit, but I have communicated with Dr. Paus for the permission to have some 

flexibility. The revisions in the text are marked in yellow as requested. 

The revision has been approved by all authors. We hope the revised manuscript is 

now acceptable for Experimental Dermatology but are happy to consider further 

revisions as needed. We thank you for your support. 

Thank you. 

Sincerely,

Cheng-Ming Chuong

Department of Pathology

University of Southern California

Keck School of Medicine

2011 Zonal Ave., HMR 313B

Los Angeles, CA 90033

USC
UNIVERSITY

OF SOUTHERN

CALIFORNIA

Department of
Pathology and
Laboratory Medicine

Laboratory of Tissue 
Development and 
Engineering

Cheng-Ming Chuong, M.D., Ph.D.
Professor and
Laboratory Director
Tel: 323 442-1296
email: cmchuong@usc.edu

Faculty:

Randall B. Widelitz, Ph.D.
Tel: 323 442-1158
email: widelitz@usc.edu

Ting-Xin Jiang, M.D.
Tel: 323 442-1158
email: tjiang@usc.edu

Ping Wu, Ph.D.
Tel: 323 442-1982
Email: pingwu@usc.edu

Laboratory Website
http://www-hsc.usc.edu/
~cmchuong

2011 Zonal Avenue
Hoffman Medical 
Research Building 313
Los Angeles,
California  90089-9092
Fax:  323 442-3049
webpage:  http://www.usc.edu/
medicine/pathology

Keck School of Medicine
University of Southern California
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Reviewer Comments, Author Responses and Manuscript Changes

Reviewer 1

Weber et al. present a study of hair follicle (HF) formation in vitro via organoids, with an accompanying 

mathematical model. This study advances our understanding of de novo HF generation in vitro, and may 

help future protocols by describing parameters and model dynamics that help drive this process. The 

Turing-based model that is developed is interesting from a theoretical perspective, and produces 

qualitative behavior that mirrors the experimental system. Given the culture system, which seeks to 

understand (and grow) HFs resulting from interactions between dermal and epidermal cells, I think a 

model that contained at least a hint of dermal/epidermal ingredients and molecular detail may be more 

relevant, however I realize this is probably outside of the current scope. Below I list some questions that 

are either requests for clarification or suggestions that I think would help to strengthen the manuscript.

Comment 1: “…to ones where the “reactants” are cells themselves to mechanochemical models which 

couple cell interactions with chemical signals." - please cite examples.

Response: Several papers which discuss mechano-chemical coupling in the generation of biological patterns are 

listed below [1-5].

1. Oster, G.F., J.D. Murray, and A.K. Harris, Mechanical aspects of mesenchymal morphogenesis. J 

Embryol Exp Morphol, 1983. 78: p. 83-125.

2. Kondo, S. and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern 

formation. Science, 2010. 329(5999): p. 1616-20.

3. Nakamasu, A., et al., Interactions between zebrafish pigment cells responsible for the generation of 

Turing patterns. Proc Natl Acad Sci U S A, 2009. 106(21): p. 8429-34.

4. Murray, J.D., P.K. Maini, and R.T. Tranquillo, Mechanochemical models for generating biological 

pattern and form in development. Physics Reports, 1988. 171(2): p. 59-84.

5. Ho, W.K.W., et al., Feather Arrays are Patterned by Interacting Signalling and Cell Density Waves. 

PLoS Biol, in press.

These references are now added and discussed in the text. 

Comment 2: “This change of topology results from powerful interactions between dermal condensations 

like dermal cap cells and epidermal progenitors in the basal layer.” What mediates these?

Response: We hypothesize that the process is dependent on epithelial-mesenchymal interactions. We have not 

identified the molecular mediators and have deleted this aforementioned sentence.  

Comment 3: Fig. 3D - I don’t know if it is appropriate to compare the number of hair pegs at different 

radii (and then do a t-test). In polar coordinates, wouldn’t this introduce artifacts? Instead can you use 

the density of hair pegs?

Response: We have recalculated using the density of hair pegs in each zone. The figure, figure legend, and text 

were updated accordingly.

Comment 4: “Centrally, dermal aggregates were 60% larger in diameter, which correlated with the 

formation of less mature hair peg-like structures and, in many cases, abnormal aggregates possessing 

multiple epidermal stalks” - do you think this also results from the geometry of the system?

Response: Yes, we believe this is an effect of the physical culture system. For example, we observed differences 

in the number of hair peg-like structures and abnormal-appearing aggregates when epidermal:dermal cell ratios 
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were altered. Based on gross observations, the distribution and density of epidermal and dermal cells varied 

throughout the volume of the droplet. Thus, the droplet environment, which includes cell ratios, mechanical 

forces, and/or chemical media (which can create a gradient across the radius), is not the same throughout the 

droplet.  In this study, we did not examine whether the formation of hair peg-like structures versus abnormal 

aggregates is a direct result of the geometry of the droplet shape or the difference in epidermal-dermal cell ratio 

between the center and periphery.  Therefore, we have chosen to use “asymmetric morphogenetic field” in the 

title. 

Comment 5: ‘figure “simulation” '— should be Figure 3?

Response: Yes, we added the figure reference to lines 260 and 281.

Comment 6: Regarding the model, I appreciate that, as the authors describe, “…this work is not about 

specifying the exact underlying kinetics” and that “our results have put an upper bound limit on the 

complexity required to make a model consistent with the observed results.” Nonetheless, after the 

development of this model, it seems to be sold short. I think that even a little model analysis would be of 

great interest to the reader, significantly enhance the applicability of the work, and help to understand 

how these complex patterns emerge. E.g. Model/parameter sensitivity, esp. regarding Turing parameters 

vs. gradient parameters? Perturbations? E.g. how readily can the dot—labyrinth pattern be changed? 

Can the wave speed be regulated by Turing parameters rather than solely the gradient? Any predictions 

here could be added to — and benefit — the section on "A platform to modulate hair peg morphogenesis 

in vitro.” I think that only with some of these additions can you really say that you “predict conditions 

that may enhance organoid formation.”

