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ABSTRACT: 
Introduction – Myrtus communis L. (Myrtaceae) is a self-seeded shrub, widespread in Sardinia, with anti-inflammatory, 
antiseptic, antimicrobial, hypoglycemic and balsamic properties. Its berries, employed for the production of sweet myrtle 
liqueur, are characterised by a high content of bioactive polyphenols, mainly anthocyanins. Anthocyanin composition is quite 
specific for vegetables/fruits and can be used as a fingerprint to determine the authenticity, geographical origin and quality of 
raw materials, products and extracts.  
Objective – To rapidly analyse and determine anthocyanins in 17 samples of Myrtus communis berries by developing a 
platform based on the integration of UHPLC–MS/MS quantitative data and multivariate analysis with the aim of extracting the 
most infor-mation possible from the data.  
Methodology – UHPLC-ESI-MS/MS methods, working in positive ion mode, were performed for the detection and determination of 
target compounds in multiple reaction monitoring (MRM) mode. Optimal chromatographic conditions were achieved using an XSelect 
HSS T3 column and a gradient elution with 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Principal com-  
ponent analysis (PCA) was applied to the quantitative data to correlate and discriminate 17 geographical collections of 
Myrtus communis.  
Results – The developed quantitative method was reliable, sensitive and specific and was successfully applied to the quantifica-tion 
of 17 anthocyanins. Peonidin-3-O-glucoside was the most abundant compound in all the extracts investigated. Conclusion – The 
developed methodology allows the identification of quali-quantitative differences among M. communis samples 

and thus defines the quality and value of this raw material for marketed products. Moreover, the reported data have an imme- 
diate commercial value due to the current interest in developing antioxidant nutraceuticals from Mediterranean plants, 
including Sardinian Myrtus communis.  
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Introduction 
 
Myrtus communis L. (Myrtaceae), the common myrtle, is an 

ever-green shrub that is widely distributed in the 

Mediterranean area, where it self-propagates. In Italy, myrtle 

is typically found in coastal regions and is one of the most 

characteristic species of Sardinia (Kirtikar and Basu, 1988; 

Nassar et al., 2010; Asif et al., 2011; Melito et al., 2014).  
Previous authors have described numerous varieties and 

forms for the species Myrtus communis (Picci and Atzei, 1996) 

and, in fact, two subspecies are reported: M. communis ssp. 

Communis and M. communis ssp. Tarentina (L.) Nyman (Fiori, 

1925). Our sampling took into account only the typical Sardinian 

subspecies M. communis ssp. Communis. 
Different parts of the plant are used for medicinal, food, spice 

and cosmetic purposes. Myrtle extracts obtained from leaves 
and berries are known to possess anti-inflammatory, antiseptic, 

 
 
antimicrobial, antihaemorrhagic, hypoglycemic, disinfectant and 

balsamic properties (Alipour et al., 2014). The leaves contain flavo-

noids (i.e. quercetin, catechin and myricetin derivatives), and  
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essential oils (Yoshimura et al., 2008; Aidi Wannes et al., 2010; 

Ghasemi et al., 2011; Petretto et al., 2016). In Sardinia, the 

leaves and berries of this plant are employed for the production 

of a sweet myrtle liqueur, which is also reported to exhibit 

strong antioxidant activity (Tuberoso et al., 2010). The berries 

are characterised by a high content of polyphenols, primarily 

antho-cyanins, which are strongly associated with the red-

purple colour of the liqueur (Aidi Wannes et al., 2010; Barboni 

et al., 2010; Sumbul et al., 2012). 

The production process of the “Myrtle Liqueur” consists of an 

hydroalcoholic infusion (> 40°) of Myrtus communis berries for not 

less than 15 days (AA.VV., 1998). The production of myrtle li-queur 

is currently more than three million bottles per year, and this liqueur 

is becoming one of the most typical Sardinian products exported 

abroad. Thus, because of increasing consumer demand, coupled 

with the expectation of quality products, a rigorous set of “Product 

Specifications of Production” were established by the Producers’ 

Association of Traditional Myrtle from Sardinia. These product 

specifications allow the certification of the quality, authen-ticity and 

geographical origin of the myrtle liqueur (Franco et al., 2002; 

Montoro et al., 2006a, 2006b; Barboni et al., 2010).  
The anthocyanin composition of different vegetables and 

fruits is quite specific and can be used as a fingerprint to 

determine the authenticity, origin, quality and safety of raw 

materials, extracts, and products. In particular, increasing 

interest has been focused on establishing a clear 

geographical origin for raw materials and food products 

(Montoro et al., 2006a; Stoj et al., 2006; Krüger et al., 2013).  
The currently employed methods of establishing composition 

are based on spectroscopic, biological, separation and electro-

chemical procedures, but recently, much interest has been 

focused on the application of sophisticated analytical 

techniques, such as liquid chromatography mass spectrometry 

(LC–MS) analy-ses, in conjunction with statistical data analysis 

methods (López-Díez et al., 2003; Pereira et al., 2005; Luykx 

and van Ruth, 2008; Piras et al., 2009). 

