Mohammad Hayal Alotaibi, Hanan A. Mohamed, Bakr F. Abdel-Wahab, Amany S. Hegazy, Benson M. Kariuki and Gamal A. El-Hiti*

Crystal structure of N'-(1-(benzofuran-2-yl) ethylidene)-2-cyanoacetohydrazide, C₁₃H₁₁N₃O₂

https://doi.org/10.1515/ncrs-2018-0420

Received October 11, 2018; accepted Novemeber 30, 2018; available online December 19, 2018

Abstract

C₁₃H₁₁N₃O₂, triclinic, $P\bar{1}$ (no. 2), a = 7.889(2) Å, b = 9.367(3) Å, c = 9.630(3) Å, $\alpha = 64.82(3)^{\circ}$, $\beta = 106.507(4)^{\circ}$, $\gamma = 84.57(2)$, V = 585.1(3) Å3, Z = 2, $R_{\rm gt}(F) = 0.0550$, $wR_{\rm ref}(F^2) = 0.1455$, T = 293(2) K.

CCDC no.: 1882282

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound was synthesized from reaction of 1-(benzofuran-2-yl)ethanone and 2-cyanoacetohydrazide in dry

Hanan A. Mohamed and Bakr F. Abdel-Wahab: Department of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia; and Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt Amany S. Hegazy and Benson M. Kariuki: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, UK Table 1: Data collection and handling.

Crystal:	Yellow plate		
Size:	$0.43 \times 0.32 \times 0.10$ mm		
Wavelength:	Mo Kα radiation (0.71073 Å)		
μ:	0.10 mm^{-1}		
Diffractometer, scan mode:	SuperNova, ω		
$ heta_{\max}$, completeness:	29.8°, >99%		
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	4849, 2745, 0.021		
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 1812		
N(param) _{refined} :	164		
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],		
	WINGA, OKIEF [4]		

ethanol containing a few drops glacial acetic acid under reflux for 30 min. The solid obtained was recrystallized from dimethylformamide to give yellow crystals (88%).

Experimental details

All hydrogen atoms were placed in calculated positions and refined using a riding model. The N–H bond was fixed at 0.86 Å (AFIX 43 instruction in SHELXL [2, 3]), with displacement parameters 1.2 times U_{eq} (N). Aromatic C–H distances were set to 0.93 Å (AFIX 43) and their U(iso) set to 1.2 times the U_{eq} (C). Methyl C–H distances were set to 0.96 Å and their U(iso) to 1.5 times the U_{eq} (C) with the group allowed to rotate about the C–C bond (AFIX 137). Methylene C–H bonds were fixed at 0.97 Å (AFIX 23), with displacement parameters 1.2 times U_{eq} (C). Crystal data, data collection and structure refinement details are summarized in Table 1.

Comment

N'(-(Heterocycle)ethylidene)-2-cyanoacetohydrazides have been used as precursors for the synthesis of various biologically active heterocycles [5–8]. The crystal structures for various hydrazides have been recently reported [9–11].

The asymmetric unit consists of one molecule of the title compound. The twist angle between the planes through the benzofuran and the acetohydrazide groups is $21.33(7)^{\circ}$. The cyano group is twisted from the plane of the acetohydrazide group with a torsion angle (N2–C11–C12–C13) of $152.4(2)^{\circ}$. Intermolecular N–H···O hydrogen bonding occurs in the structure with a N···O distance of 2.927(3) Å and a N–H···O