Response: Two-dimensional Turing patterns can produce spots and/or stripes, depending on the ratio of the sum 

of activator activities / sum of inhibitor activities. When the morphogenetic field is even, all elements, whether 

they are supposed to be spots or stripes, may occur simultaneously. When the field is asymmetrical, they may 

occur in sequence, with elements emerging when conditions are met [6]. Thus, as long as the correct pattern 

kinetics are chosen to produce in phase, or out of phase, patterns between the concentrations, the Turing system 

can be guided to form spots and/stripes. Further, a parameter’s influence is extremely local in Turing patterns 

[7]. Thus, all we require to convert a system from spots to stripes is to use a gradient that influences the 

competition between the cubic and quadratic terms. Depending on the level of activator and inhibitor and types 

of cells (with different response threshold to activators and inhibitors), the droplet can exhibit a range of stripe to 

spot morphology. This is a generic and robust mechanism. As such, we do not feel that a sensitivity analysis is 

essential, as this would depend on the kinetics chosen, which (as stated) are ad-hoc, arbitrary and  

inconsequential.

For the “wave”, a timely paper by the Headon group reporting a global wave has recently been accepted 

in PLOS Biology [5]. Our lab also wrote a primer (Turing patterning with and without a global wave) for it 

[8]. The following paragraph has been added to the discussion, on lines 420-430.

“In vivo, chicken feather buds form exquisite hexagonal patterns progressively from the midline to the 

flank. Earlier works have suggested this results from a local Turing event and a global propagating events (Jiang 

et al., 1999).  However, the nature of the global even is unknown. This is part of the motivation for this study, to 

use the organoid droplet to understand more about the nature of the sequential appearance of hair or feather 

primordia. It is timely that a paper reporting a global Eda wave spreading from the midline to the flank is just 

reported, which suggests Eda induces FGF20, followed by dermal cell aggregate formation, thus facilitating 

Turing patterning via mechano-chemical coupling (Ho et al., in press). Based on this and other studies, we propose 

a new integrated understanding that a Turing periodic patterning occurs with or without a global propagation 

mechanism. The global mechanism can be chemical or mechanical in nature, as long as they can tilt Turing 

activator / inhibitor system (Inaba et al., in press).  The asymmetric morphogenetic field in the organoid culture 

studied here presents a good model to further test how this global asymmetry mechanism works. “
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By separating the patterning mechanism into local Turing mechanism and global influence (due to the 

asymmetric morphogenetic field), the issues are much clearer now. In terms of the wave speed, the dynamics can 

be translated to how fast the global wave travels or how steep the chemical or physical gradients are.  We have 

added text regarding the robustness, generality and interpretation of the mechanism.  The following references 

have been cited.

5. Ho, W.K.W., et al., Feather Arrays are Patterned by Interacting Signalling and Cell Density Waves. 

PLoS Biol, in press.

6. Ermentrout, B., Stripes or spots? Nonlinear effects in bifurcation of reaction—diffusion equations on the 

square. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 

1991. 434(1891): p. 413-417.

7. Krause, A.L., et al., Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. 

2018. 97(5): p. 052206.

8. Inaba, M., H.I.-C. Harn, and C.M. Chuong, Turing patterning with and without a global wave. PLoS 

Biol, in press.

Comment 7: Model development: “existence of v causes a reduction in the production of u and v” — there 

is no term in the equation for dv that describes self-inhibition. Please clarify.

Response: Thank you for pointing out this typo in supplemental information line 123: Existence of v causes a 

reduction in the production of u and v --> changed to existence of v causes a reduction in the production of u.

Comment 8: Fig. S2 and Movie S5A,B: looks like stratification has not occurred between precursor and 

mature keratinocyte? Does this occur later?

Response: Figure S2C and movies S5A,B were taken between 80 and 90 hours of culture.  Stratification has 

occurred at this point, as not all keratinocytes are p63 positive (magenta color).  Lentiviral transformation 

efficiency approached 100% so we can presume that those keratinocytes which are no longer p63+ have 

differentiated from the epidermal precursor state.  In our system, we do see that a high proportion of the 

epidermal sheet expresses K14, which is a deviation from endogenous epidermis.  However, we do also see a 

layer of cells which expresses K10 and a layer which is positive for involucrin, both of which are not assessed in 

these videos / still images.  To achieve live imaging, the cell culture inserts with the droplets are removed from 

the insert ring, submerged completely in media, suspended between columns, and held in place with magnets.  

Thus, the inserts move slightly within the cell culture medium, and it is difficult to obtain, in cross-section, a 

precise orthogonal view of the culture insert and droplet.  The view in Movie S5B is likely a composite view of 

multiple levels of the epidermal sheet in cross-section, due to the non-rigid nature of the insert.  The view in 

Movie S5A is looking from the top of the droplet down onto the insert and, thus, it is difficult to assess the linear 

stratification of the epidermal sheet from that perspective.

Comment 9: Typo/word missing? "For human cells, the stages of morphological transition of in this 

culture system"

Response: Corrected. Thank you.

Reviewer 2

This manuscript seeks to assign a ‘Turing model’ to observations of cell clustering in vitro, which make 

‘hair follicles’.  As an intriguing cell culture phenomenon this is an interesting paper, however the results 

fail to convince me that follicles are being made via a Turing patterning.  I have therefore separated my 

comments into those related to the hair follicle, and those related to the model for clarity.
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Comment 1: Hair follicle

The hair follicles in 1E look convincing but my concern is they are pigmented…why is this the case if only 

keratinocytes and fetal dermal cells were co-cultured?  Were melanocytes in the mix as well?

Response: While melanocytes were not specifically added as part of the co-culture, there are two possible ways 

that pigmented cells may have been incorporated. 1)  The human keratinocytes were isolated from neonatal 

foreskins from patients of multiple ethnicities.  Once isolated, the keratinocytes were cultured for several 

passages before use, to amplify sufficient quantities.  It is possible that some melanocytes were carried over, 

though keratinocyte cultures appeared uniform.  Cell sorting was not performed to ensure a pure population of 

keratinocytes.  2)  Some fetal scalp specimens contained early hair follicles with slight pigmentation at the base 

(matrix cells).  The epidermis and hair shafts were manually removed from the fetal scalp specimens, leaving the 

dermal portion for use, but it is possible that some pigmented progenitor cells remained associated with the 

dermal papilla / dermal sheath.  The dermal cells were not cultured or sorted and so these pigmented cells may 

have been included.  The neonatal keratinocytes and fetal dermal cells were injected subcutaneously into nude 

mice, whose hair follicles do not contain pigment and whose melanocytes do not produce significant melanin.  