High-performance liquid chromatography coupled to mass 

spectrometry (HPLC–MS) is the most frequently used technique 

for analysing anthocyanins. HPLC allows for the powerful and 

rapid separation of anthocyanins, and MS provides immediate 

and highly sensitive detection (Fulcrand et al., 1994; Revilla et 

al., 1999; da Costa et al., 2000; Flamini, 2003). HPLC–MS has 

become an important tool for anthocyanin characterisation, as 

this tech-nique provides both a mass spectrum of intact 

molecular and frag-ment ions and retention times to elucidate 

structural information without requiring the isolation of 

compounds (Lopes-da-Silva et al., 2002).  
In this context, the aim of the present work was to develop an 

integrated reliable method that employs ultra-high performance 

liquid chromatography-triple quadrupole linear ion trap tandem 

mass spectrometry (UHPLC-QTRAP-MS/MS) techniques and 

princi-pal component analysis (PCA) for a comprehensive study 

on an-thocyanins occurring in a large number of Myrtus 

communis berries collected from different areas of Sardinia.  
UHPLC coupled with hybrid linear ion trap/triple quadrupole 

detection provides efficient separation and high selectivity for 

both qualitative and quantitative analyses. The method was also 

validated according to the guidelines of the European Medicines 

Agency (EMEA) relating to the validation of analytical methods 

(EMEA, ). Furthermore, the data were analysed using PCA to 

explore and visualise the correlations and discriminations be-

tween 17 collections of Myrtus communis representing different  

 
geographical areas of Sardinia and to identify individual markers 

contributing to the classification. Chemometric analysis has been 

shown to be able to classify samples based on different tech-niques 

(NIR, NMR, GC, etc.), and to be an effective method for de-

termining food authenticity and the geographical origin of botanical 

matrices (Bondia-Pons et al., 2014; Petretto et al. 2015; Tomita et 

al., 2015; Wolfender et al., 2015). Much less literature data are 

available on the use of LC–MS/MS targeted analysis data in 

combination with PCA to give a rapid screening system. 

 

Experimental 
 
Reagents and chemicals 
 
Solvents used for extraction, LC–MS grade methanol, acetonitrile and 

formic acid were from Sigma-Aldrich Chemical Company (St Louis, MO, 

USA). HPLC grade water (18 mΩ) was prepared by using a Millipore 

(Bed-ford, MA, USA) Milli-Q purification system. Standards of cyanidin, 

delphinidin, malvidin, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, 

cyanidin-3,5-di-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-

glu-coside, pelargonidin-3-O-glucoside chloride were purchased from 

Extrasynthese (Lyon, France). 

 

Sampling sites 
 
Myrtus communis berries analysed in this work were collected at the 

follow-ing 17 sites in Sardinia: San Gavino Monreale ( gm), 

Montevecchio (mv), Morgongiori (mg), Paulilatino (p), Abbasanta (ab), 

Mara (m), Alghero (al), Stintino (st), Porto Torres (pt), Sassari (ss), 

Trinità d’Agultu (t), Santa Teresa di Gallura (tg), La Maddalena (lm), 

Olbia (o), Sant’Antonio di Gallura (ag), Luras (l), Bortigiadas (b).  
The berries were collected in February 2013 from wild shrubs 

and imme-diately extracted. Plants were identified by Dr. M. 

Chessa; voucher speci-mens were dried and deposited at the 

Erbarium SASSA of Sassari University at number 514. 

 

Sampling extraction and preparation 
 
A modified extraction procedure was developed on the basis of that re-ported 

by Montoro et al. (2006a) based on the traditional recipe for the preparation of 

the liqueur. In brief, fresh berries were extracted by using ethanol/water 

(70:30 v/v; sample to solvent ratio 13:25 w/v) under ultra-sound agitation for 1 

h and then stored in the dark overnight. Samples were filtered and the solvent 

was completely removed using a rotary evaporator under vacuum at 30 °C in 

the dark. The dried samples were dissolved in ul-trapure water with the same 

volume of extraction and filtered through 0.20-μm syringe PVDF filters 

(Whatmann International Ltd., Maidstone, UK).  
For qualitative analysis, each extract was diluted 1:100 with 

water and a 20 μL aliquot injected into the analytical system. For 

quantitative determi-nation, each extract was diluted 1:100 with 

water and a 5 μL aliquot injected into the analytical system; 

determinations were replicated three times each. 

 

ESI-MS and ESI-MS/MS analyses 
 
Full scan electrospray ionisation mass spectrometry (ESI-MS), MS/MS 

and MS3 analyses of standards and samples were performed on an AB 

Sciex API4000 Q-Trap (Foster City, CA, USA) spectrometer. The 

analytical parame-ters were optimised by infusing each standard 

solution (1 μg/mL in meth-anol 50%) into the source at a flow rate of 10 

μL/min. Data were acquired in the positive ion MS, MS/MS and MS3 

modes. Direct infusions of each indi-vidual standard compound were 

used to optimise the multiple reaction monitoring (MRM) conditions, 

which was done automatically by the Analyst 1.6.2 software, and then 

manually checked for selection of the quantifier and qualifier ions. 

