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Abstract
I uncover serious problems with the benchmark New Keynesian Phillips curve lin-

earized around its non-stochastic zero inflation steady state when the underlying

model features a subset of prices that stay rigid over multiple periods, as in the

popular Calvo model. I am able to demonstrate that the dynamics of approxima-

tions taken at the non-stochastic steady state are non-hyperbolic. This means that

approximations taken at this point do not represent a valid description of the dy-

namics of the underlying model at any other point in the state space. This allows

me to overturn results such as the ’Divine Coincidence’ that equates welfare under

price rigidity with the level prevailing under price dispersion. I introduce a dynamic

stochastic concept of equilibrium that can be applied to New Keynesian models and

offers a natural point to take approximations to analyze business cycle dynamics. It

is methodologically interesting as it is a notion of general equilibrium that does not

correspond to partial equilibrium.
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Chapter 1

Introduction

The macroeconomic profession has broadly settled on a New Neo-Classical Synthesis,

Goodfriend and King [1997]. This approach adds imperfect competition and staggered

price adjustment to the skeleton of the Real Business Cycle model to generate micro-

founded compliments to the aggregate demand and aggregate supply equations of Old

Keynesian economics. The Euler equation specifying optimal consumption and the

optimal price-setting relation - the New Keynesian Phillips curve (NKPC) - simplify

to their Old Keynesian counterparts when non-contemporaneous exogenous variables

are held fixed. When this constraint is relaxed, it is necessary to specify an interest

rate rule consistent with the "Taylor Principle" to generate stable solution paths.1

Thus a three equation set up emerges.

The combination of rational expectations with monetary non-neutrality allows one

to analyze systematic monetary policy seemingly unhindered by the Lucas Critique,

Lucas Jr [1976]. For this reason, the three equation New Keynesian framework un-

derpins the field of Dynamic Stochastic Equilibrium (DSGE) modeling , now popular

in academia and widely used by Central Banks.

Nevertheless, New Keynesianism has had problems distinguishing itself from the

Neo-Classical tradition in terms of policy prescriptions and model predictions. Macroe-

conomics as a separate intellectual discipline came into existence following The Gen-

eral Theory of Employment, Interest and Money (Keynes [1936]), in order to learn

how best to mitigate inefficient business cycle fluctuations. The lack of inefficient
1The "Taylor Principle" states that the real interest rate should be expected to increase in response

to higher inflation in order to drive it back to target following a shock to expectations to prevent
indeterminacy in the linear system associated with sunspot equilibria, see Woodford [2001]. The term
was coined in respect of the seminal work on monetary policy rules Taylor [1993a]. Simultaneously,
Henderson and McKibbin [1993] proposed a similar rule, which I will discuss later.
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fluctuations in benchmark Real Business Cycle models, such as Long Jr and Plosser

[1983] and Barro and King [1984], is the most unappealing aspect of Neo-Classical

modeling and the reason why it has never enjoyed favor in policy circles.

Unfortunately, comparable New Keynesian models also suffer from this problem.

Correia et al. [2008] show that the Central Bank can implement the social optimum

when the government is using a standard set of distortionary tax instruments to

correct static market failures. Woodford [2000], Michael [2002] show an optimal

monetary policy can successfully stabilize inflation and the output gap simultaneously

under a wide variety of shock processes. This result has been labeled the ’Divine

Coincidence’ Blanchard and Galí [2007](henceforth DC).2 It is an anathema in policy

circles. ’Inflation nutters’ is the uncharitable description former Bank of England

Governor Mervyn King gave to those advocating complete inflation stabilization as a

policy objective, as if the DC applied King [1997].

This reflects a fundamental disjuncture between optimal monetary policy in theory

and successful policy practice. I show that in the stochastic compliment to the DC

framework, deviations of inflation and the output gap from target should be white

noise. Therefore in the limit as Central Banks become better able to observe shocks

in real time and change policy rates more frequently the Central Bank can ’fine-

tune’3away all fluctuations in inflation and the output gap.

This gives rise to an ’inflation persistence puzzle’: in the data, inflation appears

persistent across all nations, time periods, policy regimes, levels of aggregation and

plausible assumptions about trends in other macroeconomic variables O’Reilly and

Whelan [2005], Pivetta and Reis [2007], Gerlach and Tillmann [2012], Imbs et al.

[2011], Meller and Nautz [2012], Kouretas andWohar [2012], Plakandaras et al. [2014],

Vaona and Ascari [2012], Tillmann [2013], Choi and O’Sullivan [2013], Nakamura
2The possibility of a binding zero bound on nominal interest rate overturns this conclusion, in

particular it is optimal for the Central Bank to allow a period of above target inflation and output
immediately following a zero bound spell Eggertsson et al. [2003]. However, the problem may reoccur
if we adopt the more empirically credible assumption that Central Banks can mimic negative nominal
interest rates through quantitative easing- see Debortoli et al. [2018].

3The term is frequently attributed to Walter Heller Chief Economic Adviser to President Kennedy
see for example http://connection.ebscohost.com/c/reference-entries/40422478/fine-tuning-1960s-
economics. It referred originally to fiscal policy in an ’Old Keynesian’ set up. Scepticism about
the concept was focal to monetarist opposition to traditional Keynesian macroeconomicsSnowdon
and Vane [2005] see for example Friedman [1968b].
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and Steinsson [2013].4 The forward-looking NKPC is strongly rejected in favor of a

hybrid specification containing lagged as well as future inflation, a result that has

not been adequately explained in a consistent theoretical fashion see Roberts [1997],

Galı and Gertler [1999], Rudd and Whelan [2005], Fuhrer [2006], Whelan [2007] and

Rumler [2007] amongst a voluminous literature. Worse still when DC is relaxed by

allowing persistent distortionary shocks,5 optimal policy amounts to a form of price-

level targeting Woodford [2010]. Therefore, inflation inherits negative persistence.

This contrasts with best practice among inflation-targeting Central Banks who

practice so called ’coarse-tuning’ Lindbeck [1992]. They realize that inflation pos-

sesses intrinsic persistence so that they cannot hit inflation and output targets in

every period. Instead they practice so called inflation forecast-targeting Kohn, Svens-

son [2010] and Svensson [2012]. This is where policy and projections for future policy

are adjusted to yield a desirable expected path for inflation and real activity, con-

sistent with medium term stability. This is usually defined as forecast inflation and

output gap sufficiently close to target after a time frame of 18 months to 3 years6.

A related challenge confronting New Keynesian modeling is the policy persistence

puzzle. Interest rates are highly persistent - much more so than underlying shock

processes. This means that estimated Taylor rules require coefficients on lagged rates

near unity to purge serial correlation and represent an optimizing relationship see

Coibion and Gorodnichenko [2012] and Vázquez et al. [2013]7 Attempts to explain
4It is worth noting that many studies are able to reject the null of no persistence in inflation

even when they have sufficient power to uncover statistically significant changes in persistence across
policy regimes. Although, there is considerable heterogeneity in inflation persistence across sectors
macroeconomic persistence is not a figment of aggregation bias.

5Distortionary shocks effect the wedge between actual and efficient output. They enter into the
NKPC where they are often called ’cost-push’ shocks.

6Studies with VARs and policymakers wisdom suggest that it takes between 18 months and
two years for a change in monetary policy to have its maximum impact on inflation. This re-
sult seems to be robust across changes in policy regimes; Orlowski [2000] (see p 315-320), Batini
and Nelson [2001] and Gerlach and Svensson [2003]. On its website the Bank of England ad-
vises the general public that: "Monetary policy operates with a time lag of about two years."
http://www.bankofengland.co.uk/monetarypolicy/Pages/overview.aspx However the Bank publishes
forecasts three years ahead and frequently talks about "inflation returning to target by the three year
horizon" consistent with a longer view of the stabilization and empirical work by Havranek and Rus-
nak [2013] period.http://www.bankofengland.co.uk/publications/Pages/inflationreport/infrep.aspx
Practices are similar at other leading inflation targeting Central Banks.

7These papers control respectively for non-rational expectations on the part of the policymaker
and data revisions. See also Rudebusch [2002], Petra [2004], Rudebusch [2006], Carrillo et al. [2007]
and Conraria et al. [2014]. The acclaimed Norges Bank (the Central Bank of Norway) chooses to
insert a substantial interest rate stabilization term- ad hoc with respect to its policy mandate- into
its loss function used to derive optimal policy- in order to generate policy rate predictions consistent
with credible application of inflation forecast targeting see Bergo [2007] and Holmsen et al. [2007].
Other Central Banks swerve around this problem by using subjective judgments or information from
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why this might be optimal have so far proven unconvincing.

The three equation framework was designed explicitly to address issues with opti-

mal monetary policy and its effects upon inflation and real activity. New Keynesian

theory is failing the test of policy relevance. Chari et al. [2009] were right: New

Keynesian models are not yet fit for purpose. No one could resolve these problems

in a single thesis. My contribution here is twofold. First of all, I explain how two

of these unfortunate results; lack of persistence and divine coincidence arise from a

faulty linear approximation at a point unrepresentative of the dynamics elsewhere.

Secondly, I formalize a general equilibrium concept that can be used to understand

the probabilistic behavior of an entire DSGE model. I then show how this can be

used to derive approximations to the dynamic behavior of the economy close to its

steady state.

This research is related to two strands of recent macroeconomic literature. In mon-

etary economics it has been known since at least Ascari and Rankin [2002] that the

dynamics of the Calvo model in particular are very different when linearized around

a positive rather than zero trend inflation. In particular there is endogenous inflation

persistence stemming from the Phillips curve- Cogley and Sbordone [2008] and Cogley

et al. [2010]. Alves [2014] shows how a non-zero trend inflation causes a welfare loss

and therefore contradicts Divine Coincidence. Trend inflation appears to make the

economy more volatile and more difficult to stabilize see Ascari and Ropele [2009],

Coibion and Gorodnichenko [2011] and Ascari et al. [2015]. Ascari and Sbordone

[2014] surveys this burgeoning literature.

The second strand is the risky steady state literature. This has come out of macro-

finance and the problem of portfolio selection, where it is clear the non-stochastic so-

lution, in which assets have the same return, is unsatisfactory for analyzing changes

in portfolio allocation and returns. Well-known formulations include Juillard and

Kamenik [2005], Coeurdacier et al. [2011], Michel [2011] and de Groot [2013]. None

of them are mathematically precise in terms of definition but have proven useful in

application.

My contribution is to show that we can generate trend inflation behavior by adding

futures rates or the yield curve which have expectations of policy persistence built-in Ang et al. [2007]
and Hamilton et al. [2011].
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risk into our understanding of the steady state, even if there is no trend in inflation.

Secondly, I formalize concepts in the risky steady state literature that might help to

develop more accurate techniques to understand stochastic equilibrium in financial

markets. I also show that the problem with non-stochastic steady state approxima-

tions relates to bifurcations points unrepresentative of local dynamics rather than risk

per se. Finally, I hope that my work here will act as a bedrock for future progress on

the many puzzles with monetary policy and the business cycle.





19

Chapter 2

New Keynesian Framework

This section focuses on the Calvo pricing framework the most popular staggered

pricing model. I start by analyzing the general non-linear model without specifying

the trend inflation rate coming from the Central Banks inflation target. I investigated

several avenues to exposit the mechanisms of the model or because they will prove

profitable later on. I then adopt the popular approach of log-linearizing around its

zero inflation non-stochastic steady state. I demonstrate problems with persistence

and identification. For comparison, I then introduce two models one the Keynesian

Rotemberg pricing model and the New Classical Lucas imperfect information model.

2.1 Household’s Problem

This section is divided into two blocks, the first subsection concerns how the house-

hold allocates its resources between aggregate consumption and leisure - with conse-

quences for aggregate supply and demand. The second considers how the household

determines its consumption bundle. It helps to make important aggregation concepts

easier to understand.

2.1.1 Aggregate Allocation

There is a representative household which solves the following problem:

max
Ct,lt

Et
∞∑
T=t

βT−t
[
u(CT )− ϕT ν(lT )

]
ψT (2.1)
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subject to the Budget Constraint:

PtCt +Bt+1 = (1 + it−1)Bt + PtWtlt + Tt +
∫
i
Πt(i) di (2.2)

β is the discount factor, C refers to aggregate consumption whilst l is labor supply.B

refers to the holding of one period risk free nominal bonds. it is the risk-free nominal

interest rate paid at the end of period t on the bond.P is the price level - bonds

are the numeraire here.W is the real wage. T is a lump sum transfer between the

government and the household. Finally Π(i) is profit from an individual firm i given

by

Πt(i) = (1 + τt(i)) pt(i) yt(i)−Wtlt(i) (2.3)

here τt(i) is a production subsidy that may vary across firms’ and time. For simplicity

let the government budget always balance so

∫
i
τi pt(i)yt(i) di = Tt (2.4)

Fiscal policy is not the focus of this paper. The two instruments will only be to un-

dertake thought experiments related to welfare and optimal policy. Unless otherwise

stated they will be turned off so1

τt(i) = τt = Tt = 0 (2.5)

Note in a stochastic environment firms need not make the same profits even with

a symmetric equilibrium. Since when price rigidity is introduced firms with the same

demand curve will charge different prices depending on when they last reoptimized

and can therefore make different levels of profit. In fact without arbitrary restrictions

on shock size there is no way of insuring non-resetters have positive profit expectations

and therefore a non-negative stock price. To swerve around this problem imagine
1This economy is Ricardian in the sense that the issue of government debt would not influence

other variables in the economy- in particular the intertemporal pattern of consumption provided the
subsequent equilibrium conditions all continued to hold and the following long-run budget constraint
always held

Et
∞∑
T=t

βT−t
[∫

i

τi pt(i)yt(i) di− Tt
]
ψT = 0
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there are a continuum of households who each own one firm and an efficient long-

term insurance market with contracts set arbitrarily far back in the past (so that

there is no conditioning on pricing history.) This is effectively an optimal timeless

insurance contract in analogy to optimal timeless monetary policy Woodford [1999].

In this case the market will absorb all idiosyncratic risk associated with non-optimal

price setting behavior.2 Weber [2014], Gorodnichenko and Weber [2016], D’Acunto

et al. [2017] and Ozdagli and Weber [2017] provide supportive empirical evidence

of the effect of nominal rigidity on firm profitability and other aspects of corporate

behavior, as well as more refined theory.

ψT is a positive demand shock. The budget constraint states that the uses for nominal

income- consumption and saving- must be equal to the sources of income- wealth,

labor and dividend income.

Consumption is desirable but working is undesirable so u and ν are increasing.

u is concave to incentivize consumption smoothing whilst ν is convex to encourage

workers to take leisure. An Inada condition on u, a restriction on any shock processes,

a zero wealth condition and a transversality condition support a well-behaved solution

They are as follows:

lim
C→0+

uc(C) =∞ (2.6)

Bt = 0 (2.7)

sup
{Ct,lt}

Et
∞∑
T=t

βT−t|u(CT )− ϕT ν(lT )|ψT <∞ (2.8)

lim
T→∞

Et
BT
PT

uc(CT ) ≥ 0 (2.9)

Equation (6) is a "no-starvation" condition, it ensures the agent will always choose to

consume even though working is costly. Equation (7) stops the representative agent

living off their savings. It is the bond market clearing condition of the representative

agent economy when there are no taxes or transfers- as specified by equation (5).3

2This ’cut-round’ is necessary for all existing results from models that use unbounded shocks
and non-optimal behavior from the planners point of view including sticky information and Taylor
pricing. Alternatively I could have the social planner use lump sum taxes to correct portfolio effects
of nominal rigidity. The case of state dependent pricing will be discussed later in Chapter 2.6 in the
specific case of Rotemberg pricing.

3This is not a substantive restriction. If we had non-zero lump sum taxes then the economy would
be Ricardian so the level of government debt would be irrelevant since government bonds would not
affect net worth as famously demonstrated in Barro [1974].
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Together equations (6) and (7) ensure strictly positive labor supply. Equation (8) is

required for a well-defined solution to the consumers problem amenable to recursive

analysis. Finally, equation (9) is a "No-Ponzi" condition; it forces the agent to honor

the present value of their debts. Due to monotonicity of the utility function u the

constraint will always bind with equality and if it were left out the agent would

demand to borrow an infinite amount and never repay. This condition will feature

in the proof of existence of stochastic equilibrium in chapter 5. Therefore it is worth

noting that Giglio et al. [2015], Giglio et al. [2016] and Fesselmeyer et al. [2016] supply

model independent evidence in favor of transversality conditions.

The first order conditions for the households are as follows:

uc(Ct) = (1 + it)βEtUc(Ct+1)ψt+1
ψt

Pt
Pt+1

(2.10)

uc(Ct)Wt = ϕtνl(lt) (2.11)

Equation (7) the so-called Euler equation specifies the path for optimal consumption,

whilst equation (8) which equates the marginal costs and benefits of working, yields

the labor supply curve.

Dynamic properties will be characterized in terms of two parameters

σ = −Cucc
uc

> 0

η = lνll
νl

> 0

The parameters measure respectively the concavity of consumption utility and the

convexity of the disutility from work. σ is the inverse of the inter-temporal elasticity

of substitution - the consumer’s willingness to shift consumption across time periods,

Similarly η is the Frisch elasticity of labor supply and is inversely related to the

propensity for inter-temporal labor substitution.4 Where beneficial I will use specific
4σ is also the coefficient of relative risk aversion but this interpretation is not relevant initially

as the solution concept used in this section taking first order perturbations about a non-stochastic
steady state - yields certainty equivalence. Later on when I consider stochastic steady states - the
distinction between risk aversion and intertemporal substitution could become operative. However,
I leave this avenue to future inquiry.
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functional forms

u(C) =


C1−σ

1−σ , σ 6= 1

log(C), σ = 1
(2.12)

ν(l) = l1+η

1 + η
(2.13)

Finally, for simplicity I start with no capital hence the budget and resource constraints

are equivalent to

Ct = Yt (2.14)

which will naturally pass down to the output of individual goods and firms as ct(i) =

yt(i). This completes the characterization of consumer preferences over aggregates

goods.

2.1.2 Individual Product Demand

The purpose of this part is to derive the demand for an individual variety. For

convenience let the measure of the firms be a unit continuum. The firms are monop-

olistically competitive. This ensures that firms face a meaningful pricing decision,

avoiding the case of unbounded sales possible under perfect or simple Bertrand com-

petition. Initially there will be no idiosyncratic shocks. Later on when I relax this

assumption more exposition will be provided. Under monopolistic competition firms

produce differentiated products that are imperfect substitutes and consumers prefer

variety. This implies that aggregate consumption has to be a non-linear function of

the underlying individual varieties. This contrasts with labor where if we broke up

the representative household into constituents j then the aggregation would be linear

with l =
∑J
j=1 lj

The consumption objective (utility from consumption) is

U =
[ ∫ 1

0
ct(i)

θ−1
θ di

] θ
θ−1

(2.15)
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where θ > 1 is required for a well-behaved problem. The household’s problem is to

maximize consumption utility subject to an expenditure constraint.

PtCt =
∫
pt(i) ct(i) di (2.16)

For any two varieties i and i′ this yields relative demand.

ct(i)
ct(i′)

=
(
pt(i)
pt(i′)

)−θ
(2.17)

Now a little manipulation and then integration with respect to i′ yields:

∫
pt(i′) ct(i′) di′ =

∫
ct(i) pt(i)θp1−θ

t (i′) di′ (2.18)

Guessing and verifying yields the demand system price level pair

Pt =
[ ∫ 1

0
pt(i)1−θdi

] 1
1−θ

(2.19)

ct(i) =
(
pt(i)
Pt

)−θ
Ct (2.20)

In the benchmark no capital world this becomes

yt(i) =
(
pt(i)
Pt

)−θ
Yt (2.21)

2.2 Firms’ Problem

Throughout the paper this will be the source of monetary non-neutrality and the

font of the Phillips curve. A novel feature Generalized Stochastic Mean is introduced

which gives insight into the cause of monetary non-neutrality and the significance of

the zero inflation non-stochastic steady state. The rest is standard, firms maximize

profits in the choice of factors and also in prices when they are given the chance to

reoptimize. In order to profit maximize they must cost minimize- for the simple proof

consult Varian [1992].
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2.2.1 Cost Minimization

For simplicity there is only one factor of production: labor purchased on a competitive

market. The production function takes the form

yt(i) = f(lt(i)) (2.22)

where ft must always be weakly concave (fll ≤ 0) to ensure a well-behaved solution

and the time script permits stochastic developments in technical efficiency. The

problem is as follows:

min
lt(i)

Wtlt(i) (2.23)

subject to the production constraint

f(lt(i)) = ȳt(i) (2.24)

The Lagrange multiplier gives the real marginal cost of production paid by the firm.

Hence we can solve for real marginal cost

MCt(i) = Wt

f ′(lt(i))
(2.25)

Note that in general marginal costs will differ across firms as they depend on the

marginal product of labor which is firm specific because of variable returns to scale.

