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Abstract 

The gasification of biomass is considered one of the most important sources of renewable 

energy due to the sustainability of agriculture waste around the world. There are many types 

of gasification systems depending on the mechanism of gasification. BFBG is one of the 

powerful gasifiers due to the mixing mechanism between the solid materials (biomass and the 

inert material) and the gas phase (air). Gasification process in the BFBG involves three main 

interactive factors: hydrodynamics, heat transfer and chemical reaction.  

The present work focuses on improving the hydrodynamic performance and the product gas 

quality of a new BFBG developed at Cardiff University. Hydrodynamics has been analysed 

experimentally and numerically using four different distributors designed to improve the 

fluidized bed fluidic patterns. The tests have been performed experimentally using a 

representative perspex prototype, while an isothermal 3D unsteady-state CFD simulation by 

using OpenFOAM software based on multiphase resolution was employed in order to select 

the optimal design that can improve the system performance. The post improving of the BFBG 

product gas with catalyst has been analysed numerically by using ASPEN PLUS software.    

The hydrodynamic behaviour of the BFBG with four different air distributors was studied 

experimentally in terms of pressure drop and bubble formation. Two design factors were 

observed as the major contributors towards the impact on the BFBG performance, i.e. the 

orifice size and the distribution of orifices. Small orifices with triangular arrangement have 

demonstrated superior performance than large orifice size with square arrangement. Similar 

findings were obtained from the CFD simulation of the BFBG with the four distributors with an 

accepted comparison with the experimental results and literature. 

Regarding the post -gasification improvement, ASPEN PLUS analysis showed the using of 

BFBG product gas with suitable amount of N2 and Ar can increase the H2 and CO selectivity, 

H2/CO ratio and decrease the heat duty. The analysis results were compared with literature.   
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Chapter 1: Introduction 

1.1. Introduction 

Over the past decades, the global consumption of energy has recorded high levels (Amasyali 

and El-Gohary, 2018). The rapid increase in technology and the modern lifestyle are the main 

reasons which stand behind this boom in energy consumption. In the same context, the global 

energy demand will rise by more than 25 % by 2040 due to the global growth in economy and 

population (IEA, 2018). Almost 80% of the worldwide supplied energy comes from fossil fuel 

sources (natural gas, oil, and coal) and the rest comes from other sources such as nuclear, 

hydro, and other renewable energy sources.  This reliance is expected to be maintained until 

2040 (EIA, 2016a). 

Two important facts must be considered about fossil fuels. Firstly, fossil fuels are responsible 

for global warming. The burning of fossil fuels produced about 36.2 billion tonnes of carbon 

dioxide (CO2) in 2017 which is the main component of greenhouse gases, while the CO2 

emissions were expected to increase in 2018 to reach 37.1 billion tonnes. i.e. 2.7 %  more 

than in 2017 which is the highest recorded CO2 level (Le Quéré et al., 2018). 

The second fact is about the endurance of fossil fuels. The three forms of fossil fuels (oil, coal, 

and natural gas) are estimated to run out by 2088. According to this estimation, oil reserves 

will be exhausted by 2052, gas will run out by 2060, and coal will vanish by 2088 as presented 

in figure 1.1 (Ecotricity, 2018).   

The relationship between the three components of the energy trilemma (shown in figure 1.2) 

can affect the future of energy. This relationship defers from country to country depending on 

the importance of each factor and their energy policy. However, most countries try to reconcile 

between these components.      



Chapter 1                                                                                                               Introduction                                                                                                     

2 

 

Figure 1.1. The predicted end of fossil fuels (Ecotricity, 2018). 

 

 

Figure 1.2. The energy trilemma components (Dawson, 2016). 
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Hence, there is a persistent need to improve clean and sustainable sources of energy. 

Renewable energies grab the attention of both researchers and investors due to the promising 

future of energy after fossil fuels run out. Wind, solar, hydro and biomass are the most common 

forms of renewable energy. Production cost and intermittency are the major challenges that 

the development of sustainable energy face. Biomass gasification is one of the emerging 

sources of renewable energy that depends mainly on agriculture waste (Belgiorno et al., 

2003). This source can provide environmentally friendly fuels such as hydrogen (H2) while 

getting rid of waste at the same time. As the other sustainable sources of energy, gasification 

processes need to be modified in both the gasification mechanism, i.e. the hydrodynamic 

behaviour and the quality of the product (synthetic gases) which is the aim of this dissertation. 

1.2.  Energy challenges   

While fossil fuels will run out in the near future, the rapid growth of world population causes 

an increased demand for energy. The United Nations Population Division estimates a global 

population of approximately 9.6 billion people in 2050 and more than 11 billion by 2100 (world 

population now is 7.3 billion people). Global Gross Domestic Product (GDP) will be more than 

doubled in 2050 (DESA, 2015). This growth will create more need for affordable, reliable 

energy – energy demand for homes, transportation, business, and industry.  

1.3. Energy and Climate Change  

Although the rapid increase in energy demand is a great challenge, there is another important 

challenge which has a major impact on the life on our planet. The type and quality of energy 

sources (fuels) that have a direct influence on the environment. Most energy sources 

(especially fossil fuels) have a detrimental effect on the environment due to the emissions of 

greenhouse gases (CO2 and CH4). 

Climate change is a real threat facing our entire species and the life on earth.  There are many 

possible causes of climate change that can be divided into two groups (Robock, 1978):  
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1- Internal forcing mechanisms such as rising sea level and  

2- External forcing mechanisms such as Orbital Variations, Solar Output, Volcanism, 

Plate Tectonics and Human Influences.  

Human activities contribute to climate change through several forms, such as deforestation 

and energy sources (fossil fuels). Globally, the burning of fossil fuels (solid, liquid and gas) in 

2013 released about 9776 million metric tons of carbon to the atmosphere, representing an 

all-time high and a 1.1% increase over 2012 emissions, as presented in figure 1.3 (Boden et 

al., 2016).  In total, more than 35 billion tonnes of carbon dioxide was released to the 

atmosphere in 2013.  

Figure 1.3. Annual Global Fossil-Fuel Carbon Emissions (Boden et al., 2016). 

This rise in CO2 concentration relates to the global increase in surface temperature due to the 

greenhouse effect of carbon dioxide. This unprecedented rise in surface temperatures has a 

significant impact on the earth via melting of ice caps and glaciers, rising sea levels, and 

impacting ecosystems. This tragic scenario for the earth can be stopped by cutting down 

carbon dioxide emissions, especially, the CO2 emissions due to the burning of fossil fuels for 

energy purposes(Boden et al., 2016).  
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Thus, the question in this context is how to harmonize between the extendable demand on 

energy while saving the planet from the tragic scenario caused by global warming? The 

answer to this controversial question can be summed up in three words: Biomass Renewable 

Energy.  

1.4. Legislations and Policies 

Many governments in developed and developing countries throughout the world have taken a 

number of steps to limit the emissions of greenhouse gases through legally binding targets, 

both now and in the future. In 1988 the Intergovernmental Panel on Climate Change (IPCC) 

was established by the United Nations Environmental Programme (UNEP) and the World 

Meteorological Organization (WMO) “to provide policymakers with regular assessments of the 

scientific basis of climate change, its impacts and future risks, and options for adaptation and 

mitigation” (IPCC, 2013). This step followed by many steps to control climate change by many 

agreements such as the Paris Agreement(Agreement, 2015). 

The EU efforts to tackle climate change concentrate on three targets (EC, 2015): 

1- Reduce the emissions of greenhouse gases. 

2- Increase the sharing of energy provided by renewable sources. 

3- Increase energy efficiency.    

The European Union sets many directives in this context to achieve the following targets by 

2020 (TheCCC, 2017).  

A- A cut off the greenhouse emissions by 20% compared to 1990 levels. 

B- 20% of the total provided energy comes from renewable sources. 

C- 20% increase in energy efficiency than 2007 levels. 
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In the 2030 framework for the climate and energy, the EU countries have agreed to achieve 

new targets (ECE, 2016).  

- A reduction in greenhouse gases emissions by 40% on 1990 levels. 

- 27% or more of the total provided energy comes from renewable sources. 

- 27% or more is the savings in energy compared with the business-as-usual scenario. 

 Apart from the EU countries, the other world countries (developed and developing) made their 

own targets.  

1.5. Renewable Energy 

In contrast to conventional energy sources such as fossil fuels, which are more geographically 

concentrated, all the countries in the world have at least one abundant renewable resource 

and many countries have a portfolio of resources such as solar energy, wind 

power, geothermal energy, and biomass. Renewable energy sources contributed by about 

11% of the world marketed energy consumption with an estimation to be 15% by 2040. In the 

electricity sector, the sharing of renewable energy was about 22% in 2013 with a projection of 

25% by 2040 (EIA, 2013).  

Year by year, the global investment in the renewable energy sector is increasing. In 2015, a 

record $367 billion was invested in renewable energy around the world. Figure 1.4 shows the 

world annual investments in the clean renewable energy sector in the last five years (Clean 

Energy Canada, 2016).  
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Figure 1.4. Total annual investment in the renewable energy sector (Globally) (Clean Energy 

Canada, 2016). 

1.6. Biomass energy 

One of the sustainable resources of energy is a renewable organic waste. This organic waste 

can include scrap lumber, forest debris, agricultural harvest waste, and other industrial 

byproducts that serve no other purpose. In the United States, about 50% of the produced 

renewable energy came from biomass in 2011. Biomass and waste can be turned into biofuels 

through a natural process such as anaerobic digestion by bacteria to produce biogas or 

synthetic thermochemical processes such as gasification (CHO, 2011).  

1.7.  Gasification 

The process of converting solid organic-based carbonaceous materials into gaseous products 

such as carbon monoxide, hydrogen, and carbon dioxide is called gasification. Without 
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combustion, the materials react at high temperatures (>700 oC) with a controlled amount of 

Oxygen and/or steam (Yokoyama and Matsumura, 2008). This reaction produces a gas 

mixture called syngas (stands for synthesis gas or synthetic gas) or producer gas. This is a 

form of fuel. Gasification can be considered as a renewable source of energy if the gasified 

compounds were obtained from biomass or waste (sustainable feedstocks).  

1.8. Gasifier Types 

There are several types of gasifiers currently available for commercial purposes. These 

depend on (Couto et al., 2013): 

- Feedstock feeding method and direction into the gasifier. 

- Whether using air, oxygen and/or steam as an oxidant.   

- Operating temperature ranges. 

- Working pressure inside the gasifier, and  

-  Heating method of the feedstock (directly or indirectly). 

Thus, the main gasifier types are:  

1.8.1. Counter-Current (Updraft) Fixed Bed Gasifier  

This is the oldest and simplest type of gasifier, in this gasifier, the feedstocks (biomass) is fed 

in at the top and the air (or oxygen) comes from the bottom and produced syngas leaves from 

the top of the gasifier, hence the biomass and gases move in opposite directions. The 

advantages of this type of gasifier are the simplicity and low-cost process, the burn out of 

charcoal is high and low temperature of exit gas due to internal heat exchange and equipment 

efficiency is high. It can work with a wide range of feedstock from coal to biomass. The main 

drawback of this gasifier is the tar (A highly viscous liquid of hydrocarbons) content in the 
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produced gases (10 - 20% of tar by weight), requiring extensive clean-up before using these 

gases in later applications (Ciferno and Marano, 2002). Figure 1.5 shows an updraft gasifier 

scheme. 

Figure 1.5. Updraft Gasifier (Belgiorno et al., 2003). 

1.8.2. Co-Current (Downdraft) Fixed Bed Gasifier  

Tar entrainment in the outgoing product gas is a real problem in updraft gasifiers. This can be 

solved by introducing the primary gasification air at or above the oxidation zone in the gasifier. 

The fuel and gas move in the same direction as the syngas is taken out from the bottom. 

On their way down, the acid and tarry distillation products from the fuel are turned into synthetic 

gases such as hydrogen, carbon dioxide, carbon monoxide and methane when they pass 

through a glowing bed of charcoal. The amount of the broken-down tar depending on the hot 

zone temperature and the tarry vapours residence time.  
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The possibility of producing tar free gases for engine operation is the main advantage of 

downdraft gasifiers, i.e. up to 99.9% of the produced tar was consumed, leading to minimal or 

no tar cleanup. As the minerals stay down with the char/ash, the need for a cyclone is reduced. 

This makes the process low cost, simple, and has been proven (Ciferno and Marano, 2002). 

The main drawback of the downdraft gasifier is that it cannot work with a different range of 

feedstocks. Flow problems and excessive pressure drop occur with the low-density feedstock. 

Low moisture content (<20%) feed requires using feed dryer.  The downdraft gasifiers demand 

using a secondary heat recovery system due to the high temperature of the produced gases. 

The percent of unconverted carbon in this type of gasifier is between 4% and 7% (Ciferno and 

Marano, 2002). Figure 1.6 shows a scheme for the co-current gasifier.     

Figure 1.6. Downdraft Gasifier(Belgiorno et al., 2003). 
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1.8.3. Cross-Draft Fixed Bed Gasifier 

 The cross-draft gasifier is the lightest and simplest type of gasifiers. It is adapted for the use 

of charcoal feed. The cross-draft gasifiers operate in a high temperature (> 1500 oC) in the 

oxidation zone which causes material problems. The main advantage of cross draft gasifiers 

lies on the very small scale at which they can be operated.  Under certain conditions, the setup 

of below 10 kW (shaft power) system can be economically feasible due to the very simple gas-

cleaning train (only a hot filter and a cyclone) which can be used with small 

engines(Saravanakumar et al., 2010). 

Main disadvantage lies in the minimal tar-converting capabilities this requires high quality (low 

volatile content) charcoal (Wood et al., 1986). Figure 1.7 shows the cross-draft gasifier 

scheme. 

Figure 1.7. Cross-draft Gasifier (Brar et al., 2012). 
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1.8.4. Fluidised Bed Gasifier (FBG) 

In fluidised bed gasifiers, air at a sufficient velocity (fluidisation velocity) is blown through a 

bed of inert solid particles (sand or alumina) to keep these in a state of suspension. After the 

bed is externally heated to a suitable high temperature, the feedstock is introduced. When the 

fuel particles are introduced to the gasifier, it would quickly be mixed with the bed material at 

the bottom of the reactor and heated up to the bed temperature instantaneously. Figure 1.8 

shows a schematic sketch of the FBG.  

The fuel is rapidly pyrolysed as a result of this treatment, leading to a component mix with a 

relatively large amount of gaseous materials. In the gas phase, further gasification and tar-

conversion reactions occur in conjunctions. The ash particles are carried over the top of the 

reactor and removed by using cyclone and candle filters. Feedstocks processing is the major 

advantage of the fluidised bed. A fluidised bed gasifier is mostly used for high ash coal and 

biomass due to the relatively simple handling of ash below the softening temperature in this 

type of gasifier (Wood et al., 1986).  

There are two main types of fluidised bed gasifier, the bubbling fluidised bed gasifier (BFBG) 

and the circulating fluidised bed gasifier (CFBG). In the bubbling fluidised bed gasifier, the gas 

velocities are relatively small which are typically less than 1 m/s.  The low gas velocities of the 

BFBG make most of the conversion of the feedstock occurs at the bottom of the gasifier in the 

dense bed region. However, some of the small particles of the feedstock have continuous 

pyrolysis in the freeboard section of the gasifier. Figure 1.9 shows a schematic drawing of the 

BFBG (Olofsson et al., 2005). 

In contrast, the CFBG operates with high gas velocities which are between 3 to 10 m/s. The 

high gas velocities drive solid particles to spread along the gasifier riser and then to the cyclone 

which splits the solid particles from the gas. The particles drop down the cyclone and finally, 

they return back to the gasifier bottom to complete the cycle. This process results in a long 
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contact time between gas and particles and better hydrodynamic interactive. Figure 1.10 

represents a CFBG scheme (Olofsson et al., 2005). 

Figure 1.8. Fluidised bed Gasifier (Belgiorno et al., 2003). 

Figure 1.9. BFBG scheme (Olofsson et al., 2005). 
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Figure 1.10. CFBG scheme (Olofsson et al., 2005). 

1.9. Thesis Motivation 

Throughout history, energy is connected with civilization. How much energy consumed is a 

factor of how advanced a civilization is (Smil, 2004). On the other hand, the excessive use of 

energy in the last centuries has led to different problems such as depletion of energy sources 

(fossil fuels) and climate change. The depending on renewable sources of energy can tackle 

these problems. Biomass gasification is a highly potential renewable energy source as 

biomass/agriculture waste are available permanently.  
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The work in this thesis focuses on two stages, the first stage is connected to the design of the 

BFBG which affects the main principles of the fluidised bed regime. The design of the gas 

distributor has a great influence on the gasification process in general. For example, the 

transition from packed bed to fluidised bed depends mainly on the gas distributor.  

When the bed fluidises, the solid particles will have a good opportunity to contact the gas 

directly which means greater heat transfer between them. This heat transfer mechanism is the 

important part of the gasification process. On the other hand, more heat transfer occurs 

between the gasifier wall and the solid particles and gas. The experimental study of gas and 

solid movement inside the fluidised bed is a topic which requires complex devices. However, 

the simulation techniques can provide a good prediction of this issue without disturbing the 

fluidised bed regime.  

Improving the heat transfer mechanisms inside the BFBG leads for more opportunity for 

chemical reactions between the biomass and air (gasification). In figure 1.11 the relationship 

between the main three elements in the bubbling fluidised bed gasification process is 

illustrated. 

Figure 1.11. The main three elements of the bubbling fluidised bed gasification. 
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 After the gasification stage and the gases are produced another modification stage will start. 

In this stage we trying to make the components of the product gas more industrially useful by 

enhancing the syngas components.  

1.10. Aim and Objectives  

The aim of this thesis is to study and improve the performance of the prototype BFBG in Cardiff 

school of engineering. These goals can be achieved through the following steps:  

1- Conducting an experimental study in a prototype BFBG under isothermal conditions to 

test the effect of the air distributor design on the hydrodynamic behaviour of the BFBG. 

The experiments will be carried out for four different air distributors at different flow 

conditions. 

2- Introducing a comprehensive unsteady state 3D CFD study of the effect of air distributor 

design on a BFBG to predicate all the hydrodynamic properties of the system especially 

the complex pints which cannot be reached experimentally without disturbing the 

fluidised bed regime. The simulation results then will be validated with experimental 

results and literature. 

3- Assessing the post-gasification improvement for the BFBG’s product gas by enhancing 

the syngas (H2 and CO) and decreasing the greenhouse gas component (CO2). This 

assessment will be carried out by using ASPUN PLUS simulation in order to use a novel 

auxiliary system (i.e. microwaves) with the support of catalytic materials. 

 

1.11.   Structure of The Thesis 

The thesis involves seven chapters covering all aspects of the program goals. 

1- Chapter One – Introduction. 
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2- Chapter Two – Literature Review. 

A comprehensive review of many previous works that cover the study area. Literature 

about FBG, solid-gas flow models, catalytic methane reforming, and microwave 

heating have presented in this chapter. 

3- Chapter Three – Methodology 

This chapter presents the research methods of the thesis topics. Isothermal BFBG 

experimental procedure, isothermal BFBG simulation tools, and analysis for the post-

gasification improvement is explained in this chapter.     

4- Chapter Four – Experimental Study of BFBG Hydrodynamics  

Review of the multi experiments which have been conducted in a prototype isothermal 

BFBG with four different perspex perforated disc distributors under different flow 

conditions.   

5- Chapter Five –CFD Analysis of BFBG Hydrodynamics 

In this chapter, a CFD simulation for the isothermal BFBG has been carried out. A 

modelling of isothermal BFBG with four different air distributors and two different 

superficial velocities per distributor case by using OpenFOAM software has been 

comprehensively covered. The results were validated with the experimental work and 

literature.  

6- Chapter Six – Post Gasification Improvement 

This chapter contains an assessment study of improving the product gas of the BFBG 

by increasing the syngas components. The study involves Aspen plus simulation of 

the catalytic plug flow reactor used in this process.   
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7- Chapter Seven – Conclusions and Future Work 

A short brief about what have done in this program and presenting the main 

achievements in each part of the program area. The chapter also involves many 

important suggestions to improve the analytical and the experimental work in these 

fields. Moreover, many research ideas were intreduced which worthwhile to study and 

developed.  

Finaly, this chapter discussed the issues that faced the experimental part of the post – 

gasification improvement. The unexpected fault in the gas analyser (gas 

chromatograph) was the main cause of postponing the work.    
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Chapter 2:  Literature Review 

 

 

2.1. Introduction   

Biomass gasification, as a part of renewable energy sources, has gotten its fair share of 

research in both hydrodynamic and chemical behaviours. Doors are still open for more 

research on this subject to improve the quality of the produced gases. 

2.2. Gasification Systems  

Thermal gasification machines (gasifiers) can be classified mainly into three groups according 

to the gasification process (Phillips, 2006):  

1- Moving (fixed) bed gasifiers such as counter-current gasifier. 

2- Entrained flow gasifiers such as co-current gasifier. And, 

3- Fluidised bed gasifiers such as BFBG and CFBG.  

In figure 2.1 the temperature profiles of gasification materials along each gasifier are 

illustrated (Phillips, 2006). 

 

2.3. Fluidised Bed Gasification 

The process in which solids are forced to behave like a fluid by blowing gas or liquid upwards 

through the solid-filled reactor is called fluidisation. Fluidisation was firstly invented by the 

German Scientist Fritz Winkler in 1921 by injecting a gas through the bottom of a crucible 

containing coke particles. He found out that gas-particles mixture behaves like a boiling liquid 
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as a result of the floating of coke particles due to the effect of gas drag forces. Winkler 

experiment was recorded as the first fluidised bed gasification attempt (Basu, 2006).  

2.4. Fluidised Beds and New Concepts 

There are many types of gasifiers (E4Tech, 2009) starting from simply packed bed gasifiers 

to the more complex fluidised bed gasifiers (bubbling and circulating fluidised bed). In fluidised 

bed gasification, the biomass particles have a better chance to mix with fluid inside the gasifier 

which makes some of these particles suspended in the fluid (gas) stream (Chen, 2003). The 

hydrodynamic and heat transfer mechanisms of surface – bed, fluid-particles, and particles – 

particles interaction still having more interest due to the complexity of this interaction. 

Heat transfer between bed and surface (walls) depends mainly on three factors: superficial 

gas velocity, suspension density, and particle size. For the BFB the superficial gas velocity 

has the major impact on the heat transfer coefficient between the bed and surface. The heat 

transfer coefficient is proportional to superficial gas velocity until the velocity reaches its 

optimum value at which bed height (H) reaches its maximum value (Fan and Zhu, 1998, 

Masoumifard et al., 2010, Tsukada and Horio, 1992).  
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Figure 2.1. The variation of temperature along the three gasifier types (Phillips, 2006). 
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However, in CFB the dominant operating factor in heat transfer is the suspension density 

(Basu and Nag, 1996, Fox et al., 1999, Pagliuso et al., 2000). The CFB is a fast-fluidised bed 

(FFB) compared with the BFB. This makes the CFB, a fluidised clusters bed (Basu et al., 

1990).  The cluster (or the agglomerate in some literature (Cabezas-Gomez et al., 2008) ) is 

a group of particles move as a single body with a little internal relative movement (Helland et 

al., 2002). Figure 2.2 shows a normal and an improved image of a cluster in a CFB (Zou et 

al., 1994). 

Figure 2.2. Cluster image in a CFB (Zou et al., 1994). 