Thus, it is less likely that the pigmentation is derived from murine melanocytes.  

Comment 2: Hair follicle

In figure 2 the authors use a wide range of markers to show ‘hair identity’, yet in my opinion none of the 

markers they use are actually hair specific-they are all just dermal or epidermal specific.  To show that 

hair follicles have actually formed rather than self organised clusters of cells one would have to show 

specific dermal papilla (eg syndecan, sox2) and epithelial germ markers (eg p-cadherin).  Bizarrely, the 

only dermal papilla markers used (alk phos) was shown to be expressed in 17wk scalp but not in the 

cultured hair follicles.

Response: Additional immunostained images were added to Figure 2, demonstrating syndecan and versican 

positivity of the dermal cap, two frequently used markers of the dermal papilla.  It should be noted that we do 

not claim that the structures formed are mature hair follicles, nor are the dermal caps mature dermal papillae, as 

we have called the structures hair peg-like.  We point out that the dermal cap is likely an immature or incomplete 

dermal papilla, as it expresses some of the well-known proteins commonly associated with the dermal papilla but 

not others (ex. alkaline phosphatase).  The only definitive way to prove that the dermal cluster is a mature 

dermal papilla is to show inductivity, which would require mechanical excision of the dermal cap from the peg-

like structures and application to numerous murine hair-forming assays.  Rather, the goal of this study was to 

evaluate the ability of dermal fetal scalp populations to self-organize and direct the formation of follicular 

organoids rapidly in culture, with the future goal of clinically-relevant tissue regeneration.  

One must acknowledge that the current literature largely reflects “markers” of the adult, cycling murine 

hair follicle and dermal papilla and that many “markers” of the dermal papilla, for example, are present only 

during specific stages within the hair cycle.  Much less is known about the human hair follicle, and extremely 

little has been published on specific human follicle and papilla markers during fetal development.  Because there 

are already known discrepancies between mouse and human follicle staining patterns and architectural 

organization (ex. epidermal bulge), we tested several of the more commonly used murine markers on human 

fetal scalp skin.  We discussed the challenges with alkaline phosphatase and α-SMA staining.  We have added 

syndecan and versican immunostaining results.  In our hands, the murine/human markers CD133 and CD10 were 

not positive on intact fetal scalp.  We did not test Sox2, as it has not been documented to play a role in the 

human dermal papilla.  B-catenin and CD34 are documented markers of the early dermal condensate and we 

have shown those results.  Of course, all of the documented “markers” of the hair follicle or dermal papilla are 

proteins which are not specific to the hair follicle or the dermal papilla.  We have chosen to highlight the 

similarities of our hair peg-like structures to normal follicular development, using multiple antibodies, and fully 

acknowledge that these structures are not mature follicles.  However, these peg-like structures were reproducible 

and we believe that, at least, self-assembly or early development into hair peg-like structures has consistently 

occurred. 
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Figure 2 has also been updated to include additional epidermal staining, with K17, K18, and E-cadherin 

antibodies.  Very little is known about the expression patterns of the epidermal portion of a hair germ or peg.  

We do know that, during later stages of development, the epidermal portion stratifies into multiple layers, 

including the inner and outer root sheaths, which then selectively express K17, K18, or E-cadherin, among other 

classic marker proteins.  However, at the hair peg stage, the epidermal stalk is a solid tube of cells and has not 

yet stratified into layers surrounding a lumen with hair shaft.  Thus, it is difficult to really prove the targeted and 

appropriate staining of our hair peg-like epidermal stalks.  Schirren, et al., studied keratin expression patterns in 

fetal scalp follicles and demonstrated that the germ is positive for K17.  We also acknowledge that K17 is 

frequently upregulated in wound healing and could solely represent changes in expression induced by 

epidermal/dermal disruption and culture.  For this reason, we were hesitant to include the K17 results at first.  

Notably, we did test p-cadherin antibodies and found that our structures were p-cadherin negative.  

We have also added a few new images of larger, seemingly more mature peg-like structures that we 

occasionally noted, which appeared to have a more organized epidermal stalk and, possibly, an effort toward the 

formation of a lumen.  We acknowledge that the organoid structures are not real hair follicles and, in fact, call 

them” hair peg-like structures” in the title.  However, we have made progress which we think is worthy of report.  

In the future, we hope to achieve more mature follicle-like structures in vitro under the right conditions.

Comment 3: Model

The model description is a bit contradictory.  Initially, the authors write that stripes appear, then 

gradually become rounded into clusters.  This would be characteristic of a reaction diffusion model, which 

can produce spatiotemporal gradients.  However, the authors then write that their patterns occur 

simultaneously, which contradicts their earlier statement.  They use this to justify that a spatiotemporal 

gradient must be present.

Response: Thank you for the opportunity to clarify. We do not mean “their patterns occur simultaneously”.   

Indeed, this paper is meant to say when Turing patterning occurs on an asymmetric field, periodic patterning will 

occur in progression. When activator / inhibitor activity are tilted in the morphogenetic field (such as the droplet 

here), reaction-diffusion systems can form a spatiotemporal gradient. The asymmetry of the droplet culture helps 

produce the asymmetrical pattern, through an effect on chemical or physical parameters.  

A paper reporting on a global wave and local Turing patterning by the Headon group has recently been 

accepted to PLOS Biology[5] and our laboratory wrote a primer (Turing patterning with and without a global 

wave) for it[8]. The following paragraph has been added to the discussion, on lines 420-430.

“In vivo, chicken feather buds form exquisite hexagonal patterns progressively from the midline to the flank. 