In the main text I will work with a linear production technology which ensures all

firms will have the same marginal costs simplifying analysis considerably

MCt(i) = MCt = Wt

At
(2.26)

in particular the real marginal cost is the ratio of the real wage Wt to aggregate

technical efficiency term At, from the RBC model. In the benchmark New Keynesian

model firm level productivity shocks either do not exist or have been averaged out by

a law of large numbers.
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2.2.2 Optimal Price Setting

Calvo pricing is the most popular approach to inject nominal rigidity into a DSGE

model. Reoptimization is governed by a stochastic process common across firms.

With probability 1 − α each firm is free to reset its price (at no cost), whilst with

probability α it is not allowed to reoptimize and meets demand at its existing price.

The firms’ resetting prices maximize the expected present value of profits through

the lifetime of the price as follows:

max
p∗t (i)

Et
∞∑
T=t

αT−tQt,T

[
pt(i)
PT

yT (i)− C(yT )(i)
]

(2.27)

subject to demand and market clearing constraints faced by all firms:

yt(i) =
(
pt(i)
Pt

)−θ
Ct (2.28)

Here

Qt,t+k = βk
Uc(Ct+k)
Uc(Ct+k)

Πθ
t,t+k

represents the real stochastic discount factor (SDF), it is the risk-adjusted present

value of future consumption k periods ahead which depends on the gross rate of

inflation

Πt,t+k = Pt+k
Pt

= (1 + πt+1) · · · (1 + πt+k)

is between today time t and a future time T > t.

Unlike other infinite horizon problems encountered in economics, in general, the reset

price problem is non-recursive as the firms’ choice variable p∗t depends not just on

the state of the economy next period t+ 1 but its whole future5. This is the source of
5This detail is specific to Calvo pricing in Taylor economies the optimization problem of each

firm is finite horizon and in state dependent models firms’ optimize each period which gives rise to a
recursive structure if there are state variables present and otherwise collapses into a static problem.
Later on, the model will be reformulated to create a recursive structure using variables that depend
on all past and expected future states of the economy. Recall that a recursive problem is one where
the optimization can be rendered as a dynamic programming problem

max
zt

Vt(zt, ψt) = u(xt, zt, ψt) + βEtVt+1(zt+1, ψt)

where Vt is today’s objective function which depends upon today’s value of zt the state variable (one
whose expectation is set in the previous period so zt+1 = Etzt+1), a stochastic term ψt governed by
a rule similar to (5) to ensure a well-defined solution and the jump or control variable xt which is
determined in each period. u and EtVt+1 are known respectively as the instantaneous and continua-
tion pay-off. In the canonical consumption-savings problem which underpins the RBC framework z
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endogenous persistence in the benchmark New Keynesian framework. Non-recursive

optimization problems are common to all settings in which nominal rigidity arises

through some firms not changing their price every period6. The first order condition

is

Et
∞∑
T=t

αT−tQt,T
∂yT (i)
∂pt(i)

[
MRT (yT (i))−MCT (yT (i))

]
= 0 (2.29)

It states that optimal pricing sets a weighted stream of marginal revenues equal to

a weighted stream of marginal costs, which in turn implies a similar relationship

between (real) price and marginal costs.

Et
∞∑
T=t

(1− α)T−tQt,T
(
p∗t
PT

)−θ
YT

[
p∗t
PT
− θ

θ − 1MCT (yT (i))
]

= 0 (2.30)

By strict concavity of the optimization problem the equilibrium price p∗t (i) is unique

for each firm so there is a unique optimal reset price each period p∗t . Therefore by a

law of large numbers argument, see Anderson et al. [1991], the price level evolves as

follows.

P 1−θ
t = αP 1−θ

t−1 + (1− α)(p∗t )1−θ (2.31)

The persistence of the price level depends on α the degree of rigidity.

2.2.3 Flexible Price Equilibrium and Zero Inflation Non-Stochastic

Steady State

This subsection clarifies the coincidence between the ZINSS and the flexible price

equilibrium - a result crucial to the whole paper. Mathematical content including

extensive derivations can be found in Appendix 7.1. Under monopolistic competition

we find that the optimal price is a mark up m = θ/(θ − 1) over marginal costs so in

real terms
pft
Pt

= θ

θ − 1MCt

(
pft
Pt

)
(2.32)

Particular, to the flexible price equilibrium is that whatever has happened in the past

all firms have the same price pft = Pt. Also the real marginal cost MC and markup

m are common across firms with MCt = M̄C = (θ − 1)/θ = 1/m. The connection

is capital, x consumption and u the households contemporaneous consumption, which would depend
only on consumption.

6It would also carry over to common indexation schemes.
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between the optimal flexible price pft and the optimal reset price p∗t underpins the

equivalence between the zero inflation non-stochastic steady state and the flexible

price equilibrium. It takes the form of a Generalized Stochastic Mean (GSM) defined

as follows

Definition 1. A GSM M over a collection X ordered by i ∈ N whose elements take

on values x ∈ X ⊆ Rn is a function stochastic process pair (M(X),S(X)) such that

1. M(x̄, x̄, · · · , x̄) = x̄, for any sure (non-stochastic) sequences 〈x̄, x̄, · · · 〉

2. M is strictly increasing, measurable and continuous on R∞ the space of conver-

gent sequences and is weakly measurable with respect to the stochastic process

µ(〈X〉).7

Lemma 1. The optimal reset price p∗t is a GSM of the optimal flexible price pfT for

the duration of the contract T ≥ t.

Corollary 1. A non-stochastic steady state is equivalent to a flexible price equilibrium

Proof. From condition [ii] we have p∗t =M(〈pfNSS , p
f
NSS , · · · 〉) = pfNSS , ∀T

Therefore at the non-stochastic steady state the reset price constraint is not bind-

ing. Furthermore, any variable that measures the distance between the classical

flexible price world and its sticky counterpart will be minimized at the non-stochastic

steady state. This point will prove crucial when I come to approximation of the

model.

2.2.4 Future Marginal Costs and Nominal Rigidity

The averaging result carries over to real marginal costs.

Corollary 2. The optimal real value of the current reset price p∗t /Pt is a GSM of the

real marginal cost of the flexible price firm MC∗T (i) for the duration of the contract

T ≥ t.
7Results in this subsection apply also to the case of Taylor contracts where the topological vector

space itself would collapse into a Euclidean manifold - reflecting the finite contract horizon. Results
would extend over to any reflexive space- informally this is a space where the set of possible ensemble
averages and the set of possible realizations coincide see Conway [2013]
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Proof. Et∂p∗t /∂MC∗τ = Et[Pτ/Pt · ∂p∗t /∂pfτ ] > 0

The gross rate of inflation Πt,T = PT /Pt = (1+πt+1) · · · (1+πT ) is between today

time t and a future time T > t. The following remark locates the proximate source

of policy effectiveness in terms of the failure of the classical dictum of independence

between real and nominal prices

Remark 1. Monetary policy effectiveness applies because the real reset price depends

on expected future inflation.

It also overturns the neoclassical principal that only unexpected inflation affects

real quantities which are determined by real prices. Enlisting the functional form as-

sumption leads to a familiar expression for the optimal reset price equal to a mark-up

over the weighted average of expected marginal costs over the infinite future denoted

by WMC∗t
p∗t
Pt

= mEt
∞∑
T=t

wTMC∗T = mWMC∗t (2.33)

where the weight wT can be decomposed into a real component wr that reflects the

scale of real output in future periods relative to today and nominal component wn =

1/Πt,T reflecting the effect of inflation through the formulation wrT /(
∑∞
T=tw

r
Tw

n)

where wrT = αT−tQt,T g
y
t,T where the first two terms reflect stochastic factors already

discussed and gyt,T = Πθ
t,TYT /Yt is the expected growth rate of sales up to time T

conditional on not having reset its price. Combination with the price level evolution

(2.31) yields a formulation for the non-linear marginal cost Phillips curve

πt = (mWMC∗t )1/(θ−1)

1 + α(mWMC∗t )θ−1 (2.34)

It is more convenient for the purpose of derivation however to separate the right hand

side into numerator and denominator p∗t /Pt = mℵt/it where

ℵt = Et
∞∑
T=t

(αβ)T−tΠθ
t,Tuc(CT )YTMCT (2.35)

it = Et
∞∑
T=t

(αβ)T−tΠθ−1
t,T uc(CT )YT (2.36)
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This is because the numerator and denominator both possess recursive structures

shown below.

ℵt = uc(Ct)YtMCt + αβEt(1 + πt+1)θℵt+1 (2.37)

it = uc(Ct)Yt + αβEt(1 + πt+1)θ−1it+1 (2.38)

2.3 Price Dispersion and Aggregation

To understand the dynamics of the system it is common to log-linearize, for business

cycle interpretation we need to choose a point around which to carry out this pertur-

bation that could be interpreted as a long-run equilibrium. Economists have always

used the non-stochastic steady state that would prevail if the economy were never

subject to shocks or expected to be so. The non-stochastic steady state is equivalent

to the flexible price equilibrium. The point of this paper is that this approach is

misguided providing an erroneous interpretation of business cycle dynamics.

The New Keynesian framework differs from Neoclassical models by preventing ev-

ery firm re-optimizing prices in every period. This allows for the possibility of price

rigidity where today’s price level contains reset prices from previous periods, as well

as the current optimal reset prices. This means there can be price dispersion with

implications for resource allocation and welfare.

We characterize price dispersion using the demand aggregator

∆ =
∫
i

(
pi
P

)−θ
dµi (2.39)

It appears in the market-clearing condition

∆tCt = AtLt (2.40)

Under Calvo pricing ∆ evolves according to the following relationship:

∆t = (1− α)
(
p∗t
Pt

)−θ
+ α(1 + π)θ∆t−1 (2.41)
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Using equation (2.31) to eliminate the reset price we find:

∆t = [1− α(1 + π)θ−1]
θ
θ−1

(1− α)
1
θ−1

+ α(1 + π)θ∆t−1 (2.42)

Price dispersion is a persistent process with the degree of persistence increasing in

the degree of price rigidity α. In Chapter 4 I will discuss the restrictions the con-

sumers’ problem imposes on inflation. The following property of the log-linear form

is remarkable.

Lemma 2. Around the non-stochastic steady state (π,∆) = (0, 1) the log-linear ap-

proximation ∆̂t = 0 for all values of inflation πt.

Proof. Log-linearizing the system reveals that

∆̂t = αθ(1 + π)θ−2

∆(1− α)
1
θ−1

[(1 + π)∆(1− α)
1
θ−1 − (1− α(1 + π)θ−1)

1
θ−1 ]π̂t + α(1 + π)θ∆̂t−1

substitution of the steady state values (π,∆) = (0, 1), along with ∆̂t−1 = 0 which

defines a non-stochastic steady state and π̂t ≡ πt − π = πt completes the proof.

2.4 Policy Rule

This section explains the monetary policy rule used throughout this thesis. It also

contains a more in depth discussion of the problems encountered with modeling mon-

etary policy in a DSGE framework. Novel points include motivations for the Taylor

rule and non-linear rules. In practice none of the models used in empirical simula-

tions can be viewed as optimizing a suitable loss function.The most well-known is

the so-called Taylor rule. The alternative is to specify a money supply rule. The

most popular money supply rule was the McCallum rule, see McCallum [1988]. The

McCallum rule is essentially a flexible version of the monetary targeting rules advo-

cated by monetarists like Milton Friedman, and applied by Western policymakers as

part of disinflationary efforts during the late 1970s and early 1980s. In Britain and

the United States monetary targeting was eventually abandoned owing to perceived

instability in the money demand function which impaired implementation.

It now seems that this appearance was a figment of a mismeasuring the opportunity
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cost associated with the new money substitutes on offer as a consequence of the fi-

nancial deregulation occurring around that time- see Ericsson et al. [1998], Ireland

[2009], Barnett [2012], Ball [2012], Lucas and Nicolini [2015]. In the stylized models

shown here money demand is inconsequential to policy because of the presence of

frictionless financial markets as shown by Woodford [1998]. The empirical applica-

tion of the result is doubtful however, as it appears empirical specifications including

money perform better than those with just interest rates, see Belongia and Ireland

[2014]. This seems to be particularly important in periods of very low interest rates

- where the interest rate channel breaks down but policy still appears to be effective,

see among others Ueda [2012], Kapetanios et al. [2012], D’Amico et al. [2012], Swan-

son and Williams [2014] and Gilchrist et al. [2015].

The problem appears to be the restriction on the class of financial market inefficiency

imposed in benchmark models, as explained in Jarrow [2013]. It has been suggested

that these distortions may have substantial effect on monetary policy propagation in

normal times, consult Jiménez et al. [2014], Gertler and Karadi [2015], Nelson et al.

[2015], and for optimal policy Chadha et al. [2014], Ellison and Tischbirek [2014] and

de Groot [2014]. Nevertheless, results tend to be model specific and may also de-

pend on other aspects of the policy and regulatory environment, see Svensson [2014].

Furthermore, macro-prudential concerns do not seem to have played a major role in

monetary policy determination, see Fuhrer and Tootell [2008] and Rotemberg [2014]

for evidence and discussion of institutional arrangements. There are several example

of leading policymakers arguing Central Banks should not try to burst bubbles for

example Bernanke and Gertler [2001] and Posen [2006]. These concerns support my

decision to work with a benchmark efficient financial markets setup.8 The following

is a popular modern formulation, I discuss the relation to the original proposal of

Taylor [1993a] in Appendix A:

it = ı̄t + aππ̃t + ayỹt (2.43)
8It is worth noting that even though they are associated with inflation targeting Taylor rules

seems to explain policy-making just as well even when the Central Bank professes to be following a
different policy regime such as money targeting, see Bernanke and Mihov [1997] and Clarida et al.
[1998]. This chimes with the recollections of Goodhart [1988] that even when publicly espousing
monetary targets policy advice would be given in terms of the nominal interest rate rather than the
money supply. These points increase my confidence in applying an inflation targeting model to the
United States and other nations where there is no explicit inflation targetter.
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where aπ > 1 and ay ≥ 0. π̃ refers to the inflation gap the difference between

observed inflation πt and its target π̄. ỹt is the output gap defined as the difference

between the actual output yt and its natural or potential rate ȳt. This potential rate

is calculated by either deterministic time trend or a stochastic trend derived from a

more sophisticated filter such as Beveridge and Nelson [1981], Hodrick and Prescott

[1997] or Baxter et al. [1999], there are now standard settings, see Ravn and Uhlig

[2002] and Christiano and Fitzgerald [2003]9. In the context of the benchmark model

and its variants, this potential rate is associated to the flexible price equilibrium

derived previously. ıt is the natural nominal rate of interest. It comprises a natural

real rate r̄t and the inflation target π̄t. Although, not present in the original paper it

is common to allow these two long run parameters to time vary. There are two main

motivations, firstly if the model is estimated, all but the simplest filtering processes

create a time varying estimate for the inflation target.

The coefficient restrictions form the essence of Taylor’s contribution. aπ > 1 requires

that the nominal interest rate should rise more than one-for-one (so the real interest

rate increases) with inflation to help ensure a stable solution10. ay ≥ 0 constitutes

an allowance but not a requirement for interest rates to smooth the output gap -

consistent with the ’dual mandate’ to smooth fluctuations in the real economy as

well as inflation common to all major inflation targeting nations - consult Svensson

[2010], Svensson [2012] and Rotemberg [2014] for more detailed discussion of the

United States experience. The crucial difference between Taylor’s original normative

rule and its implementation in subsequent DSGE models lies in the policy horizon.

Taylor envisaged a forward-looking rule designed to gauge whether or not the current

level of interest rates was consistent with stabilizing inflation at its long run average

level over subsequent periods given the current state of the economy summarized by

ỹt. Modern DSGE follow this convention also. Forward-looking intent can be seen by

how inflation was incorporated into the original rule. Taylor used the annual inflation
9It is necessary to filter the raw data to remove the effect of the trend in technical progress as it

is not the focus of interest in this stylized model I will continue to ignore it throughout the paper.
10This condition is necessary and sufficient for a stable solution in the pure inflation targeting case

(uncharitably referred to as ’inflation nuttery’ if you recall) corresponding to ay = 0. Otherwise
(when ay > 0) the condition can be weakened since the positive relationship between output and
inflation implied by the New Keynesian Phillips curve allows the combined effect of the inflation and
output gaps to drive up the real rate even for some aπ < 1. However, the intuition that the real rate
must be expected in response to an increase in inflation remains valid. Consult Woodford [2011a] for
this result which is derived in the context of a contemporaneous response to shocks.
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rate πt = (Pt − Pt−4)/Pt−4 as opposed to the conventional contemporaneous output

gap measure ỹt = (yt − ȳt)/ȳt where yt was quarterly output and ȳt was determined

from a simple linear trend over the whole data period.11 He argued that "the lagged

inflation rate [was] serving as a proxy for expected inflation." This logic was perfectly

correct with respect to the staggered wage setting model (Taylor [1979]) he was using

to study policy implications of monetary rules in Taylor [1993b] which grounded his

normative analysis. I demonstrate this point in appendix A. However, I will show it

is not in fact the case with the benchmark log-linearized New Keynesian model with

Calvo pricing.

There are no lags or leads in the relationship so contemporaneous economic devel-

opments determine current policy. This is intuitive, there is no benefit to conditioning

on past variables in a forward-looking model12. In the particular but instructive case

with no persistence to exogenous shock processes the future of a forward-looking sys-

tem will be identical in expectation to the steady state. In a forward-looking system

one instrument per period should be sufficient to implement optimal policy.

Note, we are not required to believe that interest rates are determined simul-

taneously with output and inflation. In subsequent sections interest rates will be

determined before output and inflation are realized. As the rule is linear with ra-

tional expectations the expectation errors will pass into the white noise error term,

providing in fact the main rationale for the regression error itself. I interpret the

policy rule as a description of actual policy for a Central Bank with rational expec-

tations13. Hence, I view the presence of serial correlation and a significant lagged

interest rate term as a rejection of Taylor rule as a description as a model of real-

world policy-setting.

Finally, the Taylor rule or any linear policy rule is best viewed as a local approxima-

tion to an unknown global regime. There is plausible evidence for non-linear rules and
11Taylor only considered the Great Moderation period 1984:1- 1992:3. His trend growth rate was

2.2 percent on an annualized basis and he used 2 percent for the real interest rate.
12The system is ’forward-looking’ in the sense that agents have rational expectations and there are

no state variables.
13There is some controversy about whether Central Banks do display rational expectations see

Romer and Romer [2008] and Ellison and Sargent [2012]. However, the conclusion of excess persis-
tence appears robust to and even strengthened by the use of internal forecasts understood to be the
best forecast of the evolution of the economy see Coibion and Gorodnichenko [2012]. In any case the
significance and substantiveness of persistence appears too large to be explained solely by deviations
from rational expectations.
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some theoretical rationale- see for example Blinder et al. [2000], Meyer et al. [2001],

Ruge-Murcia [2003],Surico et al. [2007], Chevapatrakul et al. [2009] and Neuenkirch

and Tillmann [2014]. Here the non-linear Taylor rule could serve the role of ruling out

the boundary solution case where the representative agent seeks no leisure. This is

because with the popular functional form in place there is no equivalent of the Inada

condition to prevent the individual taking no leisure. A functional form like Cobb-

Douglas with arguments leisure and consumption would provide such a condition.

However, I have not done so as this is not common in the macroeconomic literature.

Leaving this technicality aside. It is now possible to specify the Calvo framework in

full.

2.5 Formalization Calvo Model

This subsection gives the canonical state space form of the non-linear Calvo model.

It also spells out the mathematical assumptions that will be in place throughout the

paper to support the formal analysis.

Assumption 1. The Calvo model described by equations (2.1)-(2.43) and the two

alternative structural models subsequently in Section 2.7 presented throughout this

paper possess a canonical form EtZt+1 = f(Zt, γ, USt ) with the following properties

i Z and US are respectively k × 1 and k′ × 1 dimensional vectors that can be de-

composed into jump and state variables Z = (Zjk0×1, Z
s
k1×1), U = (U jk′0×1, U

s
k′1×1)

such that k0 ≤ k′0 and k′1 = k′0

ii The interior of Z and US forms smooth manifolds

iii Zj is stochastically non-singular so that for any 1 ≤ i ≤ k0 there is no non-

stochastic function f̃ such that Zi,t = f̃(Z−i,t). U j will be mutually independent

iv P(Zjt+1 ∈ B|(Zt, USt )) > 0 for all B ∈ Σj where Σj is the σ-algebra of the vector

of jump variables Zj

v Local to any candidate steady state Z consistent with (i)-(iv) there is an Anosov

diffeomorphsim Z × USt → f × USt+1
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The last assumption is the non-linear equivalent of the familiar rank condition

of linear algebra and will be met if each variable Zt contributes a single error. Part

(i) is a non-negligible restriction on the error process {USt } just because EC−σ exists

for some σ > 0 does not imply EC exists but I do not explore it here. The penul-

timate restriction is an accessibility condition it will mean limiting distributions are

defined on the whole space. This will rule out hysteresis and multiple equilibria. It is

uniformly adopted in informal formulations of the benchmark New Keynesian model.

Proposition 1. Abstracting from policy shocks the Calvo model can be characterized

by a canonical form with Zt = (πt−1, πt, Yt,∆t) and

USt = (φt−1, φt, ϕt−1, ϕt, At−1, At)

Proof. The main complexity arises with the derivation of the non-linear Phillips curve.