 
 



   

 

UHPLC-QTRAP-MS/MS conditions 
 
Qualitative on-line HPLC-ESI-MS/MS analyses of extracts were performed 

using a UHPLC system interfaced to an AB Sciex (Foster City, CA, USA) 

API4000 Q-Trap instrument in ion trap mode. LC analyses were conducted 

using a system equipped with a Flexar UHPLC AS system (Perkin–Elmer, 

Waltham, MA, USA) consisting of degasser, Flexar FX-10 pump, autosampler 

and PE 200 column oven. Samples were injected (5 μL) into an XSelect HSS 

T3 column (Waters, Milford, MA, USA) (100 mm × 2.1 mm i.d., 2.5 μm d). Mo-

bile phase A was water containing 0.1% formic acid while mobile phase B 

was acetonitrile containing 0.1% formic acid. Elution was carried out at 40 °C 

according to the following gradient: 0–0.5 min, isocratic 5% B; 0.5– 19 min, 

linear gradient 5–95% B. The flow rate was 300 μL/min and was injected from 

the chromatograph directly into the ESI source. Qualitative analysis of the 

compounds was performed using IDA (information depen-dent acquisition). 

The IDA method created included an IDA criteria (specify the charge state, 

mass range), enhanced MS scan, enhanced resolution, en-hanced product 

ion scan or MS/MS scan. Enhanced mass spectrometry (EMS) was 

conducted with mass range from m/z 200.0 to 800.0 with a scan rate of 

10000 amu/s. With regard to the criteria for triggering product ion scans, the 

three most intense precursor ion exceeding 5000 cps of each cy-cle were 

triggered for enhanced product ion (EPI) scan. The source temper-ature was 

held at 500 °C, and MS parameters were those optimised for the ESI-MS and 

ESI-MS/MS analyses with ion spray voltage at 5500 V. MS data were 

acquired using the software provided by the manufacturer (Analyst software 

1.6.2), and extracted ion fragmentograms (XIC) were elaborated in order to 

identify anthocyanins from their protonated molecular ions and retention time. 

In the product ion spectra obtained, the predominant fragments relative to 

anthocyanin compounds were chosen to develop the MRM method for 

quantification.  
Quantitative on-line HPLC-ESI-MS/MS analyses were performed using the 

same LC-ESI-MS/MS equipment but with the mass spectrometer having the 

triple quadrupole analyser in MRM mode. Elution was carried out at 41 °C 

according to the following flow and solvent gradient: 0–4 min, isocratic 0% 

solvent B and the flow changes from 300 μL to 350 μL; 4–6 min, linear gra-

dient 0–12% B and the flow achieves 400 μL/min; 6–12 min, linear gradient 

12–20% B and flow constant at 400 μL/min; 16–17 min, linear gradient 20–

100% B and flow retrieves to 300 μL/min. The API 4000 ES source was 

operated in positive ion mode and was tuned by infusing solutions of 

standards (1 μg/μL in methanol 50%) into the source at a flow rate of 10 

μL/min. Retention times and the optimised parameters such as selected  

 
transitions, declustering potential (DP), entrance potential (EP), collision 

energy (CE) and cell exit potential (CXP), for each analyte were listed in 

Table 1. The voltage applied was 5500 V. Data acquisition and 

processing were performed using Analyst software 1.6.2. 

 

Principal component analysis (PCA) 
 
An m × n matrix (where m is the number of samples, and n is the number of 

variables) was used in PCA. Thus, quantitative data of each chemical marker 

were used to define a data set with 17 observation and 51 variables. The 

resulting matrix data was analysed by PCA, performed on the data scaled by 

unit variance with the Factor MineR package of R 2.15.2 software. The 

results of the analysis are presented in term of score and loading plots. 

 

Calibration and quantification of anthocyanins 
 
In order to prepare the calibration plot, a sample (1 mg) of each standard was 

weighed accurately into a 1 mL volumetric flask, dissolved in ethanol 70% 

(v/v) and the volume made up to the mark with ethanol. The resulting stock 

solution was diluted with water in order to obtain reference solutions 

containing 0.1, 1, 5, 10 and 20 μg/mL of external standards.  
The calibration curves, for each compound, were made by linear regres-

sion by plotting the peak area of external standard against their known con-

centrations. The result represents the average of curves performed by three 

injection of each concentration. All quantitative data were elaborated with the 

aid of Analyst software (AB Sciex, Framingham, MA, USA). 