Earlier works have suggested this results from a local Turing event and a global propagating events (Jiang et 

al., 1999).  However, the nature of the global even is unknown. This is part of the motivation for this study, to 

use the organoid droplet to understand more about the nature of the sequential appearance of hair or feather 

primordia. It is timely that a paper reporting a global Eda wave spreading from the midline to the flank is just 

reported, which suggests Eda induces FGF20, followed by dermal cell aggregate formation, thus facilitating 

Turing patterning via mechano-chemical coupling (Ho et al., in press). Based on this and other studies, we 

propose a new integrated understanding that a Turing periodic patterning occurs with or without a global 

propagation mechanism. The global mechanism can be chemical or mechanical in nature, as long as they can 

tilt Turing activator / inhibitor system (Inaba et al., in press).  The asymmetric morphogenetic field in the 

organoid culture studied here presents a good model to further test how this global asymmetry mechanism 

works. “

Comment 4: Model

The authors also write that more hair peg structures formed at the periphery of drops, perhaps leading 

them to look at a gradient in the drop-however they do not account for the area under analysis which is 

also increasing.  Actually, is increases so much so that the outer circle is 9x larger than the central 

circle.  If the authors adjusted their number of hair pegs in each concentric circle relative to the analysed 
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area, they would find an almost equal number of hair pegs per area under analysis.  This could be a 

problem as perhaps there is not a gradient in the drop after all.

Response: Hair peg distribution within the droplet was re-analyzed as density of hair pegs, to account for the 

increasing area.  The outer ring is 5.5x larger than the innermost circle.  A gradient is still observed, with more 

hair peg-like structures forming at the periphery.  The figure, legend, and text were adjusted accordingly.

Comment 5: Model

I would have thought that mechanical forces would be most prominent in driving the patterning observed 

(as the cells are in a small drop) rather than inhibitors or activators within the drop.  However, this is not 

incorporated into the model.

Response: The reviewer is quite right that a mechanical model could also achieve a patterned state. However, a 

temporal gradient would still be required to achieve the transition between patterns. Equally, the pattern 

transitions as illustrated in the reaction-diffusion equation are well-studied and understood. We have discussed 

that the Turing model now is interpreted based on its activator / inhibitor loop and the factor can be either 

chemical or physical factors. In this study, we did not obtain data to state whether chemical or mechanical 

parameters are more important. 

Comment 6: General comments

The introduction indicates that the model is a generic one for looking at various cells, but they only 

demonstrate its use with one cell type.

Response: We removed the word “generic” from lines 87 and 90.

Comment 7: General comments

The discussion is quite long and it is not clear how it is always related to the presented results.

Response: We have consolidated the discussion section, particularly the first two paragraphs, to more clearly 

acknowledge the results presented in the paper (production of hair peg-like organoids) and recent relevant 

literature (listed below). 

1. Oster, G.F., J.D. Murray, and A.K. Harris, Mechanical aspects of mesenchymal morphogenesis. J 

Embryol Exp Morphol, 1983. 78: p. 83-125.

2. Kondo, S. and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern 

formation. Science, 2010. 329(5999): p. 1616-20.

3. Nakamasu, A., et al., Interactions between zebrafish pigment cells responsible for the generation of 

Turing patterns. Proc Natl Acad Sci U S A, 2009. 106(21): p. 8429-34.

4. Murray, J.D., P.K. Maini, and R.T. Tranquillo, Mechanochemical models for generating biological 

pattern and form in development. Physics Reports, 1988. 171(2): p. 59-84.

5. Ho, W.K.W., et al., Feather Arrays are Patterned by Interacting Signalling and Cell Density Waves. 

PLoS Biol, in press.

6. Ermentrout, B., Stripes or spots? Nonlinear effects in bifurcation of reaction—diffusion equations on the 

square. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 

1991. 434(1891): p. 413-417.

7. Krause, A.L., et al., Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. 

2018. 97(5): p. 052206.

8. Inaba, M., H.I.-C. Harn, and C.M. Chuong, Turing patterning with and without a global wave. PLoS 

Biol, in press.
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Abstract 

 

Periodic patterning represents a fundamental process in tissue morphogenesis. In 

chicken dorsal skin, feather formation starts from the midline, then the morphogenetic 

wave propagates bilaterally, leaving a regular hexagonal array of feather germs. Yet, in 

vitro reconstitution showed feather germs appear simultaneously, leading to the 

hypothesis that the feather-forming wave results from the coupling of local Turing 

patterning processes with an unidentified global event. In this issue, Ho et al. [1], showed 

such a global event in chicken feathers involves a spreading EDA wave and FGF20-cell 

aggregate-based mechano-chemical coupling. Interestingly, in flightless birds, feather 

germs form without waves are irregularly positioned.  
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Regular periodic feather patterns on the chicken skin 

Animal integuments exhibit periodic patterns in spots, stripes or mazes, which 

are made of pigment domains, hairs or feathers. In the developing chicken embryo, one 

of the most fascinating phenomena is that feather buds begin to form at the dorsal midline 

around embryonic day 6, then propagate bilaterally toward the flank, leaving a highly 

ordered array of feather germs arranged in a hexagonal pattern after about three days 

[2–4].  

Is this patterning process a playout of a molecular blueprint (like in Drosophila) 

or the result of stochastic local interactions? Perturbation experiments leading to altered 

patterns suggest the system is plastic [5,6] and skin progenitors are not pre-determined 

to be a bud or an interbud cell. For local interactions, one fundamental theory is based 

on Turing’s reaction-diffusion) model [7,8]. Turing showed hypothetical chemical 

reactions could form periodic structures spontaneously in a situation where an activator 

activates its own production and a long-range inhibitor that represses the activator. When 

the inhibitor diffusion rate is much larger than that of activator, those chemicals are 

distributed heterogeneously, forming periodic patterns such as spots and stripes (Fig. 

1A).  

 

In feathers, FGF and BMP were shown to function as activators and inhibitors 

in Turing patterning [9]. Because the original Turing model assumes the initial condition 

is randomized, the resulting periodic patterns can vary stochastically. How does the 

regular hexagonal pattern happen? Experiments using reconstitution of a feather 

epithelium with dissociated mesenchymal cells help dissect the process, and suggest 

the propagation of the feather forming wave results from the combination of a local Turing 

patterning process with a global signaling event [6]. In the in vitro experiment, the whole 

skin explant is a morphogenetic field. In vivo, with constraints imposed by the global 

event, a narrow stripe of the propagating morphogenetic field is the only place that can 

support periodic patterning which later spreads bilaterally, thus giving the orderly 

appearance. However, the cellular and molecular basis of the global event and how the 

global event is coupled to the local Turing events were not identified previously.  