^{*}Corresponding author: Gamal A. El-Hiti, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia, e-mail: gelhiti@ksu.edu.sa Mohammad Hayal Alotaibi: National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
C1	0.7167(3)	0.4546(2)	0.1053(2)	0.0387(5)
C2	0.7811(3)	0.6093(2)	0.0173(3)	0.0449(5)
H2	0.812869	0.669848	-0.096930	0.054*
C3	0.7914(3)	0.6626(2)	0.1329(3)	0.0439(5)
C4	0.7340(3)	0.5311(2)	0.2863(3)	0.0440(5)
C5	0.8414(3)	0.8062(3)	0.1244(3)	0.0580(6)
H5	0.877663	0.897509	0.024004	0.070*
C6	0.8360(4)	0.8100(3)	0.2663(3)	0.0651(7)
H6	0.868499	0.905174	0.262007	0.078*
C7	0.7829(4)	0.6746(3)	0.4167(3)	0.0650(7)
H7	0.782576	0.680421	0.510821	0.078*
C8	0.7308(4)	0.5317(3)	0.4298(3)	0.0589(6)
H8	0.695336	0.440544	0.530254	0.071*
C9	0.6685(3)	0.3437(2)	0.0555(2)	0.0396(5)
C10	0.7293(3)	0.3932(3)	-0.1288(3)	0.0501(6)
H10A	0.812811	0.321111	-0.162336	0.075*
H10B	0.791963	0.498338	-0.190549	0.075*
H10C	0.622072	0.391886	-0.151791	0.075*
C11	0.4016(3)	-0.0192(3)	0.2438(3)	0.0479(5)
C12	0.3304(3)	-0.0472(3)	0.4254(3)	0.0493(6)
H12A	0.416858	-0.105958	0.472259	0.059*
H12B	0.323567	0.053889	0.431865	0.059*
C13	0.1466(3)	-0.1354(3)	0.5233(3)	0.0491(5)
N1	0.5726(2)	0.2129(2)	0.1754(2)	0.0429(4)
N2	0.5219(2)	0.1096(2)	0.1275(2)	0.0476(5)
H2A	0.567300	0.127720	0.023090	0.057*
N3	0.0018(3)	-0.2013(3)	0.5998(3)	0.0668(6)
01	0.6848(2)	0.40289(16)	0.27184(17)	0.0471(4)
02	0.3525(3)	-0.1108(2)	0.2042(2)	0.0701(6)

angle of 164.9° to form R_2^2 rings between pairs of molecules according to graph-set notation [12].

Acknowledgements: Mohammad Hayal Alotaibi thanks King Abdulaziz City for Science and Technology (KACST), Saudi Arabia for financial support (award No. 020-0180).

References

- 1. Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Oxford Diffraction, Yarnton, England (2015).
- 2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- Abdelhamid, A. O.; Gomha, S. M.; Abdelriheem, N. A.; Kandeel, S. M.: Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecules 21 (2016) 929.
- Bondock, S.; Tarhoni, A. E.-G.; Fadda, A. A.: Utility of cyanoacetic acid hydrazide in heterocyclic synthesis. Arkivoc 2006 (2006) 113–156.
- Mohareb, R. M.; El-Sayed, N. N.; Abdelaziz, M. A.: Uses of cyanoacetylhydrazine in heterocyclic synthesis: novel synthesis of pyrazole derivatives with anti-tumor activities. Molecules 17 (2012) 8449–8463.
- Wardakhan, W. W.; El-Sayed, N. N.; Mohareb, R. M.: Synthesis and anti-tumor evaluation of novel hydrazide and hydrazide-hydrazone derivatives. Acta Pharm. 63 (2013) 45–57.
- Baashen, M.; Abdel-Wahab, B. F.; Hegazy, A. S.; Kariuki, B. M.; El-Hiti, G. A.: Crystal structure of 1-phenyl-N'-(1-phenyl-5-(thiophen-2-yl)-1H-pyrazole-3-carbonyl)-5-(thiophen-2-yl)-1Hpyrazole-3-carbohydrazide, C₂₈H₂₀N₆O₂S₂. Z. Kristallogr. NCS 233 (2018) 617–619.
- El-Hiti, G. A.; Abdel-Wahab, B. F.; Alotaibi, M. H.; Yousif, E.; Hegazy, A. S.; Kariuki, B. M.: 5-Methyl-1-(4-methylphenyl)-N'-[1-(1H-pyrrol-2-yl)ethylidene]-1H-1,2,3-triazole-4-carbohydrazide monohydrate. IUCrData 3 (2018) x181162.
- Hameed, A.; Khan, K. M.; Zehra, S. T.; Ahmed, R.; Shafiq, Z.; Bakht, S. M.; Yaqub, M.; Hussain, M.; de la Vega de León, A.; Furtmann, N.; Bajorath, J.; Shad, H. A.; Tahir, M. N.; Iqbal, J. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorg. Chem. 61 (2015) 51–57.
- Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L.: Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. 34 (1995) 1555–1573.