 

Method validation 
 
LC–MS/MS method was validated according to the EMEA 

guidelines relat-ing to the validation of analytical methods (EMEA, ).  
Calibration curves were obtained by plotting the area of external 

stan-dards (ES) against the known concentration of each 

compound, each concentration of standard solutions was analysed 

in triplicate. A good linearity with correlation coefficients (r) in the 

range from 0.9927 to 0.9982 was achieved for all analytes.  
The limit of detection (LOD) and the limit of quantification (LOQ) for each 

target standard compound were determined, under the optimised condi-tions, 

by the serial dilution of a standard solution until the signal-to-noise 
 

 

 

Table 1. LC–MS/MS conditions for quantitation of compounds 1–17 by positive ion MRM 
 

Compound tR(min) Parent ion Fragment ion DP(V) EP(eV) CE(eV) CXP(eV) 
        

1 9.39 627 303 90 14 46 32 

2 9.65 611 287 177 14 55 19 

3 10.01 465 303 181 14 30 21 

4 10.52 449 287 192 12 27 20 

5 10.86 435 303 192 10 25 21 

6 10.95 479 317 172 13 27 21 

7 11.02 419 287 194 11 24 19 

8 11.32 433 271 163 10 28 24 

9 11.39 449 317 124 10 25 22 

10 11.73 463 301 104 11 29 20 

11 11.86 419 287 194 11 24 19 

12 12.01 493 331 94 12 29 21 

13 12.31 449 317 124 10 25 22 

14 12.46 463 331 94 11 24 22 

15 13.69 463 331 94 11 24 22 

16 15.91 611 303 165 14 45 21 

17 17.72 639 331 121 6 29 24   
Note: DP, declustering potential; EP, entrance potential; CE, collision energy; CXP, cell exit potential. 2

5
1

  
 
 



 
.  

 
(S/N) ratios were 3:1 and 10:1, respectively. The LOD for each analyte 

varied from 0.001 to 0.02 μg/mL and LOQ from 0.004 to 0.09 μg/mL, 

indicating that the developed method exhibited good sensitivity.  
Precision of the developed method was evaluated by determination of 

the intraday and interday variations. Three aliquots of each same 

sample were analysed within the same day, and another three aliquots 

of the same sample were analysed over three consecutive days, one for 

each day. Per-centage relative standard deviation (RSD) was used to 

express precision of the method.  
Recovery experiments were performed with the optimised parameters 

to evaluate the extraction efficiency and the analytical method. Standard 

solutions at three different concentration levels (high, middle and low) 

were added in a known amount of sample and analysed by LC-MS/MS 

and then triplicate experiments were performed at each level. Within the 

same day, the recovery (%) ranged from 94.6% to 106.7%, 

demonstrating good recovery and precision. 

 

 

Results and discussion 
 

LC-MS/MS conditions optimisation 
 

Different chromatographic conditions such as column, mobile phase 

and gradient program were tested in order to achieve opti-mal LC 

separation of the analytes in a short analysis time. Among different 

mobile phases examined, 0.1% formic acid in water and 0.1% 

formic acid in acetonitrile were found to produce satisfactory 

separation in a minimum analysis time with excellent resolution, 

peak shape, and mass spectrometric ionisation intensity of the 

analytes. Regarding analytical columns, the best resolution of an-

thocyanins was achieved using a Waters XSelect HSS T3 column 

XP (2.1 mm × 100 mm, 2.5 μm).  
The MS conditions were optimised using reference 

standards of six anthocyanins to achieve optimal MS 

sensitivity for detection and to obtain abundant fragment 

ions for structural elucidation. Due to the presence of a 

positive charge in the chemical structure of anthocyanins, 

good signal sensitivity was obtained in positive ion mode.  

 

UHPLC-ESI-ion trap/MS/MS detection 
 
For qualitative analysis, an IDA method with EMS survey scans and 

enhanced resolution (ER) and EPI scans was developed, allowing 

us to identify anthocyanins using complementary information from 

chromatographic behaviour and mass fragmentation. In ad-dition, 

we compared our MS/MS values and retention times with those 

observed for the analytical standards in LC-ESI-MS/MS anal-yses, 

when available, and/or with those reported in the literature.  
Seventeen anthocyanins, which belonged to the classes of 

cyanidins, delphinidins, malvidins, petunidins, pelargonidins and 

peonidins, were identified in the hydroalcoholic extracts of 

Myrtus communis berries collected from the different areas of 

Sardinia. The MS/MS mode is a useful tool that provides 

information about the aglycone and the corresponding sugar 

unit, based on the ob-served m/z characteristic fragmentation 

values (303 for delphinidin; 287 for cyanidin; 317 for petunidin; 

301 for peonidin; 331 for malvidin and 271 for pelargonidin) 

(Acevedo et al., 2012). Table 2 summarises the individual 

anthocyanin data, including the molecular ions and MS/MS 

fragments obtained using the IDA method.  
Delphinidin-3-O-arabinoside (m/z 435), petunidin-3-O-glucoside 

(m/z 479), petunidin-3-O-arabinoside (m/z 449), peonidin-3-O-glu-

coside (m/z 463) and malvidin-3-O-arabinoside (m/z 463) were fre-

quently identified in myrtle berries, and the presence of these 

compounds was established from the existence of a retention time 

and fragmentation pattern consistent with those reported in the 

literature (Table 2). In addition, the XICs of m/z 419 (cyanidin-3-O-

arabinoside), 449 (petunidin-3-O-arabinoside) and 463 (malvidin-3-

O-arabinoside) exhibited two peaks, suggesting the presence of 

other pentose derivatives (Su, 2012), which have not been re-

ported previously in myrtle berry extracts.  
Cyanidin-3,5-di-O-glucoside, delphinidin-3-O-glucoside, cyanidin-

