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Abstract 

In this work, InP nanowire (NW) array solar cells with different axial p-i-n junction designs 

were investigated. The optical properties of the different NW structures were characterized 

through a series of micro-photoluminescence measurements to extract important material 

parameters such as minority carrier lifetimes and internal quantum efficiencies. A glancing 

angle sputtering deposition technique has been developed to enable a direct visualization of the 

p-n junctions in the vertical array of InP NW solar cells (NWSCs) using electron beam induced 

current (EBIC) technique. Based on EBIC and electrical simulation, it is found that the 

background doping in NWSC significantly affects the junction position. By modifying the 

junction design, the width and position of the p-n junction can be varied effectively. By 

employing a p-p--n structure, a high junction position (> 1 μm from the substrate) and wide 

depletion width have been achieved as confirmed by EBIC measurement. Moreover, the NW 



growth substrate does not show any influence on the device behavior due to the fully de-

coupled junction position, indicating a promising structural design for future development of 

high-performance, low-cost flexible NW devices. 
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1. INTRODUCTION 

With their unique structural, optical and electrical properties, III-V semiconductor 

nanowires (NWs) have shown great potential for novel nanoscale device applications, 

such as light-emitting diodes (LEDs),1 lasers,2-4 photodetectors5-7 and solar cells.8-10 In 

particular, semiconductor NWs are considered to be highly promising for next-

generation photovoltaic devices due to: 1) their intrinsic antireflection effect for 

enhancing light absorption; 2) their small footprint efficiently relaxing the lattice-

mismatched strain and thus enabling the construction of multi-junction cells with 

optimal band gap combinations as well as the growth on different substrate materials 

such as silicon and thus potential integration with the existing silicon-based industrial 

infrastructures;11,12 and 3) significant cost reduction due to much less material usage. 

With a suitable and direct bandgap, superior carrier mobility and well-developed 

synthesis techniques, significant progress has been made in solar cells fabricated from 

III-V NW arrays 8,13-19. Especially for axial p-i-n junction based array NW solar cells 

(NWSCs), top-down approach led to a record efficiency as high as 17.8%.20 In terms of 



bottom-up approach, 15% and 15.3% has been achieved in InP21 and GaAs18 array 

NWSCs respectively by Au-assisted vapor-liquid-solid growth. Up to 6.35% efficiency 

has also been demonstrated in radial junction InP array NWSCs grown by selective-area 

metalorganic vapor phase epitaxy (SA-MOVPE),15,19 however there has been no further 

report on selective area epitaxy (SAE) grown axial junction InP array NWSCs. Pure 

wurtzite (WZ) InP NWs with low surface recombination velocity (SRV) (~161 cm/s) 

has been demonstrated by SA-MOVPE.3,22 With a careful optimization of junction 

design (in terms of width and position), growth and device fabrication, it is expected 

that high performance axial junction InP array NWSCs by SAE can be achieved. 

For InP array NWSCs, it has been shown that by varying the length of the bottom p+-

segment23 and the top n-segment8 the solar cell performance can be optimized, 

highlighting the importance of junction position for efficient light absorption and carrier 

collection in NWSCs. Normally for planar axial junction solar cells, the p-n junction 

design can be optimized relatively easily through a few growth calibration cycles. 

However, due to the complex nature of NW growth, background doping, growth rate 

and dopant diffusion may vary greatly during the growth of different NWSC structures 

with different p, i, n-segment designs. As a result, the junction position and size may 

significantly deviate from the original design24,25 and moreover, the material quality 

(both optical and electrical) of the NWSC structures may also vary significantly, making 

it challenging to understand and optimize the NWSC performance. Therefore, it is 

highly desirable to employ a technique which is able to directly visualize the width and 

position of the p-n junction for device optimization. Electron beam induced current 



(EBIC) measurement which uses electron beam to excite the carriers and measure the 

short circuit current flowing in a material is commonly used to identify junction position 

and estimate minority carrier diffusion length in planar photovoltaic devices.26,27 Due to 

the inherent structural characteristics of NWs such as high aspect ratio, cylindrical shape 

and difficulties in making electrical contacts, it is challenging to apply EBIC to NW 

device applications. So far there have been a few reports on EBIC measurements of p-

n junction of single NWs,21,25,28-30 however very little has been reported on EBIC of 

NWs in vertical array configuration31-33 where additional information could be obtained 

such as identifying the possible substrate influence on NWSCs as well as evaluating the 

uniformity of electrical performance of a large number of NWs. In this paper, we 

demonstrate for the first time direct junction characterization and analysis of SAE-

grown axial junction InP NW array solar cells based on EBIC measurements and 

electrical simulation.  

