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1 Introduction

Depicting the social impact of automated decision systems requires multiple interdisciplinary
entry-points. In this paper we focus on the actual data and algorithms that produce specific out-
puts for the purposes of decision-making. The aim of this report is to outline the range of promi-
nent methods that are used for auditing algorithms in data-driven systems and to also consider
some of their limitations.

A number of early academic studies on discrimination in machine learning and statistical
modelling were published in 2010-2011 (Ruggieri et al., 2010; Luong et al., 2011; Pope and Syd-
nor, 2011), but the topic received prominent attention in public debate with the investigation
carried out by Propublica on the COMPAS system used in parts of the criminal justice system in
the United States (Angwin and Larson, 2016). Whilst the original publication has been the focus
of most discussions pertaining to data-driven discrimination, the re-evaluations of ProPublica’s
work have received much less attention. As a consequence, there has been an all too hasty en-
gagement with the design of solutions to the problem without proper scrutiny of the study or the
multiple contextual factors at play. Due to the different definitions of fairness, the lack of access
to public data, documentation and code, the results of a number of studies re-evaluating this case
raise different or even contradictory conclusions with respect to the COMPAS system. In this re-
port, we will pay particular attention to this case as a way to illustrate methods of evaluating and
auditing algorithmic decision-making.

2 Brief introduction to machine learning and some cautions

Machine learning (ML), also known as statistical learning, is the field of study that gives comput-
ers the ability to learn from data in order to perform a task without being explicitly programmed.
That is, to build/learn/fit a model from data. Tom M. Mitchell defined a ML algorithm as ‘A
computer program [that] is said to learn from experience E with respect to some class of tasks T and perfor-
mance measure P, if its performance at tasks in T, as measured by P, improves with experience E’ (Mitchell,
1997). In general, this definition will be helpful to organise the auditing of a learning system:
What is the actual task T that is being learned? How is the experience E represented as quanti-
tative data? How is the performance P measured to control the learning process and to evaluate
the final model?

Imagine we build an intelligent system to help people decide whether or not to buy a house
for a particular price. In the following example, the goal is to predict the average price of an
apartment (T), using a dataset of percentage of AirBnB apartments in a city. So a model can learn
to predict the average price of apartments in a city using the % of AirBnB in the city, this is our
dataset of experience (E). Learning or model fitting consist on an iterative process which changes
a model to find the minimum error in the prediction (P) using the training dataset (see Figure 1).

This simple example gives us some hints about issues related to the design of machine learning
based solutions, and consequently how to perform a study based on public documentation. What
is the selection of variables? How is each variable produced? Is the task solved by the machine
learning algorithm the same as the task the system is aiming to solve? What are the limitations
of the model we are using (in the example we assume a linear relationship between variables)?
What metric are we considering to guide and evaluate the learning process? What is the learned
model revealing about the task?

3 The COMPAS case

3.1 The ProPublica analysis and initial findings in the COMPAS case

COMPAS (which stands for Correctional Offender Management Profiling for Alternative Sanc-
tions) is an automated tool developed by Northpointe, Inc. to predict a score to determine whether
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Figure 1: Example of a regression task and model fitting process for linear regression.

to release or detain a defendant before his or her trial. The tool is used across the US and based
on a set of features it automatically determines a score (“Risk of Recidivism,” “Risk of Violence”
and “Risk of Failure to Appear”) for each pre-trial defendant.

The COMPAS tool uses a set of variables describing a person such as criminal history, charge
degree, gender, race or age (independent variables) to produce a score (dependent variable).
Rather than being directly programmed by a human, this is done by training several statistical
models with historical records of criminals (that is, independent variables and dependent vari-
able patterns) to build a predictive model for the score. By doing so, the general assumption is
that the statistical model will not discriminate by any sensitive attribute such as race or gender.

However, the tool has been at the centre of a public and scientific debate since the well-known
research work of ProPublica claiming racial bias of the tool, which, according to their analysis, is
more prone to penalise black defendants with respect to white ones in several ways (Angwin and
Larson, 2016). Rather than being explicitly programmed to discriminate against black individuals,
the statistical models learned to incorporate the historical bias present in the data records. To
claim this, the ProPublica team replicated, as far as they could, the Northpointe Inc. tool according
to the public documentation of the software and public records of criminality.