3-O-glucoside, cyanidin-3-O-arabinoside, pelargonidin-3-O-

glucoside and malvidin-3-O-glucoside were unequivocally identified 

by comparing spectral data with standard reference compounds. All 

of these anthocyanins were frequently identified in berries of Myrtus 
 

 

 
Table 2. Characterisation of anthocyanins constituents in Myrtus communis berries using HPLC-ESI-MS/MS in positive ion mode 

 
    Compound MW MS (m/z) MS/MS Tentative identification 
         

1 626 627 [M]+ 465,303,256.9,229.2 Delphinidin diglucoside 

2 610 611 [M]+ 287 Cyanidin-3,5-di-O-glucosidea 

3 464 465 [M]+ 303,285,257,229,201,187,173,153 Delphinidin-3-O-glucosidea 

4 448 449 [M]+ 287,241,231,213,175,157,149 Cyanidin-3-O-glucosidea 

5 434 435 [M]+ 303,285,257,229,201,173,153 Delphinidin-3-O-arabinoside 

6 478 479 [M]+ 317,302,274,245,217,203 Petunidin-3-O-glucoside 

7 418 419 [M]+ 287,241,213,189,157,137 Cyanidin pentose 

8 432 433 [M]+ 271 Pelargonidin-3-O-glucosidea 

9 448 449 [M]+ 317,302,287,274,245,217,203 Petunidin pentose 

10 462 463 [M]+ 301,286,268,258,229,213,201,187 Peonidin-3-O-glucoside 

11 418 419 [M]+ 287,241,213,189,157,137 Cyanidin-3-O-arabinosidea 

12 492 493 [M]+ 331,315,287,270,242,213,201,179,150 Malvidin-3-O-glucosidea 

13 448 449 [M]+ 317,302,287,274,245,217,203 Petunidin-3-O-arabinoside 

14 462 463 [M]+ 331,315,287,269,242,213,201,179 Malvidin pentose 

15 462 463 [M]+ 331,315,287,269,242,213,201,179 Malvidin-3-O-arabinoside 

16 610 611 [M]+ 464.6,319,303,284.5,228.7,153 Delphinidin coumaroyl glucoside or 
  

17 638 639 [M]+ 

 

delphinidin rutinoside    

  331,315,298.9,287,270.1,242 Malvidin 3-O-p-coumaroylglucoside 

 

 

  aIdentified using corresponding authentic standards.  

  

      

      
       

       

       

         



  

 
communis (Franco et al., 2002; Montoro et al., 2006a; Tuberoso et 

al., 2010; Piras et al., 2009), except for pelargonidin-3-O-glucoside, 

which, to our knowledge, has not been reported previously in M. 

communis. Of particular interest is the presence of peaks that have 

mass spectra ascribable to delphinidin diglucoside (m/z 627), 

malvidin coumaroyl glucoside (m/z 639) and delphinidin coumaroyl 

glucoside/ delphinidin rutinoside (m/z 611), respectively. 

 
The pseudo-molecular ion at m/z 627 exhibited an MS/MS frag-

mentation pattern with two major ion peaks that correspond to m/z 

465 (loss of 162 Da relative to the hexose residue) and m/z 303 

(subsequent loss of a second hexose residue); other minor product 

ions were 257 and 229, suggesting a delphinidin deriva-tive. Based 

on this fragmentation pattern, we hypothesised that this compound 

might correspond to delphinidin diglucoside. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  UHPLC chromatographic separation of a myrtle extract.  

 
 
 

Table 3. Quantitative results for anthocyanins 1–17 detected in extracts of Myrtus communis berries [μg/mL ± standard 

deviation (SD) of extract] 

  1a  2  3  4  5a  6b  7c 8 9b 
                 

gm 4.02 ± 0.38 0.27 ± 0.02 199.67 ± 11.06 110.37 ± 12.37 0.04 ± 0.01 0.46 ± 0.04 4.25 ± 0.37 0.08 ± 0.01 0.26 ± 0.04 

mv 1.34 ± 0.05 0.11 ± 0.06 22.07 ± 1.91 30.13 ± 10.68 ND  ND  0.72 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 

mg 0.40 ± 0.18 0.04 ± 0.02 5.59 ± 0.25 12.67 ± 3.15 ND  ND  0.65 ± 0.08 0.01 ± 0.01 0.02 ± 0.01 

p 5.24 ± 0.15 0.33 ± 0.05 179.33 ± 6.66 103.60 ± 6.77 ND  0.28 ± 0.03 2.24 ± 0.11 0.06 ± 0.01 0.13 ± 0.01 

ab 1.24 ± 0.16 0.25 ± 0.16 107.33 ± 7.57 119.00 ± 15.72 ND  0.14 ± 0.01 3.61 ± 0.29 0.07 ± 0.01 0.15 ± 0.01 