This is because inflation via the reset price depends on the future of output, the

discount factor and marginal costs - in a non-recursive fashion through ℵ and i.

Note that I have drawn equivalence between inflation and the reset price since the

relationship is a diffeomorphism via the inverse function theorem since

dπt
d(p∗t /Pt)

= (1− α)
α

(
p∗t
Pt

)−θ
(1 + πt)2−θ > 0

The proof consists of using the lagged inflation relationship to eliminate the denom-

inator it from the present inflation relationship and solve for ℵt in terms of present

inflation πt and then using the recursion of ℵt to provide the recursion for inflation

that forms the Phillips curve. Identical results would appear if I eliminated ℵt and

used the recursion of it, the crucial point is that I need to use a lagged inflation

relationship in addition to the present inflation relation to create a simultaneous

equation system that allows me to solve out for the two summation terms ℵt and it.

It will be essential to use inverse function arguments admitted by the differentiabil-

ity assumptions in place, as non-linear stochastic systems rarely permit closed form

expressions.

h(πt−1) = uc(Ct−1)Yt−1MCt−1 + αβ(1 + πt)θℵt + f̃0(ujt )
uc(Ct−1)Yt−1 + αβ(1 + πt)θ−1it + f̃1(ujt )

where the errors are bounded below by the positivity of the expectation terms Et−1(1+



2.5. Formalization Calvo Model 37

πt)θℵt and Et−1(1 + πt)θ−1it which follows from the non-negativity of expectations

of positive random variables proved in the course of lemma 2.

f̃0(ujt ) > −αβ(1 + πt)θℵt

f̃1(ujt ) > −αβ(1 + πt)θ−1it

It is convenient to simplify the model at this point. Note that from the cost mini-

mization and labor supply conditions we know that

uc(Ct)MCt = νl(lt)
At

Now using the market clearing conditions (12) and (24) note that

uc(Ct−1)MCt−1 = ν ′(∆t−1Yt−1/At−1)
At−1

To obtain the required form it is necessary to remove Yt−1 and ∆t−1. First writing

the lagged Euler as

u′(Yt−1)− βRt−1(Yt−1, πt−1)Et−1
u′(Yt)
1 + πt

φt
φt−1

= 0

By the implicit function theorem I can solve out for Yt−1 = f̃3(πt−1, πt, Yt, φt−1, u
j
t )

with f̃3,1 < 0, f̃3,2 > 0, f̃3,3 > 0 and f̃3,4 > 0. Note that I have used the properties of

the Taylor rule discussed in Section 2.4. I can do likewise for lagged price dispersion

using the stochastic analog of (40) shown in remark 2 ∆t−1 = f̃4(πt, u∆
t−1) with f̃4,1 < 0

and f̃4,2 < 0.

h(πt−1) =
f̃5(πt−1, πt, Yt,∆t, φt−1, At−1, u

∆
t−1, u

j
t ) + αβ(1 + πt)θℵt

f̃6(πt−1, πt, Yt, φt−1, u
j
t ) + αβ(1 + πt)θ−1it

where f̃5 has absorbed f̃0 and likewise f̃6 has absorbed f̃1, both must be strictly

positive by the functional restrictions on the errors and expectations laid out above,

now solving for it yields:

it = f̃5 − h(πt−1)f̃6 + αβ(1 + πt)θℵt
αβ(1 + πt)θ−1h(πt−1)
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Note that since it is strictly positive by construction (34) and since the denominator is

strictly positive the numerator must also be strictly positive. Hence, I can substitute

into the present period reset price relationship

h(πt) = αβ(1 + πt)θ−1h(πt−1)ℵt
f̃5 − h(πt−1)f̃6 + αβ(1 + πt)θℵt

Solving for ℵt yields

ℵt = h(πt)
αβ(1 + πt)θ−1

f̃5 − h(πt−1)f̃6
h(πt−1)− h(πt)(1 + πt)

We are almost done however, there is the issue of a singularity to contend with. This

corresponds to the case where p∗t = p∗t−1. Fortunately the singularity is removable

since by manipulation of the reset prices I am able to solve for ℵt for any initial ℵt−1

the expression is as follows

ℵt = ℵt−1
(1 + α− α(1 + πt−1))1/(θ−1)

which lies strictly between 1/(1 +α)θ−1 and (1/α)θ−1 thanks to the lower and upper

limits on inflation. Moreover, by composition of smooth functions - smoothness is

retained. This position of the system corresponds to the stochastic steady states of a

zero (trend) inflation economy. To complete the proof substitute into the recursion for

ℵ (35). The form is highly non-linear so solving for a closed form is inconvenient.Note

that we can form an implicit function

f̃7(πt+1, Yt+1,∆t+1, f̃5(.), · · · , ujt ) = 0

. Where the first three terms have entered through Et(1 + π)θℵt+1. The appropriate

vector of jump errors comes about by (ii) (v) and remark 2. Thus yielding the correct

desired dimensionality Zt = (πt−1, πt, Yt,∆t)′ and USt = (φt−1, At−1, u
∆
t−1, φt, At, u

∆
t ).

To complete the derivation of the Phillips curve note that f̃7(Zt, USt ) can be written

as a composition of continuously differentiable functions that is locally non-constant

in every variable it is a corollary of the mean value theorem that its set of stationary

points will be measure zero. Therefore, it can be inverted almost everywhere for Zt+1
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using the implicit function theorem yields a function f̃8 : (Zt, Yt+1,∆t+1, U
S
t )→ πt+1

where the expectation exists by assumption 1. This topological justification will be

used in all subsequent steps.

Finally inverting the Euler for Yt+1 in a fashion analogous to the construction of f3 and

substituting in the price dispersion relationship for πt+1 yields f̃9 : (Zt, πt+1, U
S
t ) →

πt+1 finally invert f̃9 and then integrating over USt gives Etπt+1 = fπ(Zt, USt ) to com-

plete the derivation substitute in f̃9 in to the Euler equation and integrate over the

jump errors to solve for EtYt+1 = fy(Zt, USt ) and likewise for Et∆t+1 = f∆ then note

Etπt−1 = πt hence we have the appropriate structural form EtZt+1 = f(Zt, USt ) that

is valid almost everywhere. By assumption 1 (ii) it must apply everywhere.

For proof. Suppose the converse that there were some other variable Z∗ such that

EtZt = f∗(Zt, Z∗t , USt ) such that EtZt+1 = f(Z∗t , .) were a constant for µ almost every

(Zt, USt ) but non-constant for some set AZ×U with µ(AZ×U ) = 0 then a contradic-

tion would arise for there will be a jump discontinuity of f∗ at,at least one point

(Z0, U0, Z
∗
0 ) where f(Z∗, .) was behaving as a non-constant function. From a topo-

logical perspective, for some open set AZ the inverse image of EtZt+1 must contain

subsets of the form f−1(AZ) = A′Z ∪X for some disjoint pair where AZ is an open

interval and X has measure zero. However, this means that X cannot be an open

set of a Euclidean and therefore nor can f−1(AZ). This proves f∗ must have a dis-

continuity. Now consider the candidate state space form containing the additional

variable Z∗ that takes the form Zt = (πt−1, πt, Yt,∆t, Z
∗
t ) and f = (f̃ , f∗) where f∗

is the recursion for Z∗ such that EtZ∗t+1 = f∗(Zt, USt ). Then f inherit the disconti-

nuity from f∗ which completes the contradiction and shows the representation of the

structural form is globally valid.

2.6 Forward-Solution Phillips Curve ZINSS

Analysis of the NK model begins with the recursive marginal cost Phillips curve. It

describes how current inflation is determined by the present deviation of real marginal

costs from steady state and the expectation of next period’s inflation. It is derived
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from combining the optimal price-setting condition (15) and the price level construc-

tion equation (16) and log-linearizing

πt = κm̂ct + βEtπt+1 (2.44)

Where κ = (1−α)(1−αβ)/α the corresponding infinite horizon forward solution for

inflation in terms of future marginal costs is

πt = κ
∞∑
i=0

βiEtm̂ct+i (2.45)

First linearize the marginal cost function (12)

m̂ct = ŵt − ât (2.46)

Next linearize the production function

ât = ŷt − l̂t + ∆̂t (2.47)

With the assumption of a non-stochastic steady state we know that ∆̂t = 0 now using

optimal labor supply condition (8) we find

m̂ct = (η + σ)[ŷt −
1 + η

η + σ
ât] (2.48)

Now the current New Keynesian model uses the efficient output gap yet defined as the

log-difference between actual output ŷt and the flexible price equilibrium output ŷft

yet = ŷt − ŷft (2.49)

Note that flexible price equilibrium output is given by

ŷft = 1 + η

η + σ
ât (2.50)
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Crucially, the productivity term ât cancels from the expression (32) that connects the

desired notion of the output gap yet to the deviation of marginal costs m̂ct

m̂ct = (η + σ)yet (2.51)

This yields the conventional recursive Phillips curve where inflation is a function of

the efficient output gap and next period’s expected inflation

πt = ωyet + βEtπt+1 (2.52)

Where the form of the composite parameter is

ω = (σ + η)(1− α)(1− βα)
α

(2.53)

Its forward solution is

πt = ω
∞∑
i=0

βiEtyet+i (2.54)

Accepting that we cannot have a perfect fit to test the model we need error terms in

each equation therefore the final system is the following familiar Euler, Taylor and

Phillips curve triplet.

yet = Etyet+1 −
1
σ

(it − r̄ − Etπt+1) + u1
t (2.55)

it = r̄ + aππt + ayy
e
t + u2

t (2.56)

πt = ωyet + βEtπt+1 + u3
t (2.57)

To make the calculation of the forward solution easier I follow the convention of

eliminating the policy rule to give the matrix system:

EtXt+1 =

πt+1

yet+1

 = AXt +But (2.58)
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Where Xt =

πt
yet

 A =

 β−1 −ωβ−1

σ−1(aπ − β−1) 1 + σ−1(ay + ωβ−1)


B =

 0 0 1

−1 σ−1 σ−1β−1

 (ut)′ =
[
u1
t u2

t u3
t

]
From the general solution

Xt = Et
∞∑
i=0
−A−(1+i)But+i (2.59)

The three variables can be expressed as sums of the expected future shock terms.

πt = Et
∞∑
k=0

ζ1
πu

1
t+k + ζ2

πu
2
t+k + ζ3

πu
3
t+k (2.60)

yt = Et
∞∑
k=0

ζ1
yu

1
t+k + ζ2

yu
2
t+k + ζ3

yu
3
t+k (2.61)

it = ı̄+ Et
∞∑
k=0

ζ1
i u

1
t+k + ζ2

i u
2
t+k + ζ3

i u
3
t+k (2.62)

The details of the ζ coefficients are not important here and are reported in Appendix

7.1. The Blanchard-Kahn condition (Blanchard and Kahn [1980]) that both eigen-

values of the matrix A lie outside the unit circle is required for the series to converge

to a unique solution.

2.6.1 Persistence Problem

The persistence problem of the New Keynesian model lies in the property of the errors

and expectations. To link the two I impose imperfect information.

Assumption 2. The Central Bank has imperfect information about the present state

of the economy - which is resolved at the end of the period after they have chosen

their behavior.

This restriction seems realistic for example quarterly output figures are released

soon after the end of the relevant quarter, so the Central Bank only observes present

state of the economy with error, this allows us to interpret the error term in the

Taylor rule u2
t as a central bank expectation error.14

14In reality private sector agents should be equally if not more uncertain about the state of the
economy. However, we do not need to assume imperfect information to interpret error terms u1

t and
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Remark 2. For (39)-(41) to constitute an identified rational expectations model each

error term uit must be white noise i.e. E uit | It−l = 0, ∀ t > 0, l ≤ t

Here IT is the information set provided by the model at time T or else the model

is observationally equivalent to a model with bounded rationality (irrational expec-

tations) and is therefore not identified in the encompassing class of DSGE models.

This result follows from the fact that when we estimate the model with macroeco-

nomic data we cannot observe expectations. Therefore we must use the mathematical

expectation given by the structural model denoted by a superscript M . Take the ex-

ample of the Phillips curve for concreteness Etπt+1 = EMt πt+1 . Assumption 1 makes

this easily applicable to both other equations in the system.Using S to denote ’sub-

jective’ and assuming there are no other I can subsume the Phillips curve error term

u3
t into the subjective expectation yields ESt πt+1 = EMt πt+1 + u3

t . Now if u3
t is not

white noise then the agent is making systematically incorrect predictions and we have

observational equivalence with a bounded rationality (irrational expectations) model.

Therefore the rational expectations model is not identified15.

For this reason apart from the technology shock, that as shown above does not fea-

ture in the final solution of the benchmark New Keynesian model the errors will be

independently and identically distributed - consistent with the structural form.The

following result characterizes the persistence problem.

Proposition 2. There exists a solution to the linear equation system (39)-(41) in

which all three major macroeconomic variables (yet , it, πt) as serially uncorrelated pro-

cesses. If all the inverse eignevalues of the matrix A lie outside the unit circle this

solution is unique.

Proof. For illustration consider πt analogous arguments can be made for the other

two variables. As the system is ergodic the autocovariance generating function is sym-

metric so Cov(πt, πt−l) = Cov(πt, πt+l) ∀l so it suffices to show that Cov(πt, πt−l) = 0

for arbitrary lag length. From the white noise error assumption we know that

Etuπt+k| It = 0 ∀ k > 0 this means that current inflation can be expressed as a function

u3
t as expectation errors since these equations already contain the unknown variable Etπt+1. Indeed

introducing imperfect information to the private sector would require the unnecessary complication
of a signal extraction problem.

15An alternative strategy would be to relax rational expectations and use survey data to measure
inflation expectations Roberts [1995]Roberts [1997]Coibion [2010], although I do not pursue this here
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of only contemporaneous shocks πt = ζ1
πu

1
t + ζ2

πu
2
t + ζ3

πu
3
t . Applying the same argu-

ment to period t− l implies πt−l is a function of time t− l errors. Finally the white

noise assumption means that ∀ i and ∀ l > 0 E(uit−luit) = 0 so Cov(uit−l, uit) = 0. Now

the result follows from noting that Cov(πt, πt−l) =
∑3
i=0

∑3
j=0Cov(uit, u

j
t−k) where

every term in the summation is zero.

The no persistence result arises because the model lacks either intrinsic or extrin-

sic persistence. It lacks intrinsic persistence because the current value of the state

variables Xt can be written as a function of just the current and future values of the

shock process ut independent of their past realizations.16 It lacks extrinsic persistence

because the errors are observationally equivalent to expectation errors which means

they cannot be persistent. It will carry over to forward-looking policy rules that con-

tain future expected inflation and output gap terms because they can be collapsed

into the contemporaneous form (33) as the expectation of future variables will all be

zero although verifying the existence condition on the eigenvalues will likely require

a numerical computation routine.

The absence of persistence in the New Keynesian model contrasts with RBC models

where the relevant solution variable is simply output yt- which can inherit persis-

tence from technology or news about future productivity developments Kydland and

Prescott [1982] Beaudry and Portier [2006] Beaudry and Portier [2007] Jaimovich and

Rebelo [2009] Walker and Leeper [2011] Schmitt-Grohé and Uribe [2012b]. Output

itself inherits this persistence, it moves one-for-one with the efficient output in the

corresponding RBC model so that the output gap stays constant. This highlights the

point that Neo-Classical variables and associated shocks do not necessarily appear

in the New Keynesian solution for business cycle dynamics. Therefore, novel New

Keynesian features are needed to improve the fit of the New Keynesian model. It is

for this reason that this paper introduces a new feature first-order price dispersion,

unique to environments with price rigidity, to the basic New Keynesian model.

The econometric implications are unfortunate. The model cannot be used for fore-

casting. The key macroeconomic policy variable inflation is white noise. Neither can

the model contribute to forecasting output or interest rates, over and above purely
16In the frequency domain this corresponds to the model acting as a neutral filter preserving the

correlation spectrum in the error terms- a point first made by Cogley and Nason [1995b].
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statistical procedures or classical models of the natural rate. To confirm: the New

Keynesian model is not yet useful for policy. This is particularly unfortunate as

the ability to forecast short-term fluctuations is the yardstick against which New

Keynesian macroeconomists ask to be judged. In the article’s conclusion (p87) the

authors make their point strongly rejecting a suite of Real Business Cycle models

on the following grounds: "We have demonstrated that the forecastable movements

in output, consumption and hours [the three main variables in the Real Business

cycle framework]"- what we would argue is the essence of the ’business cycle’- are

inconsistent with a standard growth model disturbed solely by random shocks to the

rate of technical progress." Rotemberg and Woodford [1996] (p71)17 New Keynesian

economics is not living by its professed econometric standards.

For those with sufficient perspective this is all rather reminiscent of the evolution

of Classical economists’ attitudes towards econometrics encapsulated in the follow-

ing quote by Nobel laureate Thomas Sargent about fellow laureates Edward C (Ed)

Prescott and Robert (Bob) Lucas: "My recollection is that Bob Lucas and Ed Prescott

were initially very enthusiastic about rational expectations econometrics. After all,

it simply involved imposing on ourselves the same high standards we had criticized

the Keynesians for failing to live up to. But after five years of doing likelihood ratio

tests on rational expectation models, I recall Bob Lucas and Ed Prescott both telling

me that those tests were rejecting too many good models." Sargent [2005]

Worse still the basic model can not even be estimated with data from the three

Qt variables because it is not identified in the sense of Lehmann and Casella [1998]

or Dufour and Hsiao [2008]. Note that to speak meaningfully of the estimation of

a parameter b its set of possible values (parameter space) B must contain distinct

values b1 6= b2 as a single element space would correspond to calibration

Proposition 3. The structural parameters of the model defined by (33)-(35) cannot

be identified by frequentist econometric estimation.

Proof. Applying proposition 1 simplifies the system to:

yet = 1
σ

(it − r̄) + u1
t

17see also the abstract of Blinder and Fischer [1981] for a similar definition
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it = r̄ + aππt + ayy
e
t + u2

t

πt = ωyet + u3
t

Define the vector of endogenous variables Qt = (yet , it, πt) and the parameter vector

θ = (γ, aπ, ay, ω, β, λ) where γ = 1
σ and λ is the collection of parameters governing

the joint distribution of the three error terms. Θ denotes the sample space of the

parameters formed of the product space (Γ×Aπ×Ay×Ω×B×Λ) where for example

Aπ is the set of admissible values for the parameter aπ. In the common case of nor-

mally distributed errors and unconstrained optimization Θ = <11 with Λ consisting

of the distinct terms of the variance-covariance matrix of the error terms.

The crucial object is fθ0(Qt) the joint probability distribution induced by the partic-

ular parameter vector θ0 ∈ Θ at time t. Recall that a parameter θ is identified when

there is a one-to-one mapping to the probability distribution θ → fθ(Qt) at every

time t.

Suppose the model were identified and proceed by the counterexample. Since β

does not appear in the reduced form I can construct a counterexample with any

(γ, aπ, ay, ω, λ) ∈ (Γ × Aπ × Ay × Ω × Λ) and β1, β2 ∈ B with β1 6= β2 let θ1 =

(γ, aπ, ay, ω, β1, λ) and θ2 = (γ, aπ, ay, ω, β2, λ) as fθ1 = fθ2 ∀t but θ1 6= θ2 contra-

dicting the hypothesis of a one-to-one mapping.

For concreteness consider the popular Generalized Method of Moments Estimator
18 for the structural parameter vectorR3×3 of the relationship betweenQt and EtQt+1.

It is necessary to have an m × 1 m > 3 vector of available instruments Zt ∈ It

consistent with the orthogonality condition and associated estimator:

Et[Z ′t(Qt −Qt+1R)] = 0

To allow for the case of over-identification where the number of potential instru-

ments in Zt exceeds the number of moment conditions m > 3 in the basic model I

minimize the quadratic form of the orthogonality conditions HT (R) = [T−1(Z ′t(Qt −

Qt+1R))WT (Z ′t(Qt −Qt+1R))′]. Here WT is a weighting matrix dependent on θ that
18The approach was developed by Hansen [1982] applied to rational expectations modeling by

Hansen and Singleton [1982] and based upon method of moments estimation procedure first employed
by Karl Pearson.
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will turn out to be inversely proportional to the variance-covariance matrix of the

orthogonality conditions, as previously T is the number of time observations. Opti-

mization with continuous differentiability in R yields the GMM estimator19

R̂ = (Q′t+1ZtWTZ
′
tQt+1)−1Q′t+1ZtWTZtQt

with R̂ = (Q′t+1Zt)−1Q′t+1Qt corresponding to the just-identified case where the or-

thogonality conditions are solved exactly.

However, applying proposition 2 again shows that this estimator is not defined be-

cause Q′t+1Zt = 0 meaning that the first matrix is non-invertible. This follows because

Qt+1 is comprised entirely of expectation errors which must be uncorrelated with any

variable belonging to the information set at time t, It to which Zt belongs. Hence

there are no valid instruments for the expectations of future macroeconomic variables

in this system. This implies the structural parameters θ are not identified. For proof

suppose the converse that θ were identified (i.e. there were sufficient valid instru-

ments) assumption 2 would bound the expected deviation from the orthogonality

conditions which would be sufficient to invoke Hansen and Singleton [1982] to prove

weak convergence (in probability) of the GMM estimator θ̂T → θ. Now consider the

solution for the reduced form parameters in terms of their structural counterparts.