The main finding can be summarised as the over-estimation of risk predicted for black defen-
dants which directly impacts on their chances of bail. Analogously, white defendants were found
to have more chances of being evaluated as low risk of recidivism.

3.2 Controversy around the ProPublica analysis and complementary studies

Northpointe’s Research Department published a technical report in which they ‘strongly reject
the conclusion that the COMPAS risk scales are racially biased against blacks’ (Dieterich et al., 2016).
Then, ProPublica published a response to this report (Larson and Angwin, 2016b). Northpointe
pointed out a series of several statistical and technical errors such as mis-specified regression
models, wrongly defined classification terms and measures of discrimination, and the incorrect
interpretation and use of model errors.

The first critique of ProPublica from Northpointe is that they used different samples to conduct
the three different analyses. In addition, ProPublica does not include descriptive statistics about
the sample. Therefore, it is not possible to properly value information such as different scores
ratios and different error ratios for black individuals. Related to this concern, they say the study
falls into the base rate fallacy1 by not considering the frequency of the events in the population
(formally prior probability) to correct the statistical analysis. In other words, if there are more
high risk black defendant profiles in the database, the performance metrics will be affected by
this fact, so the model performance evaluation should be corrected using the Bayes theorem to
estimate the posterior probability as a more robust performance estimator. However, ProPublica

1https://en.wikipedia.org/wiki/Base_rate_fallacy
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partially avoid this issue since they present the confusion matrices together with a variety of
performance metrics to better assess the overall performance. These metrics are already scaled
by the frequency of the recidivism events for each group. Finally, Northpointe claims that their
system uses much more variables (137 features which do not include any race variables) than the
ProPublica simulation (12 features). However, it has been noted that even with less variables, the
ProPublica model performance is aligned with the Northpointe model performance, questioning
the necessity of remainder features. Also, as we go on to discuss below, a later study on COMPAS
by Dressel and Farid (2018) demonstrated that simple models with two variables can achieve the
same performance.

It is worth pointing to the argument presented by Corbett-Davies et al. (2016) illustrating the
key issue that the controversy raises in the definition of fairness. Northpointe’s definition of
fairness is to predict a similar proportion of defendants that reoffend within each risk category
(“low”, “medium”, “high”). On the other hand, ProPublica claims that it is unfair that ‘black defen-
dants who don’t reoffend are predicted to be riskier than white defendants who don’t reoffend’. According
to the authors, the point is that both notions of fairness are mathematically guaranteed within the
same scenario.

Apart from the Northpointe report, other independent analyses of recidivism systems have
been performed. Some of them only relied on statistical analysis of the case, but fortunately others
went beyond the technical questions. The rest of this section summarises some of these studies
and reveals the necessity of more wide and interdisciplinary analyses of data-driven systems.

Skeem and Lowenkamp (2016) specifically studied the predictive bias and disparate impact
related to race in the PostConviction Risk Assessment (PCRA). The PCRA was developed for
federal offenders in the US, who differ from state-level offender profiles, but still in the field of
recidivism evaluation. They identified the same probability of recidivism across groups whilst
black individuals obtain higher average PCRA. The authors attribute this disparate impact to the
difference in the criminal history but they do not consider the criminal history as a proxy variable
to race, but a variable that instead mediates2 the relationship between race and future arrest.

Zhang and Neill (2016) presented a method for subset scanning to detect statistical significant
bias in binary classifiers. The method is able to describe the characteristic of the discriminated
group by testing for bias or poor fitting regions in the mathematical model. They raise new con-
clusions of the COMPAS case: rather than identifying bias among clearly defined racial groups,
the method found a multi-dimensional subgroup: ‘females who initially committed misdemeanors
(rather than felonies), for half of the COMPAS risk groups, have their recidivism risk significantly over-
estimated.’.

Gong (2016) re-analysed the ProPublica study and concluded that ‘The COMPAS-to-recidivism
lines for black and white offenders are closely aligned over the full range of scores.’. However, in his text,
he goes further than the technical analysis, with a powerful conclusion: ‘In a way, that’s fortunate,
because it creates an opportunity to look at how powerful algorithms can be deeply unfair, even when they’re
statistically unbiased.’. For instance, Gong set the focus on the definition of the machine learning
task; what the systems are really predicting. In the case of COMPAS, the system is not predicting
future crimes, but arrest for future crimes.