It is well known that due to background impurity doping, the unintentionally doped 

InP grown by MOVPE is normally n-type.34 We also found that the InP NWs grown by 

the SAE technique exhibit a relatively high background doping density24 of ~1017 cm-3, 

which has to be taken into consideration when designing p-n junction for solar cell 

applications. In this work three different InP NWSC structures grown on p-doped InP 

substrate by SA-MOPE, namely i(n-)-n, p-i(n-)-n and p-p--n, were designed and 

characterized using EBIC technique. We show that compared with the other two 

structures, by introducing a lightly p-doped middle segment, the depletion region in the 

p-p--n structure can be successfully shifted closer to the top of the NWs which is more 



favorable for light absorption and carrier separation.8 More importantly, it is also 

revealed that in the p-p--n structure the influence from the NW growth substrate has 

been completely eliminated, allowing the assessment of the true performance of the NW 

array solar cell devices. This structure also presents the most suitable device design for 

future development of flexible NW devices by detaching them from the substrate using 

flexible polymer materials and reusing the substrate to reduce cost. Despite a slightly 

reduced carrier lifetime and internal quantum efficiency (IQE) in the junction 

(depletion) region due to p-dopant incorporation as indicated by time-resolved 

photoluminescence (TRPL) measurements, a good efficiency of up to 9.23% has been 

obtained from the p-p--n structure without any surface passivation. Our results 

emphasize the importance of a comprehensive electrical structure and material design, 

providing a good guidance for development of future high-efficiency, low-cost, flexible 

NWSC devices. 

 

2. EXPERIMENTAL DETAILS 

To grow the InP NW arrays, p+ (111)A InP substrates were firstly deposited with a 30 

nm-SiOx layer by plasma enhanced chemical vapor deposition and then patterned by 

electron beam lithography. Wet chemical etching was used to open up holes followed 

by InP NW growth in a horizontal low pressure (100 mbar) MOVPE system (Aixtron 

200/4) at the growth temperature of 730 ºC. Trimethylindium (TMIn) and phosphine 

(PH3) were used as precursors for the group III (In) and group V (P) elements, 

respectively. Flow rates were set at 6.1×10-6 and 4.9×10-4 mol/min, respectively for 



TMIn and PH3, corresponding to a V/III ratio of 80. For n-doped segment, silane was 

introduced during the growth at flow rate of 3.1×10-7 mol/min with all other parameters 

kept constant. Diethylzinc was used as p-dopant,35 and the flow rate of 2.5×10-7 and 

2.0×10-5 mol/min were used for p- and p-doped segment, respectively. 

For PL and time-resolved PL measurements, the NWs were excited using a 522 nm 

(frequency doubled) pulsed laser source with pulse width of 300 fs and repetition rate 

of 20.8 MHz. The laser beam was focused using a 100 × (NA 0.75) microscope objective 

lens on the middle of the NWs, with a spot size of 0.72 µm estimated by vector 

diffraction calculation.36. The emission was detected by a single photon avalanche 

diode, which was connected to the time-correlated single photon counting (TCSPC) 

system (Picoharp 300). The minority carrier lifetime was extracted from a single or 

double exponential fitting of time-resolved photoluminescence (TRPL) decay curve 

measured by the TCSPC system. 

For EBIC measurements, an indium tin oxide (ITO) layer was deposited on top of the 

NW array by glancing angle sputter coating to obtain a complete coverage of ITO only 

on the tip of the NWs (n-region) to enable good electrical connection. This method has 

been developed to avoid the planarization of the NW array. EBIC measurement was 

carried out in a FEI Helios 600 Nanolab dual beam FIB system equipped with Kleindiek 

NanoControl NC40 nano-manipulators and low current measurement units. The top 

electrode and bottom electrode of the sample were contacted to the nanomanipulator 

and sample stage respectively, allowing electrical current to flow and pass through a 

current amplifier. 



 

3. RESULTS AND DISCUSSION 

 

3.1. Photoluminescence and time-resolved photoluminescence 

The InP NW array design has been optimized by the finite-difference time-domain 

(FDTD) simulation to achieve maximum light absorption with 200 nm-diameter NWs 

arranged in a hexagonal array with 400 nm spacing.37 Three InP NWSC samples with 

the same array parameters but different structural designs have been grown on p+ InP 

substrates and illustrated schematically in Figure 1A. Sample I (i-n+) was grown with 

an undoped section for 7 min on the p+ substrate followed by a heavily n-doped section 

for 2 min. Sample II (p-i-n+) shows the InP NW array with a p-doped section (1.5 min) 

firstly grown on the p+ substrate followed by an undoped section (5 min) and a heavily 

n-doped section (1.5 min). Sample III (p-p--n+) was grown with a p-doped section (1.5 

min) on the p+ substrate followed by a lightly p-doped section (5 min) and a heavily n-

doped section (1.5 min). The doping concentrations of both n-doped and undoped 

sections were calibrated based on our previous doping study.24 However despite a high 

doping concentration aimed for the bottom p-region for samples II and III, we find it 

difficult to determine the p-type doping concentration using both the photoluminescence 