m 3.87 ± 0.35 0.21 ± 0.04 174.00 ± 8.19 117.07 ± 27.75 0.02 ± 0.01 0.33 ± 0.03 2.18 ± 0.10 0.04 ± 0.01 0.22 ± 0.02 

a 0.79 ± 0.09 0.17 ± 0.02 27.47 ± 2.06 66.77 ± 7.26 ND  0.19 ± 0.03 3.18 ± 0.08 0.05 ± 0.02 0.19 ± 0.02 

st 1.17 ± 0.25 0.10 ± 0.01 88.13 ± 6.55 87.73 ± 13.23 0.02 ± 0.01 0.21 ± 0.03 1.56 ± 0.05 0.04 ± 0.01 0.08 ± 0.02 

pt 2.36 ± 0.17 ND  103.17 ± 6.93 72.9 ± 8.26 0.02 ± 0.01 0.19 ± 0.03 0.36 ± 0.56 0.05 ± 0.01 0.06 ± 0.01 

ss 2.21 ± 0.14 0.14 ± 0.07 146 ± 7.81 80.83 ± 16.50 ND  0.23 ± 0.01 1.8 ± 0.14 0.04 ± 0.01 0.19 ± 0.02 

t 0.61 ± 0.05 0.08 ± 0.02 10.6 ± 0.10 16.77 ± 6.01 ND  ND  0.31 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 

tg 3.6 ± 0.24 ND  141.33 ± 3.21 118.4 ± 23.49 0.07 ± 0.01 0.49 ± 0.05 0.69 ± 1.15 0.06 ± 0.01 0.14 ± 0.02 

lm 1.86 ± 0.09 0.13 ± 0.04 134 ± 11.53 71.17 ± 10.36 0.02 ± 0.01 0.17 ± 0.01 1.48 ± 0.04 0.05 ± 0.01 0.08 ± 0.02 

o 3.84 ± 0.42 0.17 ± 0.09 191 ± 3.46 118.37 ± 31.61 0.04 ± 0.02 0.32 ± 0.02 1.98 ± 0.24 0.06 ± 0.01 0.18 ± 0.01 

ag 2.21 ± 0.30 0.15 ± 0.01 80.1 ± 7.79 47.4 ± 12.25 ND  0.1 ± 0.02 0.87 ± 0.04 0.02 ± 0.01 0.07 ± 0.02 

l 1.53 ± 0.11 0.17 ± 0.03 94 ± 7.55 71.13 ± 3.18 ND  0.16 ± 0.01 0.89 ± 0.06 0.03 ± 0.01 0.09 ± 0.01 

b 4.96 ± 0.09 0.24 ± 0.03 175.33 ± 10.69 144.67 ± 30.66 0.04 ± 0.01 0.31 ± 0.02 3.31 ± 0.19 0.06 ± 0.01 0.21 ± 0.02 
 

Note: Each data is the mean of three replicates (mean ± SD). ND, not detected (below LOD). 
aQuantified as equivalent of delphinidin-3-O-glucoside (3).  
bQuantified as equivalent of malvidin-3-O-glucoside (12). 
cQuantified as equivalent of cyanidin-3-O-arabinoside (11). 
dQuantified as equivalent of cyanidin-3-O-glucoside (4). 2
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In the LC-ESI-MS/MS spectrum, the parent ion at m/z value 

of 639 exhibited a major fragment ion at m/z 331 [M-308]+, 

which could correspond to a neutral loss of a rutinoside or 

coumaroylglucose moiety, and other minor ion peaks at m/z 

315, 287, 270.1 and 242, which are characteristic fragmentation 

values of malvidin derivatives. Due to the long retention time of 

this compound it is most likely to be coumaroylglucoside. 

Furthermore, a previous work by Franco et al. (2002), reported 

the presence of malvidin-3-monoglucoside p-coumarate in 

commercial red myrtle liqueur. In addition, the fragmentation 

pattern is consistent with previously reported data (Downey and 

Rochfort, 2008; Acevedo et al., 2012), suggesting that the 

identity of this compound is malvidin 3-O-p-coumaroylglucoside.  
The pseudo-molecular ion at m/z 611 yielded MS/MS ions at m/z 465 

and 303 which have 146 and 162 unit difference, respectively. The loss 

of 162 amu could correspond to a glucose or caffeoyl unit, while the loss 

of 146 could correspond to a coumaroyl or rhamnosyl moiety. Other 

minor peaks were observed at m/z 285, 229 and 153, suggesting a 

delphinidin derivative. In this case, the long retention time, close to that 

of yet reported malvidin-3-O-p-coumaroylglucoside, could suggest that 

identity of this compound is delphinidin coumaroyl glucoside. However, 

comparison of experimental fragmentation pat-tern with those reported 

in the literature suggests the identity of this compound could be 

delphinidin rutinoside (Wu and Prior, 2005; Touriño et al., 2008; 

Arapitsas et al., 2012). 

