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Eicosanoids	 are	well	 known	potent	 signaling	mediators	 generated	by	 cyclooxygenases	

(COX),	 lipoxygenases	 (LOX)	 and	 cytochrome	 P450	 (CYP)	 enzymes	 in	 immune	 cells,	

platelets	and	inflammatory	activated	tissues.	 	As	free	acids,	they	signal	by	binding	to	G	

protein-coupled	receptors	following	secretion	from	their	cell	of	origin.		For	many	years,	

it	has	been	known	that	when	added	to	cells,	exogenous	eicosanoids	can	be	incorporated	

into	more	complex	lipids,	including	phospholipids	(PL).	However	until	recently	this	was	

considered	 little	more	 than	an	epiphenomenon.	 	This	has	changed	 in	 the	 last	10	years	

with	 the	 realization	 that	 phospholipid-esterified	 eicosanoids,	 otherwise	 known	 as	

enzymatically	oxidized	phospholipids	(eoxPL)	are	formed	acutely,	on	the	same	timescale	

as	free	acid	analogs,	and	that	these	lipids	are	bioactive	in	their	own	right.			In	contrast	to	

eicosanoids,	 eoxPL	 are	 not	 secreted,	 and	 remain	 cell	 bound	 where	 they	 exert	 their	

biological	actions.			

In	 the	 early	 1990’s,	 reports	 of	 incorporation	 of	 exogenously-added	

hydroxyeicosatetraenoic	 acids	 (HETEs)	 and	 epoxyeicosatetraenoic	 acids	 (EETs)	 into	

phospholipids,	followed	by	their	stimulated	release	led	to	the	idea	that	these	lipids	could	

be	a	store	for	releasable	eicosanoids	(1-6).	Brezinski	and	Serhan	showed	that	15-HETE	

was	 incorporated	 into	 neutrophil	 phosphatidylinositol	 (PI),	 then	 released	 following	

fMLP	 challenge.	 	 15-HETE	 behaved	 differently	 to	 the	 5-positional	 isomer,	 which	 was	



incorporated	 into	phosphatidylcholine	 (PC),	 suggesting	 isomer	 selectivity	 for	 different	

lysoPLs	 (1).	 	 Separately,	 Joulain	 characterized	 incorporation	 of	 12-HETE	 into	 both	 PC	

and	 PI	 in	mononuclear	 cells,	 also	 showing	mitogen-stimulated	 release	 (2).	 	 	 In	 1992,	

Bernstrom	showed	half	maximal	incorporation	of	EETs	into	mastocytoma	PLs	within	30	

min,	 with	 primarily	 formation	 of	 PE	 species	 (4).	 	 In	 that	 study,	 fast	 atom	

bombardment/tandem	 MS	 was	 used	 for	 the	 first	 time	 to	 identify	 molecular	 species,	

including	numerous	plasmalogens	of	both	PE	and	PC	(4).			

In	1998,	Brinckmann	observed	that	ionophore-activated	eosinophils	contain	15-

HETE	 attached	 to	 membrane	 lipids	 (7).	 At	 that	 time,	 neither	 the	 molecular	 species	

involved	nor	their	biology	was	characterized.		Later,	in	2005,	while	studying	the	cellular	

regulation	of	15-LOX	turnover,	15-HETE	was	found	to	be	acutely	generated	attached	to	

four	 individual	 phospholipids	 in	 IL-4–treated	 human	 monocytes	 (8).	 	 As	 explained	

below,	 this	 is	 a	 different	 process	 to	 incorporation	 of	 exogenous	 eicosanoids,	 as	 it	 is	

considerably	faster	and	stimulated	by	inflammatory	agonists.		It	also	occurs	on	the	same	

timescale	 as	 free	 eicosanoid	 generation,	 in	 contrast	 to	 incorporation	 of	 endogenous	

analogs,	which	is	considerably	slower.		To	characterize	the	molecular	species	of	complex	

lipids,	 precursor	 scanning	 LC-MS/MS	was	 used,	 thus	 “fishing”	 for	molecular	 ions	 that	

incorporated	 a	HETE	 functional	 group.	 Between	 2007-2012,	 several	 families	 of	 eoxPL	

generated	by	LOXs	were	uncovered	using	this	approach,	not	only	in	monocytes,	but	also	

in	human	platelets,	neutrophils	and	airway	epithelial	cells	 (9-14).	 	The	most	abundant	

were	phosphatidylethanolamines	(PE)	but	PC-derived	 forms	were	detected	with	many	

being	plasmalogens.		These	are	generated	in	a	burst	during	the	first	2-5	minutes	of	cell	

activation	 by	 pathophysiologic	 agonists,	 via	 the	 coordinated	 action	 of	 receptors	 and	

enzymes,	and	a	slower	rate	of	formation	is	maintained	at	least	for	several	hours.		