These clusters are moving up and down in the CFB reactor making a dilute zone between the 

clusters as illustrated in figure 2.3. Accordingly, the suspension density of solid gas mixture in 

the FFB can be calculated by the following equation (Basu and Nag, 1987): 

 ����  �  �. ��  	  
1 �  �
 . ��  ……..……………………….…………………………………  2-1 

 Where ρsus is the suspension density in the FFB, ρp is solid particle density, ρg is the gas 

density and y is the volumtric concentration of dispersed solid particles in the dilute zone inside 

the FFB. 
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Figure 2.3. Clusters forming and movements in CFB (FFB) (Basu, 2015). 

The relationship between suspension density and the heat transfer coefficient in a FFB has 

presented in Wen and Miller correlation (Wen and Miller, 1961): 
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Where:   

h – Heat transfer coefficient in the FFB, (W/m2.K). 

cps – Specific heat of the solid particles, (kJ/kg.K). 

µg – Gas dynamic viscosity, (pa.s). 

dp – Particle diameter, (m). 

Ut – Particle terminal velocity, (m/s). 

g – Gavitational acceleration, (m/s2). 
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Thus, the heat transfer coefficient in the CFB proportional directly to the suspension density. 

This is also supported by the experimental work of (Fraley et al., 1983, Mickley and Trilling, 

1949, Kobro and Brereton, 1986, Kiang et al., 1976, Basu and Nag, 1987, Basu and Large, 

1988, Fox et al., 1999). Figure 2.4 shows the relationship between the heat transfer coefficient 

and suspension density in CFB (FFB) for some experimental works (Basu and Nag, 1987). 

Figure 2.4. Experimental data for the relationship between heat transfer coefficient and 

suspension density in FFB (Basu and Nag, 1987). 

2.5. Solid - Particles Grouping (Geldart Groups) 

Geldart classified granulate powders used for fluidisation purposes into four groups. These 

groups were characterised by solids– fluid density difference and mean particle size. However, 

fluidised bed designs mostly rely on the particle's Geldart grouping (Geldart, 1973): 

Group A: Particles in this group have sizes ranging between 20 and 100 µm and particle 

density of less than 1400 kg/m3. This group of solid particles has the following fluidisation 
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properties: Easy and smooth fluidisation, low fluidisation velocities and a considerable 

expansion in the particles bed after the fluidisation starts and prior to the initiation of a bubbling 

phase. Most of the solid powders in the catalytic fluidised bed reactors are classified in this 

group. 

Group B: In this group, Particles have sizes ranging between 40 and 500 µm and a particle 

density between 1400 kg/m3 and 4000 kg/m3. Sand is one of the typical powders in this group. 

Bubbles start to form in the bed directly at incipient fluidisation and it has a small bed 

expansion and it collapses rapidly when stop supplying the gas.  

Group C: Particles in this group are very fine (20 – 40 µm) in size and extremely cohesive. 

Fluidisation of these particles is very difficult due to the cohesion forces between particle – 

particle and particle – wall. 

Group D: Significantly, large particles sizes above 600 µm and typically, high particle density. 

High fluid energies are required for the fluidisation of these particles group. Mostly, they are 

used in drying processes such as corn grains, pea and coffee beans.  

2.6. The Design of BFBG  

The design of the BFBG is standing on three main factors (Patil and Shinde, 2017): 

1-  Hydrodynamics. This represents the relationship between solid particles and gas 

mixture inside the reactor forming the bubbling fluidised bed regime. The study of this 

case includes many aspects such as the influence of superficial velocity, pressure 

drop, bubble size, particle size and bed height on each other and on the other design 

factors. 

2-  Heat and mass transfer. The heat transfer between gas and particles, particles and 

particles, gas – particles and walls and the mass transfer due to solid particles reaction 
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with the gas are covered in this factor (Papadikis et al., 2009, Armstrong et al., 2010, 

Fattahi et al., 2016, Parmar and Hayhurst, 2002).      

3-  Chemical reactions. The reactions between solid particles (biomass) and gas in the 

BFBG is the third important factor in the BFBG design. The study of these reactions 

kinetics is the key to estimate the solid particles (biomass) heat of pyrolysis, the 

product gases quantities and the formation amount of ash and tar (Al-Farraji, 2017, 

Shao et al., 2018, Narváez et al., 1996).       

However, these three factors affect each other, especially the bed hydrodynamics which has 

a major impact on heat and mass transfer and the chemical reactions (Andersson and 

Karlsson, 2014, Gidaspow, 1986, Radmanesh et al., 2006, Philippsen et al., 2015). 

2.7. Hydrodynamics in BFBG 

The bed hydrodynamics and its effects on heat transfer and reactions kinetics inside the 

BFBG, has widely been studied in different experimental, analytical and numerical works. 

Many research papers have been done to describe the relationship between the hydrodynamic 

parameters and the other design factors of the BFBG such as the heat and mass transfer and 

the chemical processes. 

2.7.1. Solid Particle Size in BFBG 

According to Geldart grouping of particle sizes (Geldart, 1973), the particle size in fluidised 

bed reactors has a significant impact on the other hydrodynamic parameters and the other 

design factors. The minimum fluidisation velocity, Umf in the BFBG has a direct relationship 

with the particle size. When the particle size increases, the minimum fluidisation velocity 

increases too (Wu et al., 2008, Sun and Grace, 1990, Shen and Zhang, 1998, Sun and Grace, 

1992).  
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Moreover, the bubble size is also affected by particle size (Wu et al., 2008). Bubbles in small 

particles BFB are small and still have a uniform shape throughout the bed with relatively low 

bubble velocity. However, the bubbles in medium and large particles BFB are large and 

changed through the bed height and have high bubble velocity. 

The heat transfer and reaction rate are also affected by particle size. Many experimental and 

numerical studies found that the heat transfer coefficient decreases with the increase of 

particle size (Salwe et al., 2014, Ngoh and Lim, 2016). Regarding the chemical reaction 

(gasification), the fluidised bed gasifier with biomass of small particles size produces syngas 

with better quality and yield than the large particles size (Lv et al., 2004). 

2.7.2. Gas Velocity (Superficial Velocity) in BFBG 

The relationship between superficial gas velocity, us and the bed pressure drop, ∆p is 

presented in figure 2.5. The bed pressure drop increases linearly with the increase of 

superficial velocity in the fixed bed zone (before fluidisation) , i.e. us < umf However, the 

pressure drop tends to be relatively constant after the fluidisation grows, i.e. us > umf (Kunii 

and Levenspiel, 1991).  

On the other hand, Salwe studied experimentally the relationship between the bed heat 

transfer coefficient and the gas (air) velocity. They found that the heat transfer coefficient 

increases when the air velocity increases (Salwe et al., 2014). The reaction rate is also 

affected by the gas superficial velocity, the reaction rate increases linearly with gas velocity 

until the superficial velocity reaches eight times the minimum fluidisation velocity and then the 

reaction rate does not change (Zhang et al., 2015).   
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Figure 2.5. The relationship between superficial gas velocity and pressure drop in a BFB 

reactor(Kunii and Levenspiel, 1991). 

 

2.7.3. Pressure Drop in the BFBG 

The pressure drop inside the fluidised bed is another important hydrodynamic character. This 

pressure drop is mainly caused by bed solid particles (Wang et al., 2007). Hence, the pressure 

drop is high in the dense particle’s zones and low in the dilute zones. However, pressure drop 

decreases with bed height as shown in figure 2.6 due to the decrease in particles column 

height (Halvorsen and Arvoh, 2009).  
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Figure 2.6. Pressure drop variation along fluidised bed height in BFB reactor (Halvorsen and 

Arvoh, 2009). 

2.7.4. Bed Porosity (Voidage) 

The porosity (voidage) in a fluidised bed is the gas voids between the solid particles and it is 

also called void fraction or gas holdup which represents the ratio of void volume to the total 

bed volume (Franka et al., 2008). This parameter is low at the packed bed and it starts to 

increase at incipient fluidisation when the bed stars expansion, the voidage at which point is 

called the minimum fluidisation voidage, εmf.  

Many experimental, analytical and numerical research papers were published to study the 

behaviour of bed voidage and its effect on the other parameters (Khan et al., 2016, Jayarathna 

et al., 2014, Foscolo et al., 1983, Chen et al., 2005, Behjat et al., 2008). Figure 2.7 shows 

different time snapshots for the transient bed voidage in a bubbling fluidised bed reactor with 

550 µm sand particles (Chen et al., 2005). 
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Figure 2.7. Bed voidage in a BFB reactor (Chen et al., 2005). 

 

2.7.5.   Gas Bubbles in BFBG 

The generation of bubbles is one of the most important parameters in the bubbling fluidised 

bed gasifier which takes its name from. Bubbles have an essential role in particles movements 

which enhance the heat and mass transfer between solid particles and gas. Figure 2.8 shows 

the relationship between the number of formed bubbles per second and the local heat transfer 

coefficient where the angular positions represent the positions of the thermocouples (Kim et 

al., 2003). 
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Figure 2.8. The variation of the local heat transfer coefficient with bubble frequency inside 

the BFB (Kim et al., 2003). 

 

The reaction rate in the BFB reactors improves with the generation of bubbles and reduces in 

the dense bed. This is due to the expansion in the bed caused by bubbles movement which 

provides better contact between the gas and solid particles (Maurer et al., 2016). However, 

bubble size has a significant effect on the conservation and selectivity in the BFB gasification. 

For example, a BFB with bubbles size of 32 cm has a 32% chemical conversion. While the 

conversion reaches 84% when the bubbles size reduces to 8 cm as shown in figure 2.9 

(Levenspiel, 2002).  
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Figure 2.9. Effect of bubbles size on bed chemical conversion in the BFB reactor 

(Levenspiel, 2002). 

Moreover, the syngas selectivity also increases when the bubbles size decreases (Kaart, 

2002). Many methods were used to reduce the bubble size in the BFB reactors, such as 

applying mechanical vibration to the bed (Kwauk, 1992), applying magnetic fields to the bed 

(Rosensweig, 1995, Hristov, 2002, Hristov, 2010), injecting pulsed or  fractal feeds (Coppens, 

2001) and using electrical fields (van Willigen et al., 2003).  

The mechanism of bubbles formation and movement in a bubbling fluidised bed reactor and 

their effect on the solid particles movement throughout the bed has been visualised analytically 

by (Kunii and Levenspiel, 1968) bubbling bed model.  

Figure 2.10 shows the bubbles generation and movement and corresponding solid particles 

movement inside a bubbling fluidised bed reactor according to the bubbling bed model (Kunii 

and Levenspiel, 1968). When the bubble rises the size of the bubble increases due to the gas 

expanding inside the bubble as the bed weight force decreases.  
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Figure 2.10. Gas-solid movement in the BFB according to the bubbling bed model (Kunii and 

Levenspiel, 1968). 

However, particles size also has a significant impact on bubbles size and velocity. The bubbles 

in the fine solid particles are large and have a high velocity and surrounded by a thin cloud of 

circulating gas. This gas cloud separates the bubble from the other free gas in the bed and 

the raising of bubbles in the fine particles bed is like vortex rings (Levenspiel, 2002). While the 

bubbles in the coarse solid particles bed are smaller and have low velocity and the free gas 

can flow through the bubbles. Figure 2.11 shows bubbles specifications in fine and coarse 

solid particles beds (Levenspiel, 2004).  
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Figure 2.11. Bubbles specifications in (a) fine particles bed. (b) Coarse particles bed 

(Levenspiel, 2004). 

 

2.7.6. CFD Simulation of the BFBG  

The development in computer performance in both computational speed and data storage 

accompanied with the development of CFD in different engineering branch. The hydrodynamic 

behaviour of the BFBG has been studied by different CFD models. A 3D Eulerian two-phase 

model for the BFB system in cold conditions was studied somewhere else (Li and Ma, 2011). 

The study showed that the fluid velocity in the triangular arrangement distributor was more 

stable than the square distributor. 

Another simulation for the BFBG with the multiphase Eulerian model in the commercial 

software ANSYS FLUENT for two different type of solid bed was studied somewhere else 

(Thapa and Halvorsen, 2013). There simulation results were deviated 18% from the 

experimental measurements at the minimum fluidisation conditions. 
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2.8.  Improvement of Gasification Product Gases 

The product gases from the gasification processes have different components. This mainly 

depends on the feedstock (biomass) type and the gasification conditions. Hence, there is a 

need to enhance these product gases (increase the most useful ones and decrease the less 

useful) to use it in the later applications.  

In energy fields, methane gas (CH4) is considered as the most common component in the 

natural gas and in the gasification product gases. However, methane gas is considered as 

one of the greenhouse gases which affect the environment. There are many methods 

introduced to crack methane into hydrogen (H2), the most environmentally friendly power gas 

and the feedstock of the well-known power units (Fuel Cells).  

Wet reforming (with steam), dry reforming (with carbon dioxide) and combined reforming (with 

both steam and carbon dioxide) of methane are the most effective cracking methods as stated 

by many researchers.  

2.8.1. Steam Reforming of Methane (SRM)  

Steam reforming (SRM) is a method of producing hydrogen (H2) and other useful gases such 

as carbon monoxide (CO) from hydrocarbon fuels such as Methane. H2 is produced by using 

steam (H2O) as reacting material with the hydrocarbon. This process occurs in a device called 

reformer in a temperature ranging between (675 – 1000 K) in the presence of a metallic 

catalyst (Xu and Froment, 1989).  

The main reaction for steam reforming is: 

C#H% 	 nH O ↔  nCO 	 )n 	 m 2, -H  ….………………………………….…………………… 2-3 

And for methane (SRM): 
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CH4	H2O ↔ CO	3H2 …...…………...……………......………………………………………… 2-4 

This reaction happens simultaneously with other reaction called water – gas shift (WGS): 

CO	H2O ↔ H2	CO2   .……………………..……………......…………………………..……….  2-5 

The SRM reaction (equation 2-4) is a strongly endothermic reaction with a heat of reaction 

(∆H=+ 206  KJ ⁄ mole) and the WQS reaction (equation 2-5) is an exothermic reaction with a 

heat of reaction (∆H=-41.7 KJ ⁄ mole) (Pal and Prasad, 2014). In figure 2.12 the main parts of 

the ordinary heating steam – methane reformer is illustrated.  

Figure 2.12. Steam – Methane Reformer scheme (Matthey, 2018). 
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2.8.2. Other Reforming Methods  

There are many other reforming methods. Dry reforming of methane (DRM) uses CO2 to crack 

the methane in presence of a catalytic material to synthesis gases (CO and H2). Dry reforming 

has been considered as a very convenient way for the conversion of greenhouse gases into 

synthesis gas (Zhang et al., 2001, Zhang et al., 2008, Benguerba et al., 2015).  This is due to 

the conversion of the most popular greenhouse gases, i.e. CO2 and CH4 to very useful gases 

H2 and CO. 

Moreover, DRM produces syngas with low H2/CO which is suitable for many industrial 

applications such as the production of liquid hydrocarbons (Fischer–Tropsch synthesis), 

formaldehyde and polycarbonates (Bradford and Vannice, 1998).   

Mixed reforming (MRM) is another ideal method used to control the H2/CO ratio in the product 

gases without incorporation of additional process units (Park et al., 2014). In MRM, dry 

reforming is simultaneously carried out with steam reforming. Carbon dioxide and steam are 

injected together with the methane at the same time. 

This process will reduce the deposition rate of carbon on the catalyst compared to the 

deposition rate of carbon in the dry reforming (Choudhary and Rajput, 1996).  

2.8.3. Catalysts of the Reforming System 

The substance that causes or accelerates a chemical reaction without itself undergoing any 

permanent chemical change is called catalyst material. From an operational standpoint, there 

are three main factors according to which the catalysts are classified (Abatzoglou and 

Fauteux‐Lefebvre, 2016): 

1- The hydrogen and carbon monoxide yields.  

2-  The conservation rate of the reactant. 

3-  Catalyst activity duration.  
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The relationship between catalyst types and the production of H2 and CO has a crucial interest 

for many researchers. (Wang et al., 2012) studied the effect of different bimetallic catalysts on 

hydrogen yield. Wang finds out that the supported Pt and Pt-Co bimetallic catalysts on single-

walled carbon nanotubes (SWNTs) have better hydrogen yield and activity than Pt−alumina 

catalyst. Figure 2.13 shows Wang’s results for hydrogen yield. 

Figure 2.13. The hydrogen production activity for different catalysts (Wang et al., 

2012). 

Nickel bimetallic catalysts have a good impact on carbon monoxide yield and activation of 

molecules (Diskin et al., 1998, Ermakova et al., 2000, Benguerba et al., 2015). Regarding the 

hydrogen yield, the Ni catalysts show a remarkably high conversion rate to H2 (Hao et al., 

2009, Wang et al., 2016). Figure 2.14 illustrates the effect of nickel loadings in aerogel 

catalysts on the conversion rate of methane and carbon dioxide along with the selectivity rate 

of hydrogen and carbon monoxide in fluidised bed dry reforming at a reaction conditions of: 

Temperature = 800 0C, Pressure = 1 bar, gases flowrate = 300 ml/min at gases molar ratio 

(CH4:CO2:N2) = (1:1:1) respectively, and the catalyst loading amount = 0.2 gram (Hao et al., 

2009). 
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In figure 2.14 the selectivity rate of hydrogen and carbon monoxide were calculated by the 

equations (Hao et al., 2009): 

H2 - Selectivity = 
Produced H2 (moles) 

2)CH4,in(moles)-CH4,out(moles)- ×100%  …………………………………………….2-6                

CO- Selectivity = 
Produced CO (moles) 

1(CH4,in

moles
 + CO2,in(moles)) - (CH4,out(moles) + CO2,out (moles))2 ×100%  …………. 2-7  

Figure 2.14. The influence of nickel loadings in the aerogel catalysts on the conversion 

of (CH4 and CO2) and the selectivity of (H2 and CO) (Hao et al., 2009). 

In the SRM, catalyst type has a significant effect on conversion and selectivity in different 

reforming temperatures. For low reaction temperatures (500 – 600) oC, the nickel-based 

catalyst (Ni/Ce0.15Zr0.85O2) has the highest activity among the other nickel-based catalysts ( 

Ni/Ce0.25Zr0.75O2, Ni/Ce0.5Zr0.5O2, Ni/ZrO2 and Ni/ɣ-Al2O3 ) as shown in figure 2.15 (Kusakabe 

et al., 2004). However, the (Ce1-xZrxO2) catalyst with (Ce:Zr ratio) higher than 0.5 showed a 
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very high activity in carbon monoxide oxidation (Thammachart et al., 2001), methane partial 

oxidation and methane dry reforming with CO2 (Mattos et al., 2003).     

Most catalytic blends composed of two materials: the first one is the active catalyst which is 

usually metal such as (Ni, Pt, Ir, Rh and Ru) and it forms a little portion in the blend with a low 

surface area. The second component is the catalyst support, which is a high surface area 

material in which active catalyst is affixed (McNaught and Wilkinson, 1997). The catalyst  

Figure 2.15. Effect of nickel-based catalysts in SRM on different reaction temperatures and 

(a) methane conversion. (b) CO selectivity (Kusakabe et al., 2004). 

 support can be an inert or reactive material which typically can include different kinds of 

alumina, silica and carbon (Ma and Zaera, 2014). Figure 2.16 shows the microscopic stages 

of a typical chemical reaction in the presence of a catalyst blend (Rothenberg, 2017). 

However, the effect of catalysts support materials have widely been studied through literature 
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(Gadalla and Bower, 1988, Ferreira-Aparicio et al., 1998, Aksoylu et al., 2001, Wang et al., 

2009, Karim et al., 2017). 

On the other hand, there is a physical factor which has a great impact on the catalyst reaction 

activity, this factor is the surface area of the catalyst. The increase in catalyst surface area 

provides more contacts between the reactants and the catalyst which as a result increasing 

the reaction rate. The fine catalyst particles the higher surface area the higher reaction rate 

and larger particle size the smaller surface area the lower reaction rate  (Sivagami et al., 2016, 

Deutschmann et al., 2011). 

Many researchers have studied the effect and behaviour of surface area for different catalysts 

and under different conditions (Burtin et al., 1987, Karpenko et al., 2007, Gregor et al., 2010, 

Leofanti et al., 1998, Machida et al., 1987, Aigner et al., 2017).   

Figure 2.16. The mechanism of chemical reactions in the presence of a catalyst 

blend (Rothenberg, 2017). 
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However, the activity of different catalysts types will deteriorate after each reaction period. The 

deactivation of catalysts has three forms (Fogler, 2006):   

1- Sintering (Aging) 

This type of deactivation happens due to the prolonged exposure of the catalyst to 

high-temperature gases. This exposure leads to gradual loss of the catalyst active 

surface area by either narrowing or closing the pores inside the catalyst or by crystal 

agglomeration as the deposited metals grow on the catalyst support. Figure 2.17 

shows two forms of sintering (ageing) catalysts deactivation. 

Figure 2.17. Catalyst deactivation by sintering: (a) Pore closure. (b)  Agglomeration of 

deposited metal along the catalyst surface (Fogler, 2006). 

  

2-  Fouling (Coking) 

This type of catalyst deactivation is very common with the reactions containing 

hydrocarbons. The main cause of this decay is the deposition of the carbonaceous 
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material (coke) on the catalyst surface and pores. Figure 2.18 illustrates the catalyst 

deactivation case related to coke deposition on the catalyst surface. 

 Figure 2.18. Fouling (coking) deactivation of catalysts: (a) Coke accumulation on 

surface and pore. (b) Before and after catalyst coking decay (Fogler, 2006). 

 

3-  Poisoning 

Catalyst poisoning occurs when the catalyst is exposed to a certain chemical 

compound which can cause partial or total deactivation. However, the poisoning 

processes can be useful in some cases such as the improvement of selectivity by 

stimulating the reduction of alkynes (Lindlar and Dubuis, 1966). In contrast, the bad 

effect of poisoning has a good example of the deactivation of catalytic converters in 

cars due to the lead used in the leaded gasoline.  
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The mechanism of poisoning involves a chemical bond between the poisoning 

molecules (P) and the active surface of the catalyst. Hence, the number of the active 

catalytic sites will decrease, and the more active surface area is reduced and as a 

result, the reaction acceleration declines significantly (Hagen, 2015). Figure 2.19 

shows the poisoning deactivation mechanism. 

Figure 2.19. The poisoning decay mechanism (Fogler, 2006). 

 

2.8.4. Microwave Heating System 

In 1945, Percy Spencer accidentally invented the heating effect of microwaves while he was 

working on building magnetrons for radar settings. The heating effect melted the peanut butter 

candy bar in his pocket while he was standing in front of the activated magnetron of the radar 

set. Nowadays, microwaves heating has vast applications in different fields such as food 

processing, medical applications and engineering. 

Microwaves are electromagnetic energy waves with a frequency range from 300 MHz to 300 

GHz as shown in figure 2.20. This energy has a nonionized radiation that boosts ions migration 

and dipoles rotation resulting in molecular motion. However, this action does not affect the 

molecular structure of the material (Kingston and Jassie, 1988). 
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Figure 2.20. The spectrum of electromagnetic waves (Kingston and Jassie, 1988). 

2.8.4.1. Conventional and Microwave Heating 

These days, one barely can find a house without a microwave oven due to the simplicity and 

time saver in making and reheating food compared with conventional ways of cooking and 

heating. This fact can be clearly seen in industrial food applications, for example, green beans 

blanching in microwaves consumes half processing time than the conventional industrial 

method (Ruiz-Ojeda and Peñas, 2013). 