More recently, Dressel and Farid (2018) studied the fairness performance of COMPAS exclud-
ing racial variables (a point of view surprisingly missing in the previous studies). However, apart
from confirming the behaviour revealed by ProPublica (different false positive and false nega-
tive rates across groups), they also evaluated the performance and fairness of non-expert humans
vs. computers in the COMPAS risk assessment by providing the same variables for both forms of
decision-making. Based on this experiment, they conclude: ’We show. . . that the widely used com-
mercial risk assessment software COMPAS is no more accurate or fair than predictions made by people with
little or no criminal justice expertise. In addition, despite COMPAS’s collection of 137 features, the same
accuracy can be achieved with a simple linear predictor with only two features.’. The conclusions of this
study raise several interesting questions, particularly as debates on discrimination in algorith-

2For the definition of mediation in statistics see https://en.wikipedia.org/wiki/
Mediation_(statistics).
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Figure 2: Comparison of human versus algorithmic prediction. Source (Dressel and Farid, 2018).

mic decision-making is often framed around this (problematic) binary of humans vs. computers.
On the one hand, they reveal that discriminatory bias is prevalent across both forms of decision-
making (even when excluding the race information) while at the same time they question the
unnecessary complexity of some data-driven systems. See Figure 2 for details.

4 Methods for auditing automated decision systems

The rest of this working paper presents several methods used to study automated decision sys-
tems. We first present the initial problem of how to perform a study in the absence of the actual
data and code of the system. Then, we present some studies analysing the problem at the data
level. We continue summarising several ways of detecting bias analysing both the algorithm’s
output and internal behaviour. The section ends with some public resources to perform analyses
of ML models.

4.1 Replicate behaviour using other systems and data

Ideally, auditing a product would include having access to data, source code and internal docu-
mentation of the whole system (including third party components), as well as interviewing the
design and development team. However, this is far away from the common settings of all the
case studies we present in this working paper.

In the absence of such ideal situation, to analyse potential harms of some systems, many re-
searchers are replicating the tools according to public documentation. Likewise, in absence of the
original dataset and/or ground truth data, similar data is gathered to try to replicate the decision
algorithm as a way to analyse its behaviour.

For example, this is what ProPublica did for the COMPAS tool (Larson and Angwin, 2016a).
They collected COMPAS scores and criminal records from the Broward Country. The raw data
of COMPAS scores and criminal records included more than 50 variables describing each case,
and it was preprocessed to create the final 12 features of the statistical model. For instance, the
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COMPAS score ranges from 1 to 10 and scores 1 to 4 were labeled as “Low”; 5 to 7 were labeled
“Medium” and 8 to 10 were labelled “High”. For the purposes of binary analysis, the “Low” label
was considered the positive class and labels “Medium” and “High” were the negative class. The
age was not directly considered, but instead two binary variables were introduced to represent if
a person is less than 25 or more than 45.

However, some case studies lack “ground truth” datasets. For instance, in the case of pre-
dictive policing to identify hot-spots of crimes, there is not data about real crimes across areas,
since the only data available are the police records. Therefore, evaluating bias in this data (the
police activity) is not straightforward. This is the case of the study of Lum and Isaac (2016) of the
predictive policing tool PredPol in Oakland (California). The authors selected the area because
PredPol was used there and there was publicly available open data3. To investigate the effect of
police recorded data on predictive policing models, they applied the algorithm of the PredPol
software that was previously described in a journal paper. In the absence of ground truth data,
they compared the map of drug arrests made by Oakland police with a drug users map generated
with a synthetic population, matching the demographic features of the population in Oakland’s
crime records (see Figure 3a). Figure 3b (top) shows the number of days PredPol was targeting
different areas. The comparison of drug user map in Figure 3a and crime prediction map in Figure
3b revealed that the tool was targeting mainly two areas with largely non-white and low-income
populations while the drug crimes were much more evenly distributed across the city. Also, that
neighbourhoods with a higher proportion of ethnic minorities experienced about 200 times more
drug-related arrests than white and low-income populations (see Figure 3b).