 

Several more parameters must be considered when one thinks about the local 

interactions among skin progenitors. One being the intrinsic factors, which 

predetermines the responsive threshold of a cell, meaning cells must be in a competent 

state to respond to the activator and inhibitors in the environment. Molecularly this can 

Page 59 of 77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

4 

 

be translated as the number of morphogen receptors and the sensitivity threshold (e.g., 

FGF, BMP receptor, epigenetic states, etc.) or the amount of adhesion molecules 

expressed on the progenitor cell surface. The other is the extrinsic factors, including the 

amounts of morphogens (e.g., Wnt, FGF, BMP) or extracellular matrix molecules. These 

factors have to be within the right ratios and distribution to allow cells to launch Turing 

patterning. 

 

Recently, the Turing concept has also been expanded beyond diffusible 

morphogens, and cell-cell adhesion or repulsion can mediate the activation or inhibitory 

function to reach Turing patterning without diffusion [10–12]. In the feather system, 

dynamic mesenchymal cell migration was observed [13] and local aggregation of 

mesenchymal cells and long-range tensile forces acting against tissue deformation may 

be caused by cell aggregation. Mesenchymal cell contraction may change β-catenin 

activity in epithelia and drive WNT signaling leading to the patterning [14]. It is the sum 

of these activators and inhibitors that drive the Turing patterning process within the 

morphogenetic field, whether they are in the form of diffusible morphogens or cell 

adhesive force, and whether they are generated by local or global events (Fig. 1A).  

On top of this local Turing event, when a directed global event breaks the 

symmetry, it can trigger Turing patterning on an asymmetric field [15], manifested as a 

propagating patterning wave. In this issue, Ho et al. [1] analyzed the molecular network 

that generates the periodic feather array and provide new clues for us to understand the 

molecular circuit operating in the propagation of the morphogenetic wave.   

 

FGF 20/ BMP4 feedback loop that facilitates Turing patterning locally 

Ho et al. began by investigating the relationship between the FGF20/BMP4 

pathway and mesenchymal cell aggregation in developing chick feathers. When beads 

soaked with FGF9 protein are placed on the competent skin field, mesenchymal cell 

aggregation and FGF20/BMP4 up-regulation were observed. Importantly, this up-

regulation was inhibited if mesenchymal cell condensation was suppressed by an 

inhibitor for cell migration. This means cell aggregation plays a critical role in inducing 

downstream signals. Further, BMP signals inhibit FGF expression. Thus, FGF signaling 

forms a localized positive feedback loop through mesenchymal cell aggregation and the 

BMP signal works as a long-range inhibitor of FGF expression. This network has the 

basic characteristics required for Turing reaction-diffusion production of periodic 

patterning.  

   

Page 60 of 77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

5 

 

EDA wave as the global event 

Based on the observed order of feather appearance in chicken embryos, the 

authors asked how the regular periodic pattern is formed. A computer simulation based 

on their findings suggests the existence of a traveling wave interacting with the Turing 

model factors could produce the highly ordered hexagonal feather array, and sequential 

feather formation from the midline to the lateral edge of the skin. When cell migration is 

suppressed transiently ex vivo, the order of feather array was distorted, suggesting the 

traveling wave is important in organizing molecular signaling and cell aggregation for 

feather patterning. 

What is the cellular and molecular bases of this traveling wave? Recent studies 

imply that mechanical properties may play a role in feather array formation [13]. To 

evaluate whether mechanical force is the basis of the global wave, Ho et al. cut a piece 

of the skin explant and kept it away from the scaffold to allow the explant to contract in 

in vitro culture. Local tissue contraction did not change the position and the timing of 

feather formation, implying mechanical force is not the global wave and different factors 

are required to guide the propagation of the feather forming wave. 

The mRNA expression of Ectodysplasin (EDA) suggests it may be a candidate 

[16]. It first emerges in the midline as a longitudinal stripe, then spreads bilaterally. EDA 

is a diffusible protein and is shown to induce FGF20 expression through binding of the 

EDA receptor (EDAR). In this process, beta-catenin (CTNNB1) was observed to be 

expressed globally in the dorsal skin, defining the morphogenetic field [6]. As the EDA 

wave progresses laterally, the global CTNNB1 expression regresses, and is replaced by 

enhanced CTNNB1 expression in each feather primordium that forms from the midline 

to the lateral edge. This moving wave front helps define the precise position of newly 

formed feather primordia.    

When the EDA pathway is upregulated, width of FGF20 expression region is 

increased. Conversely, down-regulation of the EDA pathway decreased the width of the 

FGF 20 expression zone. Interestingly, in FGF20 chicken mutant skin, the EDA wave is 

still observed. Therefore, FGF20 signaling is not required for global wave propagation.  

 Cell density has been shown to set up the threshold of feather formation (Fig. 

1B). Using the skin reconstitution experiments with different mesenchymal cell density, 

feather germs start to emerge when the cell density reaches a threshold to launch Turing 

patterning. But the hexagonal-like feather array is not reached until feather germs reach 

the highest packaging density [6]. They further investigated the interaction between EDA 

waves and mesenchymal cell density (Fig. 1C). Reducing cell density by inhibiting cell 

proliferation led to a narrower feather tract, yet the EDA expression wave was not 
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affected. Thus, mesenchymal cell density does not control the molecular wave. Yet, EDA 

seemingly affects the mesenchymal cell property that senses the environment. 

Interestingly, activation of EDA appears to allow mesenchymal cells to initiate periodic 

patterning at lower cell density. Thus, mesenchymal cells can sense their environment 

(cell density in this case) but their function (periodic patterning) is regulated by the 

chemical factor, EDA. 