This distinction between the two heating methods can be related to the difference in heating 

patterns of the two methods. The conventional heating, for instance, depends mainly on 

conduction and convection heat transfer modes. This transports the heat slowly through the 

substance especially when the substance and container have low or medium thermal 

conductivity. Figure 2.21.a illustrates the conventional heating patterns of liquid substances. 
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However, microwaves heating has a different mechanism, the heating effect starts from the 

substance itself at the points where microwaves pass through. Then, the heat will spread out 

from this heated points to other points (the points where microwaves did not pass through) in 

the substance, see figure 2 .21. b. In this case, the container will not be heated, and the heating 

process will consume less time and energy.  

Figure 2.21.  The heating mechanism in (a) Conventional mode and (b) Microwaves 

mode (Collins Jr, 2010). 

Thermal comparison between microwave heating and oil – bath conventional heating is 

illustrated in figure 2.22 (Gude et al., 2013).    

Figure 2.22. Comparison between microwave and conventional heating (Gude et al., 2013). 
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2.8.4.2. Microwave in Gasification and Methane Reforming 

Specifications of microwave heating and its low consequences stimulates many researchers 

to use microwave heating in gasification processes and methane reforming instead of 

conventional heating methods. Gasification of four types of coal with O2 and steam in 

microwave plasmas have shown an increase in H2 production (Yoon and Lee, 2012).     

In the same context, gasification of biomass waste in a microwave - driven plasma may 

produce syngas with heating values up to 84% more than the microwave energy used in the 

process (Sturm et al., 2016). Microwave heating has been proven as an effective method in 

biomass gasification in the presence of (Ni/Al2O3) as well as having good effects on the 

removal of tar compounds from the produced syngas (Xie et al., 2014). 

Much more details about using microwave energy in gasification processes can be found in 

the literature (Kabalan et al., 2011, Beneroso et al., 2014, Ismail and Ani, 2014, Bermúdez et 

al., 2014, Ho et al., 2017, Liu et al., 2018, Sanlisoy and Carpinlioglu, 2018). 

The presence of tar in the product gases of biomass gasification is a serious problem. Tar can 

cause a coke formation, fouls, downstream units and deactivate catalysts. Hence, tar cracking 

is an important process to decrease tar’s hazards in the system. Using microwave plasma 

technology for tar decomposition has proven as an efficient method with more than 95%  

cracking efficiency (Wnukowski, 2014).  

Regarding methane and CO2 reforming in microwave environments, it seems that the process 

produces high H2 yield especially for high reforming temperatures and long retention time (Lim 

and Chun, 2017). More promising results have been recorded in using the microwaves for 

steam reforming, higher methane conversion than the conventional way of methane steam 

reforming and the system can easily be scaled for the low volumes gas production compared 

with the conventional reforming systems (O'Connor and Crandell, 2012).  
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Combined reforming of methane has also its share in microwave technology, good results 

have been achieved with providing a proof for a stable run of the microwave system at the 

high gas flow rates (several thousands of NL/h) (Li et al., 2016, Czylkowski et al., 2016).   

 Thus, microwave reforming topic has a growing interest. Many research papers have been 

published recently (Gangurde et al., 2018, Zhang et al., 2018, Li et al., 2018, Hamzehlouia et 

al., 2018, Jamróz et al., 2018, Bawah et al., 2018, Sun et al., 2018).       

2.9. The Simulation of Methane Reforming 

The reforming process of methane has been covered by different modelling studies.  A central 

finite difference approach was used in a heterogeneous dynamic model for steam reforming 

of methane (Pantoleontos et al., 2012). The results of this model have been validated with 

industrial experiments. Another CFD model for the SRM was carried out in the ANSYS 

FLUENT software for the tube reactor with a packed bed catalyst (Lao et al., 2016). Aspen 

Plus software was used in modeling the SRM and WGS for the natural gas with Langmuir-

Hinshelwood-Hougen-Watson (LHHW) kinetic model in RPLUG reactor (Amrana et al., 2017). 

The simulation results showed a good agreement with literature.  

2.10. Summary 

The production of high-quality biofuels and syngas from renewable sources depends on many 

factors. These factors vary according to the biofuel production process and mechanism. In 

fluidised bed gasification, for example, the hydrodynamic activity of the gas-solid mixture has 

a noticeable effect on the gasification process. The relationship between gas and solid 

particles in the packed and fluidised bed reactors has been studied widely. Many experimental 

studies were carried out in the BFBG in order to examine the hydrodynamic behaviour of the 

fluidised bed in different conditions. Hydrodynamic properties such as superficial gas velocity, 

pressure drop, and bubble size were measured and tested in many references.  
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However, in the first part of this work the effect of the air distributor design on the BFBG 

performance in terms of hydrodynamic properties. The experimental study contains measuring 

the pressure drop and bubble formation in the prototype BFBG for each distributor design and 

for different superficial velocities. 

The second part of this work introduces a 3D visualisation of the BFBG with the different 

distributors in order to present the hydrodynamic properties of the fluidised bed in each point 

in the system. The MP-PIC fluid-particle interaction model was used in the simulation of the 

BFBG. The MP-PIC model is a Discrete Phase Model (DPM) which depends on the 

Largrangian -Eulerian approach in solving the gas-particle and particle-particle interaction in 

the fluidised bed system. The MP-PIC model has explained briefly in chapter three in this 

thesis. 

Moreover, the modification of the produced syngas quality is not limited to the gasification 

process period. There are many post-gasification processes that can improve the syngas 

quality and specification such as methane reforming and tar removal. Post-gasification 

processes have a good cover in literature, for instance, wet, dry, and mixed reforming of 

methane in the presence of different catalytic materials are vastly studied in both industrial 

and academic research to produce hydrogen-rich product gases. Before start building the 

methane reforming reactors, many researchers simulate the entire system to estimate the 

outcome of the process. In the third part of this thesis the performance of post-gasification 

reactor for the BFBG product gas was simulated by using the Aspen Plus® software.     

Finally, after the accidental discovery of the heating effects of microwaves in 1949, the 

attention has turned to the use of microwave heating in gasification and post-gasification 

processes due to the proven “specifications” of this type of heating, with the potential of low 

energy consumption for even higher hydrogen yields. Thus, these techniques will be evaluated 

to improve a bespoke bubbling fluidised bed gasifier located at Cardiff University.  
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Chapter Three: Methodology  

 

3.1. Introduction   

The research in this thesis contains three parts as mentioned in chapter two: the first part 

involves an experimental study of the effect of the perforated distributor design on the BFBG. 

The study aims to examine the hydrodynamic behaviour of the BFBG for each distributor to 

select the one that provided the best hydrodynamic behaviour. The process includes 

measuring the pressure drop at a number of points along the gasifier inner surface and the 

size of bubbles generated in the fluidised bed for deferent air flow rates. In the second part, 

an unsteady state three dimensional CFD simulation for BFBG with four different air 

distributors under isothermal conditions was carried out in the modified open source software 

(OpenFOAM) (ESI-OpenCFD, 2018). The simulation results will be validated by the 

experimental data (first part).  

The third part relates to the improvement in syngas produced from the bubble fluidised bed 

gasifier. A simulation with Aspen Plus® software(Plus, 2009) was carried out to assess the 

modification process in order to build an experimental rig for the modification process. The 

CO2 and CH4 concentrations in the BFBG produced gas will be reduced to enhance the CO 

and H2 components in the syngas.  

3.2. BFBG Experimental Study 

The experimental study will be done at Cardiff School of Engineering. The rig components are 

listed in table 3-1 and the rig design in SolidWorks and the system photo are illustrated in 

figure 3.1.  
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Table 3-1. Isothermal BFBG rig parts. 

Part 

No. 
Part Name Material Dimensions (mm) Quantity 

Figure 

No. 
Notes 

1. Gasifier tube Perspex 
83 (ID) x 800 

height x 4 thick 
1   

2. Gasifier holder Perspex 
91 (ID) – 170 

(OD) x 20 thick 
1  

With 8 

(10mm) holes 

3. 
Perforated 

distributor 
Perspex 

170 (OD) x 10 

thick 
4  

With 8 

(10mm) holes 

for each and 

multi small 

holes (Fig.4.2) 

4. Air feeder steel 
83 (ID) x 200 

height x 4 thick 
1   

5. System stand steel 
1500 L x 500 W x 

2000 H 
1   

6. Bolts and Nuts Steel M10 12   

7. Gate valve Brass 12.7 ID 1   

8. 

Digital gas 

flowmeter MF 

5712 

Plastic 

frame 

97 L x 50 W x 134 

H 
1  Fig. 3.9 

9. 

Digitron PM-20 

Model Digital 

Pressure Meter 

Plastic 

frame 

155 L x 67 W x 40 

H 
1  Fig. 3.10 

10 
High-speed 

camera 

Photron 

fastcam 
 1  Fig. 3-11 
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Figure 3.1. Isothermal BFBG rig schematic design and picture. 
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The experimental work contains two parts: 

1- Measuring the pressure drop in five different positions along the inner wall of the 

isothermal BFB gasifier. However, the measurements in each position are carried out 

for different air flow rates (i.e. different superficial gas velocities) starting from the low 

magnitudes (before fluidisation) to the high magnitudes (fluidisation phase).  

A digital thermal gas flowmeter (MF5712), shown in figure 3.2, was used to regulate 

and measure the different air flow rates. The main specifications of the (MF5712) 

flowmeter are listed in table 3-2. A digital gas pressure meter (Digitron PM-20) shown 

in figure 3.3, was used to measure the pressure drop in each position. The main 

specifications of the (Digitron PM-20) pressure meter are listed in table 3-3. 

Figure 3.2. Digital thermal gas flowmeter: MF5712 model with Siargo’s proprietary MEMS 

calorimetric mass flow sensor. 
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Table 3-2. The main specifications of the digital thermal gas flow metre (MF5712) (Siargo Ltd., 

2017).  

 Features Specifications Unit 

1 Flow range 1-200 SLPM 

2 Turn-down ratio 30:1 % 

3 Accuracy  ±(2.0+0.5FS) % 

4 Repeatability 0.5 % 

5 Response time ≤ 2 Sec 

6 Display resolution 
Instant flow:                0.1 

Accumulated flow: 0.001 

SLPM 

NCM 

7 Max. pressure ≤ 0.8 MPa 

8 Pressure loss ≤ 2000 Pa 

9 Working temperature -10 ~ 55 oC 

10 Calibration gas N2 at 20 °C,101.325 kPa  

Figure 3.3. Digital gas pressure meter model: Digitron PM-20. 
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Table 3-3. The main specifications of the digital gas pressure meter (Digitron PM-20) (Digitron, 

2017). 

 

2- A study of the bubbles forming inside the fluidised bed in the internal face of isothermal 

BFB gasifier was performed by measuring the bubbles size and their velocities for 

different air flow rates. A Photron (FASTCAM-APX RS) High-Speed Video Camera, 

shown in figure 3.4, was used to capture the bubbles forming and measure the bubble 

speed before they blasted on the fluidised bed surface. The main specifications of the 

Photron (FASTCAM-APX RS) High-Speed Video Camera are listed in the table 3-4.  

The experimental system set - up and the procedure of experiments are illustrated in 

chapter 4. 

 Features Specifications 

1 Pressure measurement 0-130 mbar 

2 

Resolution 

 

0.01 resolution up to 19.99 mbar then auto ranges 

from 0.1 up to 130 mbar 

3 Accuracy ±0.2% of reading ±0.2% of full scale ±1 digit 

4 Calbration 

PM 20 gauge comes complete with traceable 

calibration certificate 

5 Operating Temperature –10°C to 50°C/+14°F to 122°F (Ambient) 
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Figure 3.4. Photron (FASTCAM-APX RS) High-Speed Video Camera (Photron Limited, 

2006). 

Table 3-4. The main specifications of the Photron (FASTCAM-APX RS) High-Speed Video 

Camera (Photron Limited, 2006). 

 Features Specifications 

1 Imaging sensor C-MOS imaging sensor 

2 Sensor resolution 1024 x 1024 pixels 

3 Frame rate Up to 3,000 FPS, full resolution 

4 Recording 
grayscale 

Monochrome: 10 bits 

Colour: 10 bits each on RGB (Bayer colour filter array) 

5 Shutter Electronic shutter 

6 Recording media IC memory 

7 
Random frame 

recording 

The frame rate can be set to any external sync signal of 50 Hz to 

250,000 Hz 
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3.3. BFBG CFD Simulation 

In CFD, which is a branch of fluid mechanics, the problem that involves fluid flows is analysed 

by a suitable theoretical model and then solved numerically through a data structure in high-

speed computers. Boundary conditions for the case study should be specified and represented 

in the CFD model. 

3.3.1. Particles – Fluid Flow Models 

The hydrodynamic behaviour of fluid (gas) - solid (particles) flows has received a growing 

interest over the decades. This is due to the wide range of usages in different engineering and 

industrial applications, such as fluidised bed dryers, fluid catalytic cracking, fluidised bed 

reactors, and various types of gasifiers. It is very difficult (if not impossible) to measure 

experimentally the gas-solid properties (velocities, pressure, and porosity (Voidage)) inside a 

fluidised bed control volume without disturbing the flow field as illustrated in chapter two. To 

overcome these practical measurement difficulties and limitations, many analytical models 

have been introduced to simulate the fluid-solid movements inside the fluidised bed system.       

Thanks to the rapid advancement in computer hardware, numerical algorithms and physical 

understanding, analytical models with computational fluid dynamics (CFD) have become 

powerful tools to provide both qualitative and quantitative insight into the complex fluid (gas) 

– solid (particles) flows.  

In recent studies, there are many models used to simulate the gas-solid flow mechanisms 

depending on different interpretations of the gas-solid interaction (Chen and Wang, 2017).  
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3.3.2.  Two-Fluid Model (TFM) 

TFM has been used to simulate the hydrodynamic interaction inside the fluidised bed for a 

long time (Ding and Gidaspow, 1990, Kuipers et al., 1992a, Yang et al., 2017, Ye et al., 2008). 

The models are based on an Eulerian - Eulerian continuum approach (Anderson and Jackson, 

1967, Gidaspow, 1994). Basically, in the two-fluid models, both fluid and solid phases are 

continuous, fully interpenetrating and both momentum and heat transfer can be exchanged 

between the two phases (Kuipers et al., 1992b).  

The phases are represented by separate sets of equations with suitable interaction terms 

referring to the coupling between phases. Moreover, the physical properties of the solid 

particles such as shape and size are included in the continuum terms through empirical 

relations for the interfacial friction. However, the discrete character of the solid phase 

(particles) is not recognised in the two fluid models. Normally, the solution of the TFM 

approach relies on grid-based methods such as finite difference method FDM and finite 

volume method FVM. 

The Two-Fluid Model governing equations are (Chen and Wang, 2014): 

Continuity Equation;  

��� (��. ��) + 
 ∙ ��� . �� ∙ 
�� = 0  (Fluid Phase) …………………………………..…………. 3-1  

��� (��. ��) + 
 ∙ (��. �� ∙ 
�) = 0  (Solid Phase) ….…………………………….……….……. 3-2  

Where f and s refer to fluid and solid phase respectively, and ϵ, ρ	and	u represent the void 

fraction (Voidage), density and velocity, respectively.  

Momentum Conservation Equations; 

For Fluid Phase; 
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��� ��� ∙ �� ∙ 
�� + 
 ∙ ��� ∙ �� ∙ 
� ∙ 
�� + �� ∙ 
�� = 
. ��̿ + �� ∙ �� ∙ � + � ∙ �
� − 
��…. 3-3 

For Solid Phase; 

��� (�� ∙ �� ∙ 
�) + 
 ∙ (�� ∙ �� ∙ 
� ∙ 
�) + �� ∙ 
�� = 
. ��̿ + �� ∙ �� ∙ � + � ∙ �
� − 
�� …..  3-4  

Where p and � � are pressure and stress-strain tensor for fluid or solid phase, respectively and 

g and β are gravitational acceleration and the interphase drag coefficient, respectively.  

��̿ = �� ∙ ���

� − 

��� − �� �� ∙ ���

�� ∙ � ̿  ………………………..……………………...  3-5             

��̿ = −�� ∙ � ̿ + ��(

� − 

��) + (�� − �� ��) ∙ (

�) ∙ � ̿……………..……………………… 3-6 

Where:  � ̿is the unit tenser and �� is the bulk viscosity of the solid.  

The interphase drag coefficient, β  and the other solid variables such as �� , µs and λs can be 

calculated through empirical equations (Lun et al., 1984, Oger and Savage, 2013, Wen and 

Yu, 1966).  

However, one of its drawbacks is that the use of the standard TFM to simulate the 

hydrodynamic behaviour of BFB with Geldart A particles over-predicts the results in a bed 

expansion (Ferschneider and Mege, 1996, Mckeen and Pugsley, 2003, Zimmermann and 

Taghipour, 2005).   

3.3.3. Continuum (Eulerian) – Discrete (Lagrangian)  Models  

In the Continuum – Discrete Models, the continuity and momentum equations are applied for 

the fluid phase just like the two-fluid models (i.e. equations 3-1 and 3-3 with some differences 

in calculating the interphase drag force term). The drag force in the TFM depends only on the 

averaged parameters such as fluid and solid velocities and local solid fraction in addition to 
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the fixed properties of the fluid and the solid. Meanwhile, in the Continuum – Discrete Models, 

the drag force term in the momentum equation 3-3 is obtained by calculating and summing 

the drag force for each particle in a fluid cell over all particles in that fluid cell.      

3.4. Discrete Particle Model (DPM) 

The discrete particle model (DPM) can be considered as one of the best Computational Fluid 

Dynamics –Discrete Element Model (CFD-DEM) approaches (Zhu et al., 2008).  In this model, 

the Newtonian equations of motion are solved for each individual particle, and an interaction 

model is applied to handle particle encounters. Meanwhile, the Navier - Stokes equations 

based on the concept of local average as used in CFD are used to solve the fluid flow 

continuum, taking momentum transfer between the fluid and the particles into account 

(Kawaguchi et al., 2000).  

According to particles collision models, discrete particle models can be classified mainly into 

two approaches, the hard sphere approach (Campbell and Brennen, 1985, Hoomans et al., 

1996) and the soft sphere approach (Tsuji et al., 1993).  

3.4.1. Hard Sphere Model (HSM) 

The particles in this model are assumed to be impenetrable and cannot overlap in space. 

Here, particle-particle collisions and particle-wall collisions happen immediately. Moreover, 

momentum binary collisions are used to determine particles trajectories. Figure 3.5 shows the 

collision between two hard sphere particles with (r1,	r2) radii with some of the relevant physical 

variables. The after-collision velocities for the two collide particles can be derived from the 

following equations (Li et al., 2012):   

� ∙ !" − " (#)$ = %    .…………………………………………………………………………….. 3-7  

�� ∙ !"� − "�(#)$ = − %  ...……………………………………..…………………………………... 3-8 
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 � ∙ !& − & (#)$ = ' ∙ ( ) %  .………………..……………………………………………………. 3-9                                     

�� ∙ !&� − &�(#)$ = '� ∙ ( ) %  ……………………………………………………………………...3-10                                                                              

Figure 3.5. Two hard sphere particles in a collision (Li et al., 2012). 

Where: 

m1,	m2  - Masses of the particles 1 and 2 respectively (kg). 

"*(#), "*  - Velocity vector of the particle (i) before and after the collision (m/s). 

J - Vector of collision impulse (kg.m/s). 

I1,	I2 – Moment of inertial of particle 1 and 2 respectively (kg.m2). 
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&*(#), &* - Angular velocity of the particle (i) before and after the collision (1/s). 

r1,	r2 – Particle 1 and 2 radii (m). 

n	– Unit normal vector of the contact point of particle collision. 

3.4.2. Soft Sphere Model (SSM) 

 This model was originally developed by Cundall and Strack (Cundall and Strack, 1979). In 

this approach, particles deform due to the collision. Particles remain geometrically rigid, and 

“deformation” is considered in the force models. Typically, soft sphere approach simulations 

are more complicated and time-consuming than hard sphere approach.  

The spring-dashpot model introduced by Cundall and Strack is mostly used to calculate the 

contact forces as shown in figure 3.6. The normal and tangential components of the contact 

force in the soft-sphere model can be calculated by the following equations (Xue et al., 2017): 



 Chapter 3                                                                                                                                   Methodology 

63 

 

Figure 3.6. Soft sphere model description (Xue et al., 2017). 

For the normal component of the contact force. 

,⃗./0 = 10 ∙ 20 ∙ (3⃗ ./ − 40 ∙ 
3⃗ ./0   …………………………………………………………………. 3-11     

Where: 

,⃗./0  – The normal component of the contact force between particles A and B. (N) 

kn – The normal spring stiffness. (N/m) 

δn – The normal overlap between particles A and B. (m) 

(3⃗ ./ – The normal unit vector. 

ηn – The normal damping coefficient. (N.s/m) 
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3⃗ ./0  – The normal relative velocity between particles A and B. (m/s) 


3⃗ ./0 = �(
3⃗ . − 
3⃗ /) ∙ (3⃗ ./�(3⃗ ./ …………………………….……………………………………  3-12 


3⃗ . – The velocity of particle A. (m/s) 


3⃗ / – The velocity of particle B. (m/s) 

And for the tangential component of the contact force. 

,⃗./� = 5−1� ∙ 2� ∙ 6⃗./ − 4� ∙ 
3⃗ �7*8 . 9,⃗./� 9 < �9,⃗./0 9. . .−�9,⃗./0 9 ∙ 6⃗./ . 9,⃗./� 9 ≥ �9,⃗./0 9              <   …...………………………  3-13 

Where: 

Kt – The tangential spring stiffness. (N/m) 

δt – The tangential displacement. (m) 

6⃗./ – The tangential unit vector. 

4� – The tangential damping coefficient. (N.s/m) 


3⃗ ./�  – The slipping velocity. (m/s) 

� – The friction coefficient.  


3⃗ ./ � = (
3⃗ . − 
3⃗ /) − 
3⃗ ./0   …………………….…………………………………………………. 3-14 

6⃗./ = =33⃗ >?@9=33⃗ >?@ 9   …………………………………..………………………………………………….. 3-15  

The spring stiffness k and the damping coefficient η can be calculated by the following 

(Capecelatro and Desjardins, 2013):  
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1 = A>?BCDEF (GFH(70 I)F)    …………………………………………………………………………… 3-16 

4 = −2 ∙ K( L MA>?∙NGFH(70 I)F ……………………………….………………………………………… 3-17 

Here,  

�./ = !  A> +  A?$O 
        

ma,	mb – The mass of particle A and B respectively. (kg) 

e – Coefficient of restitution 0 < L < 1 .  

τcol – The collision time (sec).                                  

3.5. Multiphase Particle-In-Cell (MP-PIC) Method 

The MP-PIC model is considered a Discrete Particle Model as it deals with the fluid phase as 

a continuum (Eulerian) and the solid phase is treated as Lagrangian computational particles. 

This model has emanated from the particle – in – cell (PIC) method originally introduced by 

Harlow for a single-phase flow (Harlow, 1957).  

In the (PIC) method, the Lagrangian particles approach is used to transport mass, momentum, 

and energy through a fixed Eulerian grid in a way that preserves the identities of the different 

solid particle materials. Moreover, the interactions of the particles are determined on the 

Eulerian grid with an interpolation of particle properties in the grid. Then, the fluid field is 

updated on the grid (Pannala, 2010). 