(PL) and electrical measurements which were previously used to determine the n-type 

doping concentration with great success,24 implying that the p-region of our NWs may 

be only lightly doped (< 1×1017 cm-3) despite that a high diethylzinc (DEZn) flow rate 

was used. This may be due to the relatively high growth temperature of 730 ºC used for 



the NW growth which is known to be unfavourable for incorporation of Zn-dopant by 

MOVPE. Figure 1B shows the scanning electron microscopy (SEM) image of the NW 

array taken from Sample I. The typical diameter of the NWs is ~200 nm and the average 

length of the NWs is ~1.4, 1.5, 1.8 µm for Samples I, II, III, respectively. The different 

NW length is mainly due to the slight variation of the device structural design as well 

as the different doping conditions that could largely affect the NW growth rate. High 

resolution transmission electron microscopy (TEM) examination along the length of the 

NW shows that even with different types and levels of doping, all three samples are pure 

WZ phase (See Figure S1, Supporting Information). 

After growth, some NWs were mechanically transferred from the array to a SiNx 

coated Si substrate for micro-PL and TRPL measurements, to allow direct probing of 

the middle segment of the NWSC structure. More than ten NWs were measured for each 

sample. Figure 2A shows the typical room-temperature single NW PL spectra from the 

three NWSC samples. All spectra feature a main peak with a shoulder at higher energy, 

which can be fitted with two Gaussian peaks at the energy of 1.42 and 1.44 eV, 

respectively (See Figure S2, Supporting Information). We attribute the lower energy 

peak to the band edge emission (A band) from WZ InP NWs and the higher energy peak 

to the split off valence band (B band).38,39 The PL spectra are normalized to the peak 

intensity of Sample I NW. It can be seen that Sample I exhibits the highest PL peak 

intensity and Sample III shows the lowest PL peak intensity. The full width at half-

maximum (FWHM) of Samples I, II and III are 32, 41 and 47 nm, respectively. 



The room-temperature minority carrier lifetimes are also extracted from the three 

different NW samples by fitting their TRPL spectral decays. For Samples I and II, the 

TRPL decay can be fitted well with mono-exponential decay, as shown in Figure 2B, 

with minority carrier lifetimes of 1.64 and 1.37 ns, respectively. For Sample III, an 

initial sharp decay followed by one with much slower decay rate has been observed. The 

sharp decay may be attributed to a rapid field-assisted trapping of photon-injected 

minority electrons at the surface of NWs,40 while the slower decay is dominated by the 

minority carrier lifetime of the p-doped NW. Hence for Sample III, the spectrum is fitted 

with double exponential decays and a minority carrier lifetime of ~1.22 ns is obtained 

from the slow decay portion of the curve. Again compared with Sample I, the minority 

carrier lifetimes in Samples II and III are found to be reduced. Finally, as a quantitative 

estimation of the material optical quality, the IQE for NWs from Samples I, II and III 

were measured based on the method described by Fan et al.
24 (See Figure S3, Supporting 

Information). From Figure 2C, the highest IQE has been obtained for Sample I (~58%) 

followed by ~37% for Sample II and ~26% for Sample III.  

As suggested from the above PL (intensity/FWHM), minority carrier lifetimes and 

IQE results, Sample I shows the best optical quality, followed by Sample II and Sample 

III. It is well-known that the PL properties of semiconductor materials strongly depend 

on the growth conditions (methods and parameters), doping concentrations, and 

impurity species. We ascribe the degraded optical properties in Sample II and Sample 

III to the effect of Zn diffusion and/or doping, which is a well-recognized problem for 

InP growth by MOVPE, especially at high growth temperatures.19 Since both Samples 



II and III were grown with an intentionally p-doped segment first at a relatively high 

DEZn flow rate (2.0×10-5 mol/min) and growth temperature (730 °C), Zn could 

outdiffuse from the p-segment and/or due to the “memory effect” in the reactor to 

incorporate into the middle undoped (Sample II) or lightly p--doped (Sample III) 

segment during its growth. Indeed, it has been found from studies of p-doped InP layers 

by thermal diffusion41 that Zn diffusion proceeds via an interstitial-substitutional kick-

out mechanism42-45 and consequently leads to a high concentration of interstitial Zn 

atoms. Similarly during the MOVPE growth of Samples II and III, Zn incorporation into 

the middle segment of the NWSC structure may likely form some Zn interstitials in 

addition to achieving of a low p-doping concentration. Zn interstitials have been 

identified as the main reason causing a degraded PL in Zn-doped InP NWs.46 P-doping 

could also lead to broadening of the FWHM of the PL spectrum due to the impurity 

band that merges with the valence band edge as band tail states and thus broaden optical 

transitions between the conduction and valence bands.47 Furthermore, it is well known 

that doping may cause reduced carrier lifetime and mobility as a result of ionized 

impurity scattering.48,49 Therefore, compared with Sample I, increasingly degraded PL 

intensity, FWHM and carrier lifetime are observed from Samples II and III. 