 

Cell adhesion and a mechano-chemical coupling loop    

Mechanical force has now been shown to be one of the driving forces in 

development. Cell growth, as it increases cell density, generates mechanical stress in 

the environment surrounding the growing cell. These mechanical interactions are shown 

to be essential for the morphogenetic process [17]. Feather primordium formation is 

characterized by increased cell density and cell migration, which leads to dermal 

condensation. The increase in cell density can be achieved by cell proliferation or cell 

clustering. In cell clustering, cells migrate and adhere to form condensations. When 

Latrunculin A, an inhibitor of actin filament polymerization, abrogated cell migration by 

hampering force generation, it in turns disrupted primordium formation. In feathers, N-

CAM serves as one of the adhesion molecules mediating dermal condensation formation 

[6]. Directional cell migration also plays a key driving force behind hair placode 

morphogenesis during mouse skin development [18]. Externally applied force via cell 

constraint, activates Pax9 in a mesenchymal condensation during embryonic tooth germ 

formation [19]. Together these findings show that mechanical force, achieved through 

high cell density, cell migration and / or adhesion, could serve as an activator that turns 

on key signals required to engage cell collectives in Turing patterning. We can also state 

that mechanical force contributes to the side of Turing activator, and it is the sum of 

Turing activator and inhibitors that cells use to make decisions on whether to enter Turing 

patterning (Fig. 1A). Thus, this is a chemo-mechanical coupling event that should be 

fundamentally observed in many other model systems.  

 

Irregular feather patterns on the skin of flightless birds: emus and ostriches  

Ho et al. then compare the distribution of feather buds on the trunk of flightless 

birds. Feather buds on ostrich and emu embryos tend to show less ordered feather 

arrays as compared with those in flying birds. Further analyses showed ostrich embryos 

display no EDA wave, which seems to be the reason for less ordered feather patterns. 

In emus, the mechanism appears to be different. Emu skin loses EDA wave’s guidance 
of patterning, but it still effectively shows defined feather tracts. We hence reason that a 
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defect on the mesenchymal cell during early pattern formation may play a greater role 

here. In emus, the densification of mesenchymal cells is extremely delayed, missing the 

timing to interact with molecular factors. Thus, ostriches and emus may have 

independently acquired different ways to keep their irregular feather arrays. This irregular 

periodic patterning may be due to the lower demand to acquire regularly arranged 

contour feathers required for flight. Thus, Turing patterning can form in combination or 

not in combination with a global traveling wave to have different feather array patterns 

(Fig. 2).   

 

Outlook   

The periodic feather arrays are formed by local cell-cell interactions that satisfy 

the requirements needed for Turing patterning. This system can define the periodicity of 

the pattern but cannot set the specific feather array pattern. Global mechanisms such as 

traveling waves that traverse the whole skin generate the timing and positioning of 

patterning within a morphogenetic field.  

Biological waves act at many levels in living systems: Calcium ion waves after 

frog egg fertilization, actin assembly waves in cell migration, cAMP waves leading to 

slime mold pattern formation, etc. Given that our body is composed of highly-ordered 

tissues, a combination of local and global control may be a fundamental process to 

reinforce the accuracy and robustness of morphogenesis. 

This work has nicely presented the molecular components of the global wave 

in feather array formation, and how the global wave is coupled to the local Turing 

patterning process. They also elegantly use emu and ostrich skin to contrast the 

different patterning mechanisms. Yet there are also many unsolved questions. For 

example, the authors did not explore how the EDA wave propagates. How EDA 

modulates the threshold of mesenchymal cells in the context of mechano-chemical 

coupling will need to be elaborated in future studies. How do mesenchymal cells sense 

the environment? When will the EDA wave stop and how the tract boundaries are set 

are also interesting unsolved questions. This paper is a good step toward 

understanding these wonderful biological examples of periodic pattern formation. 
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Figure legends 

 

Fig 1. Turing model and its molecular cellular mechanisms. 

(A) Hypothetical molecular network generating Turing patterns. In the short range, an 

activator (A) enhances its own production and that of an inhibitor (I). In the long range, 

the inhibitor suppresses the production of the activator. Right figures are examples of 

resulting Turing patterns. Molecular factors and cellular interactions involved in the 

Turing model are summarized in the table. (B) Reconstitution of skin explants exhibit 

feather bud (red circles) formation depending on the mesenchymal cell density. There 

is a cell density threshold required to initiate bud formation and a cell density threshold 

required to reach maximum bud density (red line). (C) A travelling EDA wave (blue) 

moving in the medial-lateral direction (x axis) at each time point (T1-3). EDA signaling 

adds to activator, decreases the threshold (red line) of required mesenchymal cell 

density (y axis) to initiate feather bud formation. Red broken circles and red circles 

present feather buds during and after patterning, respectively.  

 

Fig 2. Feather array formation with and without a global wave. 

(A) In the reconstituting skin explant, the morphogenetic field (blue) are static, leading 

to the simultaneous formation of a less-ordered feather (red circle) array. (B) In 

flightless birds, this less-ordered feather array is formed due to the static 

morphogenetic field. (C) In in vivo flight birds, the high-ordered feather array is formed 

sequentially from the midline to lateral regions by the morphogenetic waves that travel 

bilaterally. 
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Abstract 

 

Periodic patterning represents a fundamental process in tissue morphogenesis. In 

chicken dorsal skin, feather formation starts from the midline, then the morphogenetic 

wave propagates bilaterally, leaving a regular hexagonal array of feather germs. Yet, in 

vitro reconstitution showed feather germs appear simultaneously, leading to the 

hypothesis that the feather-forming wave results from the coupling of local Turing 

patterning processes with an unidentified global event. In this issue, Ho et al. (1), showed 

such a global event in chicken feathers involves a spreading EDA wave and FGF20-cell 

aggregate-based mechano-chemical coupling. Interestingly, in flightless birds, feather 

germs form without waves are irregularly positioned.  
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Regular periodic feather patterns on the chicken skin 

Animal integuments exhibit periodic patterns in spots, stripes or mazes, which 

are made of pigment domains, hairs or feathers. In the developing chicken embryo, one 

of the most fascinating phenomena is that feather buds begin to form at the dorsal midline 

around embryonic day 6, then propagate bilaterally toward the flank, leaving a highly 

ordered array of feather germs arranged in a hexagonal pattern after about three days 

[2–4].  