 

UHPLC-ESI/triple quadrupole MS/MS with multiple 

reaction monitoring (MRM) 
 

In the second stage of this study, to obtain accurate data concerning the 

variations in anthocyanin content among myrtle berry extracts, a 

quantitative UHPLC-ESI-MS/MS (MRM) analysis was performed. Based 

on the previously reported fragmentation results, the specific transi-tions 

from the molecular ions to the fragment ions, declustering po-tential, 

entrance potential, collision energy and cell exit potential for each 

monitored compound were selected (Tables 1, 2). The chro-matographic 

profile contained all of the peaks corresponding to the compounds under 

investigation, with intensities adequate for 
 

 

quantitative purposes. The method based on the characteristic 

frag-mentation reactions of anthocyanins was highly specific, 

with no interfering peaks at the retention times of the marker 

compounds in the MRM chromatograms (Figure 1). 

 

 
Quantitative analysis 
 
The UHPLC-ESI-MS/MS (MRM) method developed was applied 

to the simultaneous determination of 17 anthocyanins in myrtle 

berries from 17 different sources with high sensitivity and 

selectiv-ity. The quantitative analysis was performed using an 

external standards method. Anthocyanins are eluted in 

accordance with their polarity: the most polar delphinidin 

derivatives elute first, followed by cyanidin, petunidin, 

pelargonidin, peonidin and malvidin derivatives.  
The mean contents of compounds 1–17 are shown in Table 3. In 

general, the results demonstrate that glucoside derivatives of 

anthocyanins are the most abundant compounds in all of the sam-

ples. In particular, peonidin-3-O-glucoside is the most important 

compound in all the extracts, followed by malvidin-3-O-glucoside, 

delphinidin-3-O-glucoside and cyanidin-3-O-glucoside. 

Differences were observed between the samples in both total 

and individual anthocyanin content. The samples collected from 

San Gavino Monreale and Alghero are the richest samples in 

terms of total anthocyanins (2292 μg/mL and 2283 μg/mL, 

respectively), followed by the samples from Paulilatino (1869 

μg/mL), Bortigiadas (1818 μg/mL), Mara (1801 μg/mL) and 

Abbasanta (1734 μg/mL); in contrast, the extracts from Trinità 

d’Agultu and Morgongiori exhibited the lowest anthocyanin 

contents (474 μg/mL and 412 μg/mL, respectively). 

 

 
Discrimination of Myrtus communis berries from 

different sources by PCA 
 
Quantitative data were analysed using PCA to explore and visual-

ise correlation and discrimination among 17 collections of Myrtus 

communis representing different geographical areas of Sardinia 
 

 

Table 3. Quantitative results for anthocyanins 1–17 detected in extracts of Myrtus communis berries [μg/mL ± standard 

deviation (SD) of extract] 
 

     10d 11 12 13b 14b 15b 16a 17d 

                     

    gm 1672.89 ± 30.39 11.73 ± 0.36 278 ± 6 1.78 ± 0.15 0.75 ± 0.03 7.12 ± 0.25 0.11 ± 0.01 0.07 ± 0.01 

    mv 427.86 ± 13.24 1.74 ± 0.06 82.17 ± 1.62 0.24 ± 0.02 0.22 ± 0.03 2.02 ± 0.05 ND  ND  

    mg 338.31 ± 18.69 1.38 ± 0.03 51.13 ± 3.91 0.11 ± 0.01 0.20 ± 0.01 1.32 ± 0.09 ND  0.02 ± 0.01 

    p 1297.26 ± 80.38 10.75 ± 0.45 260.00 ± 2.65 1.78 ± 0.02 0.39 ± 0.01 8.46 ± 0.34 0.07 ± 0.02 0.06 ± 0.02 

    ab 1296.02 ± 82.65 8.85 ± 0.26 191.67 ± 9.29 1.14 ± 0.04 0.35 ± 0.03 4.34 ± 0.10 ND  0.02 ± 0.01 

    m 1198.38 ± 42.72 7.29 ± 0.17 285.33 ± 9.87 1.86 ± 0.15 0.95 ± 0.02 9.23 ± 0.25 0.03 ± 0.01 0.04 ± 0.01 

    a 1891.17 ± 92.39 6.25 ± 0.34 271.67 ± 7.57 0.92 ± 0.04 1.71 ± 0.06 12.69 ± 0.29 ND  0.03 ± 0.01 

    st 775.5 ± 48.09 6.54 ± 0.40 119.67 ± 8.02 0.81 ± 0.13 0.2 ± 0.03 3.47 ± 0.23 0.01 ± 0.01 0.02 ± 0.01 

    pt 722.64 ± 31.07 5.48 ± 0.19 133.67 ± 6.43 0.8 ± 0.05 0.19 ± 0.01 4.45 ± 0.11 0.15 ± 0.05 0.1 ± 0.01 

    ss 1027.99 ± 77.64 7.15 ± 0.28 235 ± 8.54 1.7 ± 0.15 0.41 ± 0.01 5.99 ± 0.25 ND  0.02 ± 0.01 

    t 359.45 ± 7.06 1.16 ± 0.05 82.27 ± 3.20 0.17 ± 0.01 0.15 ± 0.01 2.27 ± 0.09 ND  0.03 ± 0.01 