 

3.2. EBIC measurements 

EBIC measurements provide a direct visualization of the p-n junctions in the three 

NWSC structures. Our EBIC measurements were performed under an SEM column at 

1 kV with a beam current of ~86 pA. The maximum penetration depth of electrons in 



the sample is calculated to be ~30 nm at 1 kV using the Casino simulation software (See 

Figure S4, Supporting Information). During the measurements, the NW samples were 

unbiased, such that the EBIC signal is solely due to the separation of the electron beam 

generated nonequilibrium carriers by the built-in field of the junction and the diffusion 

of minority carriers from each side of the p-n junction reaching the field. Figure 3 shows 

the SEM images (the first column) and their corresponding EBIC images (the second 

column) taken from Samples I, II and III, in comparison with the electric field 

distribution profiles determined by Comsol Multiphysics simulations (See Supporting 

Information Section 3.2) of their respective p-i-n structure designs. The relative EBIC 

intensity is presented by the red curve along the center of the NW as obtained from 

ImageJ Processing Software. As mentioned earlier, based on our previous study24 

undoped InP NWs are normally n-type with a doping concentration of ~1×1017 cm-3. 

Therefore, from the EBIC image which shows a number of NWs of Sample I (Figure 

3B), consistently bright contrasts can be observed at all NW/substrate interfaces, which 

is a clear indication of the built-in electric field formed between the undoped (n-type) 

segment and p-type substrate. Weaker EBIC signal contrasts can also be observed above 

the bright regions in the NWs due to the minority carrier diffusion. Electrical modelling 

was performed to estimate the electric field distribution in the NWSC based on a doping 

profile of highly doped p+ substrate (5×1018 cm-3)-i (n- ~1017 cm-3)-n+ (3×1018 cm-3) with 

the doping concentrations calibrated by our previous work.24 The result shown in Figure 

3C clearly indicates the formation of the electric field within the NW (as a result of high 

p+ doping in substrate and lower n background doping in the NW) with a depletion width 



of ~135 nm in the NW from the NW/substrate interface which is consistent with EBIC 

results.  

The SEM image of Sample II and its corresponding EBIC image are shown in Figure 

3D and Figure 3E, respectively. As displayed in Figure 3E, a bright contrast can be 

observed in the middle of the NW. It is clearly found the built-in electric field region is 

formed between the undoped segment and bottom p-type segment, and the undoped 

segment is slightly n-type despite that possible Zn diffusion may also have occurred 

during its growth. Above and below the bright depletion region, slightly weaker EBIC 

signals are also obtained, which can be again ascribed to minority carrier diffusion 

currents, i.e., arising from the electron beam generated electrons and holes that diffuse 

towards the depletion region of this sample. The simulation results in Figure 3F show 

the formation of an electric field region with an estimated depletion width of ~110 nm 

in the NW (based on a p (~5×1016 cm-3)-i (n- ~1×1017 cm-3)- n+ (3×1018 cm-3) junction), 

which agrees well with the EBIC results. 

By lightly p-doping the middle segment, Sample III has a depletion region which is 

the closest to the top of the NWs as evidenced by the bright contrast of the EBIC signal 

shown in Figure 3H. There are also two regions with less signal intensity being observed 

from each side of the junction, which can again be attributed to the electron beam 

induced minority carrier diffusion. Based on a doping profile of p (5×1016 cm-3)-i (p- 

~1×1016 cm-3)-n+ (3×1018 cm-3), a depletion width of ~300 nm in the NW (across the p-

/n+ interface) is estimated from the electrical simulation (shown in Figure 3I), which is 

consistent with the EBIC measurement shown in Figure 3H. The EBIC results suggest 



that among the three NWSC structures the most promising junction design is that of 

Sample III, where a longer depletion region has been produced closer to the top of the 

NW (just below the n+ segment) to enable an effective light absorption and carrier 

separation. 

Minority carrier diffusion length is an important parameter indicating carrier 

collection probability of solar cells. It has been found that surface recombination plays 

an important role on carrier diffusion length in both Si50 and III-V NWs. For example, 

GaAs NWs have been reported with very short carrier diffusion lengths (< 100 nm) 

compared with surface passivated GaAs NWs with AlGaAs shell (~1000 nm)51 due to 

the high SRV of GaAs. Similarly, GaN/AlGaN core-shell NWs have been reported with 

long carrier diffusion length for holes (Lp, 1200 nm) whereas that of the uncapped GaN 

NWs is significantly shorter (130 - 710 nm).52,53 Based on the EBIC results from Figure 

3, carrier diffusion lengths for electrons (Ln) and holes (Lp) were extracted by 

exponentially fitting the EBIC signal as a function of the illumination position along the 

NW.29 As shown in Figure 4, a hole diffusion length Lp of 553 and 193 nm were 

extracted from the undoped i-side (n-) for Samples I and II respectively. The longer Lp 

on the undoped i-side (n-) of Sample I compared to Sample II corresponds well with the 

PL and minority carrier lifetime results, indicating the influence of Zn diffusion. An 

electron diffusion length (Ln) was extracted to be 228 nm on the p--side for Sample III. 