R11 = 1
1 + γ(ay + aπ) > 0

−∞ < R12 = γ(aπβ − 1)
1 + γ(ay + aπ) <∞

R13 = 0

R21 = ay + aπω

1 + γ(ay + aπ) > 0

R22 = 0

−∞ < R23 = ayγ(aπβ − 1) + aπ[ωγ(aπβ − 1) + β(1 + γ(ay + aπω))]
1 + γ(ay + aπ) <∞

R31 = ω

1 + γ(ay + aπ) > 0

19Consult Hansen and Singleton [1982] or a textbook such as Hamilton for a full exposition
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R32 = 0

−∞ < R33 = ωγ(aπβ − 1) + β[1 + γ(ay + aπω)]
1 + γ(ay + aπ) <∞

Note that each reduced form parameter Rij is a composite of continuous functions

and is therefore a continuous function of the structural parameters θ Denote this func-

tion by zij so zij = Rij . Therefore by the continuous mapping theorem of Mann

and Wald [1943] limT→∞ ẑij = Rij in probability. This would create a one-to-one

mapping between reduced-form parameters and probability distributions over the ob-

servables Qt via the probability limits of the reduced form, the probability limits of

the structural parameters and the structural parameters themselves. Hence the re-

duced form parameters would be identified- a contradiction. Therefore the structural

parameters must be unidentified.

The notion that the New Keynesian Phillips curve might be weakly identified is well

established Woodford [1994], Mavroeidis [2004], Koop et al. [2013] and Canova and

Sala [2009] provides a typology of identification problems where this case corresponds

to observational equivalence which he illustrates with a similar example.

2.7 Alternative Models and Equivalences

This section considers two alternative benchmark models of nominal rigidity and

compares them to the non-linear Calvo setup of 2.2 and the benchmark linearized

Calvo model in 2.1 - 2.4. Novel results appear. Some models thought to be equivalent

are not whilst others thought to behave differently are the same in a particular sense.

2.7.1 Lucas Model

Lucas [1972] is the original rational expectations monetary model. It has a different

structure to New Keynesian models: markets are perfectly competitive, anticipated

monetary shocks are impotent. Monetary non-neutrality arises because of imperfect

information rather than sticky prices. However, by adding a money demand function

I am able to derive surprising similarity to New Keynesian models with price rigidity.
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There are a collection of price taking households20. Each produces a single good using

just its own labor21 The choice problem simplifies to a static labor-leisure trade off

ut(i) = Ct(i)−
l1+η
t

1 + η
(2.63)

As before there are constant returns to scale and common technology

yt(i) = Atlt(i) (2.64)

Hence the firms objective function in yt(i) becomes

pt(i)
Pt

yt(i)−
(yt(i))1+η

1 + η
(2.65)

The first order condition balances marginal revenue and marginal cost so

pt(i)
Pt
− (yt(i))η = 0 (2.66)

Solving and log-linearizing gives an expression for an individual firm’s supply curve

ŷt(i) = 1
η

(p̂t(i)− p̂t) (2.67)

For parsimony a reduced form aggregate demand curve replaces the Euler equation

(7).

ŷt = m̂t − p̂t (2.68)

Idiosyncratic taste shocks reflected by a coefficient Zt(i) in the individual firms de-

mand schedule are essential to the Lucas model. I assume they are independent and

identically distributed across producers and time, with tail restrictions such that they
20It is not common to have differentiated products and price taking behavior. For motivation

imagine there were actually multiple households producing the same good and therefore competition
between them or the possibility to set-up firms with a consequent free entry condition.

21This formulation comes from Romer [2012]. The idea is to avoid the households using the
economy-wide labor market to deduce the aggregate price level. In the original paper Lucas used an
overlapping generations structure where households produced in one period then sold output in the
next. Recent literature has developed more sophisticated stories about dispersed private information
and strategic interaction. I do not pursue this approach as I am looking for a benchmark model.
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will cancel out in aggregate almost surely. Here is the log-linear form

ŷt(i) = ŷt + ẑt(i)− θ(p̂t(i)− p̂t) (2.69)

Hence we can obtain the following approximate aggregation results

p̂t = ¯̂pt(i) (2.70)

ŷt = ¯̂yt(i) (2.71)

From these aggregations and the absence of other sources of inefficiency the first

theorem of welfare economics tells us

ŷt = yet (2.72)

By steady state assumption22

πt = p̂t (2.73)

Monetary non-neutrality is entirely driven by unexpected shocks. There is no role for

price dispersion here since the firms and price takers and the distribution of relative

price is unaffected by inflation. Unlike its Keynesian counterparts elsewhere in this

section the Lucas model would be unaffected by trend inflation. The driving force

for this model is an inability for producers to distinguish aggregate to the price level

Pt from idiosyncratic shocks Zt(i). Instead it only observes the price of its own good

pt(i). A decomposition of the individual price change into real and nominal factors

is instructive

p̂t(i) = p̂t + (p̂t(i)− p̂t) ≡ πt + rt(i) (2.74)

where rt(i) = p̂t(i) − p̂t is relative price inflation - the change in the relative price

of good i from period t− 1 to the current period t. Thus the producer observes not

current inflation but the sum of relative price change and general inflation.
22With this zero inflation steady state assumptions in place this model is equivalent to the earlier

New Classical Phillips curve formulations from Phelps [1968] which lacks explicit microfoundations
and feature non-rational expectations. It is also equivalent toFriedman [1968a] if initial expectations
are correct Et−2πt−1 = πt−1. This is of course not true in general. In particular with non-rational
expectations predictable changes in inflation will effect output in so far as subjective expectations
differ from rational expectations. This underlines the centrality of rational expectations to Lucas’
model. However, under aggregation assumption (52) steady state conditions will be unaffected.
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There is a signal extraction problem here with full information or absent uncertainty

about either monetary policy or consumer preferences. The firm would prefer to

base its production decision on relative prices alone. However, the producer does not

observe r̂t(i) but must estimate it given the observable own price pt(i). 23 Hence (49)

becomes

ŷt(i) = 1
η
Et[rt(i) | p̂t(i)] (2.75)

Finally Lucas imposed functional form restrictions on the monetary shock m̂ and ẑi

they are normally distributed with mean 0 and variances Vm and Vz and they are

independent. The solution is obtained by guessing and verifying that π and ri are

normally distributed and independent. The hypothesis yields

Et[rt(i) | p̂t(i)] = Et[rt(i)] + Vr
Vr + Vπ

(p̂t(i)− Et(p̂t(i)))

= Vr
Vr + Vπ

(p̂t(i)− Et(p̂t(i)))
(2.76)

where Vr and Vπ are the strictly positive variances of relative prices and inflation

respectively. Note that the ratio of Vr to Vπ is the signal- to-noise ratio. Finally

substituting (58) into (57) and then aggregating with (53) yields the famous Lucas

supply curve

ŷt = b(π − Etπt) (2.77)

Where

b = 1
η

Vr
Vr + Vπ

(2.78)

To finish it is necessary to solve out for Vr and Vπ in terms of the structural parameters

of the model Vm and Vz the approach is as follows- solve for π and ye using aggregate
23Recall that the firm is owned by a single household. If the household knew others’ prices through

making purchases, it could deduce pt(i) and hence rt(i). There are several ways to rule this out.
The most common is to assume each household can be divided into a "producer" and a "shopper"
who do not communicate. Alternatively with Lucas’ original OLG approach the problem is avoided
because the individual produces in the first period and shops in the second. Jonung et al. [1981],
Huber [2011], Ashton et al. [2012], Del Missier et al. [2016] and Detmeister et al. [2016] provide direct
empirical support for the signal extraction hypothesis. In particular behavioral bias coming from the
accessibility heuristic (that individuals over-weight common items when estimating their personal
inflation rate) can mimic signal extraction even when information about the aggregate price level is
in fact easily available.
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demand curve (50) with inflation (55) and Lucas supply curve (59) yields

πt = 1
1 + b

m̂t + b

1 + b
Etπt (2.79)

ŷt = b

1 + b
m̂t −

b

1 + b
Etπt (2.80)

Passing expectations through (61) yields

Etπt = Etm̂t (2.81)

Using (63) and the fact that m̂t = Etm̂t+(m̂t−Etm̂t) (61) and (62) can be rewritten

as

πt = Etm̂t + 1
1 + b

(m̂t − Etm̂t) (2.82)

ŷt = b

1 + b
(m̂t − Etm̂t) (2.83)

Using the individual supply curve (49), demand curve (51), steady state deviation

(55) and the Lucas supply curve (59),(64) implies the expression for relative price

deviation

p̂t(i)− p̂t = ẑt(i)
θ + b

(2.84)

Hence Vr = Vz
(η+b)2 and from (64) Vp = Vm

(1+b)2 . This leads allows me to derive the

following implicit formulation final form for the slope of the Lucas surprise Phillips

curve

b = 1
η

[
Vz

Vz + (θ+b)2

(1+b)2Vm

]
(2.85)

Lucas focused on the limiting case lim θ → 1 which yields b = 1
η

Vz
Vz+Vm Hence the

final form of the Phillips curve comparable to Calvo is

πt = b−1 yet

πt = η (Vm
Vz

+ 1) yet
(2.86)

where I have employed aggregation (54). Although, the forthcoming proposition will

concern the general form derived from the implicit expression for b−1 from (69).

The last step is to verify the conjectures made concerning π and r̂i in decomposition
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equation (58). Equations (61) and (66) imply that both are linear functions of m̂ and

ẑi. Since m̂ and ẑi are independent, π and r̂i are also mutually independent. Since

linear functions of normal variables are normal, π and r̂i are also normally distributed

and the derivation is complete.

The internal logic of the model is communicated through equations (64) and (65)

that determine the relationship between the two key macroeconomic variables the

output gap ye and inflation π and the policy instrument in this case the money

supply (in deviation form) m̂. The component of aggregate demand that is observed,

E m̂ affects only prices passing straight through into inflation. However, the part

that is unobserved m̂− Em has real effects. Consider a positive shock to the money

supply m̂. This increases aggregate demand- producing an outward shift to each

individual producers demand curve. Since aggregate demand is not observed, each

supplier’s best guess is that some portion of the rise in product demand represents a

shock (positive in this case) to individual demand through the relative price. Thus

producers increase output.

The effect of an observed increase in m̂ is completely different. Suppose there is

an anticipated increase in aggregate demand so E m̂ is increased with m− E m̂ held

constant. Now each producer attributes the rise in demand for their product solely to

the expansion of the money supply and thus there is no change in aggregate supply.

Therefore observed movements in aggregate demand affect only prices.

The policy implications of this model as pointed out by Sargent and Wallace [1975]

and Barro [1976] are stark. Monetary policy understood as systematic movements

in aggregate demand reflected here in E m̂ will have no effect on the path of real

variables output summarized here ŷ because agents with rational expectations will

anticipate changes in demand and see through them. Only the unpredictable part

of demand m − Em will matter for real output. However, this roll of a dice is

not what is understood by monetary policy. In particular, counter-cyclical policies-

the common sense that Central Banks should lean against the macroeconomic cycle-

cutting rates during a downturn and raising them when there is an unsustainable

boom- are ineffective. Policy ineffectiveness remains the most powerful result in

monetary policy analysis. I will show that New Keynesian economics has not entirely

disentangled itself from its web.
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2.7.2 Rotemberg Pricing

This model Rotemberg [1982] is perhaps the simplest model of state dependent pricing

and the one most commonly compared to Calvo24. The idea is that firms face a

convex cost of changing prices and therefore they do not adjust immediately to their

optimal flexible price. These costs need not be viewed as just physical costs of price

changing, although these can be substantial for some retailers but could also include

the cost of finding and processing information about the market and the aggregate

economy, negotiation with suppliers, communication with the public or as a short cut

to incorporate behavioral responses of customers to price changes or fairness concerns

on the part of producers.2526 Levy et al. [1997], Zbaracki et al. [2004], Gorodnichenko

and Weber [2016] and Noton [2016] provide empirical strategies to measure such costs.

The household problem, technology and policy rule will be as before. The difference

lies in the source of price rigidity. The firm faces a cost of changing prices usually

parametized as a quadratic and scaled by cp

Cat (i) = cp
2

(
pt(i)
pt−1(i) − 1

)2
(2.87)

Profit maximization requires firms:

max
{pT (i),lT (i)}

Et
∞∑
T=t

Qt,T

[
PT (i)
PT

yT (i)−WT lT (i)− cp
2

(
pt(i)
pt−1(i) − 1

)2 ]
(2.88)

Note unlike with Calvo pricing the firms’ problem is recursive in present discounted

profits with

Vt(pt−1(i)) = Pt(i)
Pt

yt(i)−Wtlt(i)−
cp
2

(
pt(i)
pt−1(i) − 1

)2
+ Et[Qt,t+1Vt+1]

24Alternative menu cost models with fixed costs of price changes are also popular but benchmark
formulations such as Mankiw [1985] and subsequent extensions such as Nakamura and Steinsson
[2008] feature discontinuous adjustment and therefore cannot be rendered in a log-linear form.

25See Blinder et al. [1990], Blinder et al. [1991] and Bertola et al. [2012] for supportive survey
evidence.

26Theoretical papers that take up these ideas include Hobijn et al. [2006], Reis [2006], Gorod-
nichenko [2008] Alvarez et al. [2014],Alvarez et al. [2015], Maćkowiak and Wiederholt [2015] and
Alvarez et al. [2016] for information processing stories and Renner and Tyran [2004], Rotemberg
[2005], Nakamura and Steinsson [2011] and Rotemberg et al. [2011] concerning customer markets
and behavioral approaches.
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The first order conditions for an individual firm is

(1− θ)
(
pt(i)
Pt

)−θ
− cp

(
pt(i)
pt−1(i) − 1

)
Yt

pt−1(i)

+ θMCt(i)
(
pt(i)
Pt

)−(θ+1) Yt
Pt

+ EtQt,t+1cp

(
pt+1(i)
pt(i)

− 1
)
Yt+1pt+1(i)

pt(i)
= 0 (2.89)

where the top line is the marginal revenue net of the cost of price changing and the

second reflects the effect on present and future marginal costs of an adjustment today.

pt(i)
pt−1(i) = 1 + πt (2.90)

∆ = 1 (2.91)

Finally the resource constraint reflecting a wedge between production and consump-

tion caused by the cost of price changing replaces (9)

Yt = Ct + cpπ
2
t Yt (2.92)

Flexible price output is the same as in the Calvo model and at the non-stochastic

zero inflation steady state ĉt = ŷt to yield the Phillips curve:

πt = ω̃yet + βEtπt+1 (2.93)

Where

ω̃ = (σ + η)(θ − 1)
cp

(2.94)

2.7.3 Equivalence Conditions and Policy Implications

The connection between the models is as follows.

Proposition 4. Consider the Phillips curve slope parameterizations {w, b−1, w̃} for

Calvo, Lucas and Rotemberg models defined by (36)-(37), (69)-(70) and (77)-(78) re-

spectively along with the set of common parameters γc = {σ, β, η, Vm} and model spe-

cific parameters γs = (α, cp, Vz) There exist settings for the common parameters that

make the Rotemberg and Calvo models observationally equivalent for for all positive
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Phillips curve slopes and for the Lucas model also provided that the slope parameter

exceeds unity.

Proof. Write a general Phillips curve as πt = gyet where g is the slope of the Phillips

curve. For the Calvo model first of all apply proposition 1 to show that the expected

inflation term will always be zero. Then consider the slope as a function of the reset

parameter α note crucially this parameter is unique to the Calvo model. Note further

limα→1 ω(α) = 0 and limα→0 ω(α) =∞. As ω(α) is a composition of power and linear

functions it must be continuous. Hence, apply the intermediate value theorem to show

that for every g > 0 there is a parametization γm such that ω = g.

Likewise for Rotemberg note that cp is its unique parameter with limcp→∞ ω̃ = 0 and

limcp→0 ω̃ = ∞ and apply the intermediate value theorem for ω(cp) to complete the

proof that for every g > 0 there is a parametization γm such that ω = ω̃ = g and

apply proposition 1- to complete the proof. Its implementation is cp = α(θ−1)
(1−α)(1−αβ) .

Turning to the Lucas model. The proposition follows if I can show that a unique

b exists for every possible implicit form (69) and that 0 < b < 1 with continuity

in parameters (69) note that by the parameter restrictions the right hand side is

strictly positive for all possible b hence b > 0 next note that θ > 1 ensures both terms

in the denominator are strictly positive for all possible b hence we can only have

0 < b < 1. Also note this bound cannot be tightened since for all other parameter

values lim bVz→0 = 0 and lim bη→1,Vz→∞ = 1

The proof is completed by an implicit function theorem argument completed with the

identical intermediate value theorem argument. Define

F = b− 1
η

[
Vz

Vz + (θ+b)2

(1+b)2Vm

]
≡ b− 1

η

(1 + b)2Vz
(1 + b)2Vz + (θ + b)2Vm

= 0

and its partial derivatives can be characterized as follows

Fb = 1− 2
η

(1 + b)Vz
(1 + b)2Vz + (θ + b)2Vm

+ 1
η

(1 + b)2Vz
[2(1 + b)Vz + 2(θ + b)Vm]
((1 + b)2Vz + (θ + b)2Vm)2
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Now the task at hand is to give Fb a definitive sign converting to a common denomi-

nator and a little cancellation gives

η(1 + b)4V 2
z + 2η(1 + b)2(θ + b)2VzVm + η(θ + b)4V 2

m − 2(θ − 1)(1 + b)(θ + b)VzVm
((1 + b)2Vz + (θ + b)2Vm)2

Finally combining the second and fourth terms yields a strictly positive expression

Fb = η(1 + b)4V 2
z + 2η[(η − 1 + b)θ + 1 + η(1 + b)b](1 + b)(θ + b)VzVm + η(θ + b)4V 2

m

((1 + b)2Vz + (θ + b)2Vm)2

This proves Fb > 0. The other partial derivatives can be characterized as fol-

lows Fη = 1
η2Vz/(Vz + ( θ+b1+b)

2)2 > 0, Fθ = 2
η

(θ+b)2

1+b Vz/(Vz + ( θ+b1+b)
2Vm)2 > 0, FVm =

1
η ( θ+b1+b)

2Vz/(Vz + ( θ+b1+b)
2Vm)2 > 0 and FVz = − 1

η ( θ+b1+b)
2/(Vz + ( θ+b1+b)

2)2 < 0 all are

non-zero as required by the implicit function theorem.

As a composition of smooth functions F is itself smooth. Hence by the implicit

function theorem b exists is unique and continuously differentiable in parameters

(η, θ, Vz, Vm). It is therefore continuous in these arguments, as is b−1 by preservation

of continuity under function composition and the intermediate value theorem on 1 <

b−1(η, θ, Vz) <∞ proves that as with Rotemberg and Calvo in the relevant range I can

always find common parameters such that b−1 = g. Since I used different members

of γs for each parametization- I am able to vary them independently. Hence they

are observationally equivalent for every possible setting for the common parameters

provided g > 1.

The interpretation is that provided the Phillips curve is sufficiently steep then

the methods of macroeconometrics cannot be used to distinguish between these three

underlying designs for the Phillips curve. Vm has been assigned to the common pa-

rameters because it would be easy to add a monetary sector to either of the New

Keynesian models without affecting topological properties beyond dimensionality if

we cared to add a money demand shock. Moreover, it can be estimated in principle

from monetary aggregates in a model free fashion.27 The model specific parameters
27In practice there are issues with how money is defined and measured. See Hendry and Ericsson

[1991], Friedman and Schwartz [1991], Ericsson et al. [2016] and Lucas and Nicolini [2015] for a
window into this debate. Note there are also issues to do with the construction and availability of
data- for monetary aggregates.
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are those that only feature in a single model and need to be estimated from microeco-

nomic data. This accords with the conventional practice in macroeconometric model

comparison of calibrating common parameters and estimating parameters specific to

a single model.

Without microeconometric evidence the standard New Keynesian model is equivalent

to the Rotemberg model which contradicts the findings of 2.4 and 2.7 concerning their

non-linear forms. Furthermore, if there is sufficient price flexibility it is also equiva-

lent to its New Classical counterpart. This should be a surprising result given that

the express purpose of the New Keynesian framework was to differentiate itself from

earlier Classical monetary theory. Moreover, the fact that there can be equivalence

with a non-dynamic model is indicative that the benchmark New Keynesian model

has a weak claim to be the pinnacle of Dynamic Stochastic General Equilibrium mod-

eling. Intuitively, if one misses out on the ’stochastic’ part of the equilibrium then one

loses the ’dynamics’ that ought to a define a successful Dynamic Stochastic General

Equilibrium.
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Chapter 3

The Role of Price Dispersion

This Chapter builds on Section 2.3. It begins by analyzing the global properties

of ∆ as an aggregator which will prove crucial to subsequent chapters. I general-

ize this notion across a collection of sticky price models then compare the notion of

price dispersion in a Keynesian context to a leading counterpart from New Classical

macroeconomics. The difference lies with rigidity of the aggregate price level caused

by the absence of selection as to which firms change price. I consider dynamic prop-

erties specific to the Calvo setting and by way of example application to zero bound

models. I link the condition that ∆ ≥ 1 to underlying non-negativity constraints. I

link coordination failure on the production side before discussing extensions that can

incorporate idiosyncratic shocks and some state dependence.