    tg 1024.88 ± 92.92 7.06 ± 0.67 217 ± 5.57 1.44 ± 0.08 0.37 ± 0.05 6.04 ± 0.22 0.04 ± 0.02 0.02 ± 0.01 

    lm 629.98 ± 10.61 7.13 ± 0.46 140.67 ± 2.31 1.24 ± 0.07 0.25 ± 0.02 4.63 ± 0.07 0.05 ± 0.01 0.03 ± 0.01 

    o 968.28 ± 61.40 8.49 ± 0.32 216.67 ± 6.66 2.04 ± 0.08 0.45 ± 0.01 6.88 ± 0.17 0.03 ± 0.01 0.02 ± 0.01 
    

ag 595.15 ± 23.30 4.19 ± 0.25 138.33 ± 3.06 0.96 ± 0.03 0.32 ± 0.03 4.81 ± 0.08 0.02 ± 0.01 ND 
 

     

    l 667.29 ± 12.70 5.25 ± 0.16 141.67 ± 6.11 1.21 ± 0.05 0.2 ± 0.02 4.1 ± 0.30 0.03 ± 0.01 0.03 ± 0.01 

 

 

  b 1249.38 ± 72.75 9.69 ± 0.57 221 ± 3.00 1.64 ± 0.01 0.68 ± 0.03 6.65 ± 0.19 0.14 ± 0.01 0.07 ± 0.01 

  

                  

                  
        

        

        

                     



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Principal component analysis score plot (a) and principal component analysis loading plot (b). 

 

 

and to identify individual anthocyanins contributing to the 

classification.  
PCA transforms a number of related variables into a 

smaller set of uncorrelated variables, which are called 

principal compo-nents (PCs).  
The scores plot of the first PC (PC1) captures 60% of the total 

variance in the dataset, while the second PC (PC2) captures 14% 

of the total variance (Figure 2(a)). This plot demonstrates that 17 

samples are grouped into two different classes: one class consists 

of the berries from Montevecchio (mv), Morgongiori (mg), Trinità 

d’Agultu (t), Sant’Antonio di Gallura (ag), Stintino (st), Luras (l), La 

Maddalena (lm) and Porto Torres (pt) with both PC1 and PC2 pos-

itive scores, and the second class includes the berries from Sassari 

(ss), Abbasanta (ab), Santa Teresa di Gallura (tg), Olbia (o), 

Bortigiadas (b) Paulilatino (p), Mara (m), San Gavino Monreale ( 

gm) and Alghero (al) with both PC1 and PC2 negative scores. To 

evaluate the influence of each variable on the classification of the 

samples, the loading plot obtained for the same dataset was then 

studied, and this plot is presented in Figure 2(b). The loading plot 

shows which anthocyanins contribute most to the differentiation of 

the samples, and the location of the anthocya-nins in a specific area 

of the space can be highlighted. Interest-ingly, anthocyanins are 

localised only in the area corresponding to the myrtle samples 

collected from Santa Teresa di Gallura (tg), Olbia (o), Bortigiadas 

(b) Paulilatino (p), Mara (m), San Gavino Monreale ( gm) and 

Alghero (al), Sassari (ss), and Abbasanta (ab). The loading plot 

indicates that these samples are characterised by higher 

concentrations of anthocyanins. Quantitative differ-ences in the 

content of anthocyanin derivatives among samples collected in 

different geographical areas in Sardinia could be as-cribed not only 

to geoclimatic factors but also to genetic and/or environmental 

factors. 

 

Conclusion 
 
In conclusion, in the present study, a complete and specific snap-
shot of the anthocyanins that occur in the extracts of myrtle berries 
collected from different sites in Sardinia was obtained by develop-
ing a platform that integrates UHPLC–MS/MS analysis with multi-
variate data analysis allowing the main information on a large 

 

 
number of samples to be obtained rapidly. UHPLC-ESI-QTRAP-MS/ MS 

was a highly informative analysis technique for the identification of 

individual anthocyanins. A UHPLC-ESI/triple quadrupole-MS/MS 

method, which was based on an MRM technique, was developed for the 

quantitative determination of all of the anthocyanins identi-fied in 

different samples of Myrtus communis berries. The method de-veloped 

was validated according to ICH and found to be accurate, selective and 

precise in the applied range of concentrations. The method was specific 

and sensitive for the studied extracts. 

The application of the quantitative method developed here is 

suitable for the quality control of Myrtus communis authenticity. 

However, differences in the content of these compounds were 

found, depending on the harvesting site, and a high concentration 

of anthocyanins was found in the berries from Alghero.  
Furthermore, the quantitative data obtained from the 

HPLC– MS/MS MRM analyses coupled with the PCA 

approach proved to be a potentially useful and effective tool 

for rapidly providing both visual and statistical evaluations of 

the similarities and differences among berries of Myrtus 

communis collected from different areas of Sardinia. The 

data obtained have an immedi-ate commercial value due to 

the current interest in developing antioxidant nutraceuticals 

from Mediterranean plants, including Sardinian myrtle. 
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