Compared with previously reported p-n InP NWs which have Ln and Lp of 160 and 65 

nm (with the doping concentration for p-doped and n-doped segments of 5×1018 and 

1×1019 cm-3, respectively),28 the longer Ln and Lp obtained from our NWSC structures 



may be due to the much lower doping concentration as well as the defect-free pure WZ 

crystal phase of the NWs. 

As clearly indicated from the EBIC measurements, since both Samples I and II have 

low junction positions, minority carriers generated from the substrate could diffuse to 

the junction to contribute to the photocurrent making it hard to differentiate the 

contribution from the NW and the substrate; whereas in Sample III (p-p--n structure) 

due to its higher junction position (> 1 μm from the substrate) and limited carrier 

diffusion length, we may exclude the possibility of photocurrent generation from the 

substrate. This will allow us to assess the real device performance of the NWSC array, 

which is critical for enabling their future applications as flexible/wearable devices where 

the NW array needs to be detached (or peeled off) from the substrate.54,55 

 

3.3. Solar cell performance 

An n-p--p sample (the same as Sample III) containing six 200 μm by 200 μm NW arrays 

was grown and fabricated into solar cell devices through photoresist (AZ 5214E) 

planarization, oxygen plasma etching to uncover the NW tips, transparent contact ITO 

deposition (~500 nm) using sputtering technique and Ti/Au contact deposition (10 

nm/200 nm) using electron-beam evaporation. Figure 5A shows the schematic diagram 

of the device structure. The solar cell performance was characterized by current-voltage 

(I-V) measurements under dark and light (1 sun AM 1.5G) conditions, the results of 

which are shown in Figure 5B. From the J-V results, an open-circuit voltage of 0.55 V, 

a short-circuit current density of 22.5 mA/cm2, and a fill factor of 0.75 were obtained, 



leading to an overall conversion efficiency of ~9.23%. It should be noted that during the 

device fabrication process, no chemical treatment 56 and/or oxide surface 

passivation8,20,21 was performed. It is expected that with a further optimization of surface 

passivation, the device performance can be significantly improved. Figure 5C presents 

the room-temperature electroluminescence (EL) spectrum of the solar cell device 

measured at 2.59 mA, displaying a strong EL peak at 1.42 eV. This corresponds to the 

bandgap of pure WZ InP NW57,58 and again confirms that the depletion region in the n-

p--p sample is de-coupled from the zinc blende (ZB) InP substrate such that no substrate 

related EL peak23 is observed. Based on our work, it is believed that by further 

optimization of the p-p--n NWSC structural design and growth based on EBIC 

measurement and device simulation (e.g., significant reduction of the length of the top 

n-segment,8 fine tuning of the doping and length of p and p- segments) as well as device 

fabrication (implementation of surface passivation), large improvement in device 

performance can be achieved in our SAE grown axial junction InP NWSCs. 

 

4. CONCLUSION 

In conclusion, EBIC measurements combined with electrical simulation and optical 

characterization have been carried out to characterize three InP NWSC samples with 

different axial p-i-n junction designs. It is shown that by varying the doping profile of 

the solar cell structures, the junction position and width can be adjusted and placed 

towards the top of the NWs by employing a p-p--n structure, where more efficient light 

absorption and carrier collection can be achieved. With the junction positioned away 



from the NW growth substrate, the parasitic photocurrent generation from the substrate 

was also effectively eliminated. This will allow us to evaluate the true performance of 

the NW array solar cells without any influence from the NW growth substrate. 

Moreover, this structural design can also be used as a suitable device platform for 

fabricating flexible/wearable devices in the future by detaching the NW array from the 

substrate and at the same time enabling a re-usable substrate for repeated NW growth 

to significantly reduce material cost. Despite slightly degraded optical properties of the 

NWs due to Zn-diffusion and/or doping, up to 9.23% solar cell efficiency has been 

achieved in the p-p--n NW arrays without any surface passivation. Our study provides 

important insights into the key issues of material growth and junction design critical for 

the development of next generation high-performance, low-cost, flexible NW solar 

cells. The understanding gained from this work can also be further extended to a wide 

range of nanowire or other novel low dimensional material (such as the emerging 2D 

materials) based optoelectronic devices including LEDs, lasers, and photodetectors for 

numerous future applications. 

 

SUPPORTING INFORMATION 

Supporting Information (transmission electron microscopy, optical properties, and simulation) 

is available from the Wiley Online Library or from the author. 

 

ACKNOWLEDGMENTS 



The Australian Research Council is acknowledged for financial support. Access to facilities 

used in this work is made possible through the Australian National Fabrication Facility and 

Australian Microscopy and Microanalysis Research Facility. 