4.2 Descriptive statistics and data visualization

Applying basic qualitative analysis, descriptive statistics and data visualization are the common
first steps in systems auditing. At the data collection and evaluation stage, bias will typically be
referred to in the statistical sense: there is a difference between the observation and the reality,
which does not imply judgement.

For instance, Price and Ball (2014) analysed reports of violent events and mortality in Syria and
Iraq to identify bias in human rights data collection. Their study focuses on a kind of selection
bias called event size bias: ‘Event size bias is the variation in the probability that a given event is reported,
related to the size of the event: big events are likely to be known, small events are less likely to be known. In
studies of conflict violence, this kind of bias arises when events that involve only one victim are less likely to
be documented than events that involve larger groups of victims.’ This can also be related to the public
nature of the attack, for instance a market bombing attack.

To look for event size bias, the authors gathered victims data reports from four different Syrian
sources, and represented the number of victims in a temporal line in May 2013 (see Figure 4). They
found a correlation between the type of event and the likelihood of it being reported, which can
lead to misleading conclusions if the bias is not adjusted.

In the ProPublica analysis on machine bias, histograms are used as a first step to analyse
the distribution of the frequency of risk of recidivism across whites and black defendants. This
simple analysis can reveal issues with the data collection, (apart from highlighting discrimination
in the criminal system in the US). From a probabilistic point of view the skewed distribution
of Figure 5 means that the prior probability of high risk will be higher for black defendants.
As a consequence, any machine learning algorithm having access to the race variable, or proxy
variables4 for that variable, are very likely to learn to assign higher risk to black individuals.
Considering the learning algorithms, this happens since the race variable will effectively help
the learned model to minimize the global classification error for this specific (biased) dataset.
Finally, histogram analysis can also summarise demographics of data features, and then have to
be considered in posterior analyses of the performance of the model with respect to groups.

3https://hrdag.org/2016/11/04/faqs-predpol/
4https://en.wikipedia.org/wiki/Proxy_(statistics)
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(a) Number of drug arrests (top) com-
pared to the estimation of drug users
(bottom).

(b) Number of days with targeted
policing for drug crimes in areas
flagged by PredPol (top). Race dis-
tribution of targeted policing.

Figure 3: Contrast of sources of information in absence of ground truth and analysis of the be-
haviour of PredPol. Source (Lum and Isaac, 2016).
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Figure 4: Example of event size bias. Large events are more likely to be reported by many organi-
zations. Source (Price and Ball, 2014).

Figure 5: Decile scores for black (left) and white (right) defendants in the COMPAS database.
Source (Larson and Angwin, 2016a).
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4.3 Algorithm performance analysis and statistical fairness

As mentioned, the machine learning process is guided by loss functions and it is evaluated us-
ing performance metrics such as the global accuracy, the ROC (receiver operating characteristic)
curve analysis or the sensitivity/specificity statistical measures. The selection of the specific loss
function can significantly impact on the resulting model and the error metrics generally affect
the model selection and hyper-parameter tuning. Altogether this conditions the generalization
behaviour of a model. Moreover, the performance metric selection will highlight different aspects
of the model whilst at the same time can be strategically used to hide algorithmic bias.

Assessing discrimination performance from different points of view5 is general good practice
in statistics, and in areas such as medicine it is a must to properly illustrate a classifier behaviour.
For instance, ProPublicas’s claim of unfairness in the case of COMPAS is based on highest false
positive rate (FPR) for black defendants, meaning people that did not reoffend were miss-labelled
as high risk profiled people. It turned out that the FPR was 44.85% for black individuals whilst
23.45% for white individuals (see Figure 6). On the other hand, Northpointe’s notion of fairness
is to achieve the same predictive positive value (PPV) for white and black defendants.

Many of the technical studies and fairness proposals in the literature are based on identifying
and mitigating algorithms’ unfairness based on the notion of statistical parity, also called group
parity, with respect to different performance metrics. These concepts have been technically de-
fined in the context of classification or content retrieval (Žliobaitė, 2017).

Performance comparison of subgroups can also be evaluated visually with the receiver oper-
ating characteristic (ROC) curve representation for two or several groups (see Figure 7).