The MP-PIC method was proposed firstly by Andrews and O’Rourke to simulate one - 

dimensional dense flow of particles and gas with comparison with an analytical solution and 

experimental data (Andrews and O'rourke, 1996). This method can be considered as an 

extension of the stochastic particle method of the KIVA code, which is a computer programme 
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for the numerical calculation of transient, two- and three-dimensional chemically reactive  fluid 

flows with sprays, due to the addition of the isotropic particle stress gradient to the equation 

of motion of the particles (Amsden et al., 1989).  

The MP-PIC method can calculate the flow of particles with different volume fraction from the 

dilute to the close pack limits. In particles -fluid flows, it is difficult to determine the particle 

stress gradient for each particle in a dense flow. Thus, the particle stress gradient is calculated 

as a gradient on the grid with fully coupling to the other particles and fluid acceleration term 

and is then interpolated to the discrete particles. The MP- PIC method was extended to two-

dimensional flows by (Snider et al., 1997) and then (Snider, 2001) extended the method for 

three-dimensions.    

3.6. MP-PIC Model Methodology                 

The Multiphase Particle-In-Cell method can be described by the following governing 

equations, the interpolation operators and the particle stress model (Snider, 2001). 

3.6.1.  The Governing Equations 

The governing equations in the MP-PIC model can be divided into two sets: the fluid phase 

equations and the particles phase equations.  

3.6.1.1. Fluid phase (continuum phase) 

The Continuity Equation for the incompressible fluid: 

 
�QRS�� + 
 ∙ ���� ∙ 
�� = 0  …………………………………………………………………….. 3-18 

Where: 

� – Voidage (Porosity). (-) 
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�� – Fluid density. (m3/kg) 


� – Fluid velocity. (m/s)  

The Navier- Stokes’ Momentum equation: 

�QRS∙=S�� + 
 ∙ ���� ∙ 
� ∙ 
�� + 
� = −T + �� ∙ �� ∙ �    …………………………………….  3-19 

Where:  

p – Fluid pressure. (pa)  

F - The rate of momentum exchange per volume between the fluid and particle phases. 

(N.m/m3) 

�� – Fluid volume fraction (void fraction). 

g – The gravitational acceleration. (m/s2). 

3.6.1.2. Particulate Phase (Particle Phase) 

In the particulate phase, the probability distribution function (φ) is used to describe the particles 

dynamics. Here, the probability distribution function (φ)  is a function of �U, 
8, �8, "8, 6�, where 

x is the particle position, up is particle velocity, ρp is the particle density, Vp is the particle 

volume, and t represents the time (Andrews and O'rourke, 1996).  

The evolution of the probability distribution function (φ) with time can be calculated by solving 

the Liouville equation; 

   
�∅�� + 
 ∙ �∅ ∙ 
8� + 
=W ∙ (∅. X) = 0  ……………………………………………………….. 3-20 

Where A is the particle acceleration �Y
8 ⁄ Y6� and can be determined by the following 

equation: 
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X = [8 ∙ �
� − 
8� −  RW ∙ 
� + � −  QW∙RW ∙ 
� ………………………………………………….. 3-21 

Where Dp	is a drag function, �8 is the particle volume fraction, and � is the interparticle stress 

gradient.  

The integration of the probability function (φ)  over the velocity and mass of the particle gives 

the probable number of particles per unit volume at any position, x and time, t in the domain. 

Thus, the particle local properties (Particle volume fraction (�8), Average particle density 

(�8 ∙ �8\\\\\\\\ ) and Mean particle velocity (
8\\\) can be calculated by the following equations: 

�8 = ∬ ∅ ∙ AWRW ∙ Y�8 ∙ Y
8 …………………………………………………………………….. 3-22 

�8 ∙ �8\\\\\\\\ = ∬ ∅ ∙ �8 ∙ Y�8∙Y 
8 ………………………………………………………………… 3-23 


8\\\ =  QW∙RW\\\\\\\\ ∬ ∅ ∙ �8 ∙ 
8 ∙ Y�8 ∙ Y
8 …………………………………………………………. 3-24           

Here (mp) is the particle mass (�8 = �8 ∙ "8 ^(Y Y�8 = Y�8 ∙ Y"8). 
In the flow region, the sum of the particle volume fraction and the fluid volume fraction 

(Voidage) must be unity at any position, x and time, t: �8 + �� = 1. 
Back to the momentum equation of the fluid phase, the rate of momentum exchange per 

volume between the fluid and particle phases, F is; 

T = ∬ ∅ ∙ �8 _[8�
� − 
8� −  RW ∙ 
�` Y�8 ∙ Y
8 ….………………………….…………  3-25 

3.6.2. Interpolation Operators 

The particles properties in the MP-PIC scheme are interpolated to and from the Eulerian grid 

using different interpolation operators such as linear and trilinear interpolation operators. For 

a rectangular grid with cuboid cells, the vector particle properties such as momentum transfer 
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between particles are interpolated to the cell faces and the scalar properties such pressure 

drop are interpolated to the call centres. However, in the case of using the nonorthogonal grid 

in the MP-PIC scheme, the control volumes and particles are transformed to a square 

computational grid and then interpolation operators and gradients are calculated. After that, it 

is transformed back to the normal grid (Snider, 2001).   

3.6.3. Particle Stress Model 

The particle stress is modelled by applying a continuum calculation for the particle pressure 

and the subsequent normal stress force to discrete particles. Here, the interparticle stress 

gradient,τ is calculated from Harris and Crighton model (Harris and Crighton, 1994): 

� = ab∙QWcA.deQCWOQW,f� OQW�g ………………………………………………………..………………  3-26 

where: Ps is a constant with pressure units, �h8 is the particle volume fraction at close packing 

as shown in Fig. 3.7, β  is a constant and has a value of 2 i � i 5 as recommended by 

(Auzerais et al., 1988), and θ  is a constant with a small value in the order of 10-7 (Snider, 

2001). 

Figure 3.7. Particles in closed pack control volume (Snider, 2001). 
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Figure 3.7 shows three different particles (clouds) in a close pack. Particle A is near the wall. 

This particle is surrounded by a wall or other neighbour particles and it has zero mean velocity 

up=0 due to the limited particle movement due to the particle collision mean free path and 

stress transfer to the wall. However, the packed bed is slightly expanding due to the influence 

of the large particle normal stress on the particle’s depth within the bed.  

Particle B may move through a high voidage region with a large mean free path between 

particles. While this particle approaches the closed pack, its velocity starts decreasing due to 

the large particle normal stress from the closed pack bed region. This large particle normal 

stress will also prevent the particle, when it reaches the closed pack region, from penetrating 

the cell and move it from the volume centre.  

As the particle C starts leaving the closed pack region, the particle normal stress decreases 

and the collision between the particle and the other neighbouring particles will diminish, i.e. 

the particle-mean-free paths will increase too (Snider, 2001).     

3.7.  Air Distributors in BFBG 

When making improvements in the hydrodynamic mechanism between the solid phase 

(particles) and the fluid phase (air) in the fluidised bed gasifier, it is crucial to choose an air 

distributor which provides uniform air distribution throughout the fluidised bed control volume, 

optimum fluidised air velocity, suitable pressure drops, and the optimum bubble size, which 

finally modify the heat transfer and the gasification process in general (Shukrie et al., 2016). 

There are many types of gas distributors used in BFB gasification systems, which ranged from 

the simple shapes to extremely complex ones. However, the selection of suitable gas 

distributors subject to several criteria such as manufacturing cost, hydrodynamic efficiency, 

etc. Generally, the perforated plate distributors are the most common to manufacture among 

other gas distributors (Shukrie et al., 2016).     
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3.7.1. Perforated Disc Distributor Design 

The design of the perforated distributor is subjected to several criteria such as the gas 

pressure drop across the bed (∆pb), hole (orifice) diameter (do), and holes arrangement in the 

distributor (Geldart and Baeyens, 1985). The distributor should provide enough pressure drop 

to initiate fluidisation uniformly. Hence, the pressure drop across a bubbling bed with (H) 

height, can be calculated via the equation (Basu, 2006): 

∆�/ = �8�1 − �l� ∙ m ∙ � = �8�1 − �lA�� ∙ mA� ∙ �  …………………...……………………… 3-27 

Where: 

�lA� – The voidage (porosity) at minimum fluidisation conditions. (-) 

Hmf – The bed height at minimum fluidisation conditions. (m) 

Another important factor in distributor design is the fractional opening area of the orifices:  

T'^n6op(^K p�L(o(� ^'L^ p, 6ℎL p'o,onLr = s Gt Yu = v∙RwvD∙RwD  ………………….…………….. 3-28  

Where: 

N – Number of holes (orifices) per unit area of the distributor. (m2) 

s =  aF   For square arrangement pitch. 

s = �√�∙aF   For triangular arrangement pitch. 

P- The pitch between two holes. (m) 

U,	Uo – Superficial gas velocity and orifice gas velocity respectively. (m/s)  
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Figure 3.8 demonstrates the different parameters in a perforated plate distributor having disc 

diameter (D) and orifice diameter (do).  

Figure 3.8. Perforated plate distributor. 

3.7.2. Minimum Fluidization Velocity, Umf 

The minimum fluidisation velocity (Umf) in a fluidised bed control volume can be calculated by 

using the Ergun's equation for the pressure drop along a packed bed in conjunctions with the 

fluid drag equations (Ergun, 1952). 

∆8y = 150 ∙ z∙v�{∙|W�F ∙ }� OQw�F
Qw~ � + 1.75 ∙ Rw∙vF{.|W ∙ � OQw�Qw~   ………………….…………………….. 3-29 

And 

Fluid Drag = ∆� ∙ X = X ∙ m ∙ �1 − �l���8 − �l� ∙ �  …………………………………………. 3-30  

Where: 

H – Bed height (m). 
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µ - Fluid dynamic velocity (N. s m�� ). 

φ - Particle sphericity. ϕ = 1 for spherical particles. 

Thus, for minimum fluidisation conditions (Kunii and Levenspiel, 1991): 

�A� = �|W�F∙�RWORw�∙l �#∙z }Q�S~ ∙{F OQ�S �  ….. For small particles Re�,�� < 20.  ……………………….. 3-31 

And 

�A�� = |W∙�RWORw�∙l .��∙z ∙ �A�� ∙ �    ….. For large particles Re�,�� < 1000. ………………………. 3-32 

If �A� and / or φ are unknown, then  �A� can be calculated by the following equation: 

�A� = z|W∙Rw ∙ �(� � + �� ∙ X')#.� − � �  …………………………………………………………..  3-33 

Where:  

Ar - Archimedes number. (Ar = Rw∙�RWORw�∙l∙|W~zF ) 

The value of the empirical constants C1, C2 can be found experimentally as (Grace, 1982): 

C1 = 27.2 and C2 = 0.0408.  

Hence, the minimum fluidisation velocity will be: 

�A� = z|W∙Rw ∙ �(739.84 + 0.0408X')#.� − 27.2�  ……………………………………………… 3-34         

3.7.3. Application of the Theory to Experimental Ri g 

The study includes an isothermal bubbling fluidised bed gasifier with 800mm height and 83mm 

inner diameter and four different perforated distributors as described in section 3.2. The 
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specifications for each distributor are shown in table 3-5. The geometrical designs for the 

isothermal BFBG and the four air distributors are illustrated with the dimensions in figures 3.9 

and 3.10 respectively.   

Table 3-5. The specifications of the BFBG distributors. 

Type Distributor 

Working 

diameter 

(mm) 

Orifice 

diameter 

do 

(mm) 

Holes 

arrangement 

Pitch, 

P 

(mm) 

Number 

of 

Holes 

A Perforated Disc 83 2 Square 7.5 97 

B Perforated Disc 83 2 Triangular 7.5 109 

C Perforated Disc 83 1 Square 6.35 137 

D Perforated Disc 83 1 Triangular 6.35 151 
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Figure 3.9. Section of the geometrical design of the isothermal BFBG. 
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Figure 3.10. Geometrical designs for the perforated plate distributors: 

                   A – 2mmφ, square arrangement, 7.5mm pitch and 97 holes. 

                   B – 2mmφ, triangular arrangement,7.5mm pitch and 109 holes.                               

                   C – 1mmφ, square arrangement, 6.35mm pitch and 137 holes. 

                   D – 1mmφ, triangular arrangement,6.35mm pitch and 151 holes. 
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3.7.4.  Simulation Parameters 

The isothermal bubble fluidised bed gasifier used in this simulation has silica sand particles 

as a solid phase and air as a fluid phase. The properties of each substance are presented in 

table 3-6. 

Table 3-6. The properties of simulation parameters. 

Parameters Material Unit Value 

Solid phase Silica Sand (-) (-) 

Total (particles) mass Silica Sand kg 0.5 

Particle size, dp Silica Sand µm (425 - 500) 

Particle density, ρp Silica Sand 1�/�� 2650 

Particle sphericity,φ Silica Sand (-) 1 

Particles injection 
mode Silica Sand (-) Batch injection 

Fluid phase Air (-) (-) 

Fluid flow rate Air SLPM (100 -150) 

Gas temperature, T Air oC 20 

Gas pressure, p Air Pa 101325 

Gas density, ρg Air 1�/�� 1.2 

Gas dynamic 
viscosity, µ Air 1� � ∙ r�  1.82 x 10-5 

Gas kinematic 
viscosity, υ Air �� r�  1.56 x 10-5 

Gravitational 
acceleration, g (-) � r��  9.81 
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3.7.5. Simulation Procedure 

The simulation involves three main stages which are the design of the control volume 

geometry, mesh generation, and solving the model respectively.  

3.7.5.1. Control Volume Geometrical Design 

The region where the gas (air) and solid (silica sand) are flowing and forming the fluidised bed 

has been represented geometrically by using the open – source software SALOME 7.7.1 

(CASCADE, 2005-2018). Figure 3.11 shows the system geometrical representation in the 

SALOME 7.7.1 platform.  

Figure 3.11. System control volume in the SALOME7.7.1 platform. 

3.7.5.2. Mesh Generation 

In the same software platform (SALOME 7.7.1), the system mesh has been generated with 

NETGEN_2D3D algorithms with approximately 30,000 to 60,000 nodes depending on the 

distributor type. The mesh for the whole control volume and for the distributor side are 

illustrated in figures 3.12 and 3.13 respectively. 
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Figure 3.12. The system control volume mesh. 

 

Figure 3.13. The mesh of the distributor side: A – 2mmφ - square arrangement. B - 2mmφ - 

triangular arrangement. C - 1mmφ - square arrangement. D - 1mmφ - square arrangement. 
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The choosing of mesh generation method and quality was subjected to many factors such as 

the complexity and the shape of the system. However, the BFBG system with the air 

distributors forms a complex structure as shown in figure 3.13 which cannot be applied to the 

other mesh types such as the hexahedron mesh. Moreover, the size of the elements is not the 

same for all the system as shown in figures 3.12 and 3.13, the distributor zone has fine 

elements and the rest of the BFBG body has coarse elements. Three different types of mesh 

have been studied and a mesh sensitivity analysis has been done to choose the suitable mesh 

type for the simulation as shown in figure 3.14 and 3.15 for type A distributor. In spite of the 

high computational time of the fine mesh compared to the moderate and coarse mesh (1706 

sec, 823 sec and 383 sec respectively per 0.01 sec time step), the fine mesh was chosen in 

this modelling due to the convergence with experimental data as shown in figure 3.14.  

The final files of the system mesh are exported to the model solver after changing their format 

from (HDF) of the SALOME 7.7.1 to the (UNV) format.  

Figure 3.14. Comparison between the three mesh types with the experimental pressure drop 

in type A distributor. 
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Figure 3.15. The effect of mesh type on the velocity patron in type A distributor. 
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3.7.5.3. The Model Solver 

The final step in the simulation procedure is using the model solver with the exported UNV 

files from SALOME 7.7.1. The model solver in this simulation is the open source software 

OpenFOAM.  

3.7.6. OpenFOAM® 

OpenFOAM® is open source software developed by OpenCFD Ltd at ESI Group and 

distributed by the OpenFOAM Foundation. The word OpenFOAM® stands for Open Source 

Field Operation and Manipulation (ESI-OpenCFD, 2018).  

OpenFOAM® has a C++ library used primarily to create executables (Applications). The 

applications in OpenFOAM are divided into two categories: 

1- The solvers: solvers are the specific parts designed to solve a specific problem in the 

continuum mechanics. 

2- The Utilities: the parts which are designed to improve the tasks that need data 

manipulation.  

The OpenFOAM software involves large numbers of solvers and utilities covering a wide range 

of different engineering and scientific problems. OpenFOAM has pre- and post-processing 

environments which help in handling the consistent data across all environments. The overall 

structure of OpenFOAM is illustrated in Figure 3.16.  

3.7.6.1. MPPICFoam Solver 

In 2014, OpenFOAM® introduced the OpenFOAM - 2.3.0 version. This version has many new 

solvers such as the (DPMFoam) solver used for solving the Discrete Particle Methods (DPM) 

for the dense flow of particles and the (MPPICFoam) solver for the Discrete Particle Methods 
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(DPM) to resolve collisional exchange, implementing the Multiphase Particle-in-Cell (MP-PIC) 

method. 

Figure 3.16. OpenFOAM structural overview. 

3.7.6.2. Simulation of The Study Cases  

To simulate the study cases in OpenFOAM 2.3.x, some of the OpenFOAM 2.3.x dictionaries 

need to be modified to meet the conditions of system distributors real cases. However, to run 

one case of the system for a specific superficial air velocity in the normal 5 cores computer for 

a 0.01 sec time step, a normal computer needs almost 6 hours to finish one-time step. Thus, 

4800 working hours are needed to simulate just 8 seconds of one case with one specific 

superficial air velocity. Therefore, using the High-Performance Computing (HPC) cluster 

(RAVEN) of the Cardiff University with 2048 cores was the best choice to do the simulation for 

the all cases to reduce the computation time.   
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3.8.  Post – Gasification Microwave Improvements 

Biomass gasification produces a product gas with different compositions. This mainly depends 

on the biomass type and gasification mechanisms. However, this product gas can be improved 

to syngas with low greenhouse gases and high hydrogen and carbon monoxide yields.  

However, in this part of the thesis the already dynamically improved BFBG was having further 

improvement. This modification starts after the gasification stage ended in which even more 

syngas would be generated from the greenhouse gases of the BFBG products. The activity of 

this process and power requirements were studied by using a kinetically simulation model via 

ASPEN PLUS® software (Plus, 2009).  

To understand the improvement mechanism in the product gas, the kinetics of the most 

possible reactions should be explained.   

3.8.1. Reaction Kinetics 

The study of reaction rates for chemical processes in different environments and conditions is 

called chemical reaction kinetics. There are two main goals for which the study of chemical 

reaction kinetics is carried out (Vallance, 2018):  

1- Study the reaction mechanism: Analyse the elementary step sequences bringing over 

the overall reaction.  

2-  Calculate the absolute rate for the overall reaction or for individual elementary steps 

or for both.        

3.8.1.1. Reaction Rate of Methane Reforming 

In chemical reactions, the rate at which the reactants are consumed (or products materials 

are forming) is called the reaction rate.  The reaction rate for methane reforming in the 

presence of a metallic catalyst material has been studied widely in different temperatures and 
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catalyst loading (Lewis et al., 1949, Bodrov and Apel’baum, 1967, Richardson and 

Paripatyadar, 1990, Mark and Maier, 1996, Abbas et al., 2017, Zhang et al., 2008).  

3.8.1.2. Power law model 

The rate of a reaction related to the chemical species concentrations present in the reaction 

is called rate law or power law. The general form of the power law is (Muller, 1994): 

r = k ∙ �A�£ ∙ �B�¥ ∙ �C�§ ∙ �D�¨  …………………..…………………………………….………. 3-35 

Where: 

 [A], [B], [C], and [D] – are the concentrations or partial pressure of the species in the reaction 

(species may contain reactants, products, and catalysts).  

a, b, c, and d – are the partial orders of reaction for the species (A, B, C, and D) respectively 

and the sum of all these exponents is the overall reaction order. However, the value of the 

exponents (a, b, c, and d) may vary for different catalysts.    

k – is the rate constant of the reaction (or reaction rate coefficient) and it depends on 

temperature, ionic strength, the surface area of an adsorbent, or light irradiation. The value of 

the rate constant (k) can be calculated by Arrhenius equation (Arrhenius, 1889): 

k = A ∙ eO©ª«¬    ……………………...…………………………………………………………….. 3-36 

Where: 

A - is the pre-exponential factor and it is constant for each reaction. 

Ea – is the activation energy for the reaction (% ∙ �pKO ).  

R – is the universal gas constant (R = 8.314 % ∙ ­O ∙ �pKO  ). 
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Hence, the reaction rate for dry reforming of methane according to the power law can be 

written as (Zhang et al., 2008): 

 r®¯° = k ∙ P²³t´ ∙ P²µ�¶   ………….……………………………………………………………..   3-37 

Where: 

PCH4, PCO2 – are the partial pressure of CH4 and CO2 respectively. 

x, y – are the partial orders of CH4 and CO2 in the DRM reaction for the specific catalyst. The 

empirical value of x and y for DRM with different nickel-based catalysts for some different 

references are shown in the table 3-7. 

Table 3-7. Empirical power law indices for different nickel-based catalysts. 

 

3.8.1.3. Langmuir Hinshelwood Hougen Watson (LHHW) Model 

The LHHW kinetic model for heterogeneous catalysis was proposed by (Hougen and Watson, 

1943). The reaction rate expression according to this model consists of three terms that have 

been represented in the following equation: 

r = Kinetic factor term ®½¾¿¾ÀÁ �Â½§Ã ÄÃ½�Å¨ÆÂ½�Ä¾ÂÀ ÄÃ½�   ……………………………………………………. 3-38  

Reference Catalyst x (CH4) y (CO2) Notes 

(Osaki et al., 1997) Ni/SiO2 - 0.3 0.16  

(Bradford and 

Vannice, 1996) 

Ni/MgO* 

Ni/TiO2
** 

Ni/SiO2
*** 

Ni/C*** 

0.52 – 1.22±0.18 

0.13 – 1.76 

0.18 – 0.49 

0.33 – 1.03 

- 0.54±0.06 – 0.36 

-0.61 – 1.55 

0.11 – 0.64 

-0.05 – 0.77 

Temperature: 

*773K-823K 

**673K-723K 

***723K 

(Zhang et al., 2008) 
Ni-Co/Al-

Mg-O 
0.483 0.291  

(Özkara-Aydınoğlu 

and Aksoylu, 2013) 

Pt –

Ni/Al2O3 

1.0ꝉ 

1.09ꝉꝉ 

0.87ꝉ 

1.40ꝉꝉ 

ꝉ 0.3Pt – 10Ni 
ꝉꝉ 0.2Pt – 15Ni 
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1- The kinetic factor term which represents the surface reaction of the reactants to 

produce the products. This term is calculated by the equation: 

Kinetic factor = k ! ÇÇÈ$À ∙ eOÉ©ª« !Ê¬O Ê¬È$Ë ……………………………………………………….  3-39 

Or  

Kinetic factor = k ∙ eOÉ©ª«¬Ë  ……………………………………………………..  3-40 

Where T and To are the reaction temperature and the reference temperature 

respectively. The equation 3-40 is used when the reference temperature, To is not 

specified.                                                      

2- The driving force term represents the desorption of the products from the catalyst 

surface to the surrounding environment, which is proportional directly to the reaction 

overall rate. The driving force term can be expressed by the equation: 

Driving force expression = k ∙ ∑ C¾́ ÑÒ¾Ó − k� ∙ ∑ CÔ¶Õ°ÔÓ  ………………………..    3-41 

Where:  

k1, k2 – The driving force rate constants for reactants and products respectively. 