 

REFERENCES 

[1] Minot ED, Kelkensberg F, van Kouwen M, van Dam JA, Kouwenhoven LP, Zwiller V, et 
al. Single Quantum Dot Nanowire LEDs. Nano Lett 2007;7:367-71. 
[2] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan HH, et al. Optically pumped 
room-temperature GaAs nanowire lasers. Nat Photonics 2013;7:963-8. 
[3] Gao Q, Saxena D, Wang F, Fu L, Mokkapati S, Guo Y, et al. Selective-Area Epitaxy of 
Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing. Nano 
Lett 2014;14:5206-11. 
[4] Saxena D, Wang F, Gao Q, Mokkapati S, Tan HH, Jagadish C. Mode Profiling of 
Semiconductor Nanowire Lasers. Nano Lett 2015;15:5342-8. 
[5] Peng K, Parkinson P, Fu L, Gao Q, Jiang N, Guo Y-N, et al. Single Nanowire 
Photoconductive Terahertz Detectors. Nano Lett 2015;15:206-10. 
[6] Peng K, Parkinson P, Boland JL, Gao Q, Wenas YC, Davies CL, et al. Broadband Phase-
Sensitive Single InP Nanowire Photoconductive Terahertz Detectors. Nano Lett 2016;16:4925-
31. 
[7] Zhang H, Guan N, Piazza V, Kapoor A, Bougerol C, Julien F, et al. Comprehensive analyses 
of core–shell InGaN/GaN single nanowire photodiodes. J Phys D Appl Phys 2017;50:484001. 
[8] Wallentin J, Anttu N, Asoli D, Huffman M, Åberg I, Magnusson MH, et al. InP Nanowire 
Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science 
2013;339:1057-60. 
[9] Krogstrup P, Jørgensen HI, Heiss M, Demichel O, Holm JV, Aagesen M, et al. Single-
nanowire solar cells beyond the Shockley–Queisser limit. Nat Photonics 2013;7:306-10. 
[10] Cui Y, van Dam D, Mann SA, van Hoof N, van Veldhoven P, Garnett E, et al. Boosting 
Solar Cell Photovoltage via Nanophotonic Engineering. Nano Lett 2016;16:6467-71. 
[11] Tomioka K, Motohisa J, Hara S, Fukui T. Control of InAs Nanowire Growth Directions 
on Si. Nano Lett 2008;8:3475-80. 
[12] Tomioka K, Kobayashi Y, Motohisa J, Hara S, Fukui T. Selective-area growth of vertically 
aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 
2009;20:145302. 
[13] Yao M, Huang N, Cong S, Chi C-Y, Seyedi MA, Lin Y-T, et al. GaAs Nanowire Array 
Solar Cells with Axial p–i–n Junctions. Nano Lett 2014;14:3293-303. 
[14] Cui Y, Wang J, Plissard SR, Cavalli A, Vu TTT, van Veldhoven RPJ, et al. Efficiency 
Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Lett 2013;13:4113-7. 
[15] Yoshimura M, Nakai E, Tomioka K, Fukui T. Indium Phosphide Core-Shell Nanowire 
Array Solar Cells with Lattice-Mismatched Window Layer. Appl Phys Express 
2013;6:052301. 



[16] Mariani G, Scofield AC, Hung C-H, Huffaker DL. GaAs nanopillar-array solar cells 
employing in situ surface passivation. Nat Commun 2013;4:1497. 
[17] Heurlin M, Wickert P, Fält S, Borgström MT, Deppert K, Samuelson L, et al. Axial InP 
Nanowire Tandem Junction Grown on a Silicon Substrate. Nano Lett 2011;11:2028-31. 
[18] Åberg I, Vescovi G, Asoli D, Naseem U, Gilboy JP, Sundvall C, et al. A GaAs Nanowire 
Array Solar Cell With 15.3% Efficiency at 1 Sun. IEEE J Photovolt 2016;6:185-90. 
[19] Goto H, Nosaki K, Tomioka K, Hara S, Hiruma K, Motohisa J, et al. Growth of Core–
Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor 
Phase Epitaxy. Appl Phys Express 2009;2:035004. 
[20] van Dam D, van Hoof NJ, Cui Y, van Veldhoven PJ, Bakkers EP, Gómez Rivas J, et al. 
High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-
aligned Indium-Tin-Oxide Mie scatterers. ACS Nano 2016;10:11414-9. 
[21] Otnes G, Barrigón E, Sundvall C, Svensson KE, Heurlin M, Siefer G, et al. Understanding 
InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire 
Measurements. Nano Lett 2018;18:3038-46. 
[22] Gao Q, Dubrovskii VG, Caroff P, Wong-Leung J, Li L, Guo Y, et al. Simultaneous 
Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays. Nano Lett 
2016;16:4361-7. 
[23] Jain V, Nowzari A, Wallentin J, Borgström M, Messing M, Asoli D, et al. Study of 
photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. Nano Res 2014;7:544-
52. 
[24] Wang F, Gao Q, Peng K, Li Z, Li Z, Guo Y, et al. Spatially Resolved Doping 
Concentration and Nonradiative Lifetime Profiles in Single Si-Doped InP Nanowires Using 
Photoluminescence Mapping. Nano Lett 2015;15:3017-23. 
[25] Zhong Z, Li Z, Gao Q, Li Z, Peng K, Li L, et al. Efficiency enhancement of axial junction 
InP single nanowire solar cells by dielectric coating. Nano Energy 2016;28:106-14. 
[26] Edwards PR, Galloway SA, Durose K. EBIC and luminescence mapping of CdTe/CdS 
solar cells. Thin Solid Films 2000;372:284-91. 
[27] Stolt L, Hedström J, Kessler J, Ruckh M, Velthaus KO, Schock HW. ZnO/CdS/CuInSe2 
thin‐film solar cells with improved performance. Appl Phys Lett 1993;62:597-9. 
[28] Wallentin J, Wickert P, Ek M, Gustafsson A, Wallenberg LR, Magnusson MH, et al. 
Degenerate p-doping of InP nanowires for large area tunnel diodes. Appl Phys Lett 
2011;99:253105. 
[29] Gutsche C, Niepelt R, Gnauck M, Lysov A, Prost W, Ronning C, et al. Direct 
Determination of Minority Carrier Diffusion Lengths at Axial GaAs Nanowire p–n Junctions. 
Nano Lett 2012;12:1453-8. 
[30] Li Z, Yang I, Li L, Gao Q, Chong JS, Li Z, et al. Reducing Zn diffusion in single axial 
junction InP nanowire solar cells for improved performance. Prog Nat Sci: Mater Int 
2018;28:178-82. 
[31] Arstila K, Hantschel T, Schulze A, Vandooren A, Verhulst AS, Rooyackers R, et al. 
Nanoprober-based EBIC measurements for nanowire transistor structures. Microelectronic 
Engineering 2013;105:99-102. 
[32] Tchoulfian P, Donatini F, Levy F, Dussaigne A, Ferret P, Pernot J. Direct Imaging of p–n 
Junction in Core–Shell GaN Wires. Nano Lett 2014;14:3491-8. 