	In	 tissues,	 the	 eoxPL	 profile	 reflects	 the	 oxidative	 enzymes	 expressed,	 for	

example,	 cells	 expressing	 15-LOX	 generate	 PL	 that	 incorporate	 15-HETE	 or	 15-



ketoeicosatetraenoic	 acid	 (KETE),	 the	 latter	 via	 prostaglandin	 dehydrogenase	 activity	

downstream	of	15-LOX	(8,10).		In	platelets,	12-HETE	or	14-HDOHE	attached	to	PE	or	PC	

are	 found,	 while	 EET-PLs	 in	 liver	 predominate	 as	 positional	 isomers	 reflecting	

cytochrome	P-450	 activities	 (5,12,13).	More	 recently,	 eoxPL	 generated	by	COX-1	have	

been	found	in	human	platelets.		These	include	four	forms	of	PGE2-PE	that	are	sensitive	to	

aspirin	 inhibition	 in	 vitro	 and	 in	 vivo	 (15).	 	 The	 oxidized	 fatty	 acids	 that	 can	 be	

incorporated	 into	 PL	 not	 only	 include	 eicosanoids	 derived	 from	 arachidonate,	 but	 at	

least	in	platelets,	a	myriad	of	other	oxidized	fatty	acids	derived	from	22:4,	22:5	and	22:6.			

Indeed,	 in	 platelets,	 recent	 estimates	 include	 over	 100	 individual	 molecular	 species	

acutely	generated	on	thrombin	activation	(16).		 	

	 Most	eicosanoid	generating	enzymes	require	free	fatty	acid	as	substrate,	and	are	

unable	 to	 oxidize	 intact	 PL,	 thus	 phospholipase	 A2,	 normally	 the	 cytosolic	 isoform,	 is	

essential	 for	eoxPL	formation.	 	An	exception	is	15-LOX	in	human	monocytes	or	airway	

epithelia	(the	murine	12/15-LOX)	which	can	also	oxidize	membrane	PLs	directly.		Thus,	

in	most	tissues	eoxPL	formation	will	require	not	only	formation	of	the	oxidized	free	acid,	

but	importantly,	its	reacylation	into	lysoPL	pools.		Up	to	now,	little	was	known	about	the	

process	that	reacylates	eicosanoids	acutely	in	immune	cells	other	than	it	is	sensitive	to	

thimerosal	or	triascin	C,	both	rather	crude	pan	inhibitors	of	Co-A-dependent	 fatty	acid	

acylation	pathways.	 	Given	that	eoxPL	form	on	a	similar	timescale	to	free	acid	analogs,	

the	process	of	 fatty	acid	hydrolysis,	oxidation	and	reacylation	must	be	 fast	and	 tightly	

controlled	by	enzymes.				

Fatty	acyl	attachment	to	PLs	is	a	two	step	process	requiring	first	the	formation	of	

fatty	 acyl-CoAs	 (FA-CoA)	 via	 the	 action	 of	 one	 of	 five	 long-chain	 acyl-CoA	 synthetase	

isoforms	 (ACSL-1,-3,-4,-5,-6)	 (EC	 6.2.1.3)	 (17-20).	 Following	 this,	 headgroup	 specific	

lysophospholipid	 acyl	 transferases	 such	 as	 lysophosphatidylethanolamine	

acyltransferase	 (LPEAT),	 otherwise	 known	 as	 MBOAT2	 (membrane	 bound	 O-acyl	



transferase)	 or	 lysophospholipid	 acyltransferase	 (LPAT)	 that	 catalyze	 the	 coupling	 of	

the	 FA-CoA	 into	 lysoPLs	 to	 form	 PL	 (21).	 Human	 cells	 express	 at	 least	 5	 LPATs	 also	

termed	MBOATs	that	have	a	varying	degrees	of	specificity	for	both	the	FA-CoA	and	the	

lysophospholipid	acceptor	(22).	