Ci, Cj – The concentration of reactants and products species for the reaction. 

xi, yj – The reaction order reactants and products species respectively.               

3- The adsorption expression represents the adsorption of reactants to the catalyst 

surface, which is proportionally indirect to the overall rate of the reaction. The 

adsorption expression can be written as:  

Adsorption expression = É∑ k¾ !∏ CÔ¿Õ°ÔÓ $Ò¾Ó Ë�
 ………………………………………. 3-42 

The equilibrium constants ki for the driving force and adsorption terms can be 

evaluated by the following equation: 

ln(k) = A + ×Ç + C ∙ ln(T) + D ∙ T ……………………………………………………….. 3-43 

The parameters A, B, C, and D in equation 3-43 are experimental values. 
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3.8.2. Case Study  

The optimum product gas from the gasification of olive kernel biomass in the experimental 

bubbling fluidised bed gasifier has been used in this modification process. The composition 

of this product gas is shown in table (3-8), previously obtained by others (Al-Farraji, 2017).  

 Table 3-8. Optimum product gas composition of olive kernel gasification in BFBG (Al-Farraji, 

2017). 

 

3.8.3. Aspen Plus® Simulation 

Aspen Plus® is a market-leading process modelling tool for conceptual design, optimization, 

and performance monitoring for the chemical, polymer, speciality chemical, metals, minerals, 

and coal power industries (Plus, 2009). The comparison between the real process and ASPEN 

PLUS® simulation principles are shown in figure 3.17. This simulation can help in several 

aspects such as reducing the design time and improving the current process. 

 By using Aspen Plus for the post- gasification process, the CH4 and CO2 conversion, H2 and 

CO yields and reaction heat duty for different reaction temperatures can be predicted.  

Product 

components 
CH4 CO2 CO H2 

State gas gas gas gas 

Mole 

fraction 
0.1385 0.3037 0.4008 0.1570 
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Figure 3.17. The real and ASPEN PLUS® simulation principles. 

The reactions of methane through reforming has been assumed to be the dominated controller 

in the Aspen Plus model. The combined reforming of methane consists of the following main 

reactions (Park et al., 2014): 

1- Dry reforming of methane reaction (DRM): 

CHt + CO� ↔  2CO + 2H� ……………………………………………………………. 3-44 

2- First order steam reforming of methane reaction (SRM1): 

CHt + H�O ↔ CO + 3H�  …………………………………………………………...… 3-45 

3- Second order steam reforming of methane reaction (SRM2): 

CHt + 2H�O ↔ CO� + 4H�  …………………………………………………………... 3-46 

4- Water gas shift reaction (WGS): 

CO + H�O ↔ H� + CO�  ………………………………………………………………. 3-47 
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These reactions have the following reaction rates: 

r®¯° = ÜÝ«Þßàáâã ∙àáäFOàâFF ∙àáäF åæÝ«Þç è
� Håáâã ∙àáâãHåáä∙àáä�� HåáäF ∙àáäF�  ………..……………………………….. 3-48 

ré¯° = Üê«ÞÊ
ëàáâã ∙àâFäOàâF~ ∙àáä åæê«ÞÊç ì

àâFí F�î
} Håáâã ∙àáâãHåáä∙àáäHåâF ∙àâFHåâFä∙àâFä àâFç �F  ……………….………..... 3-49 

 

ré¯°� = Üê«ÞF
ëàáâã ∙àâFäF OàâFã ∙àáä åæê«ÞFç ì

àâFï F�î
} Håáâã ∙àáâãHåáä∙àáäHåâF ∙àâFHåâFä∙àâFä àâFç �F  …………………………… 3-50 

 

rðñé = Üòóê}àáä∙àâFäOàâF ∙àáäF åæòóêç � àâFô
} Håáâã ∙àáâãHåáä∙àáäHåâF ∙àâFHåâFä∙àâFä àâFç �F  ……………………………. 3-51 

 

Where: 

ki – The reaction rate constant for species i. 

Ki – The adsorption equilibrium constant for species i. 

Kp – The reaction equilibrium constant.  

Pi – The partial pressure of species i. 

The kinetic parameters of the proposed methane combined reforming reactions are 

listed in table 3-9. 
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Table 3-9. CRM reactions kinetic parameters. 

Where: To – The reference temperature (K) and R – The universal gas constant (kJ/kmol˕K). 

 

 

 

Parameter Equation Units Reference 

kDRM 2.91 ) 10O�e_O��t.õ� ¯ ! ÇO  ÇÈ$`
 

mole ∙ g§£ÄO ∙ hO 
∙ PaO� 

(Park et al., 

2014) 

kSRM1 4.72 ) 10÷e_O���.t��¯ ! ÇO  ÇÈ$`
 

mole ∙ Pa#.�. g§£ÄO 
∙ hO  

(Park et al., 

2014) 

kSRM2 1.89 ) 10�e_O�÷�.�÷¯ ! ÇO  ÇÈ$`
 

mole ∙ Pa#.�. g§£ÄO 
∙ hO  

(Park et al., 

2014) 

kWGS 1.06 ) 10O�e_O� .���¯ ! ÇO  ÇÈ$`
 

mole ∙ g§£ÄO ∙ hO 
∙ PaO  

(Park et al., 

2014) 

K²µF 5.97 ) 10O�eÉ��÷�#¯Ç Ë PaO  
(Park et al., 

2014) 

K²µ 8.23 ) 10O #eÉ�#÷�#¯Ç Ë PaO  
(Xu and 

Froment, 1989) 

K³F 6.12 ) 10O teÉõ�ù##¯Ç Ë PaO  
(Park et al., 

2014) 

K²³ã 6.65 ) 10OùeÉ�õ�õ#¯Ç Ë PaO  
(Park et al., 

2014) 

K³Fµ 1.77 ) 10�eÉOõõ÷õ#¯Ç Ë - 
(Park et al., 

2014) 

K�é°¯  e!�.tõO��ù�#.÷Ç H�. ù)úÀÇO�.ù�) #û~∙Ç$ Pa� 
(Park et al., 

2014) 

K�ðñé e!O �.  O�� õ.÷ùÇ H .# )úÀÇH . t) #ûã∙Ç$ - 
(Park et al., 

2014) 

K�®¯° 
K�é°¯ K�ðñéç  Pa� 

(Park et al., 

2014) 

K�é°¯� K�é°¯  ) K�ðñé Pa� 
(Park et al., 

2014) 
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A 9 mm φ x 40 mm length plug flow reactor PFR (as shown in figure 3.18) was used in this 

simulation. The BFBG product gas flow rate in the reactor was set to be (100 ml/min) at an 

inlet temperature of 293 K and a pressure of 1 atm. The 10% Ni/90%Al2O3 was used as a 

catalytic material in this process. The Aspen Plus® calculations were done for reaction 

temperature ranges from 773 K  to 1273 K for different catalyst loading from 2.5 mgcat.min/ml 

to 10 mgcat.min/ml. 

 

Figure 3.18. The plug flow reactor used in Aspen plus simulation. 
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Chapter Four: Experimental Study of BFBG 

Hydrodynamics 

 

4.1.  Introduction 

This chapter focuses on the hydrodynamic behaviour of the isothermal BFBG with four 

perforated distributor types, will be studied in depth experimentally and later under three-

dimensional CFD simulations (chapter five).  

4.2.  Rig Description  

A bespoke experimental rig was built at Cardiff School of Engineering combustion lab and it 

is shown in figure 4.1. Four perforated distributors, shown in figure 4.2, were used to study the 

flows inside the rig. Compressed air was injected into the system at different flow rates 

controlled by a gate valve and regulated by a digital gas flowmeter. When the compressed air 

passes through the distributor holes toward the packed sand bed, the sand particles will move 

throughout the BFBG free space forming a fluidised bed environment. The size of bed 

expansion depends mainly on the distributor type and the air flow rate. The height of the sand 

particles as a packed bed before fluidisation was 60 mm as shown in figure 4.3.   

The size of air bubbles and their movements inside the BFBG with the different distributor was 

examined by using a Photron (FASTCAM-APX RS) High-Speed Video Camera shown in 

figure 3.4 in chapter 3. The frame rate used in this process is 125 fps for all cases. The 

measured bubble size and velocity were then compared with the bubble size and velocity 

predicted by OpenFOAM simulation (chapter five). The bubble size and movement have been 

measured by using the image processing and analysis in Java software, ImajeJ (NIH, 2018).    

The aim of building this rig was to study the effect of the perforated distributor orifice size 

(2mmφ and 1mmφ), the distance between orifices (7.5mm and 6.35mm) and the orifices 
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arrangement (square or triangular) on the hydrodynamic behaviour of the BFBG. This study 

can improve the performance of the bubbling fluidised bed gasifier by choosing the right 

distributor that provides uniform fluidised bed inside the gasifier. 

Figure 4.1. The prototype isothermal BFBG. 

 

4.3.  Pressure Distribution in BFBG   

The pressure drop in the BFBG inside wall was measured in five different positions along the 

BFBG as shown in figure 4.3. The five positions are located at 10 mm, 40 mm, 60 mm, 80 mm 

and 100 mm above the perforated distributor. The average pressure reading was taken for 

each position and flow rate. The pressure drop was measured by the digital gas pressure 

meter model (Digitron PM-20) as mentioned in chapter three. This pressure meter has two 

ports with two hoses, the right hose for the datum level and the left hose for the position in 

which pressure drop to be measured as shown in figure 4.3. This procedure was done for all 

positions and repeated three times for each position to make sure it is the right reading.   
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Figure 4.2. The four case study perforated distributors : 

                             Type (A) distributor – 2mmφ & 7.5mm square pitch. 

                             Type (B) distributor – 2mmφ & 7.5mm triangular pitch. 

                             Type (C) distributor – 1mmφ & 6.35mm square pitch. 

                             Type (D) distributor – 1mm φ & 6.35mm triangular pitch. 
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Figure 4.3. Pressure measurement positions in the BFBG prototype. 

4.4.  Pressure Drop Results 

4.4.1. Pressure Drop at 10 mm Level 

In figure 4.4 the variation of pressure drop at different air flow rates for the four distributor 

types in the 10 mm level is illustrated. In all cases, the pressure drop increases linearly with 

the air flow rate until the minimum fluidisation flow rate (minimum fluidisation velocity, Umf). 

Beyond this flow rate the pressure drop increases only marginally. This is due to the sand bed 

transition from a packed condition to a fluidised condition (Kunii and Levenspiel, 1991).  

The minimum fluidisation flow rates for the four distributors are between 76 to 94 SLPM and 

the minimum fluidisation velocities are between 23.4 to 28.9 cm/sec.  
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Figure 4.4. The pressure drop variation at 10 mm height level in the isothermal BFBG with 

the four perforated distributor types A, B, C and D. 

 

The fluidisation velocity in the isothermal BFBG with triangular arrangement distributors B and 

D showed experimentally lower minimum fluidisation air flow rates than the BFBG with square 

arrangement distributors A and C by  10.5% and 10.6% respectively. 

Regarding the pressure drop, the type D distributor produced the highest pressure drop in the 

fluidised bed stage, while the lowest pressure drop was observed with the A distributor. 

However, the second largest pressure drop is observed with the type B distributor, this means 

that triangular arrangement distributors provide a larger pressure drop in the fluidised bed 

stage than the square arrangement distributors. This maybe due to the better distributon of air 

at this position provided by the triangular distributors as they have a larger number of holes 

per unit area than the square arrangement distributors. 
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4.4.2. Pressure Drop at 40 mm Level 

At the position 40 mm above the distributor, pressure drop decreased from between (370 to 

560 pa) at 10 mm level to between (250 to 375 pa) for the four distributors as shown in figure 

4.5. The profile of the fluidisation pressure drop at this position tends to increase linearly. This 

maybe due to the decrease in bed thickness above this position. The pressure drop observed 

with the type D distributor still has the largest values among the other distributors in this 

position at the fluidisation flow rates. However, the type C distributor showed the second 

largest while the lowest pressure drop was produced by type B. The distributor orifice size 

probebly has the major effect on this position as the small orifice distributor (C and D) provides 

the largest pressure drop comares to the large orifice distributors (A and B).   

Figure 4.5. The pressure drop variation at 40 mm height level in the isothermal BFBG with 

the four perforated distributor types A, B, C and D. 
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4.4.3.  Pressure Drop at 60 mm Level 

At this position, the pressure drop has a further reduction than in the previous positions, as 

previously explained. However, the type D distributor has the greatest pressure drop 

throughout all distributors and flowrates. Type C distributor followed, figure 4.6. Type A and B 

distributors have produced the lowest pressure drop in this position. This was caused by the 

low sand particles column above this point especially above the minimum fluidisation velocity. 

The effect of distributor orifice size in this position was greater than the effect of orifice 

distribution (square or triangular).  

Figure 4.6. The pressure drop variation at 60 mm height level in the isothermal BFBG with 

the four perforated distributor types A, B, C and D. 

4.4.4. Pressure Drop at 80 mm Level 

The packed bed height of the sand bed in the BFBG was 60 mm as illustrated in figure 

4.3. The increase in bed height above the packed bed level (60 mm) represents the 

fluidised bed expansion.   The 80 mm level port is located in the fluidised bed expansion 
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zone and the pressure drop in this position reflects the actvity of the fuidised bed at this 

level. The more pressure drop at this level the more fluidised bed activity observed.   

Further reduction in pressure drop can be seen at this position and type D distributor has 

the greatest values as previously, as demonstrated in figure 4.7. Type B distributor 

showed the second greatest pressure drop in the all set. This means the effects of orifice 

distribution in this position was greater than the orfice size effect as the distributors with 

triangular distrbution (D and B) have a greater effect than the square ones. 

 Moreover, the pressure drop has showed fluctuations under the high air flow rates. This 

maybe due to the low concetration of sand particles in this postion which makes the 

pressure readings fluctaute as the column changes consequance of the movement 

caused by the air bubbles and relocation of sand.  

Figure 4.7. The pressure drop variation at 80 mm height level in the isothermal BFBG 

with the four perforated distributor types A, B, C and D. 



Chapter 4                                                                                                                                Experimental Study 

101 

 

4.4.5.   Pressure Drop at 100 mm Level 

The fluctuation of pressure drop was very clear at the level 100 mm above the BFBG distributor 

with a significant reduction among all previous positions. The type D distributor has the 

greatest values especially at high air flow rates, while the other distributors nearly having the 

same performance. Figure 4.8 shows the pressure drop at the 100 mm position for the four 

distributors. 

The fluctuation in measured pressure together with the non zero pressure drop indicates the 

existance of floating sand particles (fluidised sand particles) at this level, as the sand particles 

are responsible for creating the pressure drop (Wang et al., 2007).  

The variation of pressure drop for the five positions of each distributor (A, B, C and D) are 

shown in figure 4.9. 

Figure 4.8. The pressure drop variation at 100 mm height level in the isothermal BFBG with 

the four perforated distributor types A, B, C and D. 
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Figure 4.9. The variation of pressure drops with air flow rate in the 5 positions of each 

distributor (A, B, C and D). 

 

4.5.  Bubbles Size and Velocity in The BFBG 

The bubble size and position were measured by using the open source software (ImageJ) by 

making a calbratition to the BFBG width in the images from the value in pixels to 83 mm. Then 

the front distances including the bubble size and the bubble height are measured accordingly. 

Figure 4.10 shows the BFBG width (diameter) calbration in the ImageJ software. The 
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measuring of bubble height starts from the upper surface of the gasifier holder shown in figure 

4.10. The height of this gasifier holder is 20 mm which means adding 20 mm for each 

measured height. 

Figure 4.10. The calibration of the BFBG image dimensions in the ImageJ software. 

4.5.1. Bubble Size and Movement in BFBG with Type (A) Distributor  

The tracking of bubbles formation and upward movement in the BFBG with type A perforated 

distributor by using the high-speed camera provided a good visualisition to each case. In figure 

4.11 the experimental bubble size and upward movement in the prototype BFBG with type A 

distributor at low superficial velocity (U = 0.33 m/s) is shown while the time variation of the 

upward bubble position in the same case is illustrated in figure 4.12. The bubble motion in this 

case followed an exponential trend rather than linear as shown in figure 4.12. 
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Figure 4.11. Bubble size and movement in the BFBG with type A distributor at U = 0.33 m/s. 
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Figure 4.12. Experimental time variation of bubble movement in BFBG with type A distributor 

at U = 0.33 m/s. 

In the high superficial velocity case (U = 0.45 m/s), the bubble was larger and faster than in 

the previous case as shown in figure 4.13 and 4.14 respectively. The average bubble velocity 

in this case is 416.6 mm/sec while it was 278.5 mm/sec in the previous case and the bubble 

size in the high velocity case is 42.6 mm while in the low velocity case is 23.4 mm. The bubble 

motion was linear in the high velocity case as shown in figure 4.14. 

The expansion of the bed in the BFBG with the type A distributor was not full in both low and 

high velocity cases. The experiments show that only about one third of the sand bed is fluidised 

while the other two thirds have stayed packed with some bubbles showing up from time to 

time. However, at high velocity the fluidised bed covers about half of the total bed.       
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Figure 4.13. Bubble size and movement in the BFBG with type A distributor at U=0.45 m/s. 
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Figure 4.14. Experimental time variation of bubble movement in BFBG with type A distributor 

at U = 0.45 m/s. 

 

4.5.2. Bubble Size and Movement in BFBG with Type (B) Distributor  

The isothermal BFBG with type (B) distributor has a good bed transition from packed to 

fluidised conditions at both high and low superficial velocities. In figure 4.15 the experimental 

upward bubble movement in the BFBG with type B distributor at low superficial velocity is 

shown. The average bubble upward velocity in this case is 278 mm/sec which is very close to 

the bubble velocity in type A case. The bubble size in this case is 23.8 mm as shown in figure 

4.16 which presents a very little difference to the bubble size at the previous case.     
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Figure 4.15. Experimental time variation of bubble movement in BFBG 

with type B distributor at U = 0.32 m/s. 

 

Under high velocity, the bubble size was 23.4 mm and then expands to be more than 44 mm 

in 0.088 seconds at an average bubble velocity of 185.7 mm/sec which is lower by more than 

three times the velocity of the same case with the type A distributor. The partial fluidisation in 

the type A case has an impact on the bubble velocity as the air flow will be faster in the fluidised 

bed zone than in the packed bed zone due to the high drag in the packed zone which makes 

more air flows throgh the fluidised bed zone. Figure 4.17 shows the bubble size variation with 

time in the BFBG with type B distributor at high velocity.  
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 Figure 4.16. Bubble size and movement in the BFBG with type B distributor at U = 0.32 m/s. 
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Figure 4.17. Bubble size and movement in the BFBG with type B distributor U = 0.44 m/s. 
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The upward movement of the selected bubble in the BFBG with the type B distributor at high 

velocity is illustrated in figure 4.18. Although the average superficial velocity is high in this case 

the bubble movement is slow compared to the low velocity case. This is probably due to the 

large wake fraction in the bubble as shown in figure 4.17 which dissipates the gas energy 

(Surma, 1985).    

The maximum bed expansion in the high velocity case is 73.5 mm (maximum expansion from 

the distributor is 93.5 mm) after the bubble bursting as shown in figure 4.17.   

Figure 4.18. Experimental time variation of bubble movement in BFBG  

with type B distributor at U = 0.44 m/s. 

 

4.5.3. Bubble Size and Movement in BFBG with Type (C) Distributor  

The average bubble velocities in BFBG with a type C distributor are 215.5 mm/sec for the low 

velocity case and 318 mm/sec for the high velocity case. In figures 4.19 and 4.20 the upward 

movement of the formed bubble inside the BFBG at low and high average superficial 

velocities, respectively, is presented, and the bubbles size and their upward movement 
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patterns are shown in figures 4.21 and 4.22. The sand bed in the BFBG with type C distributor 

has totally fluidised in both high and low velocity conditions. This total fluidisation maybe due 

to the large number of orifices in this distributor (137 holes) with small pitch distance (6.35 

mm) and small orifice diameter which provides uniform air flow through the sand bed. 

Although the fluidisation in this case was full, the observed bed expansion was lower than type 

B. The maximum bed expansion in the high velocity case was 68 mm (maximum expansion 

from the distributor is 88 mm) as shown in figure 4.22. This is maybe due to the effect of 

triangular arrangement in type B distributor which provides fewer dead zones in the bed.       
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Figure 4.19. Experimental time variation of bubble movement in BFBG 

with type C distributor at U = 0.32 m/s. 

Figure 4.20. Experimental time variation of bubble movement in BFBG  

with type C distributor at U = 0.44 m/s. 
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Figure 4.21. Bubble size and movement in the BFBG with type C distributor at U = 0.32 m/s.  
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Figure 4.22. Bubble size and movement in the BFBG with type C distributor at U = 0.44 m/s.  
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4.5.4. Bubble Size and Movement in BFBG with Type (D) Distributor  

The sand bed in the BFBG with the type D distributor has fluidised totally with many bubbles 

of different shapes and sizes. The expansion of the bed with this distributor was the largest 

among the other distributor cases providing an opportunity for good bed mixing. In figure 4.23 

the bubble upward motion with the type D distributor at a low air velocity is presented. The 

average bubble velocity in this case is 260.7 mm/sec for a bubble size of 10.3 mm as shown 

in figure 4.24. 

Under high velocity, more bubbles have formed at the same time as shown in figure 4.25. 

These bubbles have different sizes and velocities distributed throughout the sand bed. The 

bed height reaches more than 93 mm as shown in figure 4.25 (the bed height from the 

distributor is 113 mm) which is the largest bed expansion among all distributors. This high 

performance maybe due to the large number of small orfices (151 holes) with a small pitch 

distance (6.35 mm) in addition to the triangular arrangement which reduces the bed dead 

zones. 

     Figure 4.23. Experimental time variation of bubble movement in BFBG  

with type D distributor at U = 0.33 m/s. 
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Figure 4.24. Bubble size and movement in the BFBG with type D distributor at U = 0.33 m/s.  
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Figure 4.25. Bubble size and movement in the BFBG with type D distributor at U = 0.44 m/s. 
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The average bubble velocity in the high velocity case is 285.5 mm/sec, while the bubble motion 

is shown in figure 4.26.  

Figure 4.26. Experimental time variation of bubble movement in BFBG  

with type D distributor at U = 0.44 m/s. 

 

A comparision between bubble movement in the low and high velocities for each distributor is 

illustrated in figure 4.27 and the comparisin between bubble movements in the four distributors 

in the low and high velocities are shown in figure 4.28 and 4.29 respectvily.  
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Figure 4.27. The variation of bubble movement with superficial velocity for the A, B, C and D 

distributors. 

Figure 4.28. The variation of bubble movement with distributor type at low velocities. 
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Figure 4.29. The variation of bubble movement with distributor type at high velocities. 

 

4.6. Conclusion 

The hydrodynamic behaviour of the isothermal BFBG has been studied experimentally for four 

different perforated distributors in terms of pressure drop and bubble characteristics. The 

performance of the BFBG with these distributors has been tested for different air flow rates 

and at different bed heights.   

The experiments showed that all four perforated distributors have succeeded in producing 

bubbling fluidised bed inside the BFBG. However, the produced fluidised bed is not the same 

for all distributors. Type A distributor for example, partially fluidised the sand bed lifting a large 

pat of the packed bed. On the other hand, the type D distributor has fluidised the sand bed 

entirely with a large number of bubbles being formed. The expansion of the bed was the largest 

among the other distributors with a bed height reaching more than 113 mm under high velocity. 