3.1 Lower Bound on Price Dispersion

The following powerful result derived directly from the construction of the price level

tells us that the measure of price dispersion ∆ defined by equation (18) in Section 2

is strictly greater than unity unless all firms set the same price.

Proposition 5. ∆ ≥ 1 with ∆ = 1 if and only if pt(i) = Pt, ∀ i.

Where pt(i) is the price set by any firm i at time t. The lengthy proof is contained

in Appendix A, the first part is a familiar application of Jensen’s inequality, possible

because the demand system is sufficiently convex, and the second a small extension

exploiting strict convexity. Versions of this result are well known in the literature- see

for example Schmitt-Grohe et al. [2007] or Damjanovic and Nolan [2010], although

full proofs are omitted and analysis is usually restricted to non-stochastic steady
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states. The extension to other New Keynesian models that use the constant elastic-

ity of substitution preference scheme is straightforward. I do so in Appendix A by

modifying the probability measure used to aggregate the various prices to obtain the

price level to correspond to three common pricing models: the basic Calvo model

used here, the Calvo model with indexation to trend inflation used by Yun [1996] and

the General Taylor Economy of Taylor [1993b], Coenen et al. [2007], Dixon and Kara

[2010], Dixon and Kara [2011] and Dixon and Le Bihan [2012] which encompasses a

wide range of pricing models and can be fitted exactly to match cross-section price

distributions. 1

The economic force driving this result is preference for variety- where the individual

prefers averages to extremes. It ensures that variations in price unrelated to marginal

costs make the individual worse-off. This is a very weak economic assumption. A

strict preference against variety would make it difficult to ensure interior demand sys-

tem for all products. The only cases in widespread usage where this argument would

not prove widely applicable are those with homogeneous products as with Bertrand,

perfect or Cournet competition. Therefore the result is certainly not specific to one

demand system.

To allow for heterogeniety between firms I can redefine ∆ to normalize each firm’s

price relative to its optimal reset price.Yun and Levin [2011], Fuhrer [2000], Den-

nis [2009], Ravn et al. [2010], Givens [2013], Santoro et al. [2014], Lewis and Poilly

[2012], Lewis and Stevens [2015] and Etro and Rossi [2015] consider various alterna-

tive demand systems with a variety of motivations. I could alter the source of the

price dispersion from staggered to for example information-constrained price-setting.

Mankiw and Reis [2002], Mankiw and Reis [2006], Mankiw and Reis [2007], Loren-

zoni [2009], Lorenzoni [2010], Nimark [2008], Nimark [2014], Adam [2007], Mackowiak

et al. [2008] and Paciello and Wiederholt [2014] are papers where this price dispersion

is present but not accounted for. All that is required is a motivation for firms to set

different prices when in a flexible price world it would be efficient if they all set the

same.
1Dixon [2012] shows that the Generalized Taylor model can approximate arbitrarily well the

Generalized Calvo used by authors such as Wolman [1999], Dotsey and King [2006], Sheedy [2010],
the multiple Calvo associated with Carvalho [2006] and de Carvalho [2011], as well as the familiar
simple Taylor and Calvo.
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Price dispersion would also come about where there are physical costs of price chang-

ing provided that firms face idiosyncratic shocks or differing adjustment costs. See

for example, Gertler and Leahy [2008], Nakamura and Steinsson [2008], Reiff et al.

[2014], Bouakez et al. [2009] and Bouakez et al. [2014]. In these cases the relevant

interpretation of the price dispersion variable ∆ is the difference between the actual

and flexible price. Suppose for example fixed adjustment costs of a price change

varying across firms with an aggregate shock - ∆ > 1 will come about if some firms

adjustment costs are below and some above the common adjustment threshold. Sim-

ilarly, with common fixed adjustment cost but idiosyncratic shocks ∆ > 1 will occur

if some firms keep their price constant because their idiosyncratic shock ’cancels out’

the aggregate shock i.e. they remain inside their band of price inaction. The behavior

of price dispersion and its dynamics are integral to all the analysis which follows. All

results that do not refer to a specific specification of sticky price setting (e.g. Calvo or

Taylor) generalize to all models covered by this lemma. The fundamental mechanism

in this paper is that inflation causes price dispersion.

3.1.1 Different Pricing Models

This subsection formalizes generalizations to other pricing setups and in so doing

explains why several competiitor models, two of which were laid out in Section 2.6 do

not generate a dynamic variable analagous to ∆ in the basic Calvo set of Section 2.4.

To this end I consider a new concept-Real Price Dispersion- the price dispersion that

would exist in a models flexible price limit- where all prices could be reset in every

period with perfect information at no cost to the firm- as in the RBC framework

and standard microeconomic analysis2 Real price dispersion could be thought of as

the price dispersion that is efficient from the point of view of firms assuming no

restrictions or costs of price setting and taking the constraints of the market structure

and production technology as given. It takes the form

∆∗t =
∫
i
Ft(i)

(
p∗∗t (i)
Pt

)
dµt(i) (3.1)

2In New Monetarist models firms prices are perfectly flexible whilst consumers face a costly
search process to ascertain the distribution of prices- see Williamson et al. [2010] and the original
contribution from Burdett et al. [1983] which shows search costs can give rise to a non-degenerate
distribution of prices.
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where

Pt =
∫
i
pt(i)Ft(i)

(
p∗∗t (i)
Pt

)
dµt(i)

is the price level. F (i) represents the demand curve for firm i and is homogeneous of

degree zero in prices - as in basic consumer theory. This allows me to define nominal

price dispersion as the ratio between actual and real price dispersion. This can be

viewed as price dispersion that is viewed as inefficient from the point of view of a firm

operating in a flexible price environment

∆t = 1
∆∗t

∫
i
Ft(i)

(
pi
Pt

)
dµt(i) (3.2)

This definition is consistent with the parametric form of ∆t in the Calvo model given

in (2.39) where I assumed firms faced the same demand and technology with no id-

iosyncratic shocks, which makes any price dispersion inefficient.

As before i is a number used to index an individual firm. Since I am allowing hetero-

geniety among firms’ optimal prices and the possibility for multiple equilibrium, it is

necessary to be more precise about how i is assigned. i reflects the order of the firm

in the price distribution. Therefore, there exists a positive monontonic relationship

between i and pt(i)/Pt. This also simplifies the existence of the defining integral. 3

Ωt(i) is the set of all prices in the economy at time t. Σt is the family of sets of

individual firms over which output can be aggregated. 4

Hence p∗∗t (i) represents the price that a firm at the corresponding point in the price

distribution would set in the limit where all prices became flexible and information

perfect as in the RBC framework. This differs from p∗t which features in staggered

price setting models such as the Calvo model in Chapter 2 and Taylor contracting

models in this Chapter, where p∗t represents the price a firm with a price that is fully
3Formally I have defined that Σt contains a countable family of pure points representing firms

interacting strategically together and another family of Borel sets which are continua of firms who
take the aggregate economy as given corresponding to perfect or monopolistic competitions as in
Calvo, Taylor and other New Keynesian models. The associated measure µ(i) is positive as it reflects
shares of goods in aggregate consumption- the existence of a discrete Lebesgue integral over the pure
point sets follows immediately. Royden and Fitzpatrick proves that monotone functions on Borel
sets in R possess Lebesgue integrals. This demonstrates that a measure µt exists over all sets in Σt.

4In mathematical terms Ωt is the measurable space of firms and Σt is the smallest sigma-algebra
which contains sets of firms that produce positive output and the empty set with no firms in it. The
distinction between membership of Σt and Ωt is operative in the specification of many macroeconomic
models with imperfect competition which use continuum of firms, for which countable subsets of prices
would belong to Ωt but not Σt. The two coincide in real life where the set of prices at a point in
time is countable.
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flexible today would set taking into account that other prices in the economy are

rigid. The notion that rigidity of prices elsewhere in the economy causes flexibly re-

set prices to differ from those that would be set in a fully flexible world (p∗∗t (i) 6= p∗t (i))

is known as real rigidity see Ball and Romer [1990]. It is present in major New Key-

nesian models. The RBC skeleton has a symmetric equilibrium so p∗∗t = Pt however

the optimal reset price p∗t only equals Pt when πt = 0 otherwise p∗∗t 6= p∗t so there is

real rigidity. It would be interesting to explore the link between these two concepts

further. To complete the generalization it is necessary to define two properties that

DSGE models or more specifically their associated price distributions may possess.

The first is aggregate nominal rigidity

Definition 2. An economy possesses aggregate nominal rigidity if there exists a

measurable set of firms B1 ∈ Σt(i) such that for some l > 0, pt(i) = Φl(i)(pt−l(i))

and there exists no more than one inflation rate π̄(Σt) such that πt = π̄t implies that

pt(i) = p∗∗t (i) for i ∈ B1. Also it must be the case that ∀ l′ where 0 < l′ < l we can

write pt−l′(i) = Φl−l′(i)(pt−l(i)) where πt−l′ 6= π̄(Σt) implies pt−l′(i) 6= p∗∗t−l′(i)

The first part states that to have aggregate price rigidity there must be a pos-

itive fraction of output sold at a price that reflects past prices l periods back and

differs from those that would prevail in the flexible economy. There is an allowance

that if inflation hits a certain value the two could coincide as would occur in Calvo

contracting starting from no price dispersion when inflation is zero or equal to a tar-

get π̄ to which all prices are indexed either directly as in Yun [1996] or to the last

periods inflation as in Smets and Wouters [2003], Christiano et al. [2005] and Smets

and Wouters [2007]5. The second part serves to ensure dependence between past and

current price levels and therefore past and current levels of price dispersion. This

means there cannot be aggregate price rigidity in an otherwise flexible economy just

because there are backward-looking or cycling prices. This restriction has economic

content. Many items are sold on temporary discount which upon expiry return to

their old level.

Fortunately, recent New Keynesian models that feature products on sale avoid this
5With Taylor contracts we have to allow for the possibility that there may exist reset prices

consistent with no inefficient price dispersion that differ over time. This is because prices replace one
another under Taylor contracting see equation (49) so the price that sets ∆t to one will depend on
the price it is replacing in that case p∗T−M .
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trap as they are able to generate changes in the frequency or size of discounts in re-

sponse to monetary shocks that would be neutral in the model’s RBC skeleton- which

implies purchases are made at pt 6= p∗∗t see Kehoe and Midrigin [2008], Guimaraes

and Sheedy [2011], Nakamura and Steinsson [2011], Eichenbaum et al. [2011] and

Malin et al. [2015].6

As well as traditional RBC models, the definition of aggregate price rigidity excludes

recent New Monetarist models. In this framework there is a distribution of prices

motivated by a flexible price microeconomic model, it has become common to use

a model with costly search such as Burdett et al. [1983], Albrecht and Axell [1984]

and Burdett and Mortensen [1998] as these can provide a rationale for agents to hold

money if there are appropriate credit constraints see Lagos and Wright [2005] and

Williamson et al. [2010]. Their point is that provided the distributions of prices over-

lap from period to period it is possible for some firms not to change their price in

equilibrium. Even though money will be exactly neutral because the market equilib-

rium in their model does not depend on the money supply. They claim therefore that

price rigidity does not imply monetary non-neutrality.

Their claim is justified precisely because their model does not possess aggregate nom-

inal rigidity. It has equilibria where individual firms choose to keep prices fixed

because they do not care about their position in the price distribution by equilibrium

construction. On the other hand, with my approach of indexing firms by their posi-

tion in the distribution there is no nominal rigidity. At each point in the distribution

the appropriate firm raises their price one-for-one with the money supply- so the ag-

gregate price level is perfectly flexible.

It is necessary to impose one further condition on the price distribution this is called

nominal heterogeniety. This states that the degree of nominal distortion represented

by the ratio between the actual price and the flexible model price pt(i)/p∗∗t (i) must

vary between firms.

Definition 3. An economy possesses aggregate nominal heterogeniety if ∃ B1, B2 ∈

Σt(i) such that
∫
B2 pt(i)/p∗∗t (i) dµ(i)−

∫
B1 pt(i)/p∗∗t (i) dµ(i) > 0 for all πt = π̄t

6Note that as these papers do not tend to use log-linearization around a non-stochastic steady state
to characterize business cycle dynamics, they might be immune to some of the criticisms involving
price dispersion in this chapter and subsequent concerns about the qualitative behavior of dynamic
approximation discussed in Chapter 5.
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This restriction rules out stylized models such as those in Section 2.6 along with

contemporaries such as Barro [1972], Sheshinski and Weiss [1977], and Mankiw [1985]

where all firms set the same price motivated by physical costs to price changing

that do not differ among firms, as argued earlier such models are often unable to

generate sufficient nominal rigidity. In any case physical costs of price changing

vary substantially across firms and products see Levy et al. [1997] - consistent with

observed heterogeniety in the frequency of price adjustment as found in empirical

studies such as Dhyne et al. [2006], Dickens et al. [2007] and Dixon and Le Bihan

[2012].

Note that efficient price dispersion is a relative concept of efficiency. It compares

the actual distribution of prices to a corresponding model with flexible prices, perfect

information and profit maximization7. The price dispersion that is efficient from

the firms’ point of view ∆∗t could be inefficient from a social planner point of view

because there are other inefficiencies in the economy (e.g. imperfect competition or

asymmetric information) that cause welfare to fall below its social optimum. In fact it

could be constrained (second-best) efficient to have inefficient price dispersion in order

to help mitigate other uncorrected externalities. A prominent attempt to demonstrate

this point is the burgeoning optimal inflation rate literature, where it is common to

augment benchmark New Keynesian models capable of generating (inefficient) price

dispersion, such as the basic Calvo model, with additional frictions in order to derive

non-zero optimal inflation targets. 8

The most general statement that can be made is as follows.

Theorem 1. Under aggregate nominal rigidity and aggregate nominal heterogeneity

there exists π̄ such that if πt 6= π̄ then ∃ t′ ≤ t such that ∆t′ > 1
7With suitable modification of the RBC skeleton profit maximization could be relaxed to firm

objective maximization to allow for among other factors risk aversion or behavioral factors as con-
sidered by for example Jaimovich and Rebelo [2007] Choudhary and Levine [2010], provided it did
not induce direct dependence between today’s optimal price and past optimal prices conditional on
other shocks and parameters in the model.

8The first friction studied was the existence of non-interest bearing money which brought the
deflationary forces of the Friedman rule into place see Khan et al. [2003], Adão et al. [2003], Schmitt-
Grohé and Uribe [2004] and Schmitt-Grohe et al. [2007]. Subsequently, further imperfections in the
product, goods and labor markets have been considered Collard and Dellas [2005], Pontiggia [2012]
and Ikeda [2015], along with a binding lower bound on nominal interest rates Billi et al. [2011],
Coibion et al. [2012], Eggertsson and Giannoni [2013], and Eggertsson et al. [2015]. As this literature
only considers price dispersion owing to trend inflation and ignores the additional dispersion created
by stochastic shocks there will be an upward bias in reported optimal inflation.It is beyond the scope
of this paper to quantify this omission.
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Proof. The result is trivial if ∆t−1 > 1 so assume ∆t−1 = 1. By hypothesis that

πt = π̄ it follows that Pt 6= (1 + π̄)Pt−1. Now we know from lemma 2 that ∆t−1 = 1

implies that ∀ p(i) ∈ Ωt−1 p(i) = Pt−1. Therefore πt 6= π̄ requires that ∃ p(j) ∈ Ωt

such that ∃ p(j) 6= pi. The assumption of non-trivial price rigidity ensures that there

exists p(k) ∈ Ωt−1,Ωt from the first part p(k) = p(i), therefore from the second part

for some p(j) ∈ Ωt p(k) 6= p(j) so by lemma 2 ∆t > 1.

Note that this general result cannot be tightened to link inflation to contemporane-

ous price dispersion because this would not encompass models with Taylor contracts.

The reason is that with Taylor contracts the price required to remove price dispersion

can differ from that required to stabilize prices (zero inflation). This is because under

Taylor contracts inflation is determined by a comparison between current reset prices

and those they are replacing whilst price dispersion is determined by the difference

between current reset prices and past reset prices that have not been replaced. Intu-

itively, non-zero current inflation can cancel out past price dispersion. Under Calvo

where old reset prices never disappear the zero price dispersion and zero inflation

reset price coincide so the coexistence must be contemporaneous. Appendix A offers

a simple numerical example to clarify these points.

3.1.2 Stochastic Extension

The analysis extends naturally to a stochastic environment- all expectations are taken

with respect to the ensemble distribution. The case where ∆ = 1 can be ruled out as

a probabilistic description of the economy on what are effectively trivial restrictions

on the stochastic environment affecting the pricing decisions of firms with prices that

are not perfectly flexible.

Proposition 6. For an economy with aggregate nominal rigidity and aggregate nom-

inal heterogeneity E∆t > 1 unless ∃ π̄t such that P(πt = π̄t) = 1 and unless the shock

process has a point mass at πt = π̄t then P∆t > 1

Proof. These are applications of Jensen’s inequality and Chebyhsev’s inequality from

proposition 5.

In a stochastic environment we know that as there can only be one rate of infla-

tion that can implement the flexible price case ∆ = 1 therefore any stochasticity of



3.2. Persistence Properties 67

inflation ensures that E∆ > 1 by Chebyshev’s inequality. Whilst, small perturbations

local to this inflation rate make the probability ∆ = 1 arbitrarily small so E∆ > 1

by the Jensen’s inequality argument in proposition 5. Therefore the non-stochastic

steady state is improbable unless the shock process has a point mass at π̄t. The

economic message is that concerns about taking approximations or analyzing welfare

as though ∆ = 1, are much more general than the particular equilibrium concept and

approximation strategies I present later on in sections 4 and 6.

3.2 Persistence Properties

This section analyzes the persistence properties of price dispersion in two familiar

models: the Calvo model of Chapter 2 and mainstay of this paper and the Taylor

framework discussed briefly in Chapter 2. In general price dispersion persists even if

the shock process generating it is not present in all time periods. The most general

statement can be made in the context of the benchmark Calvo model set out in

Chapter 2.

3.2.1 Price Dispersion with Calvo Pricing

Remark 3. If inflation πt is ever non-zero in the Calvo model price dispersion ∆̂t > 0

will exist in all subsequent periods.

The result follows simply from applying Lemma 2 and noting that the set of prices

in the economy Ωt includes every previous price. This is because the fraction of prices

in the economy equal to a given reset prices p∗t never falls to zero no matter how far

into the future one moves since ιT (p∗t ) = αT−t(1 − α) > 0 ∀ T > t. This result

has powerful implications for the class of equilibrium that can exist in a model with

Calvo pricing. In particular it implies the current concept of equilibrium used in the

literature (the non-stochastic equilibrium) does not arise in a Calvo model if it has

ever had price dispersion.

Definition 4. The behavior of the New Keynesian model from time t can be rep-

resentedby the continuation path ZCt = 〈Zt, Zt+1, · · · 〉 where Zt = (πt, yet , ∆t, πt−1)

which are governed by all the conditions set out in Chapter 2 apart from the policy

rule equation (2.43).
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The specific policy rule equation is omitted to allow consideration of the con-

straints on policy rules in general. Here policy is represented implicitly by continua-

tion paths {πCt , yCt }, policy rules comparable to (2.43) but possibly time dependent

could then by derived using the Euler equation (2.10).9

Definition 5. A non-stochastic continuation path from time t denoted Z̄Ct = 〈Z̄t, Z̄t+1, . . . , Z̄t+τ , . . . 〉

is where ∀ τ ≥ 0 Pr(Zt+τ ) = Z̄t+τ = 1, i.e. there is no uncertainty about future

variables.

A non-stochastic continuation path corresponds to a perfect foresight model with

initial value Zt. As Zt is dependent upon the shock carrying parameters from section

2 U = (ψT , ϕT , AT ) in a continuous fashion. The perfect foresight applies to the

continuation of the shock processes also10 ×Ct = ×̄Ct = 〈Θ̄t, . . . , Θ̄t+1, . . . , Θ̄t+τ , . . . 〉

so Pr(Θt+τ ) = Θ̄t+τ = 1, ∀ τ ≥ 0. A stronger concept is that of a stable non-stochastic

continuation path defined as follows.

Definition 6. A stable non-stochastic continuation path denoted (Z̄∗)Ct is a non-

stochastic continuation path where the shock process are held constant Pr(Θt+τ ) =

Θ̄ = 1, ∀ τ ≥ 0

This corresponds to a non-stochastic model with initial position Zt. Finally the

strongest concept is that of non-stochastic equilibrium path from t.

Definition 7. A non-stochastic equilibrium path from t of a New Keynesian model

denoted (Z̄∗∗)Ct is a non-stochastic continuation path where Zt+τ = Z̄ ∀ τ ≥ 0 i.e. all

the variables remain constant in all future periods for sure.