Up	 to	 now,	 nothing	 was	 known	 regarding	 how	 these	 enzymes	 regulate	 eoxPL	

formation.	 	However,	 there	were	 that	hints	 that	 cellular	 acylation	of	 shows	 selectivity	

beyond	simply	utilizing	the	most	abundant	oxidized	fatty	acid	and	lysoPLs.		For	example,	

despite	 multiple	 attempts,	 our	 own	 groups	 have	 never	 detected	 PL-esterified	

thromboxane	 in	 platelets,	 even	 though	 this	 is	 one	 of	 the	 more	 abundant	 eicosanoids	

made	 (unpublished	 observations).	 	 Also,	 12-HETE-d8	 is	 not	 incorporated	 into	 platelet	

PE	 during	 the	 timescale	 of	 agonist-stimulated	 12-HETE-PE	 generation,	 indicating	 that	

exogenous	 and	 endogenously	 generated	 eicosanoids	 are	 somehow	 sensed	 differently	

and	 suggesting	 that	 cell	 compartmentalization	 is	 an	 important	 factor	 (13).	 	 	 Last,	 two	

recent	 studies	 by	 Kagan,	 Conrad	 and	 co-workers	 showed	 that	 ACLS4	 shapes	 lipid	

composition	 including	 formation	 of	 oxidized	 arachidonate	 and	 adrenic	 acid-PEs	 by	

lipoxygenase,	during	a	cell	death	process	called	ferroptosis	(23,24)	

In	 this	 issue	 of	 the	 Journal	 of	 Lipid	 Research,	 Klett	 et	 al.	 take	 the	 first	 steps	

towards	defining	individual	eicosanoid	esterification	pathways.	 	Building	on	a	previous	

observation	 that	 ACSL4	 can	 metabolize	 EETs,	 they	 elegantly	 show	 that	 all	 five	 ACSL	

enzymes	can	utilize	either	HETEs	or	EETs,	forming	analogous	FA-CoAs	using	LC/MS/MS.		

With	 recombinant	 enzymes,	 they	 found	 differences	 in	 Michaelis-Menten	 kinetics	 for	

substrates	 and	 isoforms.	 	 Intriguingly,	 substrate	 preferences	 were	 somewhat	 altered	

when	ACSLs	were	expressed	in	COS7	cells,	indicating	that	cellular	environment	exerts	a	

significant	 influence	 on	 ACSL	 activities	 that	 could	 relate	 to	 differences	 in	 membrane	

composition,	 presence	 of	 co-activators	 or	 inhibitors,	 presence	 of	 other	 enzymes,	 their	

cellular	 location,	 expression	 level	 and	 post-translational	modification.	 	 Indeed	 at	 least	



one	ACSL	 is	known	to	be	subject	 to	differential	 cellular	phosphorylation	and	acylation	

(25).	 	Mammalian	cellular	ACSL	and	MBOAT	expression	patterns	are	complex,	and	this	

means	 that	 tissue	 specific	 incorporation	 in	 terms	 of	 rates	 and	 eoxPL	 species	 formed	

endogenously	will	likely	vary	widely;	however,	there	is	no	information	on	this	topic	as	of	

yet.	 	 These	 intriguing	 new	 studies	 by	 Klett	 and	 coworkers	 provide	 the	 first	 evidence	

about	how	cellular	 reacylation	of	eicosanoids	 is	 controlled,	paving	 the	way	 for	 further	

investigations	 in	 primary	mammalian	 cells	 in	 order	 to	 define	 how	 specific	 individual	

eoxPL	are	 formed	during	physiological	 and	pathophysiological	 situations.	 	The	 studies	

are	 important	 as	 they	place	another	piece	 in	 the	 jigsaw	concerning	 the	 formation	and	

action	 of	 new	 bioactive	 phospholipids	 of	 likely	 importance	 to	 innate	 immunity,	 and	

acute	and	chronic	inflammatory	disease.		
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