Moreover, the minimum fluidisation velocity in the BFBG with D distributor was the lowest 



Chapter 4                                                                                                                                Experimental Study 

122 

 

among the other distributors at 234 mm/sec while the highest minimum fluidisation velocity 

was 289.5 mm/sec produced by type C distributor.  

Regarding the pressure drop, all distributors have produced a uniform pressure drop 

throughout the BFBG sand bed with the preference to type D distributor as it showed a large 

pressure drop at high levels due to the bed expansion. Overall hydrodynamic behaviour of 

those four perforated distributors outweighs the triangular pitch distributor with 151 x 1mm φ 

holes (type D) to use it in the BFBG.  

To conclude, the design of perforated plate distributor depends mainly on the orifice size and 

distribution pattern of the orifices. The distributors with small and triangular arrangement 

orifices form a fluidised bed regime with hydrodynamic specifications better than the 

distributors with large and square arrangement orifices.  

Furthermore insight into the fluidised bed was only possible with highly advanced CFD which 

is detailed in chapter 5. 
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Chapter 5: CFD Analysis of BFBG Hydrodynamics  

 

5.1.  Introduction 

CFD can be considered as a third approach in the philosophical study and development of the 

fluid dynamics discipline in addition to the purely experimental and the purely theoretical 

(mathematical) approaches (Anderson and Wendt, 1995).  

Computational fluid dynamics solves and analyses fluid mechanics problems that involve fluid 

flows including fluidisation by using numerical analysis and data structures. The technical 

booming in computing speed and data storage has a major impact on CFD development 

(Alhussan, 2013).  

In this chapter a CFD simulation with the open source software (OpenFOAM) was carried out 

for the isothermal BFBG with the four different distributors mentioned in chapter four. The aim 

of this CFD study is to provide a comprehensive visualisation of the hydrodynamics activities 

inside the BFBG which cannot be measured experimentally.     

5.2.  Isothermal BFBG Modeling 

The OpenFOAM solver MPPICFoam was used in the modelling of the isothermal BFB gasifier 

with silica sand and air as solid-gas working materials. The properties and quantities of these 

materials are listed in table 3-2 in chapter three. However, the geometry and mesh generation 

for the isothermal reactor was created by the open source software (SALOME 7.7.1) as cited 

in chapter 3.  

The modelling was carried out for the isothermal reactor with four different distributors which 

are the same configurations studied experimentally in chapter four. The simulation was carried 

out for two different air flow rates or superficial velocities for each distributor, average low 

superficial velocities and average high superficial velocities as shown in table 5-1. The reason 
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behind choosing just two velocity cases for each distributor, is the simulation requirements of 

time and data storage. For example, the computation time required to simulate one of the 

velocity cases is between 2 weeks and 1 month in the high-speed computer and generates 

about 250 GB of data. The air flow conditions for the eight cases are illustrated in table 5-1.   

Table 5-1. Air flow conditions for the eight cases of the isothermal BFB reactor. 

 

 

 

 

Case 

No. 
Distributor specifications 

Orifice air 

velocity 

(m/s) 

Total air 

flowrate 

(SLPM) 

Average 

superficial 

velocity (m/s) 

Type 

1 
97 x 2mm φ x 7.5mm pitch 

(Square arrangement) 
6 109.704 0.338 A 

2 
97 x 2mm φ x 7.5mm pitch 

(Square arrangement) 
8 146.273 0.450 A 

3 
109 x 2mm φ x 7.5mm pitch 

(Triangular arrangement) 
5 102.73 0.316 B 

4 
109 x 2mm φ x 7.5mm pitch 

(Triangular arrangement) 
7 143.822 0.443 B 

5 
137 x 1mm φ x 6.35mm pitch 

(Square arrangement) 
16 103.296 0.318 C 

6 
137 x 1mm φ x 6.35mm pitch 

(Square arrangement) 
22 142.031 0.437 C 

7 
151 x 1mm φ x 6.35mm pitch 

(Triangular arrangement) 
15 106.736 0.329 D 

8 
151 x 1mm φ x 6.35mm pitch 

(Triangular arrangement) 
20 142.314 0.438 D 
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5.3.  Modelling Results 

The modelling of the isothermal BFB gasifier was carried out in the RAVEN supercomputing 

cluster of the  Advanced Research Computing at Cardiff (ARCCA) in Cardiff University 

(ARCCA, [no date]). Data for each case simulation was between 230 and 300 GB. This data 

includes information about most of the hydrodynamic parameters throughout the isothermal 

bubbling fluidised bed gasifier such as particle size distribution, pressure drop, instantaneous 

velocity, and porosity (void fraction). 

The minimum fluidisation velocity, Umf for the isothermal BFB gasifier model was calculated 

using the equation 3-8 along with the properties in the table 3-2 of chapter three. Hence, the 

minimum fluidisation velocity for the system is ��� = 0.21574 
 �⁄  and the minimum 

fluidisation flowrate is  ��� = 70 ����. 

Therefore, all the eight study cases for the isothermal bubbling fluidised bed gasifier are in the 

fluidisation zone. 

5.4. Simulation Results Validation 

The simulation results presented in this chapter has been compared with the experimental 

data illustrated in chapter four in order to validate the simulation process in terms of pressure 

drop and bubble formation characterstics. The pressure drop from the simulation is calculated 

along the inner wall of the BFBG and the experimental pressure drop was measured in five 

positions along the BFBG inner wall as illustrated in chapter four. The second valdiation of the 

results is between the predicated bubble size in this simulation with results of the bubble size 

from literature.  
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5.4.1. Pressure Drop in BFBG with Type (A) Distributor 

The comparison between experimental and simulated pressure drops along the inner wall of 

the isothermal BFBG with type A distributor is shown in figure 5.1 and the difference between 

the averge measured and predicted pressure drops in the five positions for the high and low 

velocity cases for type A distributor are listed in table 5-2. The variance between the predicated 

and experimantal results in table 5-2 can be related to many reasons such as the assumption 

of constant density and viscosty of air in the simulation.  The experimental errors were too 

small compared to the total pressure range as shown in figure 5.1. 

Table 5-2. The difference between experimental and calculated pressure drop in the BFBG 

with type A distributor. 
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390 ± 

(2.9) 

25.81 ± 

(0.55) 
483.45  

400 ± 

(4.1) 
17.26 ± 
(0.84) 

40  245.73 
276 ± 

(3.05) 
-12.32 ± 
(1.24) 
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292 ± 
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-17.06 ± 

(1.76) 
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(2.3) 
74.15 ± 
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13 ± 

(2.8) 

56.44 ± 

(9.38) 

100 8.57 8 ± (0.9) 6.64 ± (10.5) 0.830 9 ± (0.8)  
-90.77 ± 

(8.88) 
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Figure 5.1. The comparison between experimental and simulated pressure drop in the BFBG 

with type (A) distributor. 
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5.4.2. Pressure Drop in BFBG with Type (B) Distributor 

In table 5.3 shows the calculated and measured data in the five positions with the percentage 

of differences and in figure 5.2 the experimental and theoretical pressure drops in BFBG with 

type B distributor is shown. 

Table 5-3. The difference between experimental and calculated pressure drop in the BFBG 

with type B distributor. 

A general comparison between A and B distributors shows type B has less error than type A 

in the most positions with the minimum value of 3% error at 40 mm position at the high velocity 

case.  
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Figure 5.2. The comparison between experimental and simulated pressure drop in the BFBG 

with type (B) distributor. 
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5.4.3. Pressure Drop in BFBG with Type (C) Distributor 

In type C cases the mostly higher than type B distributor and lower than type A as shown in 

table 5-4 and figure 5.3. The distributor holes arrangement and size may influence the 

accuracy of the simulation as the square arrangement distributors have more error than the 

triangular distributors and the small orifice distributor showed more converge between the 

experimental and simulated results.   

Table 5-4. The difference between experimental and calculated pressure drop in the BFBG 

with type C distributor. 
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Figure 5.3. The comparison between experimental and simulated pressure drop in the BFBG 

with type (C) distributor.  
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5.4.4. Pressure Drop in BFBG with Type (D) Distributor 

The percentage of error for the isothermal BFBG with the type D distributor in each position is 

listed in table 5-5 and the value of pressure drop along the inner wall of the BFBG is shown in 

figure 5.4. 

 

Table 5-5. The difference between experimental and calculated pressure drop in the BFBG 

with type D distributor. 
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Figure 5.4. The comparison between experimental and simulated pressure drop in the BFBG 

with type (D) distributor. 
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he overall comparison between the experimental and the simulated results shows that type D 

distributor has the best matching in most of the height positions among the other distributors 

as shown in figure 5.5. The orifice size and pitch arrangement of the type D distributor may 

cause this preference in comparison as mentioned before.  

Figure 5.5. Comparison of the pressure drop percentage differences in the four distributors 

(A, B, C and D). 

5.5. Bubble Size Comparison 

Comparison of recent simulation results with previous literature is a crucial issue to validate 

the work. The sizes of fluidised bed bubbles formed in this simulation have been compared 

with the bubble size calculated from three different correlations. 

5.5.1.  Chiba Correlation  

The Chiba correlation for the bubble size in a fluidised bed reactor with a perforated distributor 

depends on the difference between superficial and minimum fluidisation velocities, reactor 

cross sectional area and inversely on orifices number (Chiba et al., 1972). 

 d� = 0.431 ���∙∙����� !"
# $

%.&
 ……………………………………………………….…………… 5-1 
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Where:  

db – Bubble diameter (cm). 

Ac – Reactor cross-sectional area (cm2).  

Us – Instantons superficial gas velocity (cm/sec). 

 Umf – Minimum fluidisation velocity (cm/sec). 

n – orifices number. 

5.5.2. Cranfield Correlation  

In Cranfield correlation, the bubble height has an important effect on bubble size. However, 

there is no effect of the area and holes number in Cranfield correlation (Cranfield and Geldart, 

1974).   

 d� = 0.0326 ∙ �U0 − U23"4.44 ∙ h�
%.64 ………….…………………………………………….. 5-2 

Where: 

hb – Bubble height (cm). 

5.5.3. Geldart Correlation  

The holes number and the gravity in addition to the bubble height has been included in Geldart 

correlation (Geldart, 1972). 

d� = 1.43 ����� !
# $

%.&
∙ 4

78.9 + 0.027 ∙ h� ∙ �U0 − U23"%.;& …………………………………  5-3 

Where: 

g – Gravitational constant, g = 981 cm/s2. 
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The instantaneous superficial velocity at the bubble centre has been used instead of the 

average superficial velocity in the validation of the above three correlations which gives more 

reality to the bubble size calculations. In table 5-6 the comparison between bubbles sizes 

predicted by the recent simulation and the three empirical correlations are shown.  

The results of the recent simulation have a good approach with the empirical correlations of 

Cranfield (Cranfield and Geldart, 1974) and Geldart (Geldart, 1972). On the other hand, the 

results of the Chiba correlation (Chiba et al., 1972) were far from the simulation results. This 

disparity is also present between the results of Chiba correlation and the results of the other 

two correlations. This may due to the absence of the bubble height effect in the Chiba 

correlation. However, this fact has been mentioned in the literature (Karimipour and Pugsley, 

2011). The error between the simulated bubble size and Cranfield and Geldart correlation was 

between 9.92% and 58.81, while the error between the recent simulation and Geldart 

correlation was between 4.83% and 37.65% as shown in table 5-7. 
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Table 5-6. Bubble size comparison for the eight simulation cases. 

Distributor 
type 

A B C D 

Velocity case Low  High  Low  High  Low  High  Low  High  

Number of 
orifices, n 

97 97 109 109 137 137 151 151 

Bubble height, 
hb (cm) 2.71 3.06 3.42 1.07 1.14 1.62 2.82 2.80 

Instantaneous 
local 

superficial 
velocity, Us 

(cm/s) 

50.40 86.34 36.17 25.79 30.79 61.95 71.46 85.13 

Time (Sec.) 2.64 1.23 2.51 1.30 3.32 1.11 0.89 5.78 

Minimum 
fluidisation 

velocity, Umf 
(cm/s) 

21.57 21.57 21.57 21.57 21.57 21.57 21.57 21.57 

B
ub

bl
e 

di
am

et
er

, d
b 

(c
m

) 

R
ec

en
t 

si
m

ul
at

io
n 

2.68 5.23 1.92 0.48 0.92 3.37 5.20 5.12 

(C
hi

ba
 e

t 
al

., 
19

72
) 

0.55 0.72 0.38 0.23 0.29 0.52 0.54 0.6 

(C
ra

nf
ie

ld
 a

nd
 

G
el

da
rt

, 1
97

4)
 

3.47 8.09 1.72 0.44 1.04 5.35 5.80 7.53 

(G
el

da
rt

, 

19
72

) 

2.15 4.37 1.3 0.46 0.87 3.21 3.24 4.00 

 

 



Chapter 5                                                                                                                                              CFD Results 

138 

 

Table 5-7. The difference between (Cranfield and Geldart, 1974) and (Geldart, 1972) 

correlations and recent simulation in terms of bubble size. 

Distributor type Velocity case 

Percentage differences (%) 

(Cranfield and 

Geldart, 1974) 
(Geldart, 1972) 

A 
LOW 29.14 19.83 

HIGH 54.69 16.37 

B 
LOW 10.17 31.99 

HIGH 9.92 5.99 

C 
LOW 13.43 5.24 

HIGH 58.81 4.83 

D 
LOW 11.55 37.65 

HIGH 47.06 21.88 

 

 

5.6.  Simulation Results Analysis 

5.6.1.  Particles Size Distribution 

The sand particles used in the simulation process of the eight cases have different sizes. The 

size of these particles starts from 425 µm to 500 µm and all particles are assumed to have a 

spherical shape, i.e. unity sphericity, φ = 1. In figure 5.6 the batch injection of sand particles 

inside the BFBG with type (A) distributor and 0.338 m/s superficial velocity is presented. The 

particle size distribution through the injection time can be seen clearly in figure 5.6. The batch 

injection of sand particles was synchorised with the upward flow of air streams from the 

distrbutor holes. The injection sequence of sand particles shows that the large particles 500 
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µm (red colour) reach the BFBG bottom before the small particles 425 µm (blue colour) which 

stay on the rest of the batch, as expected. This is due to the gravity and the bouncy effect in 

low gas velocities (Chen and Keairns, 1975, Soria-Verdugo et al., 2011).  

More details about the effects of each distributor type and superficial velocity on bed height 

and particles distribution can be seen in figure 5.7 and figure 5.8. The fluidised bed height or 

bed expansion showed a clear influence by the distributor type. Types A, B and C distributors 

produce fluidised beds with heights of about 60 cm for the low superficial gas velocity (as 

shown in figure 5.7) or about 65 to 70 cm for the high superficial gas velocity (as shown in 

figure 5.8).  

On the other hand, type D distributor produced a fluidised bed with about 70 cm height for the 

low superficial gas velocity and more than 75 cm for the high superficial gas velocity. 
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Figure 5.6. The time sequence of the sand particles batch injection through an isothermal 

BFBG with type A distributor. 
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Figure 5.7. The effect of distributor type on the bed height and particles distribution for low 

superficial velocity. 

 

Regarding particles distribution, the triangular arrangement distributors B and D showed more 

uniform particles distributed throughout the bed compared to the square arrangement 

distributors A and C. Moreover, high superficial velocities produced more uniform fluidised 

beds particles distribution than low superficial velocity beds. However, the particles distribution 

can be viewed and evaluated for any section in the BFBG at any specific time.     
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Figure 5.8. The effect of distributor type on the bed height and particles distribution for high 

superficial velocity. 

In figures 5.7 and 5.8 the formed gas bubbles can be seen barely in the BFBG sides as small 

gaps between the BFBG walls and the particles bed. However, this is not enough to provide 

a comprehensive vision of the bubbles inside the fluidised bed. More details about the bubbles 

can be extracted from the bed void factor (voidage). 
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5.6.2.  Void Fraction (Voidage) (ε) 

The ratio between the volume of gas voids formed between solid particles and the total volume 

is called voidage or porosity. The value of voidage at the free gas zones and bubbles is unity 

while it is zero or a little above in particles agglomerate in the bed.  

The time sequence of voidage variation at type D distributor with high gas superficial velocity 

when the batch injection starts is shown in figure 5.9. Figure 5.9 shows that particles reach 

the BFBG bottom from two sides at first then they cover the centre of the bottom (distributor's 

face). This may be due to the pre-injection of air which makes a fast air stream in the centre 

of the BFBG pushing the solid particles to the sides.  

The variation of the void fraction on the bottom of the BFBG for the four distributors is shown 

in figure 5.10. The voidage variation was taken for low and high air superficial velocities. Figure 

5.10 shows that the voidage highest values are concentrated above the distributor holes (the 

red spots). On the contrary, the lower values are concentrated in the zone between the holes 

(the blue spots). However, the concentrations of sand particles are not the same in all the 

zones between distributor holes. Generally, square arrangement distributors have more dark 

blue spots (particles agglomerates) than the triangular arrangement distributors. This may be 

related to the air distribution patterns as the triangular distributors have more holes than the 

square distributors for the same unit area. This provides more opportunity to scavenge the 

sand particles from the dead zones (between holes).  
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Figure 5.9. The time sequence of falling the sand particles to the bottom of BFBG in terms of 

voidage. 
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Figure 5.10. Voidage variation at the BFBG bottom for the four distributors A, B, C and D. 

The high voidage zones (the dark red spots) above the distributor holes are varying from type 

to type and from the low to high superficial velocities as shown in figure 5.10. The average 

voidage diameter for the type A distributor is 3.597 mm for the low velocity case and 4.574 

mm, while the value reaches 3.69 mm and 4.82 mm for type B at low and high velocity, 

respectvily. Moreover, the voidage diameters for type C and D distributors are 2.676 mm, 

4.029 mm, 2.809 mm and 4.345 mm for low and high velocites, respectvily, as shown in figure 

5.10. 

 The expansion ratio of the free zone above the orifice can be calculated be the following 

equation: 

  Expansion ratio = EFGG HI#G JFGJ �229"
KFL3LMG JFGJ �229"   ……………………………………………….  5-4 

The comparison between the expansion ratio of free air area above the orifice to the orifice 

area for the eight cases is illustrated in table 5-8. 
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Table 5-8. The free air expansion ratio (voidage ≅ 1) above the orifices for the two superficial 

velocities.  

Distributor 

type 

Superficial 

velocity 

Orifice 

diameter 

(mm) 

Orifice 

area 

(mm)2 

Free air 

zone  

diameter  

(mm) 

Free air 

zone area 

(mm)2 

Expansion 

ratio 

 

A Low 2 3.1416 3.597 10.161 3.234 

A High 2 3.1416 4.574 16.431 5.230 

B Low 2 3.1416 3.69 10.694 3.404 

B High 2 3.1416 4.82 18.246 5.808 

C Low 1 0.7854 2.676 5.624 7.161 

C High 1 0.7854 4.029 12.749 16.232 

D Low 1 0.7854 2.809 6.197 7.890 

D High 1 0.7854 4.345 14.827 18.879 

Table 5-8 shows the clear difference between the performance of large and small holes 

distributors and the square and triangular arrangement distributors. Generally, small holes 

distributors C and D provided much more expanding ratio than the large holes distributors A 

and B. Moreover, the triangular distributors provided expansion ratio a little larger than the 

square arrangement distributors. The small orifice distributors provided free air area ratio of 

more than two times the ratio in the large orifice distributors for the low superficial velocity 

cases and more than three times for the high superficial velocity cases. 
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This may happen due to the high air velocity in the small orifices which can scavenge more 

sand particles above these orifices due to high air momentum. However, this action is very 

important for particle fluidisation and mixing. 

5.6.3. Voidage and bubble size and velocity 

The formation of gas bubbles in the BFBG is crucial to provide better hydrodynamic conditions. 

The bed voidage has the ability to reveal the bubbles inside the bed and determining their size 

and velocity.  

5.6.3.1. BFBG with Type A Distributor  

Bubble formation in this type has been recorded with an average bubble diameter of 16.64 

mm in the low superficial velocity case and 52.26 mm for the high superficial velocity case, 

see figures 5.11 and 5.13 respectively. For the low-velocity case, the bubble diameter has 

increased to be 26.8 mm in just 0.04 sec with an average upward bubble velocity of 339 

mm/sec. However, the upward movement of the air bubble is not constant all the time but 

generally, the bubble velocity increased as it goes up. This may be due to the decrease in the 

pressure with the bed height. Figure 5.12 shows the variation of the upward bubble movement 

through the BFBG bed with time for the low superficial velocity conditions.  
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Figure 5.11. Bubble size and upward movement in BFBG with type A distributor and low 

superficial air velocity. 
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Figure 5.12. Modelled time variation of air bubble motion through the bed of BFBG with type 

(A) distributor at low superficial velocity. 

 

In the high-velocity case, the size of the big bubble shown in figure 5.13 has slightly increased 

when the bubble rises to the bed surface and then bursts. The bubble diameter has increased 

by less than 2 mm in 0.04 sec with an average upward bubble velocity of 495 mm/sec. Figure 

5.14 shows the variation of the upward bubble movement through the BFBG bed with time for 

the high superficial velocity conditions.      
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Figure 5.13. Bubble size and upward movement in BFBG with type A distributor and high 

superficial air velocity. 
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Figure 5.14. Modelled time variation of air bubble movement through the bed of BFBG with 

type (A) distributor at high superficial velocity. 

 

5.6.3.2. BFBG with Type B Distributor  

In type B distributor, bubbles formation has also been noticed in the eight-seconds simulation. 

For the low superficial velocity case, the bubble size is relatively smaller than the bubble 

formed in type A for the low velocity, see figure 5.15. This bubble has very low upward velocity 

compared to the type A bubble.  

However, in the high superficial velocity case, a larger void cloud has been noticed covering 

almost the entire BFBG width with a 23.7 mm maximum height. The cloud formation and 

fading in the bed is 0.016 seconds. Figure 5.16 shows the formation and fading of a void cloud 

in the BFBG with type B distributor.      
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Figure 5.15. Bubble size and upward movement in BFBG with type B distributor and low 

superficial air velocity. 
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Figure 5.16. Void cloud formation and fading in BFBG with type B distributor and high 

superficial air velocity 
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5.6.3.3. BFBG with Type C Distributor  

The BFBG with this distributor also showed a bubble formation in the eight seconds simulation. 

In the low-velocity case a medium size bubble 9.3 mm with an average bubble velocity of 192 

mm/sec formed. This bubble size and velocity are comparatively lower than in the type A 

distributor for the same low-velocity case. This may be due to the difference in orifice diameter 

as type A has the large orifice which injects a large amount of air compared to the C type 

orifice. However, the number of bubbles in type C is more than that in type A. Moreover, there 

is an agglomeration of particles of about 18.5 mm size which has been captured in the bed 

near the wall. Figure 5.17 shows the formation of a bubble and particles agglomerate in the 

BFBG with type C distributor at low superficial velocity. 

The bubble in the high superficial velocity case with type C distributor is also smaller than in 

the type A distributor and slower. The average size and velocity of this bubble are 36 mm and 

275 mm/sec respectively. In figure 5.18 the bubble formation and fading time sequence in 

BFBG with type C distributor at high velocity have illustrated. However, figure 5.19 shows the 

time variation of the bubble upward movement in the BFBG with type C distributor at high 

superficial velocity.  
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Figure 5.17. Bubble and particles agglomerate formation in BFBG with type C distributor at a 

low superficial air velocity. 
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Figure 5.18. Bubble size and upward movement in BFBG with type C distributor and high 

superficial air velocity. 
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Figure 5.19. Modelled time variation of air bubble movement through the bed of BFBG with 

type (C) distributor at high superficial velocity. 