In other words a non-stochastic equilibrium is a fixed point of the system where

every future variable is certain to be constant at its present period value forever.

This is the basic solution concept in microeconomics and growth theory. It is natural

that macroeconomists wish to apply it to the New Keynesian model also. However,
9For convenience I use raw output yt rather than the efficient output gap yet introduced in Chapter

2 to characterize policy. The two formulations are equivalent as however the output gap variable is
defined there must be a one-to-one mapping between them in a non-stochastic world.

10Formally there is a non-stochastic continuation path for Zt if and only if there is a non-stochastic
equilibrium for Θt with the only if following from the continuous dependence and the if following
from the fact that Θt is the only source of uncertainty in the model.
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whenever price dispersion is possible this is not in general correct even in the extreme

case of a non-stochastic continuation path11.

Definition 8. ZHt = 〈· · · , Zt−1, Zt〉 denotes the history of the variable Z up to time

t

Let ∆(π̄) = ∆(ZHt = 〈· · · , π̄, π̄〉)

Proposition 7. In a model with Calvo pricing, a non-stochastic equilibrium (Z̄∗∗)Ct

with piT = π̄ from time t will only exist if ∆t = ∆(π̄).

Proof. The argument proceeds by contradiction suppose the converse then (21) takes

the form of the following deterministic difference equation.

∆T = ∆(π̄) + ϑT−t(∆T −∆t) (3.3)

Where

ϑ = α(1 + π̄)θ

∆(π̄) = (1 + π̄)θ (1 + π̄ − α)
θ
θ−1

(1− α)
1
θ−1 (1− α(1 + π̄)θ

∆(π̄) is the non-stochastic steady state price dispersion and ϑ < 1. This restricion

is a requirement to ensure that a steady-state exists if not ∆ would grow without

bounds which would cause consumption C to tend to zero violating the transversality

condition, equation (2.9)12. Now it is clear that if ∆t 6= ∆(π̄) it means ∆T is time

dependent contradicting the definition of a non-stochastic equilibrium for Z from time

t. Note also that as 0 < ϑ < 1 the economy is converging monotonically towards its

non-stochastic steady state but does not reach it in finite time. Therefore we know

that 1 < ∆T < max{∆t,∆(π̄)}, ∀T > t

For the zero-inflation steady state the behavior of ∆ simplifies considerably to

∆t = 1− α+ α∆t−1
11Formally, a non-stochastic continuation path is necessary but not sufficient for a non-stochastic

equilibrium. The necessity follows from noting that otherwise expectation errors could lead actual
and expected values to diverge so that Pr(Zt+τ ) = Z̄ < 1 The non-sufficiency follows from the
following counter-example.

12The threshold inflation rate π̄ = (1/α)1/θ−1. This restriction is well-known in the trend inflation
literature. For developed countries it tends to be met quite easily see Ascari and Sbordone [2014].
More discussion on maximum steady state rates of inflation will be undertaken in Chapter 5 when
stochastic equilibrium is introduced.
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∆t = αt−t0∆t0 > 1 = ∆̄

In other words the persistent behavior of the backward-looking price dispersion term

stops the forward-looking variables output gap and inflation reaching equilibrium.

Note however that the effect of initial price dispersion decays away when infla-

tion is kept constant since limT→∞ ∆T = ∆(π̄), ∀∆t. The (non-linear) Phillips

Curve relation corresponding from 2.4 ensures yt also has a limit (by the open map-

ping theorem once again) thus with a stable inflation policy the economy is ergodic

limt→∞ ZT = Z̄, ∀Zt. The property that in the infinite limit a dynamical system

"forgets" its initial position is called ergodicity. In section 4, the stochastic analogue of

this concept will be used to define a meaningful notion of dynamic stochastic general

equilibrium (DSGE). Take t > t0. Since πt = π̄, yt = ȳ is not in fact an equilibrium

of the system because it does not conform with all the optimization and market-

clearing conditions that define the dynamical system laid out in section 2, to see this

note that price construction equation (2.31) implies at each πt maps to only one reset

price p∗t /Pt we can see this because the relationship between the optimal reset price

and inflation is strictly monotonic- as

dπt
d(p∗t /Pt)

= 1− α
α

(p∗t /Pt)−θ

(1 + πt)θ−2 > 0

Therefore the reset price will be constant in every period p∗t /Pt = p∗/P . By re-

cursively solving the optimal reset price equation for example (2.30). This implies

real marginal costs ϕt = ϕ̄ will also be constant. From the marginal cost expression

equation (2.26) with no technology shocks At = Ā the real wage must be constant

Wt = W̄ . Now note that in equilibrium the market-clearing condition implies when

∆ decreases, labor l will decrease one-for-one which sets up a contradiction when we

consider the optimal labor supply condition equation (2.11) by assumption the left

hand side is constant but the right hand side must be decreasing- which completes

the proof. Therefore persistence in the backward looking variable ∆ will transmit to

the other variables in the model. This mechanism is central to the analysis of the

paper. Also note the following:
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Corollary 3. With Calvo pricing, there will always exist a non-trivial trade-off be-

tween inflation and output gap stabilization if there has ever been inflation variability.

I have just shown that πt = π̄ ↔ yet 6= ȳe, ∀ t > t0 if there was initial price

dispersion ∆t0 > 1 this implies that yet = ȳe, ∀ t > t0 only if πt 6= π̄, ∀ t > t0. The link

with inflation variability is provided by Lemma 2 it does not matter when the price

inflation variability took place because of the permanence of price dispersion result

Remark 1.

This is a profound result: it demonstrates that in a Calvo model there exists a

non-trivial trade-off between inflation and output stabilization in any non-degenerate

stochastic environment.

3.2.2 Price Dispersion with Taylor Contracting

This sub-section extends the results from the Calvo model to the Taylor contract-

ing framework. Several results change but the theme that price dispersion generates

staggered adjustment of the economy to shocks is retained. Furthermore, assuming

the economy jumps to non-stochastic equilibrium immediately has misleading impli-

cations for the behavior of price dispersion with implications for welfare.

There is no analogue of remark 1 with Taylor pricing, as there is a maximum con-

tract length so all contracts will eventually disappear from the price level- creating

the possibility for price dispersion to disappear i.e. ∆̂ = 0 if all the reset prices are

the same for sufficiently long. Therefore Proposition 3 and corollary 2 apply only for

as long as there exists prices set before T = t0 that have not been reset. I focus here

on the case of simple Taylor, Appendix A covers the simple extension to Generalized

Taylor economy of Dixon and Le Bihan [2012]. Consider a simple Taylor economy

where contracts last for M periods. There is staggered price adjustment so a fraction

of firms 1/M are allowed to reset their price each period. In the knowledge that this

price will remain fixed for exactly M periods. Therefore the price level construction

equation takes the form:

P 1−θ
t = 1

M
p∗t

1−θ + 1
M
p∗t−1

1−θ + · · ·+ 1
M
p∗t−(M−1)

1−θ (3.4)



72 Chapter 3. The Role of Price Dispersion

Firms set their reset prices as a weighted average of real marginal costs over the

course of the contract so:

max
pt(i)

Et

t+M∑
T=t

Qt,T

[
pt(i)
PT

yT − ϕT yT
]

(3.5)

Changes in the price level reflects the difference between the current reset price p∗t

and the price it replaced p∗t−M .

P 1−θ
t − P 1−θ

t−1 = 1
M

(p∗t )1−θ − 1
M

(p∗t−M )1−θ (3.6)

from which can be derived the following expression for inflation

(1 + πt)θ−1 = 1 + 1
M

(
p∗t−M
Pt

)1−θ
− 1
M

(
p∗t
Pt

)1−θ
(3.7)

Now the evolution equation for ∆ analogous to equation (19) in the Calvo model is

∆t = 1
M

(p∗t )−θ − (p∗t−M )−θ + (1 + πt)θ∆t−1 (3.8)

To see that a trade-off between inflation and output stabilization exists for the first

M −1 periods I proceed by contradiction. Assume an equilibrium Zt = Z̄ exists from

equation (3.6) you can see that to have a constant level of inflation πt = π̄ there must

be a one-for-one relationship between p∗t and p∗t−M . Given ∆t0 > 1 there must be at

least one price in the period t price level p∗t−j where 0 < j < M such that p∗t−j 6= p∗t .

When this price comes to be replaced at p∗t−j+M 6= p∗t the optimal reset price equation

(3.5) requires that Wt 6= Wt−j+M . Now by hypothesis yt = ȳ so from equation (2.26)

the real wage and labor supply must move in the same direction- however this means

aggregate income has increased- which violates equation (2.14)- the condition that

all income must be consumed. From period t + M onwards the economy reaches

non-stochastic equilibrium as ∆ = 1. Therefore it takes precisely M periods for

the Taylor economy to transition to non-stochastic equilibrium. This equilibrium is

efficient i.e. equal to the flexible price output.The non-stochastic system is therefore

ergodic. The result extends easily to the Generalized Taylor set-up where the non-

stochastic equilibrium is reached after J periods- where J is the length of the longest
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contract.

3.2.3 Applications

This subsection considers a family of examples from macroeconomics that illustrate

how ignoring price dispersion by using the ZINSS approximation to staggered pricing

can generate spurious dynamics in a transparent non-stochastic environment. It is

common to represent a New Keynesian economy with staggered nominal adjustment

as switching between alternate non-stochastic steady states with no dynamic adjust-

ment. This sub-section has proven that this approach is erroneous. The two models to

which this approach has been most commonly employed have featured binding zero

lower bounds on monetary policy and switches in monetary policy regime. It has

also been used to model major exchange rate devaluation and structural adjustment

episodes Uribe and Schmitt-Grohe [2012], Schmitt-Grohé and Uribe [2012a], Farhi

and Werning [2012], Farhi and Werning [2014], Na et al. [2014], Eggertsson [2012]

and Eggertsson et al. [2014].

Zero lower bound models seek to operationalize Keynes’ idea of a liquidity trap. The

idea is that arbitrage with money, which yields a zero nominal interest rate, prevents

the Central Bank from cutting nominal interest rates below zero. Therefore if there

is a sufficiently large fall in aggregate demand such that the desired nominal inter-

est rate falls below zero, this zero bound will bind such that the economy will be

demand-constrained with inefficiently low output.

Crucially, in a New Keynesian model because the representative consumer is forward-

looking, liquidity traps cannot be permanent or the consumption problem explodes

and the transversality condition is violated13. The literature on zero lower bound

models is voluminous. They have been used to explain large economic contractions

following financial crises and study optimal monetary and fiscal policy responses that

might mitigate or overcome the constraint of the zero bound on nominal interest

rates Corsetti et al. [2010], Lorenzoni and Guerrieri [2011], Eggertsson and Krug-

man [2012], Farhi and Werning [2013], Corsetti et al. [2013] and Correia and Farhi
13In an overlapping generation model with borrowers and savers this result does not apply as

demonstrated by Eggertsson and Mehrotra [2014] although a permanent liquidity trap would appear
implausible.
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[2013]14. Unsurprisingly, such models have become extremely popular following the

global financial crisis of 2008 and the subsequent spell of near zero short interest rates

across major industrialized economies.

The timing convention in these two steady state models is as follows: the economy

starts at non-stochastic equilibrium- then there is an unanticipated shock. The shock

has to be unanticipated or inflation would fall as the time of the zero bound spell

approached in anticipation of the future deflation. To clarify this behavior would

not contradict proposition 1- which is derived under the assumption that there is

no zero bound on nominal interest rates. Finally leaning on the forward-lookingness

derived in proposition 1 the model is closed with the economy jumping back to its

non-stochastic steady state. This amounts to assuming the liquidity trap is a one-off

(or occurs with vanishingly small probability) but would be valid if the probability of

the economy transitioning from the normal-times benchmark equilibrium to a liquid-

ity trap were sufficiently small to make the expected deflation associated with future

zero bound spells of an order of magnitude less than or equal to the squared term in

the series expansion of inflation15. This is incorrect. Many of the above models em-

ploy Calvo pricing which means that even if the economy begins at a non-stochastic

equilibrium- it will never reach another one either whilst the zero bound is binding

or afterwards when the shock has been turned off.

An alternative strategy has been to fix the length of the zero bound spell. The tim-

ing convention here is that the economy starts from non-stochastic equilibrium then

experiences a shock known in advance to last T periods. The model is again closed

with the economy jumping straight back to non-stochastic equilibrium (absent policy
14See also Woodford [2011b], Eggertsson and Giannoni [2013], Benigno et al. [2014], Denes et al.

[2013], Eggertsson and Woodford [2004], Eggertsson [2006], Eggertsson [2011], Eggertsson et al.
[2009], Adam and Billi [2007], Werning [2011], Cook and Devereux [2011b], Cook and Devereux
[2011a], Cook and Devereux [2013], Araújo et al. [2013] and Schmitt-Grohé and Uribe [2014].

15Whether this alternative assumption is valid is difficult to gauge for two reasons. First it may
be difficult to delineate zero bound spells- as their occurrence may be sensitive to changes in the
policy environment- for example Eggertsson [2008] assumes the United States was characterized by a
deflationary liquidity trap during the early phase of the Great Depression 1929-1933 on the grounds
that under a stabilizing policy regime it would have been. However, in reality short term interest
rates were significantly above zero throughout this time- which to me indicates the United States
was not in a liquidity trap at this time. Similarly, World War 2 mobilization and financial repression
measures designed to ease war financing makes it very difficult to ascertain the model consistent
definition of the end of the zero bound spell- which is the point when private sector demand had fully
recovered from the Great Depression shock see Reinhart [2012]. Finally, it has proved challenging to
explain the length of zero bound spells, simultaneous with the small fall inflation- which calls into
the question the validity of any parameter estimates.
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changes) when the shock is turned off. There is no steady state whilst the zero bound

binds, as resetters at different times face different length of zero bound spell relative

to non-stochastic steady state equilibrium,so deflation will in fact moderate over the

course of the zero bound spell. This approach is now the more popular Cogan et al.

[2010], Christiano et al. [2011], Amano and Shukayev [2012], Erceg and Lindé [2014],

Gertler and Karadi [2011] and Gertlera and Karadib [2013].

However, the approach in these papers still falls foul of the results in the previous

sub-section. The dynamics during the zero bound spells will be wrong because many

of these papers ignore the effect of the price dispersion associated with the deflation-

ary shock implied by Lemma 2 and Corollary 1. Secondly, the economy will never

return to steady state because of the assumption of Calvo pricing in each of these

papers and Corollary 2.

Nevertheless, the major results from these papers would stand up as they do not de-

pend on a particular specification of inflation dynamics. For example, Rognlie et al.

[2014] and Korinek and Simsek [2014] show that liquidity traps generate deep reces-

sions followed by recoveries even when the extreme old Keynesian assumption of no

price changing during the liquidity trap is made. The concern is the dynamics the

previous formulations highlighted.

The final two sections of this chapter are conceptual as opposed to practical the

first links the restriction ∆ ≥ 1 to non-negativity constraints and the presence of

poles. The second locates the market failure associated with price dispersion as a

coordination failure in the planning of production.

3.3 Non-Negativity and Poles

Non-negativity constraints are an important topic in dynamic economics. The ZLB

model discussed in the last section are prominent in business cycle macroeconomics.

Likewise (not necessarily zero) borrowing constraints are central to modeling finan-

cial markets and the distribution of income, two of the most popular topics in our

discipline. Seminal contributions include Bewley [1977], Huggett et al. [1993], Aiya-

gari [1994] and Krusell and Smith Jr [1998]. Recent developments and applications

include Moll [2014], Zambrano [2015], Kim and Khan [2015], Khan et al. [2016] and
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Kaplan et al. [2018] as well as several ZLB papers mentioned previously. Irreversible

investment presents similar challenges and a wide variety of applications see for ex-

ample Arrow et al. [1970], Kogan [2001], Stern et al. [2008], Khan et al. [2013], Belo

et al. [2014], Rozenberg et al. [2014] and Imura et al. [2015].

To derive a connection between these clear cases of non-negativity constraints and our

restrictions upon price dispersion, we need to relax the notion of non-negativity to

allow a model to be arbitrarily well approximated by a model with a non-negativity

constraint.

Definition 9. A structural model EZt+1 = f(γ, Zt, USt ) has a weak non-negativity

constraint with respect to a subset of the parameters γ′ ⊂ γ and variable X =

f̃(γ, Zt, USt ) if for every open neighborhood in the relative topology of γ′ there exists

γ′(0) such that there exists an X0 < 0 where Zi(X0, γ′(0)) < inf Zi but Zi′ ∈ Zi for

all X ∈ Rk for some Z = (Zi, Zi′).

Theorem 2. The non-stochastic version of the Calvo model with functional forms in

place has a weak non-negativity with respect to (θ, η, p∗t ,∆)

Proof. First I create the parameter conditions for a binding non-negativity constraint

then I show that these conditions are fulfilled arbitrarily close to any γ consistent

with weak non-negativity. Note that if θ = a/(2n + 1) for positive coprime integers

(a, 2n+1) then we know that ∆ will be an odd function therefore since limp∗→0 ∆ =∞

if we allowed p∗ < 0 then we would have f̃ : p∗ → ∆ would be R/{0} → R. However,

the price level and therefore inflation will remain an even function so its state space

will be unaffected by allowing negative reset prices.

Now suppose η = b/2n for positive coprime integers (b, 2n) then the marginal cost

function will be even hence the state space of marginal costs will be unaffected by

allowing negative prices. Therefore solving out the Phillips curve for sequences of

output proves this must be true for output Y also. This covers all the variables

Z. Therefore, we are complete if we can show that there are appropriate (θ, η) in

every open neighborhood. In every open neighborhood it must be the case that

θ0 − ε < θ < θ0 + ε for some η > 0. Since the rationals are dense in the reals we

know that there must exist either appropriate a/(2n + 1) or b/2n if there existed

a/(2n+ 1) then our conjectures about θ would be complete. However, this would not
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be the case if the interval only contained rationals of the form b/2n. Fortunately, this

would generate a contradiction. Suppose that there was an open set containing only

integers of the form b/2n then there must exist ε > 0 such that

|b/2n− a/(2n+ 1)| > ε

for all (a, b, n) such that (a, 2n+ 1) and (b, 2n) were coprime but then we know that

if consider n a continuous variable it follows that

lim
n→∞

|b/2n− a/(2n+ 1)| → 0

This means that there must be some n̄(ε) such that n > n̄(ε) implies

|b/2n− a/(2n+ 1)| < ε

now selecting the integer in for example [n̄(ε)+1, n̄(ε)+2] completes the contradiction.

Economically allowing negative prices makes no sense. They would contradict the

underlying optimization problems. If we allowed stochasticity the expectations would

not exist because the expectation integral would not be σ finite owing to its behavior

local to the pole p∗ = 0. However, I feel the result still presents an interesting point

of comparison with existing models with clear non-negativity constraints.

3.4 Market Failure New Keynesian Model

This section addresses the source and consequences of market failure in the New

Keynesian model. I show that price dispersion induces an externality between the

marginal costs paid by the firm and the marginal cost of output to society. I show

how this discrepancy leads to inefficiency in the aggregate economy. These results

overturn the ’Divine Coincidence’ associated with Blanchard and Galí [2007] and for-

mulate the arguments of Damjanovic and Nolan [2010] Alves [2014] from a traditional

microeconomic externality perspective.
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These results give justification for the traditional understanding of Keynesian eco-

nomics as the economics of coordination failure present in both early New Keynesian

models such as Blanchard and Kiyotaki [1987], Cooper et al. [1988], Ball and Romer

[1990] and Ball et al. [1991] and more traditional Keynesian work such as Leijon-

hufvud [1968], Leijonhufvud [1981]. It should draw attention away from Keynesian

models with heterogeneous agents such as Kaplan et al. [2018] towards those with

heterogeniety on the firm side.16

Although, my result is closer to the latter, as unlike the early New Keynesian studies

there is no strategic interaction between individual firms as each is small relative to

the market it takes seriously the idea that incomplete optimization rather than some

aspect of the optimization environment is what causes market failure. The argu-

ments extend the Acemoglu [2008] notion of a representative firm which he shows to

be necessity for efficiency in a competitive economy. The following is an adaption of

the original definition to allow for the possibility of non-price taking behavior in the

output markets and the possibility for an uncountable set of firms, as we have here.

The two preliminary results (theorem 3 and theorem 4) are of independent interest,

as they do not rely on the existence of a specific lump sum tax- proportional subsidy

scheme designed to remove the quantity distortions present under imperfect compe-

tition. They are therefore robust to second best concerns that one market failure

monopoly markups might cancel out another nominal coordination failure. The first

result demonstrates the proximate source of the market failure.

Theorem 3. Whenever price dispersion ∆ > 1 there is an externality because the

marginal social costMCs of producing a unit of output Y exceeds the private marginal

cost mcp.