The above analysis is valid to compare a binary classification task (for instance ‘jail’ vs ‘release’
prediction). However, to compare performance among multiple labels requires other approaches.
This situation is quite common in computer vision problems of image labelling: provided with
an image, try to label the objects and actions in a picture (“car”, “woman’, “man”, “tree”, “dog”,
“cook”. . . ). To identify bias in such scenarios, Zhao et al. (2017) propose a bias score of a given
output (“car”, “kitchen”, “shopping”. . . ) with respect to a demographic variable such as gender.
Also, in this work they measure the bias amplification by comparing the bias score in the training
dataset with the bias score of the model predictions in the generalization set (assuming identical
distribution in the train and test sets). Zhao et al. tested the bias visualization in two problems of
role labelling (vSRL) and multilabel image classification (MLC). Figure 8 presents the visualisation
proposal by Zhao et al. (2017).

Finally, Hardt et al. (2016) propose several strategies to achieve equality of opportunity in can-
didate selection in machine learning. Although their article is centred on a case of loan granting
or denying, the study can be generalised to other contexts. In the article, they present several

5https://en.wikipedia.org/wiki/Confusion_matrix

Figure 6: Performance evaluation considering groups of COMPAS predictive model reproduced
by ProPublica. Source (Larson and Angwin, 2016a).
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Figure 7: ROC curve comparison of the performance of a binary classification model with respet
to two groups. Source Barocas and Hardt (2017).

Figure 8: Visual comparison of model discrimination in multi-label problems. Proposal by (Zhao
et al., 2017).

threshold techniques to satisfy different loan strategies (max profit for the bank, ignore groups
performance, demographic parity and equal opportunity). The behaviour of the model can be
explored in an interactive website6. One of the interesting contributions of this work is the clear
connection of different high-level policies or strategies with the technical solutions. For instance,
the high-level goal of maximizing total profit will produce decision thresholds that will minimize
credit defaults, no matter if it is at the cost of penalising a group. On the other hand, each group
threshold has to be different to achieve a high-level criterion of equal opportunity, meaning equal
performance for all groups for right credit loans among people who would pay back (see Figure
9).

4.4 Model interpretability

Although there is a general belief that all machine learning and AI models are black-box models,
many data-driven systems are still relying on classic statistical models such as logistic regression

6http://research.google.com/bigpicture/attacking-discrimination-in-ml/
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Figure 9: Implementation of different threshold calibration to achieve high-level criterion. Sce-
nario of equal opportunity loan strategy. Created with the loan threshold simulator associated to
the work of (Hardt et al., 2016).

because of the model interpretability and performance for large datasets among other reasons.
Also, other methods such as decision trees7 or Bayesian networks8 are suitable for internal analy-
sis.

In general terms, generalised linear model fitting (also known as model training or learning)
consist of adjusting weights for each variable to better fit into the training data whilst trying
to minimise a loss function that represents how far the model predictions are from the actual
labels. Therefore, models such as the logistic regression are widely used in many fields not only
to build classifiers, but also to analyse the contribution of independent variables to the probability
of a success (positive class). For instance, the table in Figure 10 visualises the weight of each
variable of a logistic regression model trained with the COMPAS dataset (here the success, or
positive class, is a “medium and high risk” of recidivism). A positive weight of the value means
that it contributes directly to attributing a high risk score to the person whilst negative values
decreases the probability of high risk. For instance, from the above analysis we can assert that
being under 25 is more relevant than the number of priors, and the same applies for the variable
‘Black’ with respect to the number of priors. This means, that a young black person with no priors
has more likelihood of being classified as a risky person than an old white man with several priors.
ProPublica presented some concrete profiles of inflated risk scores by this statistical model in their
press article (Angwin and Larson, 2016).

On the other hand, some works are focused on auditing black-box models. The work of Mol-

7http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
8https://en.wikipedia.org/wiki/Bayesian_network
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Figure 10: Variable scores of the COMPAS logistic regression model of the ProPublica study.
Source (Larson and Angwin, 2016a).

nar (2018) provides an extensive guide of techniques for explaining black-box models. For in-
stance, Adebayo and Kagal (2016) propose a model-agnostic method to analyse the relevance of
each variable in the classification prediction. This makes it possible to perform an analysis simi-
lar to the logistic regression analysis we have seen. Beyond model internals, other methods can
provide explanations by looking for similar or synthetic datapoints that can be used as class proto-
types as well as counterfactual examples. Interpretability can also be understood as the capability
o1f explaining individual decisions. For instance, local surrogate models (LIME) by (Ribeiro et al.,
2016) can be used to approximate explanations of individual predictions. LIME can be applied to
tabular, text and image data (See Figure 11).