[33] Tchernycheva M, Neplokh V, Zhang H, Lavenus P, Rigutti L, Bayle F, et al. Core–shell 
InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current 
microscopy and cathodoluminescence mapping. Nanoscale 2015;7:11692-701. 
[34] Takeda Y, Araki S, Noda S, Sasaki A. Characterization of InP Grown by OMVPE Using 
Tertiary-butylphosphine for the Phosphorous Source. Jpn J Appl Phys 1990;29:11. 
[35] Wallentin J, Borgström MT. Doping of semiconductor nanowires. J Mater Res 
2011;26:2142-56. 
[36] Török P, Varga P, Laczik Z, Booker GR. Electromagnetic diffraction of light focused 
through a planar interface between materials of mismatched refractive indices: an integral 
representation. J Opt Soc Am A 1995;12:325-32. 
[37] Li Z, Wenas YC, Fu L, Mokkapati S, Tan HH, Jagadish C. Influence of Electrical Design 
on Core-Shell GaAs Nanowire Array Solar Cells. IEEE J Photovolt 2015;5:854-64. 
[38] Tuin G, Borgström M, Trägårdh J, Ek M, Wallenberg LR, Samuelson L, et al. Valence 
band splitting in wurtzite InP nanowires observed by photoluminescence and 
photoluminescence excitation spectroscopy. Nano Res 2011;4:159-63. 
[39] De A, Pryor CE. Predicted band structures of III-V semiconductors in the wurtzite phase. 
Physical Review B 2010;81:155210. 
[40] Boland JL, Casadei A, Tütüncüoglu G, Matteini F, Davies CL, Jabeen F, et al. Increased 
Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. 
ACS Nano 2016;10:4219-27. 
[41] Moon Y, Si S, Yoon E, Kim SJ. Low temperature photoluminescence characteristics of 
Zn-doped InP grown by metalorganic chemical vapor deposition. J Appl Phys 1998;83:2261-
5. 
[42] Ky NH, Pavesi L, Araújo D, Ganière JD, Reinhart FK. A model for the Zn diffusion in 
GaAs by a photoluminescence study. J Appl Phys 1991;69:7585-93. 
[43] Ky NH, Ganière JD, Gailhanou M, Blanchard B, Pavesi L, Burri G, et al. Self‐interstitial 
mechanism for Zn diffusion‐induced disordering of GaAs/AlxGa1−xAs (x=0.1−1) multiple‐
quantum‐well structures. J Appl Phys 1993;73:3769-81. 
[44] Hsu JK, Juang C, Lee BJ, Chi GC. Photoluminescence studies of interstitial Zn in InP due 
to rapid thermal annealing. J Vac Sci Technol B 1994;12:1416-8. 
[45] Montie EA, van Gurp GJ. Photoluminescence of Zn‐diffused and annealed InP. J Appl 
Phys 1989;66:5549-53. 
[46] Thuy VTT. Nanowire Photoluminescence for Photovoltaics: Eindhoven University of 
Technology; 2015. 
[47] Hudait MK, Modak P, Rao KSRK, Krupanidhi SB. Low temperature photoluminescence 
properties of Zn-doped GaAs. Mater Sci Eng: B 1998;57:62-70. 
[48] Agashe C, Kluth O, Hüpkes J, Zastrow U, Rech B, Wuttig M. Efforts to improve carrier 
mobility in radio frequency sputtered aluminum doped zinc oxide films. J Appl Phys 
2004;95:1911-7. 
[49] Friedland KJ, Hey R, Kostial H, Klann R, Ploog K. New Concept for the Reduction of 
Impurity Scattering in Remotely Doped GaAs Quantum Wells. Phys Rev Lett 1996;77:4616-
9. 
[50] Allen JE, Hemesath ER, Perea DE, Lensch-Falk JL, Li ZY, Yin F, et al. High-resolution 
detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 2008;3:168-73. 