Is this patterning process a playout of a molecular blueprint (like in Drosophila) 

or the result of stochastic local interactions? Perturbation experiments leading to altered 

patterns suggest the system is plastic [5,6] and skin progenitors are not pre-determined 

to be a bud or an interbud cell. For local interactions, one fundamental theory is based 

on Turing’s reaction-diffusion) model [7,8]. Turing showed hypothetical chemical 

reactions could form periodic structures spontaneously in a situation where an activator 

activates its own production and a long-range inhibitor that represses the activator. When 

the inhibitor diffusion rate is much larger than that of activator, those chemicals are 

distributed heterogeneously, forming periodic patterns such as spots and stripes.  

 

In feathers, FGF and BMP were shown to function as activators and inhibitors 

in Turing patterning [9]. Because the original Turing model assumes the initial condition 

is randomized, the resulting periodic patterns can vary stochastically. How does the 

regular hexagonal pattern happen? Experiments using reconstitution of a feather 

epithelium with dissociated mesenchymal cells help dissect the process, and suggest 

the propagation of the feather forming wave results from the combination of a local Turing 

patterning process with a global signaling event [6]. In the in vitro experiment, the whole 

skin explant is a morphogenetic field. In vivo, with constraints imposed by the global 

event, a narrow stripe of the propagating morphogenetic field is the only place that can 

support periodic patterning which later spreads bilaterally, thus giving the orderly 

appearance. However, the cellular and molecular basis of the global event and how the 

global event is coupled to the local Turing events were not identified previously.  

 

Several more parameters must be considered when one thinks about the local 

interactions among skin progenitors. One being the intrinsic factors, which 

predetermines the responsive threshold of a cell, meaning cells must be in a competent 

state to respond to the activator and inhibitors in the environment. Molecularly this can 

be translated as the number of morphogen receptors and the sensitivity threshold (e.g., 
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FGF, BMP receptor, epigenetic states, etc.) or the amount of adhesion molecules 

expressed on the progenitor cell surface. The other is the extrinsic factors, including the 

amounts of morphogens (e.g., Wnt, FGF, BMP) or extracellular matrix molecules. These 

factors have to be within the right ratios and distribution to allow cells to launch Turing 

patterning. 

 

Recently, the Turing concept has also been expanded beyond diffusible 

morphogens, and cell-cell adhesion or repulsion can mediate the activation or inhibitory 

function to reach Turing patterning without diffusion [10–12]. In the feather system, 

dynamic mesenchymal cell migration was observed [13] and local aggregation of 

mesenchymal cells and long-range tensile forces acting against tissue deformation may 

be caused by cell aggregation. Mesenchymal cell contraction may change β-catenin 

activity in epithelia and drive WNT signaling leading to the patterning [14]. It is the sum 

of these activators and inhibitors that drive the Turing patterning process within the 

morphogenetic field, whether they are in the form of diffusible morphogens or cell 

adhesive force, and whether they are generated by local or global events (Fig. 1A).  

On top of this local Turing event, when a directed global event breaks the 

symmetry, it can trigger Turing patterning on an asymmetric field [15], manifested as a 

propagating patterning wave. In this issue, Ho et al. [1] analyzed the molecular network 

that generates the periodic feather array and provide new clues for us to understand the 

molecular circuit operating in the propagation of the morphogenetic wave.   

 

FGF 20/ BMP4 feedback loop that facilitates Turing patterning locally 

Ho et al. began by investigating the relationship between the FGF20/BMP4 

pathway and mesenchymal cell aggregation in developing chick feathers. When beads 

soaked with FGF9 protein are placed on the competent skin field, mesenchymal cell 

aggregation and FGF20/BMP4 up-regulation were observed. Importantly, this up-

regulation was inhibited if mesenchymal cell condensation was suppressed by an 

inhibitor for cell migration. This means cell aggregation plays a critical role in inducing 

downstream signals. Further, BMP signals inhibit FGF expression. Thus, FGF signaling 

forms a localized positive feedback loop through mesenchymal cell aggregation and the 

BMP signal works as a long-range inhibitor of FGF expression. This network has the 

basic characteristics required for Turing reaction-diffusion production of periodic 

patterning.  

   

EDA wave as the global event 
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Based on the observed order of feather appearance in chicken embryos, the 

authors asked how the regular periodic pattern is formed. A computer simulation based 

on their findings suggests the existence of a traveling wave interacting with the Turing 

model factors could produce the highly ordered hexagonal feather array, and sequential 

feather formation from the midline to the lateral edge of the skin. When cell migration is 

suppressed transiently ex vivo, the order of feather array was distorted, suggesting the 

traveling wave is important in organizing molecular signaling and cell aggregation for 

feather patterning. 

What is the cellular and molecular bases of this traveling wave? Recent studies 

imply that mechanical properties may play a role in feather array formation [13]. To 

evaluate whether mechanical force is the basis of the global wave, Ho et al. cut a piece 

of the skin explant and kept it away from the scaffold to allow the explant to contract in 

in vitro culture. Local tissue contraction did not change the position and the timing of 

feather formation, implying mechanical force is not the global wave and different factors 

are required to guide the propagation of the feather forming wave. 

The mRNA expression of Ectodysplasin (EDA) suggests it may be a candidate 

[16]. It first emerges in the midline as a longitudinal stripe, then spreads bilaterally. EDA 

is a diffusible protein and is shown to induce FGF20 expression through binding of the 

EDA receptor (EDAR). In this process, beta-catenin (CTNNB1) was observed to be 

expressed globally in the dorsal skin, defining the morphogenetic field [6]. As the EDA 

wave progresses laterally, the global CTNNB1 expression regresses, and is replaced by 

enhanced CTNNB1 expression in each feather primordium that forms from the midline 

to the lateral edge. This moving wave front helps define the precise position of newly 

formed feather primordia.    

When the EDA pathway is upregulated, width of FGF20 expression region is 

increased. Conversely, down-regulation of the EDA pathway decreased the width of the 

FGF 20 expression zone. Interestingly, in FGF20 chicken mutant skin, the EDA wave is 

still observed. Therefore, FGF20 signaling is not required for global wave propagation.  