4.5 Public tools to evaluate machine learning models and achieve statistical
fairness

In recent years, several tools have been released to perform machine learning auditing, bias dis-
covery of fairness-aware machine learning methods. The following open source tools are avail-
able for model auditing9:

• Fairness Measures (Meike et al., 2017) implements the fairness evaluation metrics defined by
(Žliobaitė, 2017) and provides a set of datasets to evaluate bias issues in learning algorithms.
The project focuses on classification and ranking algorithms10.

• The Algorithmic Fairness group at Haverford College11 maintains a public repository on

9Note we do not include privative and closed solutions. Also, we do not enumerate all the open source projects related
to fairness evaluation. Other excellent repositories are Audit-AI, Fairness Comparison, Fairness, FairTest, ThemisTM, and
Themis-ML.

10http://fairness-measures.org
11http://fairness.haverford.edu/

12

https://github.com/pymetrics/audit-ai
https://github.com/algofairness/fairness-comparison
https://github.com/megantosh/fairness_measures_code/
https://github.com/columbia/fairtest
https://github.com/LASER-UMASS/Themis
https://github.com/cosmicBboy/themis-ml
http://fairness-measures.org
http://fairness.haverford.edu/


Figure 11: Example of explanation of image classification generated by LIME. Source (Ribeiro
et al., 2016).

algorithmic fairness12 including fairness benchmarking (Friedler et al., 2019), black box au-
diting (Feldman et al., 2015; Adler et al., 2018) as well as code related to fairness-aware
method proposals (Ensign et al., 2017).

• Aequitas13 is an open source bias audit toolkit for machine learning developers, analysts
and policymakers. The toolkit has been developed for classification tasks by the Center for
Data Science and Public Policy14 at University of Chicago. The tool generates reports that
can be understood by a non-technical audience15.

• LIME16 (local interpretable model-agnostic explanations) is a project to provide explana-
tions on individual predictions of text, table-based and image-based classifiers.

• FairML17 is a python toolbox auditing the machine learning models to identify the signifi-
cance of each variable to the classification model.

• What-If Tool18 by Google is a code-free tool to analyse decisions of machine learning models
built on TensorFlow19. The tool’s features are prediction evaluation, synthetic data evalu-
ation, exploration of single feature effects, comparison of counterfactual examples (similar
data points with different labels), arrangement of examples by similarity and testing algo-
rithmic fairness constraints.

• AI Fairness 36020 is an open source software toolkit by IBM. The toolbox is especially in-
teresting since it can be integrated in the machine learning pipeline to regularly check for
unwanted biases and to mitigate any biases that are discovered21.

• Fairness in Classification22 repository provides a logistic regression implementation in python
for the fair classification mechanisms introduced in several papers (Zafar et al., 2015, 2017a,b).
The repository includes several fairness evaluation metrics.

12https://github.com/algofairness
13https://dsapp.uchicago.edu/projects/aequitas/ and https://github.com/dssg/aequitas
14https://dsapp.uchicago.edu/
15Report example at http://aequitas.dssg.io/example
16https://github.com/marcotcr/lime
17https://github.com/adebayoj/fairml
18https://pair-code.github.io/what-if-tool/
19https://www.tensorflow.org/
20http://aif360.mybluemix.net/
21https://developer.ibm.com/code/open/projects/ai-fairness-360/
22https://github.com/mbilalzafar/fair-classification/
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5 Conclusions

This working paper does not cover some topics and studies. For instance, some system auditing
can be performed by simply accessing the system interface. ProPublica did this to test whether
Facebook allow racial filters in targeted advertisement (Angwin and Tobin, 2017). We did not
cover patents study as a means to obtain insights of some data systems. In the field of machine
learning, we did not cover the area of ranking or recommendation engines or discrimination
discovery methods, for instance the ones based on rules discovery (Ruggieri et al., 2010).

The COMPAS case is the best documented and studied case when it comes to the question of
discrimination and fairness in data and machine learning. However, none of the teams auditing
the software have access to the actual data or the code or mathematical models of the system.
Therefore, their conclusions are based on reproducibility of experiments with a scarcity of re-
sources. Thus, the actual system assessing risks of real persons remains unknown. This remains
a major challenge in the auditing of algorithms.