Proof. The marginal social cost can be calculated from the following problem

min
L
Z = WL− λ(∆f(L)− Ȳ

∆)

which minimizes the aggregate cost of production subject to the aggregate pro-

duction constraint expressed in terms of target output. It is analogous to the firms
16To this end it is worth noting that their so called HANK model fails to generate endogenous

persistence its dynamics appearing to mimic those of the conventional Calvo framework in Section
2.4- see Debortoli and Galí [2017], .
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minimization problem except that aggregate replaces the individual production con-

straint.Taking the first order condition and apply the envelope theorem reveals that

MCs = λ = ∆W/f ′(L) combining the expression for marginal private costs de-

rived in Section 2.2.2 with the familiar result that with a competitive labor market

W = f ′(l) = f ′(L) completes the proof

MCs = ∆W
f ′(L) = ∆ > MCp = W

f ′(l) = 1

.

The next results clarifies this market failure is detrimental to social welfare.

Theorem 4. When ∆ > 1 the economy is Pareto inefficient.

Proof. Suppose that an allocation associated with ∆0 > 1 were Pareto efficient and

proceed by contradiction. Now consider the repricing that keeps the price level P

and wage rate W fixed but has ∆1 < ∆0, then by convexity of technology this output

combination is feasible, by the existence of ∆ we know that aggregate profit increases

Π(P(·∞)(w)) > Π(P(·′)(w))

Now the task is to link this inefficiency to the representative firm theorem 5.4

p191-192 Acemoglu [2008]. To do so requires a definition of a representative firm

that encompasses Acemoglu’s case of perfect competition and a New Keynesian one

where each firm is a price setter.

Definition 10. A representative firm devises a production plan {yt(i)} for each firm

in the economy that maximizes total profit
∫
i πidi subject to

i The input price W

ii The price level P

iii Market clearing conditions

The difference between the classical price taking world and its Keynesian lies with

the final two conditions. In the classical world the representative firm must condition

not just on the aggregate price level but on the competitive equilibrium price of

each individual firm. However, there is only one aggregate market clearing condition
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because varieties are perfect substitutes. By contrast in the Keynesian world the

market clearing condition is that each firm must satisfy its demand curve, whilst

each can set its own price. In both cases there is a labor market clearing condition.

In fact the representative firm’s problem can be viewed as choosing ∆ to maximize

joint profits with Y (∆) determined by the labor market clearing condition.

Theorem 5. Consider the economy in section 2 with the monetary policy rule and

pricing optimization protocol left unspecified. Suppose further a welfare maximizing

government with access to a production subsidies and lump sum taxes. The economy

is Pareto efficient if and only if there exists a representative firm which occurs if and

only ∆ = 1.

Proof. The only if chain Pareto efficiency → representative firm → ∆ = 1 follows

from the definition and the contradiction argument in the previous theorem. ∆ = 1

→ representative firm follows likewise. To prove the final implication that ∆ = 1

→ Pareto efficiency note that by proposition 5- firms will all have the same price

and therefore the same desired mark up m so that a common per unit subsidy τ =

m/(1 +m) funded by the appropriate lump sum tax implements the equilibrium that

would arise if there were perfect competition and this is Pareto efficient according

to the first fundamental theorem of welfare economics- see for example theorem 5.5

p197-198 Acemoglu [2008].

In the case of the benchmark Calvo model where ∆ = 1 is the familiar non-

stochastic steady state the subsidy would be 1/(θ−1). There are practical difficulties

with this solution. Tax systems designed to resemble true lump sum taxes have been

widely criticized as regressive Smith et al. [1991]. This could be fixed by varying the

tax according to fixed attributes correlated with productivity although this has proven

unpopular Mankiw and Weinzierl [2010]17. Furthermore, there are political economy

concerns relating to the legal doctrine of attainder . Attainder is the idea that laws

passed by elected representatives should be impersonal. It prevents the legislature in

this case in their role as designers of the tax system, from circumventing the court

system who are responsible for administering justice to individuals. A truly individual
17All these results should be read as specializations of the second fundamental theorem of wel-

fare economics- Acemoglu [2008] theorem 5.7 p199-203 and associated appendix item theorem A 25
provides a comprehensive treatment of this result.
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specific taxation system would surely be judged to violate this doctrine.18 Instead,

lump sum taxes are a convenient fiction to allow us to compare the Keynesian universe

where there are two market failures with the Classical setting where there are none in

the way that is common with other market failures like missing markets and public

goods.

In any case asymmetric information would cause serious problems with the subsidy

component. Implementing the optimal subsidy would require the government to know

all information relevant to the distribution of prices at the same time as the firms,

including each firm’s history of price resets. This is in fact all the valuable information

economy. A government with all the valuable information is a central planner. In

this context, the efficiency and benevolence assumptions would seem highly doubtful.

In reality the information relevant to correcting coordination failure would surely

constitute private information of the firms. In this sense price rigidity is a deep

market failure reflecting a reluctance on the part of firms to fully transmit private

information through the price mechanism. Hayek [1945] and Stiglitz et al. [1996]

provide extensive discussion of these underlying themes in information economics.

18Article I Section 9 Paragraph 3 of the United States Constitution reads "No Bill of Attainder or
ex post facto Law will be passed." Kurland et al. [1987]. For a popular perspective see Rehnquist
[2007] p166, an example of a modern judgement is as follows "The Bill of Attainder Clause was
intended not as a narrow, technical (and therefore soon to be outmoded) prohibition, but rather as
an implementation of the separation of powers, a general safeguard against legislative exercise of the
judicial function or more simply - trial by legislature." U.S. v. Brown, 381 U.S. 437, 440 (1965).
Lehmberg [1975] documents attainders (mis)use under English law. Jones, Ashby. "Would an AIG-
Bonus Tax Pass Constitutional Muster? (A Tribe Calls ’Yes!’)" Wall Street Journal, 18 March 2009
and Clarke, Connor. "No Bill of Attainder... Shall Be Passed". The Atlantic, 16 March 2009- contain
discussions of attainder in the context of measures proposed in the aftermath of the recent financial
crisis. Almost all successful democracies or stable legal regimes have strong provisions against ex
post facto laws pertinent here.
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Chapter 4

Stochastic Equilibrium

This chapter builds the concept of stochastic equilibrium central to the thesis which is

then applied for the basic Calvo New Keynesian model. The structure of the chapter

is as follows. The first section provides an overview of the requisite mathematical

machinery under the heading ergodic theory. Along the way there is substantial dis-

cussion relevant to practitioner and subsequent theoretical developments.

The second section focuses on the methodological significance of a statistical rather

than purely optimality based definition of the equilibrium. Its connection with het-

erodox economics and equilibrium refinement in microeconomics feature. The third

section formally proves the existence of stochastic equilibrium that is non-generate

(not equivalent to a non-stochastic equilibrium)- valid for the Calvo New Keynesian

setup- introduced in Chapter 2.

The final section characterizes the functional equations of the stochastic steady state

of the benchmark Calvo model. Here there is discussion of statistical challenges that

would arise when estimating the model. There is also application of comparative

statics at the stochastic steady state this admits comparison with its non-stochastic

counterpart. This approach can be viewed as an extension of non-stochastic compar-

ative statistics and in particular the distributive comparative statics agenda which

analyses- the effect of a change in a parameter on the distribution of some heteroge-

neous agent economy Acemoglu and Jensen [2010], Acemoglua and Jensenb [2013],
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Acemoglu et al. [2015] and Jensen [2017]1. Alternatively, it can be seen as a com-

pliment to previous analysis of monotone comparative statics under uncertainty in

partial equilibrium such as Simonovits et al. [1995], Athey et al. [2002] and Wagener

[2006].

4.1 Ergodic Theory

Ergodic theory is the branch of mathematics that studies the long run behavior

of dynamical systems. It will be used to build the equilibrium concept I will use

throughout the rest of the paper. It is necessary to present several definitions integral

to ergodic theory and dynamical systems.

Definition 11. A measure-preserving dynamical system is defined as a probability

space with a measure-preserving transform.

(X,T,Σ, µ, T )

such that

(i) X =
k∏
i=1

Xi is a vector space and T the time index

(ii) Σi is a σ-algebra over Xi and Σ =
k∏
i=1

Σi is the σ-algebra of the product measure

on X

(iii) X is measurable with respect to µ with µi : Σi ×X−i → [0, 1] so µi(∅i) = 0 and

µi(Xi) = 1 and µ =
k∏
i=1

µi

(iv) T : X → X is a measurable transformation with cocycle property which pre-

serves the measure µ, formally ∀A ∈ Σ, µ(T−1(A)) = µ(A)

Consult Arnold [2013] for a definition of the cocycle property. Initially I will focus

on the case where T is the operator that sends the current state of the economy to its

expected state in future periods so T sXt+s = EtXt+s. I will show that a fixed point
1These papers have taken a different approach to mine tending to eschew differentiability and

uniqueness of equilibrium in favor of order-theoretic arguments. Interesting applications have in-
cluded an extension of a Carroll et al. [1996] result concerning the effect of changing inequality in
an economy with borrowing constraints Aiyagari [1994]. Although, so far it has proved difficult to
extend this framework to include aggregate uncertainty. The powerful uniqueness results detailed
here in Section 4.1 should help.
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of T is equivalent to an equilibrium of the dynamical system. It is helpful to work

with the sequence of values associated to the operator T formally:

Definition 12. A trajectory of a random dynamical system T : X → X from an

arbitrary initial position X0 is given by the set OT = {X0, T (X0), T 2(X0), · · · }

The definition of a trajectory supposes T is a homeomorphism so that T−1 is an

inverse function. The analagous mapping if T−1 is instead set valued will be called a

path. The following attributes characterize ergodicity:

Definition 13. Let (X,Σ, µ) and T : X → X be a measure-preserving transforma-

tion. We say that T is ergodic with respect to µ (or alternatively that µ is ergodic

with respect to T if one of the following equivalent statements is true

(i) for every E ∈ Σ with T−1(E) = E either µ(E) = 0 or µ(E) = 1

(ii) for every E ∈ Σ with µ
(
T−1(E) ∆E

)
we have µ(E) = 0 or µ(E) = 1 where ∆

denotes the symmetric difference A∆B = (A ∪B)/(A ∩B)

(iii) for every E ∈ Σ with positive measure we have µ
( ∞⋃
s=1

T−s(E)
)

= 1

(iv) for every two A and B of positive measure, there exists an s > 0 such that

µ
(
T−s(A) ∩B

)
> 0

(v) Every measurable function (formally j ∈ L1(µ)) with j ◦ T = j is almost surely

(a.s) constant.

Intuitively ergodicity is the property that a system forgets its initial position and

that it has well-defined long-run behavior. It is a property of the system as a whole

or a subset that behaves as a component of the whole process. Conditions (ii)-(iv)

state that if you move far enough back or forward in time any two positions of the

system will occur in probability. Consult Aliprantis and Border [2007] theorem 20.7

for a proof of these equivalences that can be easily adapted to the vector integral case

using Dunford and Schwartz [1958] lemma III.II.I p184-85.

Ergodic measures have a powerful uniqueness property. Although, a state space may

have multiple ergodic sets- a given ergodic set can only possesses one ergodic measure-

for proof consult Hairer [2006] theorem 5.7 p 40-42. Throughout this paper I take
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the ergodic set to be the entire state space consistent with the informal formulation

in Section 2. Thus any ergodic measure will be unique. Moreover, part (iv) of the

definition of ergodicity can be interpreted as a weak restriction on hysteresis that

is intuitive in a business cycle context. Crucially, ergodicity allows me to formalize

the idea of stochastic steady state the correct concept of equilibrium for a Dynamic

Stochastic General Equilibrium model. The following definition describes the progress

of a dynamical system from an initial position:

Definition 14. The stochastic equilibrium of EtXt+1 = f(Xt γ) is an ergodic fixed

point of the dual operator P : P→ P where P is the space of probability measures.

Since the focus here is vector-valued integrals P will be a space of multi-valued

probability distribution functions23. By application of Sklar’s theorem, I can write

µ = (p1(X1), · · · , pn(Xn), C(X)) where C is the copula mapping from the marginals

pi to the joint distribution p of the whole model. Furthermore, this joint distribution

will be unique µ a.e.. Uniqueness will extend to the marginals and copula also.

Therefore P can be represented by the stochastic kernel p(Xt+1) =
∫
p(Xt, Xt+1) dXt

where p(Xt, Xt+1) is the joint distribution of the current and next period state of the

economy. Eventually I will search in the space of continuous distributions where the

appendage µ a.e. can be removed and the elementary proof of Sklar’s theorem from
2This restriction is worth discussing. The Lebesgue decomposition theorem states that every

measurable self-map defined on a set of real numbers can be decomposed into discrete, continuous
and singular continuous measures see Halmos [2013]. I focus on continuous measures because the
natural setting for the New Keynesian model is a Euclidean manifold where convexity and calculus
arguments can be employed. I overlook singular continuous measures which are associated with
chaotic dynamics see Lasota and Mackey [1998] for a textbook exposition.
This is because if one refined the model to include a small amount of imperfect information then
the dynamics of the model would change. Formally, I hypothesize there would be a discontinuity
at full information if we augmented the model with a variable reflecting for example uncertainty
about beliefs there would be a discontinuity at the full information limit. This seems economically
unappealing- uncertainty is part of macroeconomic life and is the subject of a great deal of research.
Chaotic dynamics occur when the measurable sets are badly mixed up with their compliments. With
chaotic dynamics one loses the intuition that agents can be uncertain but still know the approximate
state of the economy. This is most problematic in a policy context. Of course a measure also includes
the non-stochastic case of a point mass. However, since each endogenous variable in the structural
model has been assumed to be an absolutely continuous function of an independent and identically
distributed random variable, the non-stochastic case will not be needed. In fact IID property is not
needed it would be fine for example if the errors had a non-degenerate ergodic measure. However,
the assumption that each endogenous variable be absolutely continuous with respect to the measure
of some shock is indispensable. It is nonetheless heartening that this theory can incorporate the
limiting case of a non-stochastic economy.

3I am using the Radon-Nikodym theorem- for proof consult Dunford and Schwartz [1958] theorem
III.12.6 p 214-15.
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Nelsen [2006] becomes valid.4

To analyze the stability properties of stochastic equilibrium it is necessary to introduce

stronger restrictions known as mixing conditions:

Definition 15. For a measure-preserving transform T : X → X the following are

defining conditions for every A,B ∈ Σ

i Strong Mixing

lim
s→∞

µ(A ∩ T−s(B)) = µ(A)µ(B)

ii Weak Mixing

lim
s→∞

1
s

s∑
t=0
|µ(A ∩ T−s(B))− µ(A)µ(B)| → 0

iii Ergodic

lim
s→∞

1
s

s∑
t=0

µ(A ∩ T−s(B))→ µ(A)µ(B)

Lemma 3. Strong Mixing ⇒ Weak Mixing ⇒ Ergodicity

Proof. Provided by theorem 20.11 and corollary 20.12 p 662-664 in Aliprantis and

Border [2007].

This is the so called ergodic hierarchy which I will return to later. Note that

whilst the convergence norm for the state space will be Euclidean for function space

it be the norm formed from the standard statistical divergence metric 1
2 |p(Xt)− p0|

for some p0 ∈ P.5 There is a powerful connection between convergence to stochastic

equilibrium and mixing. The following theorem indicates the power of ergodicity and

binds it to existing notions of equilibrium.

Proposition 8. A stochastic equilibrium µ is globally stable if and only if the operator

T associated to the expectation operator in EtXt+1 = f(Xt, γ) is strong mixing.

Proof. The task is to show that for all µ0 ∈ P, lims→∞ P
s(µ0)→ µ

’IF’ part: Consider Definition 19 (i) set B = A = X the state space. Note that
4For a selection of proofs applicable to the general case and accessible to an audience of math-

ematically trained economists consult Schweizer and Sklar [1974], Moore et al. [1975], Carley and
Taylor [2002], Rüschendorf [2009] and Durante et al. [2013].

5For the divergence to constitute a valid metric P must be restricted to continuous probability
distribution functions or µ a.e. equivalence class.
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by lemma 4 we know that T is ergodic by Definition 17 part (i) so T−1(X) = X ⊆

T−∞ ⊆ X hence T−∞(X) = X. Note further that µ(B) = 1 and denote µ(A) = µ

then we have that

µ(T−sX)→ µ

hence for all X0 ∈ X the limiting measure is µ∗ and therefore by the Reisz repre-

sentation theorem we have P s(µ0)→ µ = µ∗ by Definition 18 and the uniqueness of

ergodic measures on a set the proof is complete.

’ONLY IF’ part: Suppose the process were not strongly mixing then there exists sets

A,B ∈ Σ and set of points X0 ∈ X that belong to the trajectories that feed into B

denoted T−∞(B) ⊆ X such that

µ(A ∩ T−∞(B)) 9 µ∗

hence by ergodicity of stochastic equilibrium there existsX0 ∈ X such that lims→∞ µ(A∩

T s(X0)) 9 µ∗ then by the Reisz representation theorem there exists a measure µ0

corresponding to X0 such that lims→∞ P
s(µ0) 9 µ∗.

With weak mixing this would extend µ a.e. on the space of distributions. Note

that the stochastic processes {p(Xt)} and {Xt} are weakly rather than strongly

mixing- since we are using the expectation operator.Introducing seasonality (using

raw data) would create the possibility for ergodicity without mixing at the expense

of losing equilibrium interpretation of µ∗ but I will save this for later work.

Note that the distinction between weak and strong mixing allows me to demonstrate

generality of the stochastic equilibrium Calvo model over the conventional form iso-

morphic to the Rotemberg model by proposition 3. Consider the pair ({p(Xt)}, {EtXt+1})

which are isometrically isomorphic up to terms reflecting higher moments, this pair is

not strongly mixing since there is no limiting value for Et+s(Xt+s+1). By Definition

17 (iv) it will reach µ a.e. point in the state and probability spaces with positive

probability and infinitely often therefore this contrasts with the standard case where

EtXt+1 = 0 and therefore P is a singleton and the only self-map is the fixed point

which trivially fulfills strong mixing. Previous work on dynamics around stochastic
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equilibrium has tended to focus on the case where {EtXt+1} is strongly mixing as-

sociated with the macroeconomy converging towards an independent and identical

distribution process. Therefore this research represents a significant technical ad-

vance6. The following is a powerful result because it allows me to analyze a random

dynamical system as if it were in non-stochastic equilibrium.

Theorem 6. (Birkhoff) For a measure-preserving transform T : X → X on (X,Σ, µ)

and a function j(Xt) ∈ L1(µ) with time average AT(j(X0)) = lims→∞
1
s

∑s
t=0 j(T sX0)

and ensemble average An =
∫
j dµ then the two coincide for µ a.e. X.

Proofs for scalar measures can be found in Hairer [2006] theorem 5.2 p 38-40 and

Walters [1975] p 32-36 applied component-wise. The economic interpretation is that

in stochastic steady state all the higher moments and functions thereof that can be

integrated with respect to the ergodic measure are in equilibrium. This is unlike

the non-stochastic steady state where the variance, kurtosis etc. are set to zero. It

encompasses all informal notions explored in the previous literature.

Remark 4. Note that since p(Xt) ∈ L1(µ) we can view the ergodic distribution p(X)

as a suitable non-linear average (GSM) of the sequence of probability distribution

functions p(Xt)

It conforms with the GSM Definition 1 of Chapter 2. The first condition is met

because µ is a valid probability measure and therefore integrates to one, the second

condition is met by monotonicity, (uniform) continuity of the Lebesgue integral and

the properties of a measure-preserving transform.

Recall that an ergodic measure need not exist. Recall the non-stochastic case dis-

cussed in section 3 where a sufficiently high rate of inflation can cause ∆ to grow

without bound. This result is intuitive, in New Keynesian economics we start off

with a Classical framework in which the price mechanism acts to damp fluctuations

and bring the economy to equilibrium subject to some regularity conditions on the

shocks.7 We restrict the operation of the price mechanism by forcing a fraction of
6See for example Buera et al. [2013],Moll [2014], Achdou et al. [2014],Gabaix et al. [2016] or

previous work such as Lee et al. [1997].Note this should not be read as a criticism of these works they
consider structural as opposed to business cycle factors where discrete shifts in steady state seem
more plausible and also their models lack the steady state bifurcation of the main model here.

7The consumers problem is discussed extensively in Stokey [1989] whilst the firms problem in
the flexible price framework is static so existence follows if the shock processes are sufficient for the
existence of expected profit.
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firms to keep the same price. It should be unsurprising that for certain parameter

values associated with high and costly inflation, the system will explode. Note that if

price dispersion grows without bound it follows from the production function and the

fact labor supply is bounded by a time endowment that the transversality condition

is breached and the model in section 2 has no solution.

Naturally, the practical significance of these cases are somewhat doubtful. State de-

pendence in pricing decisions will restrict the growth of price dispersion as inflation

increases. It is common for state-dependent pricing models such as rational inatten-

tion to have regularity conditions that ensure a well-behaved optimization problem

regardless of the inflation process. I suspend the consideration of stochastic equilib-

rium in state-dependent pricing models for future work. Nevertheless, it is proper

and instructive to study the conditions for existence of equilibrium. There are two

approaches, one focuses on the stochastic process of the model and the existence

of certain moments. The first uses Lyapunov functions a generalization of contrac-

tion mapping- see Stachurski [2003], Nishimura and Stachurski [2005] and Stachurski

[2007].