 Cell density has been shown to set up the threshold of feather formation. Using 

the skin reconstitution experiments with different mesenchymal cell density, feather 

germs start to emerge when the cell density reaches a threshold to launch Turing 

patterning. But the hexagonal-like feather array is not reached until feather germs reach 

the highest packaging density [6]. They further investigated the interaction between EDA 

waves and mesenchymal cell density (Fig. 1C). Reducing cell density by inhibiting cell 

proliferation led to a narrower feather tract, yet the EDA expression wave was not 

affected. Thus, mesenchymal cell density does not control the molecular wave. Yet, EDA 
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seemingly affects the mesenchymal cell property that senses the environment. 

Interestingly, activation of EDA appears to allow mesenchymal cells to initiate periodic 

patterning at lower cell density. Thus, mesenchymal cells can sense their environment 

(cell density in this case) but their function (periodic patterning) is regulated by the 

chemical factor, EDA. 

 

Cell adhesion and a mechano-chemical coupling loop    

Mechanical force has now been shown to be one of the driving forces in 

development. Cell growth, as it increases cell density, generates mechanical stress in 

the environment surrounding the growing cell. These mechanical interactions are shown 

to be essential for the morphogenetic process [17]. Feather primordium formation is 

characterized by increased cell density and cell migration, which leads to dermal 

condensation. The increase in cell density can be achieved by cell proliferation or cell 

clustering. In cell clustering, cells migrate and adhere to form condensations. When 

Latrunculin A, an inhibitor of actin filament polymerization, abrogated cell migration by 

hampering force generation, it in turns disrupted primordium formation. In feathers, N-

CAM serves as one of the adhesion molecules mediating dermal condensation formation 

[6]. Directional cell migration also plays a key driving force behind hair placode 

morphogenesis during mouse skin development [18]. Externally applied force via cell 

constraint, activates Pax9 in a mesenchymal condensation during embryonic tooth germ 

formation [19]. Together these findings show that mechanical force, achieved through 

high cell density, cell migration and / or adhesion, could serve as an activator that turns 

on key signals required to engage cell collectives in Turing patterning. We can also state 

that mechanical force contributes to the side of Turing activator, and it is the sum of 

Turing activator and inhibitors that cells use to make decisions on whether to enter Turing 

patterning (Fig. 1A). Thus, this is a chemo-mechanical coupling event that should be 

fundamentally observed in many other model systems.  

 

Irregular feather patterns on the skin of flightless birds: emus and ostriches  

Ho et al. then compare the distribution of feather buds on the trunk of flightless 

birds. Feather buds on ostrich and emu embryos tend to show less ordered feather 

arrays as compared with those in flying birds. Further analyses showed ostrich embryos 

display no EDA wave, which seems to be the reason for less ordered feather patterns. 

In emus, the mechanism appears to be different. Emu skin loses EDA wave’s guidance 
of patterning, but it still effectively shows defined feather tracts. We hence reason that a 

defect on the mesenchymal cell during early pattern formation may play a greater role 
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here. In emus, the densification of mesenchymal cells is extremely delayed, missing the 

timing to interact with molecular factors. Thus, ostriches and emus may have 

independently acquired different ways to keep their irregular feather arrays. This irregular 

periodic patterning may be due to the lower demand to acquire regularly arranged 

contour feathers required for flight. Thus, Turing patterning can form in combination or 

not in combination with a global traveling wave to have different feather array patterns 

(Fig. 2).   

 

Outlook   

The periodic feather arrays are formed by local cell-cell interactions that satisfy 

the requirements needed for Turing patterning. This system can define the periodicity of 

the pattern but cannot set the specific feather array pattern. Global mechanisms such as 

traveling waves that traverse the whole skin generate the timing and positioning of 

patterning within a morphogenetic field.  

Biological waves act at many levels in living systems: Calcium ion waves after 

frog egg fertilization, actin assembly waves in cell migration, cAMP waves leading to 

slime mold pattern formation, etc. Given that our body is composed of highly-ordered 

tissues, a combination of local and global control may be a fundamental process to 

reinforce the accuracy and robustness of morphogenesis. 

This work has nicely presented the molecular components of the global wave 

in feather array formation, and how the global wave is coupled to the local Turing 

patterning process. They also elegantly use emu and ostrich skin to contrast the 

different patterning mechanisms. Yet there are also many unsolved questions. For 

example, the authors did not explore how the EDA wave propagates. How EDA 

modulates the threshold of mesenchymal cells in the context of mechano-chemical 

coupling will need to be elaborated in future studies. How do mesenchymal cells sense 

the environment? When will the EDA wave stop and how the tract boundaries are set 

are also interesting unsolved questions. This paper is a good step toward 

understanding these wonderful biological examples of periodic pattern formation. 
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Figure legends 

 

Fig 1. Turing model and its molecular cellular mechanisms. 

(A) Hypothetical molecular network generating Turing patterns. In the short range, an 

activator (A) enhances its own production and that of an inhibitor (I). In the long range, 

the inhibitor suppresses the production of the activator. Right figures are examples of 

resulting Turing patterns. Molecular factors and cellular interactions involved in the 

Turing model are summarized in the table. (B) Reconstitution of skin explants exhibit 

feather bud (red circles) formation depending on the mesenchymal cell density. There 

is a cell density threshold required to initiate bud formation and a cell density threshold 

required to reach maximum bud density (red line). (C) A travelling EDA wave (blue) 

moving in the medial-lateral direction (x axis) at each time point (T1-3). EDA signaling 

adds to activator, decreases the threshold (red line) of required mesenchymal cell 

density (y axis) to initiate feather bud formation. Red broken circles and red circles 

present feather buds during and after patterning, respectively.  

 

Fig 2. Feather array formation with and without a global wave. 

(A) In the reconstituting skin explant, the morphogenetic field (blue) are static, leading 

to the simultaneous formation of a less-ordered feather (red circle) array. (B) In 

flightless birds, this less-ordered feather array is formed due to the static 

morphogenetic field. (C) In in vivo flight birds, the high-ordered feather array is formed 

sequentially from the midline to lateral regions by the morphogenetic waves that travel 

bilaterally. 
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