[51] Bolinsson J, Mergenthaler K, Samuelson L, Gustafsson A. Diffusion length measurements 
in axial and radial heterostructured nanowires using cathodoluminescence. J Cryst Growth 
2011;315:138-42. 
[52] Baird L, Ang GH, Low CH, Haegel NM, Talin AA, Li Q, et al. Imaging minority carrier 
diffusion in GaN nanowires using near field optical microscopy. Physica B: Condensed Matter 
2009;404:4933-6. 
[53] Baird L, Ong CP, Cole RA, Haegel NM, Talin AA, Li Q, et al. Transport imaging for 
contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN 
core-shell nanowires. Appl Phys Lett 2011;98:132104. 
[54] Dai X, Messanvi A, Zhang H, Durand C, Eymery J, Bougerol C, et al. Flexible Light-
Emitting Diodes Based on Vertical Nitride Nanowires. Nano Lett 2015;15:6958-64. 
[55] Zhang H, Dai X, Guan N, Messanvi A, Neplokh V, Piazza V, et al. Flexible photodiodes 
based on nitride core/shell p–n junction nanowires. ACS Appl Mater Interfaces 2016;8:26198-
206. 
[56] Mariani G, Wong P-S, Katzenmeyer AM, Léonard F, Shapiro J, Huffaker DL. Patterned 
radial GaAs nanopillar solar cells. Nano Lett 2011;11:2490-4. 
[57] Mishra A, Titova LV, Hoang TB, Jackson HE, Smith LM, Yarrison-Rice JM, et al. Appl 
Phys Lett 2007;91:263104. 
[58] Pemasiri K, Montazeri M, Gass R, Smith LM, Jackson HE, Yarrison-Rice J, et al. Carrier 
Dynamics and Quantum Confinement in type II ZB-WZ InP Nanowire Homostructures. Nano 
Lett 2009;9:648-54. 

  



 

FIGURE 1. (a) Schematic of the three samples used in this study with different p-n 

junction designs. Due to the background impurity doping, the unintentionally doped InP 

i-region grown by MOVPE is normally n-type (n-). (b) SEM image at 45° tilt view of 

the as-grown InP NWs. Inset shows the top view SEM image.  

  



 

FIGURE 2. Optical properties of Samples I, II and III. (a) Typical room-temperature 

PL spectra of single NWs from Samples I, II and III. (b) TRPL decays measured at the 

peak emission wavelength of NWs from Samples I, II and III. (c) The IQE as a function 

of excitation power from Samples I, II and III. The curves are calculated from fitting the 

carrier rate equation using the method described by Fan et al.24 

  



 

FIGURE 3. SEM, EBIC and simulation results of Samples I, II and III. (a-c), (d-f) and 

(g-i) present the results for Samples I, II and III, respectively. (a), (d) and (g) are SEM 

images at 1 kV. The ITO deposited on top of InP NW arrays using glancing angle sputter 

coating can be clearly observed in each image. (b), (e) and (h) are the corresponding 

EBIC signals of Samples I, II and III, respectively. Red curves are the relative EBIC 

intensity along the center of each NWs processed using ImageJ software. (c), (f) and (i) 

are electric field simulation results of Samples I, II and III, respectively. The scale bar 

is 500 nm and all micrographs have the same magnification. 

  



 

FIGURE 4. EBIC signal intensity profile along the center of the wire for (a) Sample I, (b) 

Sample II and (c) Sample III, respectively. The carrier diffusion lengths are extracted by 

analyzing the exponential decay of the current signal. The position at 0 µm represents the top 

of the NWs. 

  



 

FIGURE 5. (a) Schematic layout of the fabricated solar cell device. Photoresist (PR) is 

used as the planarization layer, ITO as the transparent top contact and Ti/Au as the 

bottom contact layer. Ti/Au is deposited on top of ITO in a small area (outside the NW 

array) to allow external connection for electrical measurements. (b) The J-V 

characteristics under dark (black curve) and 1 Sun @ AM1.5G illumination (red curve) 

conditions measured from Sample III device. (c) Room-temperature EL spectrum of the 

solar cell device. 
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