 

5.6.3.4. BFBG with Type D Distributor  

The eight seconds simulation for the BFBG with type D distributor discloses a large number 

of bubble formation in different sizes and positions for both low and high superficial velocity 

cases as shown in figure 5.20 and 5.23.  

In the low superficial velocity case, the formation and bursting of a large bubble have been 

presented in figure 5.21 and the time changing of bubble position is illustrated in figure 5.22. 

The average velocity of the bubble shown in figure 5.21 is 391 mm/sec which is higher than 

the velocity of bubbles in the other distributors in terms of low superficial velocity.    
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Figure 5.20. Different bubbles size and position in BFBG with type D distributor and low 

superficial velocity. 



Chapter 5                                                                                                                                              CFD Results 

160 

 

Figure 5.21. Large bubble formation and fading in the BFBG with type D distributor at the low 

superficial velocity. 
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Figure 5.22. Time variation of the bubble position through the BFBG with type D distributor at 

low superficial velocity. 

 

Regarding the high superficial velocity case, the number of formed bubbles is more than in 

the low-velocity case and the bubble velocity is higher see, figure 5.23. The formation and 

bursting stages of a large bubble in the high-velocity case are shown in figure 5.24. The 

average bubble velocity, in this case, is 437 mm/sec.  

The time variation of the bubble size and upward movement for the bubble are shown in figures 

5.24 and 5.25. In figures 5.22 and 5.25 the bubble size rapidly decreases as the bubble reach 

the bed surface and burst. While the bubble upward movement (velocity) increases as the 

bubble reach the bed surface. This happens due to the decrease in pressure drop which 

decreases the drag force on the bubble.  
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Figure 5.23. Different bubbles size and position in BFBG with type D distributor and high 

superficial velocity. 
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Figure 5.24. Large bubble formation and fading in the BFBG with type D distributor at the 

high superficial velocity. 
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Figure 5.25. Time variation of the bubble position through the BFBG with type D distributor at 

high superficial velocity. 

Generally, the simulation can provide more details about the bubble size and movement in 

every section of the BFBG and at any time of the simulation. 

 

5.6.4. Pressure Drop (∆p) 

The pressure drop is an important hydrodynamic factor in the fluidised bed reactors which is 

one of the distinguishing characteristics between the fluidised bed and the packed bed. 

Generally, the pressure drop at any point inside the BFBG is caused by the weight of the 

particles column above this point. Hence, it is high at the points located in dense particles 

zones and low in the void zones. The present simulation provides the opportunity to determine 

the pressure drop at any position inside the BFBG and at any time through the simulation. 
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5.6.4.1. BFBG with Type A Distributor  

The pressure drop contours in the BFBG with type A distributor for the low and high superficial 

velocities are illustrated in figures 5.26 and 5.27. These pressure contours are the average 

among all the contours in the eight-second simulation. Each layer of the contour represents a 

pressure drop range starting from the bottom (the dark red) which represents the high-

pressure zone to the highest point of the bed (the dark blue) which represents the lower 

pressure zone. A closer look at the two contours shows the difference in the spacing between 

the pressure drop layers. The high-velocity case has large spacing compares to the low-

velocity case. This is related to the bed expansion, the high-velocity case has larger bed 

expansion than the other case which can provide better contact between the gas and solid 

particles.  

Figure 5.26. Pressure drop contour in the BFBG with type  

A distributor at low superficial velocity. 
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Figure 5.27. Pressure drop contour in the BFBG with type  

A distributor at high superficial velocity. 

 

The effect of bed expansion on pressure drop can be seen in figures 5.28 and 5.29. In figure 

5.28, the pressure drops at a point located 20 mm above the centre of type A distributor for 

the low and high-velocity cases are presented for the eight second simulation time. The low 

expansion of bed in the low-velocity case raises the pressure drop at this point more than the 

other case. However, this fact reversed at 80 mm above the centre of the distributor, i.e. the 

pressure of the high-velocity case is higher than in the low-velocity case. This is caused as 

more solid particles reach this level in the high-velocity case which raises the pressure drop 

as shown in figure 5.29.     
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Figure 5.28. The time variation of pressure drop at a point located 20 mm above the centre 

of type A distributor. 

 

Figure 5.29. The time variation of pressure drop at a point located 80 mm above the centre 

of type A distributor. 

5.6.4.2. BFBG with Type B Distributor  

In the type B distributor, the same happens regarding the bed expansion, i.e. the high 

superficial velocity case has more expansion than the low superficial velocity case. Figures 

5.30 and 5.31 show the pressure drop contours in the low and high-velocity cases in the BFBG 

with type B distributor. 
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 Figure 5.30. Pressure drop contour in the BFBG with type  

B distributor at low superficial velocity. 

 

However, type B distributor provides a higher pressure drop in the high-velocity case than the 

low-velocity case in both low and high level above the distributor. Figures 5.32 and 5.33 

illustrate the time variation of pressure at level 20 mm and 80 mm above the centre of the type 

B distributor respectively. The peaks in these graphs represent the pressure rise at the batch 

injection of sand particles.  
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Figure 5.31 Pressure drop contour in the BFBG with type  

B distributor at high superficial velocity. 

 

Figure 5.32. The time variation of pressure drop at a point located 20 mm above the centre 

of the type B distributor. 
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Figure 5.33. The time variation of pressure drop at a point located 80 mm above the centre 

of the type B distributor. 

 

5.6.4.3. BFBG with type C Distributor  

The pressure drop in the BFBG with the type C distributor also shows more expansion for the 

high-velocity case than the low-velocity case. In figures 5.34 and 5.35 the pressure drops 

contours in the BFBG with type C distributor at low and high average superficial velocities 

respectively.  

On the other hand, the overall bed expansion in the BFBG with type C distributor was found 

to be relatively highest than in the previous two types A and B for both low and high superficial 

velocity cases. This may due to the large number of orifices in the C distributor compares to 

the number of orifices in type A and B distributors which provide a uniform air pressure 

throughout the BFBG bed.        
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Figure 5.34. Pressure drop contour in the BFBG with type  

C distributor at low superficial velocity. 

 

In the BFBG with type C distributor, the pressure drop for the high-velocity case is higher than 

the pressure in the low-velocity case in the low and high level above the centre of the 

distributor which is the same case in type B distributor. However, the type C cases have much 

more pressure fluctuation through the simulation time. This fluctuation was caused by the 

rapid movement of the sand particles which leads to good contact between the particles and 

air. Figures 5.36 and 5.37 illustrate the pressure variation in the BFBG with type C distributor 

at low and high-level points respectively.    
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Figure 5.35. Pressure drop contour in the BFBG with type  

C distributor at high superficial velocity. 

Figure 5.36. The time variation of pressure drop at a point located 20 mm above the centre 

of the type C distributor. 
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Figure 5.37. The time variation of pressure drop at a point located 80 mm above the centre 

of the type C distributor. 

 

5.6.4.4. BFBG with type D Distributor  

The simulation of the BFBG system with type D distributor shows a big bed expansion 

compared to all other three distributors A, B and C for the high and low superficial velocities. 

The bed height reaches more than 80 mm in the low superficial velocity case and hits the 100 

mm in the high superficial velocity case. Figures 5.38 and 5.39 show the pressure drop 

contours in the BFBG with type D distributor for the low and high superficial velocities 

respectively.   

The triangular arrangement of type D distributor and the small orifice diameter provides more 

orifices and better air distribution which gives uniform bouncy forces lifting the solid particles 

higher. 
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Figure 5.38. Pressure drop contour in the BFBG with type  

D distributor at low superficial velocity. 
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Figure 5.39. Pressure drop contour in the BFBG with type 

D distributor at high superficial velocity. 

In figures 5.40 and 5.41, the pressure fluctuation throughout the eight seconds has increased 

rapidly in the BFBG with the using of type D distributor. The rapid fluctuation can be considered 

as a sign of active fluidised bed compared to the static packed bed.     
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Figure 5.40. The time variation of pressure drop at a point located 20 mm above the centre 

of the type D distributor. 

Figure 5.41. The time variation of pressure drop at a point located 80 mm above the centre 

of the type D distributor. 

 

5.6.5. Local Superficial Velocity 

The gas velocity of at a specific position and time inside the fluidised bed regime is called the 

instantaneous local superficial gas velocity. The superficial gas velocity is an important 

indicator of the fluidised bed activity inside the BFBG. However, the low and high superficial 

velocities mentioned earlier represent the average superficial velocity which was calculated 
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by dividing the air flow rate to the BFBG cross-sectional area. The local superficial velocity 

can affect other factors such as pressure drop, voidage and bubbles formation. 

5.6.5.1. BFBG with Type A Distributor  

The local superficial velocity for a central cross-section of the BFBG with type A distributor is 

shown in figure 5.42. The local superficial velocity distribution for the high-velocity case was 

wider and contains more high-velocity spots than the low-velocity case. This increases the 

pressure drop and the bed expansion. 

Figure 5.42. Instantaneous superficial velocity distribution in a central cross-section of the 

BFBG with type A distributor for low and high average superficial velocity. 

5.6.5.2. BFBG with Type B Distributor  

In figure 5.43 the BFBG central cross-section, which shows the local superficial velocity, has 

taken from a different angle. The number of orifices that appear in this section is seven dues 

to the triangular arrangement of type B distributor. Although the velocity distribution in this 

section is slightly lower than the distribution in the type A distributor section shown in figure 

5.42, the cross section of type B distributor has more high local superficial velocity spots.    
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Figure 5.43. Instantaneous superficial velocity distribution in a central cross-section of the 

BFBG with type B distributor for low and high average superficial velocity. 

 

5.6.5.3. BFBG with Type C Distributor  

The local superficial velocity distribution in a central cross-section of the BFBG with type C 

distributor is wider than the previous types and has more high-velocity spots which mean more 

bed expansion and more air – solid particles contact. This is maybe due to the uniform 

distribution of air from these 137 small orifices. Figure 5.44 shows the local superficial velocity 

distribution in the cross section of BFBG with type C distributor.    
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Figure 5.44. Instantaneous superficial velocity distribution in a central cross-section of the 

BFBG with type C distributor for low and high average superficial velocity. 

5.6.5.4. BFBG with Type D Distributor  

Type D distributor has a great effect on the distribution of the local superficial velocity as shown 

in figure 5.45. Despite the different BFBG central cross section which shows seven orifices, 

large local superficial velocity distribution with many and large high-velocity spots can be seen 

in this section which refers to high bed expansion and more bubbles generation. 

Figure 5.45. Instantaneous superficial velocity distribution in a central cross-section of the 

BFBG with type D distributor for low and high average superficial velocity. 
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5.6.5.5. Local Superficial Velocity Comparison  

The effect of distributor type on the local superficial velocity was been tested by choosing a 

test point (S) locates at x=30.9 mm, y=0 mm and z=80 mm inside the BFBG as shown in figure 

5.46. This point locates above the packed bed zone (packed bed height = 60 mm) which 

reflects the fluidised bed status. The time variation of the local superficial velocity at this point 

for each distributor case has been compared in figure 5.47.  

In a nutshell, type D distributor provided the highest local superficial velocity in both high and 

low-velocity cases among all distrubtors which indicates the high activity of fluidised bed using 

this distributor.  

 

Figure 5.46. The test point (S) location in the BFBG. 
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Figure 5.47. The time variation of the local superficial velocity in point (S) inside the BFBG 

at (1) Low velocity, (2) High velocity. 
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5.7. Conclusion 

In this chapter, a visualisation for the isothermal BFBG has been illustrated. The open source 

software (OpenFOAM) has been used to simulate the BFBG with four different perforated 

plate distributors for low and high average superficial velocity cases. More than 2000 Gigabit 

of data for the different hydrodynamic properties of the BFBG with the four different distributors 

has been produced.   

Particle distribution, bed voidage, bubble formation, pressure drop and local superficial 

velocity are all tested inside the BFBG. All 4 distributors have produced bubbles in different 

sizes and velocities. Generally, the triangular arrangement of holes showed better 

performance than the square pitch arrangement for all hydrodynamic properties. Moreover, 

the small orifice distributors presented a uniform fluidised bed. However, the type D distributor 

showed a good performance among the other three distributors in terms of hydrodynamic 

properties. The fluidised bed produced by the type D distributor was more uniform with the 

largest bed expansion with a uniform pressure drop.  

The uniform bed height reached more than 75 mm in the type D distributor while it is 65 mm 

in the other distributors under the same conditions. Moreover, the number of formed bubbles 

in the BFBG with the type D distributor is more than the other distributors. 

The simulation was validated with an experimental data and literature. The comparison 

showed a good approach with the experimental data with approximately 2% error for type D, 

3% for type B, 3.65% for type C and 6.64% for type A distributors. Comparison of bubble size 

with literature showed a good approach between the recent simulation results with two of the 

empirical correlations. The correlation of Geldart was the closet to the recent results with a 

minimum error of 4.83%. 

A conference paper was published containing a part of this work (Al-Akaishi et al., 2017).  
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Chapter 6:  Post - Gasification Improvement 

 

6.1. Introduction 

Biomass gasification in the BFBG produces a product gas with varied molecular composition. 

The composition of this product gas depends on different factors such as the biomass type 

and the BFBG hydrodynamics. The main composition of the BFBG product gas is based on 

the molecules CH2, H2, CO and CO2. However, the percentage of each component depends 

on inlet conditions, flowrates, temperatures profiles, etc. In this chapter, results using the 

optimal distributor in a BFBG located at Cardiff University are presented in combination with 

some further modifications numerically analyzed to improve even further the production of 

highly valuable gases (i.e. H2 and CO).  

6.2. Improved gasification using the Optimal Distributor 

As demonstrated in previous chapters, the best air distributor (D) was determined after 

complex numerical simulations and experimental trials. It was noted that the hydrodynamics 

of the latter considerably improved the fluidic performance of the fluidized bed, with pressures 

and bubble formation that demonstrated a superior behavior, which eventually needed to be 

evaluated in a real gasifier.  

In order to achieve this task, works were conducted in parallel to another research project (Al-

Farraji, 2017) whose objective was to evaluate the performance of the new BFBG developed 

at Cardiff University. As stated, the previously mentioned project aimed to characterize this 

new rig, while the current project under discussion was responsible to assess the improvement 

in biomass gasification using the new distributor here developed.   
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Olive kernel biomass, a widely available agro-industrial residue of Mediterranean origin, were 

received as coarse particles with an approximate size of less than 5 mm (Al-Farraji, 2017). 

The initial moisture content of the olive kernel was measured as 13.3%. The samples were 

dried to 5.3% moisture content and stored in sealed sacks. 

As demonstrated, Distributor D provided the best results across flow distribution, bubble 

formation, pressure decay and hydrodynamics, thus this distributor was used for biogas 

production. The BFBG system employed, depicted in figure 6.1 below (Al-Farraji, 2017).  

Figure 6.1. BFBG system employed to characterize the production of biogas using type D 

perforated distributor (Al-Farraji, 2017). 

The overall experimental preparation procedures undertaken for the operation of the fluidised 

bed gasifier were as follows: 
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1. The day before gasification testing the freezer was switched on and 100ml of isopropanol 

was poured into each of the 250ml dreschel bottles in the tar capture unit located inside the 

freezer. The freezer was set to -10°C and this was verified with a thermocouple. 

2. Prior to testing, the gas analyser was zero calibrated on N2 and then with span gas mixture 

supplied by Air Products. The standard gas mixture used for gas analyser calibration was 

composed of CO, CO2, H2, and CH4 with concentrations of 15%, 15%, 15%, and 5% 

respectively. The balance was N2. 

3. Depending on the (Hs/D) ratio, a required amount of silica sand with a density of 2650 kg/m3 

was used and added as bed material to the gasifier; its particle size was 500-600µm. 

4. The preheater, split furnace and air blower were activated and the temperatures monitored 

using a data logger. The superficial velocity was constant at 40l/min, twice the value of Umf. 

5. The computer was switched on and the data logger and multifunction weight indicator were 

activated. 

6. The vibrating feeder was then calibrated gravimetrically for each mass flow rate depending 

on ER by direct weighing of the biomass for 5 minutes. The biomass was fed at 80mm above 

the distributor, through a tube made of stainless steel with 1” i.d. from a hopper by a vibration 

feeder. The mass flow rate of biomass was varied based on the selected ER and the other 

condition (air flow rate) was held constant. It should be mentioned that the feeding rate to 

obtain a desired ER was not the same for torrefied biomass due to the stoichiometry being 

different. This procedure was repeated three times to ensure repeatability was achieved. The 

hopper was filled with biomass ready for the gasification test. 

Experiments demonstrated that high conversion ratios were obtained using such a system. 

Temperatures above 400⁰C generally showed conversation of >80% biomass, Figure 6.2.  
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Figure 6.2. Relationship between mass conversion and temperature for olive kernels of 

different particle sizes. Heating rate 20°C/min (Al-Farraji, 2017). 

6.3. Gasification Product Gas Composition 

The product gas obtained from the previously mentioned studies was then assessed for further 

improvement of the gasification process. The mixture used in this modification was the 

optimum product of the gasification of olive kernels in the BFBG using the type D distributor. 

The composition is, as determined somewhere else (Al-Farraji, 2017), as follows, 

• Methane = 13.85%, Hydrogen = 15.7%, Carbon monoxide = 40.08%, Carbon dioxide 

= 30.37 % (mole fraction). 

This gas blend was used as the feed of the modification system in the following simulations. 
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6.4.  High Temperature Reformer  

In order to increase the amount of high valuable gases (i.e. hydrogen and carbon dioxide) 

obtained from gasification of biomass, a new post-process was conceptualized. The process 

is based on the rapid increase of temperature, thus allowing the reforming of species such as 

carbon dioxide and water to generate H2 and CO. Some ideas on the device that can be 

potentially used for reforming of these gases will be discussed in the next chapter. The addition 

of inert gases such as Argon and Nitrogen at different concentrations in combination with 

greater reaction temperatures and catalytic materials was assessed. These innovative 

additions, that to the knowledge of the author have never been assessed before, could 

potentially be implemented in combination with highly efficient distributors such as the one 

developed in this work to obtain high amounts of high valuable gases for industrial use, with 

its inherent benefits and flexibility.     

In order to determine the effectiveness of the post – gasification improvement process, the 

commercial software Aspen Plus was employed. The main components of the improved cycle 

are shown in figure 6.3.    

 Figure 6.3. Aspen plus flowsheet for the case study. 
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The system consists of the following components: 

6.4.1. Feeding Lines and Mixer 

Three gas lines carry the feeding gases at ambient conditions. Table 6-1 shows the 

specifications of the three gas lines. The total flow rate of the gases is 100 mL/min. A mixer 

was then used to adiabatically mix all fed gases.  

Table 6-1 Feeding lines in the system. 

Line No. Line component Mole 
Fraction (%) 

Pressure 
(kpa) 

Temperature 
(K) Note 

1. BFBG product gas 
blend 48.4 101.325 293 Main 

component 

2. N2 31.6 101.325 293 Optional 

3. Ar 20 101.325 293 Optional 

 

6.4.2. Reformer  

This component is the main part of the system (the reactor) in which all gas conversions occur. 

A plug flow tubular reactor (PFR), RPLUG was used. The specifications of this reactor are 

shown in table 6-2. The reactor contains a catalyst material to enhance the reaction process. 

The type of catalyst was used in this reactor is 10% Ni with 90% Al2O3 as a dilution material. 

RPLUG reactor was tested in different reaction temperature and catalyst loading.   
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Table 6-2. The specifications of system reactor. 

Specifications Value Unit Note 

Reactor type RPLUG -  

Diameter 9 mm  

Length 40 mm  

Reactions nature Solid - catalysed reactions -  

Catalyst type 10%Ni / 90%Al2O3 -  

Catalyst loading 2.5 - 10 mgcat.min/ml  
Catalyst loading 

step = 2.5 

Gas mixture flow 

rate 
100 mL/min  

Reactor pressure 101.325 kpa  

Reactor 

temperature 
773 - 1273 K 

Temperature 

step = 50 K  

Reaction Model 
Langmuir-Hinshelwood-Hougen-

Watson (LHHW)  
-  

 The kinetic parameters of the presumed reaction are listed in table 3-9 in chapter three.  

6.5. Model Validation  

The Aspen Plus® model has been validated with another mathematical model (Jokar et al., 

2018) and with experimental data from literature (Jokar et al., 2016). The validation was 

obtained in a CRM reactor with the following conditions shown in table 6-3. The recent Aspen 

Plus® model has a good agreement with both the experimental data and mathematical model 

in literature as shown in figure 6.4.   
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Table 6-3. The validation conditions of the Aspen Plus® model (Jokar et al., 2018). 

Reactor Conditions Value Unit 

Reaction temperature 723 K 

Reaction pressure 1.5 - 3.5 Bar 

Steam to Carbon ratio, S/C  2.64 - 

Sweep fraction, �� �
�� ��	
�

�
� ��	
�
 1.2 - 

Catalyst type Ni-based catalyst - 

 

Figure 6.4. The validation of Aspen Plus model in terms of CH4 conversion. 
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6.6. Simulation Results 

The simulation was performed for 3 different cases, Table 6-4,  

1- Case one (light feeding): BFBG blend, Argon and Nitrogen gas mixture.  

2- Case two (medium feeding): BFBG blend and Nitrogen gas mixture.  

3- Case three (heavy feeding): BFBG blend gas mixture. 

Table 6-4. The molar and mass fractions of the three gas mixtures components. 

Feeding 

case 
Components CH4 CO2 CO H2 

Ar 

(Dilution 

gas) 

N2 

(Dilution 

gas) 

Case one 

(light 

feeding) 

Molar 

fraction (%) 
6.7 14.7 19.4 7.6 20 31.6 

Mass 

fraction (%) 
3.58 21.58 18.13 0.51 26.65 29.53 

Case two 

(medium 

feeding)  

Molar 

fraction (%) 
9.47 20.77 27.42 10.74 - 31.6 

Mass 

fraction (%) 
5.54 33.35 28.021 0.79 - 32.297 

Case 

three 

(heavy 

feeding) 

Molar 

fraction (%) 
13.85 30.37 40.08 15.7 - - 

Mass 

fraction (%) 
8.18968 49.2643 41.3795 1.16655 - - 

 

6.6.1. Case One Results 

Composition variation of the gas mixture along the reactor at 100mL/min feeding rate and 

700oC reaction temperature is shown in figure 6.5. The simulation predicts the formation of a 

small amount of H2O in the product gases and a rapid conversion of CH4 and CO2 to H2 and 

CO at the beginning of the reactor, with low conversion along the rest of the reactor length. 
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The selectivity of H2 and CO can be calculated by using the Hao equations 6-1 and 6-2 (Hao 

et al., 2009) and the molar compositions of the gases before and after the RPLUG reactor.  

H� selectivity �  
��.������.� 

�!"��.� �"��.���#
!in moles# ' 100%  …………………………………….. 6-1 

H� selectivity �
+.,--,.��+.+-.