Biases of machine learning models have often been hidden under global performance metrics.
Many academic works have only relied on accuracy (global performance), sensitivity and speci-
ficity analysis (and ROC analysis) considering the class labels. However, fairness across social
groups in machine learning is a recent emerging topic that has received particular attention after
ProPublica’s COMPAS study. For instance, numerous open source toolkits have been developed
to implement performance group aware metrics. Whilst it is difficult (or even impossible) to pro-
duce a (general) statistical definition of fairness, the media and policymakers have been seduced
by global performance results of data-driven systems (‘it’s 95% accurate!’) to justify the data-
driven systems adoption. Yet cases such as the ’staggeringly inaccurate’ facial recognition tools
deployed by police in Wales23 become less surprising if concepts such as the base ratio fallacy or
the Bonferroni’s Principle24 are considered to contextualise the evaluation.

Attention should be paid to the data acquisition and features design as well as data labelling. It
is very intuitive to think that a criminal historic record with persons labelled (dependent variable)
by humans can be biased with respect to marginalized groups. However, features design can hide
biases under more subtle representations. For instance, Skeem and Lowenkamp (2016) call atten-
tion to the coding of historical records that mediates (influences) the relation of the independent
variable with the dependent variable in a different negative manner for black individuals. This is
reinforced by the study of Dressel and Farid (2018) in which the false positive ratios are still dif-
ferent for black and white individuals even when the race information is hidden. This behaviour
was found both for computers and humans performing a risk evaluation task based only on crim-
inal records. This evidence is aligned with the analysis of Harcourt (2010), which argues that risk
is a proxy for race. Harcourt’s argument is focused on the fact that risk is related to prior criminal
history, and prior criminal history has become a proxy for race in the US. Finally, the tutorial on
Fair ML by Barocas and Hardt (2017) emphasizes the relevance of measurements, ‘the #1 neglected
topic in statistics’ (Gelman, 2015), and concludes that’Social questions start with measurement’.

Transparency and interpretability of algorithms and models are also key points. The logis-
tic regression analysis is the predominant accepted method. However, some cautions should be
considered. Among others, the contribution to the probability of the success assumes a linear
relationship between independent and dependent variables. Also, this type of model does not
capture variable interactions. In addition, it is worthwhile to point out here that model analysis
is performed in a model built using a training set with a specific loss function. The relationship of
this loss metric, that guides the learning process, to the problem that the model is assumed to solve
has to be carefully examined. From this, we can conclude that the interpretability process is tied
to the specific problem and needs human expertise to carefully extrapolate conclusions. We have
seen some works on model interpretability regarding variable weight, performance evaluation,
counterfactual examples, relevant regions of the input space, etc. but the topic of interpretable
machine learning is nevertheless a field of study in its own right (Molnar, 2018). Whilst inter-

23https://www.bbc.co.uk/news/technology-44089161
24https://rationalwiki.org/wiki/Bonferroni%27s_principle
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pretability of models is often claimed, prior definition, scope and limitation is generally missed.
We refer to the paper of Lipton (2016) for further discussions on this topic.

Even if we bound the discussion into the merely technical aspects, the general data context of
the system remains under-analysed in the literature and public debate and would lead to ques-
tions such as: what are the input variables and how are they produced; what is the output of the
model (i.e. what it is actually predicting) and what is being optimised by the learning algorithm to
build the classification model? These pertinent questions heavily condition the model behaviour
analysis and conclusions. For instance, in the COMPAS problem, rather than predicting crimes,
the model is predicting whether a person will reoffend and will be detained by the police (both
simultaneous events). The learning algorithm will learn to evaluate the risk that ‘a person will
reoffend and be caught by the police’, hence the interpretation of performance analysis and vari-
able weight changes and therefore the conclusions. We already mentioned the issue of criminal
records and risk as race proxies. Would we have different impact with different representations
of information? Can we build fair systems based on the current feature selection and measures?
Can we achieve social progress in some domains by building models on historical data? This
wider discussion is generally missed in public and academic debate and points precisely to the
questions that can reveal the role of each data-driven system in society.
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