�!+.+.-�+.++/01+2/#
' 100% � 80.7%                                                       

 CO selectivity �  
"7����"7� 

!"��.� 8"7�.� �"��.����"7�.���#
!in moles# ' 100%  ………….…………... 6-2 

 CO selectivity �
+.�12-92 � +.,2/

+.+.-8+.,/-�+.++/01+2/�+.+-/1-99
' 100% � 66.6%                                 

Changes in molar composition along the reactor are shown in figure 6.5. Decreasing in N2 and 

Ar mole fractions in figure 6.6 is related to the increase in total numbers of moles due to the 

formation of H2O at constant pressure and temperature.  The total heat duty of this process is 

1.121 W under these conditions and the actual residence time is 0.391 seconds as shown in 

figure 6.7.   

Figure 6.5. Mixture conversion along the reactor at temperature 973K. 
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   Figure 6.6. Molar fraction of the gases along the reactor at temperature 973K. 

 

Figure 6.7. Reaction heat duty along the reactor at temperature 973K. 
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6.6.1.1. The Effect of Reaction Temperature in Case One 

The effect of reaction temperature on the composition of each gas component in the mixture 

has also been studied. Figure 6.8 shows the variation of the concentration of product gases 

with the reaction temperature. The conversion of gases increases rapidly with the increase of 

temperature until the reaction temperature reaches 700 oC, then the reactions slow down to 

be nearly constant between 750 to 1200 oC as shown in figure 6.8. In addition, the amount of 

H2O in the product gas was increased at the low temperatures, especially at 550 oC. The 

fraction of H2O then drops rapidly to stop at nearly 0.0005 at temperatures above 800 oC. This 

variation of the H2O fraction is maybe related to the effectivity of the reverse water gas shift 

reaction at different temperatures (Oshima et al., 2014).     

The mass fraction variation of H2O, H2, CH4, CO and CO2 with reaction temperatures along 

the reactor length are shown in figures 6.9, 6.10, 6.11, 6.12 and 6.13  respectively. 

Figure 6.8. The effect of reaction temperature on the product gas molar composition. 
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Figure 6.9. The variation of formed H2O mass fraction along the RPLUG reactor for different 

reaction temperatures. 

 

 

Figure 6.10. The variation of H2 mass fraction with reaction temperature along the RPLUG 

reactor. 
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Figure 6.11. The variation of CH4 mass fraction with reaction temperature along the RPLUG 

reactor. 

 

Figure 6.12. The variation of CO mass fraction with reaction temperature along the RPLUG 

reactor. 
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Figure 6.13. The variation of CO2 mass fraction with reaction temperature along the RPLUG 

reactor. 

 

In the same context, the selectivity of H2 and CO are also varied with the reaction temperature. 

However, the selectivity of H2 and CO at low reaction temperatures 500 and 550 oC are 

negative here as the conversion of CH4 and CO2 are negative as shown in figure 6.8. The 

variation of H2 and CO selectivity through the 600 to 1000 oC temperature range is shown in 

figure 6.14. The reason for the decrease in CO selectivity and the increase in H2 selectivity 

with the raise of the reaction temperature is the behaviour of CH4, CO2, CO and H2 mole 

fractions to temperature and recombination between molecules. The reduction of CO2   mole 

fraction was higher than CH4 and the raise in H2 mole fraction was greater than CO as shown 

in figure 6.15.  
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Figure 6.14. The effect of reaction temperature on the selectivity of H2 and CO. 

Figure 6.15. The effect of reaction temperature on the difference of molar fraction between 

the reactor outlet and inlet gases. 
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The effect of reactor temperature on the reaction heat duty and residence time are shown in 

figure 6.16. The negative and low heat duty in the low temperatures is related to the activity of 

the exothermic reaction methanation or the reverse steam reforming (CO + 3H2 ↔ CH4 + H2O) 

at these temperatures (Gao et al., 2013).  

Figure 6.16. The effect of reactor temperature on the reaction heat duty and residence time.    

6.6.1.2. The Effect of Catalyst Loading in Case One 

The influence of the catalysts was also assessed towards the production of the final gas 

composition. Figure 6.17 shows the variation of the product gas mass fraction with different 

catalyst loading. The increase in catalyst loading causes an increase in the mass fraction of 

CH4 and CO and a decrease in CO2 and H2 mass fraction. However, these changes are very 

small compared to the effect of temperature. The catalyst loading has also a little effect on the 

reaction heat loading and residence time as shown in figure 6.18.  
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Figure 6.17. The effect of catalyst loading on product gases mass fraction. 

Figure 6.18. The effect of catalyst loading on the reaction heat duty and residence time. 
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6.6.2. Case Two Results 

In this case, only nitrogen was used as a dilute gas with the BFBG blend. The reaction 

conditions are the same, i.e. feeding flow rate set at 100 mL/min at a pressure of 101.325 kpa. 

At 700oC reaction temperature and 5 mg.min/mL catalyst loading, the gas mass fraction along 

the reactor is shown in figure 6.19. The effect of removing the Ar can be seen in the BFBG 

gases peaks and H2O formation. Although the concertation of gases has increased, the 

selectivity of H2 and CO decreased. The H2 selectivity is 74.3 % and CO selectivity is 56.03%. 

This is due to the increase of the denominator of selectivity equations 6-1 and 6-2.  

Figure 6.19. Mass fraction variation of the case two gases along the RPLUG reactor. 
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In addition, the heat duty of the reaction has increased in case two to be 1.508 Watt and the 

residence time decreased slightly to be 0.376 seconds. Figure 6.20 shows the variation of 

reaction heat duty and residence time along the reactor for case two. 

Figure 6.20. The variation of heat duty and residence time along the RPLUG reactor for case 

two gas mixture. 

 

6.6.2.1. The Effect of Reaction Temperature in Case Two 

The effect of the reactor temperature on the mass fraction of the different species is shown in 

figure 6.21. The gases have mostly the same behaviour as in case one with a noticeable high 

mass fraction for all BFBG blend gases and formed H2O. However, case two selectivity of H2 

and CO were lower than those seen in case one for all reaction temperatures due to the 

increase in denominators as illustrated before. Figure 6.22 shows the variation of H2 and CO 

selectivity with temperature for case two.    
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Figure 6.21. The effect of reactor temperature on the mass fraction of case two product 

gases. 

Figure 6.22. The effect of reactor temperature on the H2 and CO selectivity of case two. 
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In figure 6.23, the effect of reaction temperature on the heat duty and resident time of the 

reaction for the medium feeding case is clarified.  The simulation predicted lower heat duty at 

low temperatures, and higher than case one at high reaction temperatures.  

Figure 6.23. The variation of reaction heat duty and residence time with temperature for case 

two gas mixture. 

 

6.6.2.2. The Effect of Catalyst Loading in Case Two 

Catalyst loading has also an effect on the molar fraction of this case. In figures 6.24 and 6.25 

the influence of different catalyst loading on the CH4 – H2 and CO2 – CO is illustrated, 

respectively. The selectivity of H2 has decreased with catalyst loading as the concentration of 

CH4 increased and the concentration of H2 decreased as shown in figure 6.24. This also 

explains the increase in CO selectivity as CO concentration increased and CO2 decreases as 

shown in figure 6.25.  
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Figure 6.24. the effect of catalyst loading on CH4 and H2 concertation in case two. 

Figure 6.25. the effect of catalyst loading on CO2 and CO concertation in case two. 
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The heat duty and residence time have a contradictory behaviour with catalyst loading as 

shown in figure 6.26. The rise in reaction heat duty with the increase of catalyst amount has 

been offset by a decrease in residence time. 

Figure 6.26. The effect of catalyst loading on heat duty and residence time of case two 

mixture. 

 

6.6.3. Case Three Results 

In the strong feeding case, the selectivity of H2 and CO were lower than the previous two 

cases at the same reaction conditions. i.e. 100 mL/min flow rate at reaction temperature 700ªC 

and 1 atm reaction pressure flows over 500 mg of activated catalyst. H2 selectivity was 65.26% 

while the CO selectivity was 41.934% in this case.  

6.6.3.1. The Effect of Reaction Temperature in Case Three 

Reaction temperature has also a positive impact on the components transformations of case 

three mixture. Figure 6.27 shows the variation of the molar fraction change before and after 

the reactor for the case three gases. More gas conversion was been expected when the 
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reaction temperature has increased. On the other hand, the heat duty was also increased with 

the reaction temperature and residence time decreased as shown in figure 6.28.    

Figure 6.27. The effect of reaction temperature on the changing of case three gases before 

and after the reactor. 

 

Figure 6.28. The variation of reaction heat duty and residence time with temperature for case 

three gas mixture. 
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6.6.3.2. The Effect of Catalyst Loading in Case Three 

In case three, the catalyst loading has a very little effect on the conversion of gases. Figure 

6.29 shows the variation of gases molar fraction with different catalyst loading. These 

comparatively small changings improved the CO selectivity and decreased the H2 selectivity 

as shown in figure 6.30. 

Figure 6.29. The effect of catalyst loading on the concentration of case three gases. 

Figure 6.30. The effect of catalyst loading on the CO and H2 selectivity in case three. 
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Moreover, as the heat duty increased slightly with catalyst loading the residence time 

decreased as shown in figure 6.31.  

Figure 6.31. The effect of catalyst loading on the heat duty and residence time in case three. 

6.6.4. Comparison Between Cases 

Table 6-5 shows the selectivity of H2 and CO for the three feeding cases at the same reaction 

conditions. 

Table 6-5 Comparison between H2 and CO selectivity for the three study cases. 

Syngas 
Selectivity (%) 

Note 
Case one Case two Case three 

H2 80.737 74.296 65.263  

CO 66.624 56.029 41.934  

To compare between the conversion rate of CH4 and CO2 and the H2/CO molar ratio for the 

three cases, table 6-6 presents the value of these parameters for the same operational 

conditions. The values of these ratios are calculated using the following equations (Sun et al., 

2011):  
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CH/ conversion �
"��.� �"��.���

"��.� 
' 100%  ……………………………………………………. 6-3 

CO� conversion �
"7�.� �"7�.���

"7�.� 
' 100%  …………………………………………………….. 6-4  

 H�
CO<  ratio �

��.���

"7���
  …………………………………………………………………………… 6–5  

The concentration of all components in all these equations are in mole fraction. 

Table 6-6. The reactants conversion rates and H2/CO ratio for the cases.  

 Case one Case two Case three 

CH4 conversion (%) 93.506 89.869 84.797 

CO2 conversion (%) 49.266 49.376 49.257 

H2/CO ratio 0.624 0.616 0.605 

The conversion of CH4 and H2/CO ratio were the highest in case one and the CO2 conversion 

was slightly high in case two than the other cases. However, the strong feeding case was the 

lowest among the other cases under all conditions.   

According to the above, the dilution gases have a significant effect in improving the selectivity 

of the syngas and enhance the conversion of the reactant gases.  Moreover, the case three 

mixture consumed more heat than the other two cases at low residence time as listed in table 

6-7 due to the large amount of reactive gases in it. Although the strong mixture has the highest 

production rate of the syngas (CO and H2), this mixture has the lowest rate of produced syngas 

per watt of heat duty as shown in table 6-8.     
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 Table 6-7. The heat duty and residence time for the three-case study. 

 Unit Case one Case two Case three 

Heat duty Watts 1.121 1.508 2.035 

Residence time Seconds 0.390 0.376 0.358 

 

Table 6-8. The rate of produced syngas per process heat duty for the three cases.  

Syngas 

 Net syngas production rate per heat duty 

(mL/min.W) 

Case one Case two Case three 

CO 8.024 6.973 5.501 

H2 9.021 8.386 7.531 

 

In this context, the thermal energy required for the production of a one kmol of H2 in the three 

cases are 41.4 kWh, 44.5 kWh and 49.6 kWh, respectively. Although, the simulation was done 

for a small flow rate (100mL/min), the thermal energy required for the production of H2 was 

lower than the heat estimated by different references (De Falco et al., 2014).   

6.6.4.1. The Effect of Reaction Temperature  

The temperature of the reactor has a significant effect on the different reaction parameters 

such as CH4 and CO2 conversion rate and H2/CO ratio. In figures 6.32 and 6.33, the 

conversion of CH4 and CO2 are shown. The conversion of CH4 reached more than 99% for all 

cases at the reaction temperature 800 oC and more. The maximum CH4 conversion rate was 

more than 99.99% recorded for case one at a reaction temperature of 1000 oC. 
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Figure 6.32. The effect of reaction temperature on the CH4 conversion rate for the three 

cases. 

Figure 6.33. The effect of reaction temperature on the CO2 conversion rate for the three 

cases. 
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On the other hand, the conversion of CO2 reached its highest rates at temperatures above 

750 oC with the preference to case three gas mixture. The maximum CO2 conversion rate was 

57.6% at a reaction temperature of 1000 oC in case three. 

Regarding the CO and H2 selectivity, the light gaseous mixture showed the best performance 

among the other cases at all reaction temperature as shown in figures 6.34 and 6.35. The 

maximum CO selectivity was 67.37% at a reaction temperature of 600 oC in case one and the 

maximum H2 selectivity was 81.174% at 900 oC reaction temperature for case one too. 

Figure 6.34. The effect of reaction temperature on the CO selectivity for different feeding 

cases. 

 In the same field, the H2/CO ratio increased significantly after the reaction temperature 

exceeds the 600 ªC for all cases and reached its highest values at 0.638 at temperatures more 

than 750ªC as shown in figure 6.36.    
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Figure 6.35. The effect of reaction temperature on the H2 selectivity for different feeding 

cases. 

Figure 6.36. The effect of reaction temperature on the H2/CO ratio for different feeding 

cases. 
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The heat duty for the three cases is shown in figure 6.37. The case three feeding mixture 

consumed higher heat than the other cases due to a large amount of the reactive gases as 

explained before.  

Figure 6.37. The effect of reaction temperature on the heat duty of the three feeding cases. 

The production of hydrogen per thermal heat duty has increased with the increase of reaction 

temperature as shown in figure 6.38. The light feeding was estimated to produce the highest 

production of H2 per total thermal duty at all reaction temperatures.  
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Figure 6.38. The effect of reaction temperature on the production rate of H2 per each kWh of 

heat duty of the three feeding cases. 

 

6.7. Conclusion 

Production of high valuable gases using the new distributor in a BFBG has been 

demonstrated. Further improvements to the system were conceptualised via the use of a high 

temperature reformer in combination with different inert gases, catalyst and reaction 

temperatures. The improvement of the BFBG product gas has been simulated using Aspen 

Plus® software. The model has been validated with theoretical and experimental data from 

literature. Three different feeding conditions have been evaluated, i.e. light, medium and heavy 

feeding. The three cases were tested under the same conditions such as reaction 

temperature, pressure and catalyst loading.  
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At low reaction temperatures (500 and 550 oC), the system had a reverse effect for all cases. 

The concentration of CH4 and CO2 increased and H2 and CO decreased due to the active 

reverse reactions at these low temperatures. However, the concentration of CH4 and CO2 

started to decrease and H2 and CO increased at the same time at 600 oC reaction temperature 

and above. 

The conversion of CH4 reached more than 99.99 % at temperature 1000 oC for case one and 

the conversion of CO2 reached more than 57.6 % at 1000 oC temperature for case three. 

Meanwhile, the selectivity of H2 reached more than 81 % at 900 oC reaction temperature for 

case one mixture and CO selectivity reached 67.37 % at 600 oC for the same case. The H2/CO 

ratio for the products has also improved in this process. The ratio exceeded 0.637 in all cases 

at reaction temperatures greater than 800 oC.  

The reaction temperature has also a significant effect on heat duty and residence time as the 

heat duty increased with temperature while residence time decreased. The maximum heat 

duty was 2.489 W at 900 oC for case three. On the other hand, the maximum H2 production 

rate per thermal duty was recorded using case one mixture and reaction temperature of 1000 

oC which is 542.7 Litter of H2 per each kWh. Finally, the simulation showed little effect at 

various catalyst loading on the reaction parameters for all cases. 
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Chapter 7:  Conclusion and Further Work 

 

7.1. Introduction  

This chapter is dedicated to highlight the results of all the previous works and how the 

implementation of all the new presented ideas can improve the delivery of usable gases from 

BFBG systems. The discussion is essentially focused on the use of a distributor that under 

the right conditions can generate complex hydrodynamics through the fluidized bed while 

ensuring that biomass has a better probability to being gasified into high hydrogen/carbon 

monoxide content product gases. The addition of a reformer, catalytic materials and inert 

atmospheres is also discussed in this development to complement the experimentally proved 

air distributor, thus ensuring that better syngas is obtained via concepts that can be easily 

applied to current system in order to make them more profitable.  

7.2. Conclusions 

1- Isothermal experiments of the BFBG have shown various BFBG performances for 

each of the four distributors analysed in this work, as illustrated in chapter 4. The 

experimental assessment is based on two main factors, pressure drop and bubble 

formation. Five positions along the inner wall were used to measure the pressure drop 

as cited in chapter four. The experimental results showed a different performance of 

the BFBG using the different distributors. For example, the small orifice distributors 

were better than the large orifice distributors in forming a uniform fluidised bed. From 

these, the triangular arrangement of orifices was better in producing bubbles and a 

uniform fluidised bed while showing a uniform pressure drop. 

2- A large, complex multiphase simulation for the isothermal BFBG with the four 

distributors was carried out and explained in chapter 5. The influence of the gasifier 
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distributor design on the performance of the BFBG was studied in this simulation under 

isothermal conditions. The small holes distributors and the triangular holes 

arrangement distributors had better performance than the large holes distributors and 

square holes arrangement distributors which is the same finding in the experimental 

part. All designs showed formation of bubbles in different sizes and shapes. 

Regarding the bed expansion, the simulation results showed a large bed expansion in 

the type D distributor (the small holes and triangular arrangement distributor) reaching 

more than 75 mm in compare with the other distributors. The bed expansion occurs 

due to the fluidisation of sand packed bed which indicates the effectivity of distributor 

to provide suitable air distribution. The comparison between pressure drop through the 

BFBG with the different distributors showed a uniform distribution of pressure drop for 

type D distributor and the variation of pressure for this distributor can be seen in heights 

more than the other distributor which indicates the wide of bed expansion.   

The simulation results were validated with the experimental work and literature. The 

minimum percentage of differences between the average experimental results and the 

simulated ones was about 2% for type D distributor at the low superficial velocity and 

in the high pressure drop position (more than 500 pa) while the highest percentage of 

differences was about -90% for type A distributor at the high superficial velocity and in 

the low pressure drop position (less than 10 pa).  

3- The use of the distributor was confirmed through a parallel Research Project. This 

process was simulated by using ASPEN PLUS®. The process showed very promising 

results at a reaction temperature of more than 600 ªC. However, at a reaction 

temperature of 550 ªC and below the reactions were reversed and the CH4 and CO2 

concentrations have increased and the H2 and CO concentrations have decreased. 
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This process accompanies with H2O formation in different concentrations depending 

mainly on the reaction temperature.  

Three different mixture were tested in this simulation, the light mixture (N2-Ar-BFBG 

blend), the medium mixture (N2-BFBG blend) and the strong mixture (BFBG blend 

only). The results showed a prevalence of the light mixture on the other mixtures in 

most of the produced gas properties. The strong mixture consumed more heat duty 

than the other mixtures. 

The results depict a 99.99% conversion rate of the CH4 in the product gas, which will be 

converted to syngas formed by Hydrogen and Carbon Monoxide. Furthermore, 57.6% of the 

CO2 in the BFBG product gas can be converted to syngas. The maximum H2 and CO 

selectivity for this process were estimated to be 81.2 % and 67.4 % respectively. The 

maximum H2/CO ratio was about 0.64. In addition, the minimum thermal energy required to 

produce a one kmol of H2 was 41.38 kWh for the light case mixture which is lower than the 

estimated by other refrence. There was a little effect of catalyst loading on the material 

conversion predicated by the simulation compares to the effect of reaction temperature. 

       

7.3. Further Work   

7.3.1. Experimental BFBG 

In order to improve the experimental part of the bubbling fluidised bed gasifier there are many 

modifications that can be done to the system:    

1- Measuring the local superficial velocity of the gas near the inner wall by using 

suitable velocity sensors which can add a new experimental factor. This is can be 

done synchronously with pressure drop measurement. 
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2- Using different particle sizes of sand (inert material) with or without a catalytic 

material and adding biomass material to the bed while testing the hydrodynamic 

behaviour of this regime. In this case, the relationship between these different 

particles can be spotted. 

3- Testing different types of gas distributors such as the porous distributor and compare 

their performance with the perforated plate distributors.   

7.3.2. Simulated BFBG 

Regarding the OpenFOAM simulation of the BFBG many modifications can be added for future 

work: 

1- Modify the OpenFOAM codes to simulate different particle sizes for different inert 

materials with or without a catalytic material and testing different biomass 

materials. This can provide a comprehensive visualisation for the system to go in 

deep this BFBG.  

2- Including the effect of temperature and heat transfer in the simulation. However, 

this is will be very large and needs more computation time. 

3- Including the reaction effect to simulate the overall gasification process. This is 

quite ambitious as this proposed simulation will produce very big data for a long 

computation time.   

7.3.3. Post – Gasification Process Further Work 

The improvement of BFBG product gas was assessed comprehensively by using ASPEN 

PLUS in chapter 6. This process aims to produce more syngas (H2 and CO) from the BFBG 

product gas at the expense of the greenhouse components in the former. The simulation 

predicted good quantities of H2 and CO that could be produced via this process. 
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However, the simulation results need at some point to be validated with some experimental 

work, thus they can be applied in industrial applications. Although not enough time was 

available to run these experiments, a comprehensive characterisation of all the needed parts 

was carried out under the hope to be able to perform these trials. In order to so, a Microwave 

system was conceptualised as the reforming device. Microwaves have the unique 

characteristic to deliver high energy pulses that if coupled with catalytic materials can generate 

high intensity energy regions, thus providing the required temperature for the reforming 

process to occur. Moreover, Cardiff University has a prestigious Microwave group who 

provided the initial insights of what can be the demonstration system for such a concept. As 

previously said, and unfortunately due to the lack of more time, experimental trials have been 

proposed using this device for future work.  

The experimental system consists of the following parts: 

1-  A plug flow reactor (PFR): A 9mm φ x 100mm length quartz tube with 40mm reactive 

length as shown in figure 7.1.  

2-  Catalyst material: The catalyst material in this process is 10Ni/90%Al2O3 which has 

been activated in a hydrogen environment as shown in figure 7.2. 

3-  The heating system: A microwave cavity is used as the source of heating as shown in 

figure 7.3. 

4- The BFBG product gas blend: This mixture consists of the following gases (CH4 = 

13.85%, H2 = 15.7%, CO = 40.08% and CO2 = 30.37%) in mole fraction. This gas 

mixture would be obtained from a 5-litters cylinder at 200 bar pressure as shown in 

figure 7.4.  

5-  Compact GC: The compact gas chromatograph will be used to analyse the 

composition of gases before and after the improvement process. Figure 7.5 shows the 

compact gas chromatograph.   
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Figure 7.1. The plug flow reactor (quartz tube). 

Figure 7.2. Activated catalyst. 



Chapter 7                                                                                  Conclusions and Further Work 

224 

 

Figure 7.3. The microwave cavity of the system. 

Figure 7.4. BFBG product gas mixture. 
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Figure 7.5. The compact gas chromatograph. 

 

More work can be done with this system such as: 

1- Using many types of catalytic material and testing their effects on the H2 and CO 

selectivity. Although, the simulation showed a little effect of catalyst loading, using 

different catalyst types may have different results. 

2- Using a conventional heating reformer and compare the results with the microwave 

system. This comparison can help to in choosing the system that can consume 

minimum heat duty with large H2 selectivity.  
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