Theorem 7. Let Et+1Zt+1 = f(γ, Zt,USt ) be a structural model of the form discussed

in Section 2. If there exits a Lyapunov function J : Z → Z with compact level sets and

constant ρ ∈ (0, 1) and vector of constants C >> 0 such that EtJ(Zt+1) = ρJ(Zt)+C,

∀(Z,US) then a stochastic equilibrium exists.

For proof apply theorem 4.21 and 4.22 to the product Lebesgue integral. Note

that where Banach’s fixed point theorem was applicable J as the identity map and

any C >> 0 would suffice.8

The problem is it would probably be difficult to construct Lyapunov functions for

a New Keynesian model. Note that Stachurski [2007] (Proposition 3.1) cannot be

applied to prove existence using simply log-linearization because the stability of the

linearization will in general depend on parameters of the stochastic steady state whose

existence one is purporting to prove. This is because the aim of New Keynesian

macroeconomics is to generate non-monotonic impulse response functions (IRF) that
8The Reisz representation theorem was used to move between the expectation I have used here

and the form employed by Hairer where Zt+1 is the independent variable.
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match delayed response to monetary policy and other shocks observed in the data.9

This prevents one applying Banach’s fixed point theorem and it is often difficult to

construct alternative Lyapunov functions in a multidimensional setting with a va-

riety of IRF shapes. Hence I provide a different approach that relies solely on the

asymptotic behavior of the IRF and an assumption innocuous in applied work. Fur-

thermore, this condition should be verifiable and more intuitive for practitioners.

I will assume that EZ = 0 otherwise it does not exist because for one or more element

of Z the time average does not converge. This conforms with the common practice

of describing business cycle models in deviation from a steady state and the use of

filters to abstract from factors such as technical progress or level differences across

units (firms sales, workers earnings, countries GDPs etc.) when undertaking business

cycle analysis. There is no loss of generality as the two will be isomorphic in large

sample. Conversely, just because its sample moment As(Z) =
∑S
s=0 is zero does not

mean Zt represents an equilibrium (or more generally deviations from an equilibrium)

since this time average might in fact diverge |AT| = ∞ hence I use the terminology

candidate to describe the empirical complement of a stochastic steady state, since an

empirical estimate of a stochastic steady state can be constructed even if none exists

for the underlying dynamical system.

To define concepts related to the IRF it is necessary to partition endogenous and

exogenous into state (predetermined) variables and jump variables which are non-

predetermined Zt = (Zst , Z
j
t )′ and USt = (U st , U

j
t )′. Recall that a variable is predeter-

mined if its next period value is known today so EtXt+1 = Xt+1 in the benchmark

model all predetermined variables will be lags. Take lagged inflation for example and
9There are two familiar examples. The first is the response of output and inflation to an unex-

plained monetary contraction. This reaches a peak after four to eight quarters before dyeing away
and losing statistical significance after around twelve to sixteen quarters- see Romer and Romer
[2004] figure 2 p 1071 and note similar results in Christiano et al. [1999], Bernanke et al. [2005],
Uhlig et al. [2005], Croushore and Evans [2006] and Coibion [2012]- intuitively the increasing part of
the hump that stops us applying contraction mapping. Secondly, it is possible for the initial response
to have a counterintuitive sign that is later overturned. The two examples are two well known exam-
ples. Firstly, the price puzzle where inflation initially rises in response to an interest rate increase.
Although the evidence is not uncontroversial, there are several potential economic mechanisms- see
Thapar [2008], Krusec [2010], Castelnuovo and Surico [2010], Kaufmann and Lein [2012], Rusnák
et al. [2013] and Demiralp et al. [2014] and Ali and Anwar [2016] for empirical perspectives, read
Ravenna and Walsh [2006] for discussion of a possible theoretical mechanism. The second example
of contractionary technology shocks has been discussed previously. In fact it is uncommon for a
large empirical macroeconomic model such as Christiano et al. [2005], Smets and Wouters [2007] or
those kept by a Central Bank to produce IRF suitable for contraction mapping. Giesen et al. [2012],
Burgess et al. [2013] and Kamber et al. [2016] lay out typical Central Bank style models that are
even larger.
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note that Et(π(t−1)+1) = Etπt = πt since current inflation belongs to the present in-

formation set of the firms’ and representative household.For the subsequent theorem

I require the following

Definition 16. The family of Candidate Impulse Response Functions Φ con-

sists of all possible trajectories OT (0, Zj ,0, uj).

A particular impulse candidate response function will be denoted (Zj , uj) and

T (Zj , uj) will refer to the associated trajectory of the structural model. A candidate

impulse response function maps the response of the model to shocks given that it

started out from its (unique up to isomorphism) candidate steady state.

Definition 17. A structural model possesses an Asymptotically Uniformly Con-

tractive Impulse Response Function if there exists a contraction-modulus- lag

length pair (ρ, S) such that for all s ≥ S and any candidate pair (Z0, u0), (Z1, u1) ∈ Φ

d(T s+1(Z0, u0), T s+1(Z1, u1)) ≤ ρd(T s((Z0, u0), T s(Z1, u1))

where ρ ∈ (0, 1) and d is the relevant Euclidean metric on Z.

This condition is an extension of contraction mapping that accommodates hump-

shaped impulse response functions. It also utilizes the regenerative approach to

Markov chains10, the idea that for a finite dimensional state space model the sys-

tem will always ’forget’ its current position a finite number of periods into the future.

This generalizes from the Candidate Impulse Response Function trajectories to the

whole state space by the accessibility assumption. The economic argument is that

however big the shock after some time t + s we know that the economy contracts

towards equilibrium uniformly across its state space.

Theorem 8. Structural models such as those laid out in Section 2 will posses a

stochastic equilibrium if they have Asymptotically Uniformly Contractive Impulse Re-

sponse Functions.

Proof. We know that Zt is k-dimensional therefore the maximum number of lags it

could posses is k− 1 corresponding to the case where Zt were a univariate AR(k− 1)
10Consult Meyn and Tweedie [2009] for a brief introduction p506-508 Ross [2010] p. 442- 621 for a

longer exposition and extensive discussion of basic applications in the operations research literature.
To my knowledge this is its first application in economics.
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model. By the accessibility assumption. the state space of T k would be equal to

the full state space Z. Note that as it forms a connected manifold the space of

trajectories associated to the asymptotically contractive impulse response Z forms

a Banach space. Therefore apply contraction mapping point to the subsequence of

trajectories starting at time t + S TS(.). This yields a unique fixed point for the

operator T representing an invariant mapping for EZ. To prove this fixed point is

ergodic note that deviations from each component time average EZi can be bounded

by the following inequality that uses the contraction and the properties of a Euclidean

norm.

− lim
s→∞

1
s

S

1− ρ max
0≤s≤S

‖T s(Z0, (uj)0)‖ ≤ AT(Zi) ≤ lim
s→∞

1
s

S

1− ρ max
0≤s≤S

‖T s(Z0, (uj)0)‖

By the squeeze (sandwich) theorem AT(Zi) → 0 and therefore AT(Z) → 0. The

convergence is pointwise hence T is strongly ergodic. Recall that the model in de-

viations from steady state corresponding to Z = 0 is isometrically isomorphic to

the levels model where Zt > 0, ∀t which forms a positive linear operator. By the

Reisz representation theorem see Aliprantis and Border [2007] p496 (14.12) there is

a corresponding measure that is also ergodic and invariant. It therefore constitutes a

stochastic equilibrium.

Note that this condition is not necessary, it is possible to have a sub-geometric rate

of convergence to the invariant measure Nummelin and Tuominen [1983], Tuominen

and Tweedie [1994] or Douc et al. [2004]. In macroeconomics this would allow for

thicker tails and stronger persistence consistent with narratives related to hysteresis

following shocks or slow recoveries for example following financial crisis. The following

result treats these cases. First I require a relaxation of the uniformity inherent in

Definition 21.

Definition 18. A structural model possesses anAsymptotically Contractive Im-

pulse Response Functions if there exists a lag length S such that for all s ≥ S

and any candidate pair (Z0, u0), (Z1, u1) ∈ Φ

d(T s+1(Z0, u0), T s+1(Z1, u1)) < d(T s(Z0, u0), T s(Z1, u1))
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This allows for the possibility that the contraction rate becomes arbitrarily close

to one. Series in which lims→∞ p(T s, T s+1) → 1 can either converge or diverge.11

However, an assumption of bounded impulse response functions allows us to rule out

the latter.

Theorem 9. If for every (Z0, u0) ∈ Φ there is an upper bound on the magnitude

of the deviation from equilibrium Z̄(Z0, u0) then the assumptions in Section 2 are

sufficient for the existence of a stochastic equilibrium that is globally stable.

Proof. The proof consists of an slight adaption and verification of theorem 5.2 from

Stachurski et al. [2002]. Note that the every trajectory OT (Z0, u0) lies inside a com-

pact set [−Z̄(Z0, u0), Z̄(Z0, u0)] this meets Definition 5.1 for Lagrange stability. Con-

tractive Impulse Response Function is consistent with Definition 5.2 in his paper by

accessibility assumption we know that the trajectory space and state space are equiv-

alent and therefore the impulse response function is defined on a topologically closed

set and the theorem can be applied.

The final sufficient condition is perhaps the most economically intuitive. The

following definition is crucial.

Definition 19. A sequence of probability measures {µs : s ∈ T} is called tight such

that for every ε > 0 there exists a compact set C ⊆ X

lim
s→∞

inf µs(C) ≥ 1− ε

A dynamical system T will be called bounded in probability on average if for

each initial condition X0 ∈ X the sequence of sample averages {As(X0) : s ∈ T} is

tight.

The last part implies that the measure of the limiting average AT has compact

support. This condition encompasses the asymptotically bounded mean criterion that

forms Definition 3 of Szeidl [2012] and forms the backbone of Proposition 1 and

Theorem 1 of that paper. Note this approach also encompasses results used in earlier

seminal work such as the seminal Hopenhayn and Prescott [1992]. It will feature in

the existence proof in the next section.
11For example

∑∞
s=1 1/s2 = π2/6 with ratio limit lims→∞ p(T s, T s+1) = s2/(s + 1)2 → 1 on the

other hand
∑∞

n=1 1 =∞
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Theorem 10. A model defined by a finite dimensional Harris recurrent Markov chain

has a stochastic equilibrium under the assumption that Z is bounded in probability on

average.

Proof. The proof revolves around theorem 12.0.1 in Meyn and Tweedie [2009], part (i)

establishes existence of the invariant measure and part (ii) global stability. The proofs

of these results are completed by two further theorems 12.1.2 and 12.4.1 respectively

these encompass p286-7 and p297-8. The condition for existence is that the chain be

weak Feller the property that T sends continuous functions to continuous functions

see p128. To show that the structural model is weak Feller take the canonical form

introduced in Section 2 and convert into the random function form Zt+1 = f ′(Zt, USt )

note that the left hand side f is (strongly) differentiable by the fundamental theorem

of calculus since it is composed of Riemann integrals and hence the chain rule ensures

the derivative of the left hand side exists since EdZt+1/dZt = EdZt+1/dZt+1·dZt/dZt+1

where for each 1 ≤ i ≤ k, EdZi,t+1/dZi,t = 1/(dZi,t/dZi,t+1) and a similar argument

with respect to USt shows that f ′ is in fact differentiable and therefore continuous

also. Hence, the original system T is weak Feller by Proposition 6.1.2 p130 and the

proof of equilibrium existence goes through.

The economic interpretation is powerful business cycle models are formulated

in terms of gapped variables which are deviations from a trend or average that is

interpreted as an equilibrium. For this interpretation to carry weight it must be the

case that we can bound long-term averages otherwise the business cycle intuition of

the model is lost. Furthermore, the Feller property is a weak restriction for a large

economy. In macroeconomic terms these are regularity conditions except for the case

of a random walk which will be treated next.

The challenge in empirical work is that prominent level variables in particular output

often do not display ergodic behavior. There are two routes around this problem.

The first is to filter the data. It is common econometric practice to analyze data that

has been transformed to remove effects such as seasonality and technical progress

that structural models commonly abstract away. 12 Let Xt be the filtered data
12There is no guarantee that the structural model that leaves out the non-stationary features

estimated on filtered data will be isomorphic to that structural model augmented with the non-
stationary features and confronted with non-filtered data. Indeed, there is evidence the two behave
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from the structural model Zt and F(t, {Zt}) the filter so that Xt = F(Zt) which

forms a homeomorphism. The most desirable connection is an isometric isomorphism

between the operators PX : p(X)→ p(X) the ensemble probability distribution over

X the detrended model and PF : p(Z)→ p(Z) the ensemble probability distribution

over the actual model. This is possible if F were deterministic or in large sample

if it could be consistently estimated for example if F were a time trend with finite

parametization or a suitable non-parametric procedure were employed. An example

is in order consider the simplest univariate model with linear trend and an exogenous

error

Zt = a+ bT +Xt + ut

where ut N(0, σ2
u) and Xt N(µX , σ2

X) then we know by the basic properties of the

normal distribution that Zt (a + bT + µX , σ
2
u + σ2

X) hence F = Zt − a − bT − ut if

the parameters a and b were known. The isometry would take the form I : µ(PX)→

a+ bT +µ(PF ) In large sample unknown a and b could be replaced by their OLS/ML

sample analogs and consistency would follow from a basic law of large numbers ar-

gument subject to standard regularity conditions. It is common however, to use a

stochastic trend to reflect factors such as shifts in policy regime or omitted structural

change. This breaks the isometry because the mapping F(uT ) now depends on the

unobserved trend disturbance uT . Likewise the ergodic distribution of X would de-

pend on parameters γT of the distribution of uT and cause identification problem for

the parameters of the underlying structural model γ.

There are two strategies to circumvent this problem. The first is to specify a func-

tional form for the trend usually either the linear as above or first difference so

F(Zt) = Zt−1. The other is to calibrate hyperparameters that control the stochastic

trend such as the smoothing parameter λ in the Hodrik-Prescott filter13 upper and

lower frequencies in the bands or persistence and variance terms in drifting parameter

models. These are commonly selected to accord with widely held intuitions about

the business cycle associated with the dating methodology introduced by Burns and

differently see Olivei and Tenreyro [2007], Olivei and Tenreyro [2010], Tesfaselassie [2013] and Snower
et al. [2017] however such trade-offs are present in all modeling and I leave these ideas for future
research.

13In statistics the technique is named after Whittaker [1922].
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Mitchell [1946] and the pronouncements of official bodies such as the National Bu-

reau of Economic Research in the United States14 Subject to these restrictions on

the stochastic trend stochastic equilibrium becomes a testable restriction. There are

a battery of tests parametric and non-parametric for ergodicity of certain moments-

see for example Kearns et al. [1997], Ling and McAleer [2002], Fedotenkov [2013], Fe-

dotenkov [2014] and Trapani [2016]. The difficulty lies with the fixed point property

and its statistical counterpart the mixing condition. In this section I have argued it

must hold for the theoretical model, for example the output and inflation gaps by the

maintained assumptions on the shock process in Chapter 2.

However, whether it holds for any estimates thereof is an empirical question. The first

difficulty is that filters tend to have poor small sample properties Jin et al. [2015] and

de Jong et al. [2016] demonstrate that for a wide class of processes the most popular

filter Hodrik Prescott often fails to eliminate stochastic trends in finite time. There-

fore it may be advisable to test for stationarity in small samples.

The more serious problem is that the filtration can radically alter the dynamic prop-

erties of a system encoded in its stochastic equilibrium. Early work with the RBC

model showed that the Hodrik Prescott filter could generate rich dynamics even where

none exist in the underlying data- see Harvey et al. [1993], King and Rebelo [1993],

Cogley and Nason [1995a] and recent derivations in Jin et al. [2015]. Filtration can
14The widely used Hodrik-Prescott filter decomposes a time series into a trend and deviation

component according to the following objective function L =
∑S

s=−1(Zs −Xs)2 + λ
∑S

s=−1{(Xs −
Xs−1)− (Xs−1−Xs−2)}2 with the initial four values for Xs predetermined. λ controls the variability
of the trend relative to the deviations from trend, with lower λ implying a more flexible trend. In
particular λ→ 0 corresponds to FZt = Zt the case where the trend absorbs all variation in the series
whilst λ→∞ imposes a linear trend.
The practice in the literature has been to set λ = 1600 for quarterly frequency this corresponds to
typical average cycle lengths of four- to six years see Hassler et al. [1992] and Machado [2001] for
calculations and Ravn and Uhlig [2002] for adjustments to different data frequency. With the band-
pass filter, the average cycle length is determined as follows. First, admissible frequency bounds are
determined then the average within the bounds is determined by the data- see Baxter et al. [1999]
who consider business cycle frequencies as between six and thirty two quarters. The two approaches
are mutually reinforcing as smoothing parameter choices are motivated by the implications for cycle
length, although this was not the original approach of Hodrick and Prescott [1997]. Kourtellos and
Stengos [2010] touches on similar issues in the drifting coefficients literature.
These parameter choices are not uncontroversial however Hamilton [2017] argues that the value of
1600 is unrealistic because it is several orders of magnitude away from the maximum likelihood
estimate of λ from a Gaussian state space model with white noise drift in the errors which he regards
as a plausible specification for the underlying economic dynamics. Moreover, factors such as long
memory in financial markets or financial and fiscal cycles that appear to be longer than typical post
war business cycles may be distorted by cyclical decomposition that favor a shorter cycle with likely
spillovers to the dynamic properties of macroeconomic models such as the one here that abstract
from these real world features. Consult Claessens et al. [2011], Claessens et al. [2012], Landmann
[2012], Fernández-Villaverde et al. [2013], Reinhart et al. [2014] and Diebold et al. [2013].
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influence other time series properties of the data such as business cycle turning prop-

erties of the model or shapes of impulse responses- see Canova [1994] and Canova

et al. [1998].

The take home message is that in applied work what is needed is to seek robust-

ness across methods combined with willingness to take stance on the nature of any

trends15. Overall stochastic equilibrium is a versatile and robust conceptual frame-

work for empirical research but filtering is necessary to apply it to a macroeconomic

environment with trends and the possibility for structural breaks16.

4.2 Existence of Stochastic Equilibrium

Here I use Theorem 11 along with two boundary conditions to prove that a unique

stochastic equilibrium will arise and will be non-degenerate (not equivalent to a non-

stochastic equilibrium.) In return for mathematical rigor unlike the previous section

the arguments here are specific to the Calvo framework.

Theorem 11. The Calvo model described in subsection 2.4 and characterized by

proposition 1 possesses a unique stochastic equilibrium µ∗ provided that social welfare

is not minimized i.e. limT→∞ U(CT , lT ) = −∞

Proof. From theorem 11 the task set before us is to prove that Zt = (πt, yt,∆t) is

bounded in probability on average. To bound y note that the time constraint implies

that yt ≤ l̄At where l̄ is the maximum labor supply (the entire time endowment.)

Now assumption 1 accessibility and existence parts allows the application of a strong

law of large numbers to the shock process of A combining with the Inada condition

implies EyT is asymptotically constrained to the set relatively compact (0, l̄EA]. The

strategy is a little different for π we do not need to worry about infinite time limits

we can bound for all time as follows express π in terms of the relative reset price

p∗t /Pt

πt =
( 1

1− α

(
1− α

(p∗t /Pt)θ−1

))1/(θ−1)

15Consult Burnside [1998] for an insightful and still pertinent discussion of issues with detrending.
In fact it appears that the most robust method is to treat time series such as output as if they were
random walk Christiano and Fitzgerald [2003].

16Structural breaks a popular description of one off policy changes are conceptually inconsistent
with ergodicity. However, an alternative strategy allowing regime switching can be squared with
ergodicity although none of the stability or convergence results derived here would be applicable. I
leave this for future research.
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Inflation is clearly strictly increasing in the relative reset price. Therefore by taking

the infinite limit we have a strict upper bound on π. By definition π ≥ −100% and

this equality is strict with the lower bound a pole of the Euler. Therefore by the basic

properties of the Lebesgue measure we know that EtπT for any T is constrained to

the relatively compact set (−1, 1/(1 − α)θ−1 − 1). The proof will be complete if we

can show that the final variable of the cocycle E∆ is also constrained asymptotically

to a compact set.

Assume the converse and proceed by contradiction. The expectation must explode to

positive infinity limT→∞ Et∆T =∞. This follows from continuity of the cocycle and

precompactness of the space (this means that every open set can be approached as the

limit- it holds for all manifolds). Now consider resource constraint I have established

that the right hand side is bounded by l̄EA this implies limT→∞ EtYT = 0. Then

the Inada condition and basic properties of the Lebsesgue measure imply that the

instantaneous utility limT→∞ EUT = φT (u(CT )− ν(l)) = −∞ a contradiction. Non-

degeneracy follows from the isomorphism of the cocycle to the non-degenerate shock

processes.

The restriction that price dispersion does not grow without bound E∆ < ∞

implies a novel restriction on the inflation process that will be explained in the next

section.

4.3 Characterizing the Steady State

This section completes the characterization of the stochastic steady state by solving

for the equations satisfied by Y and ∆. This allows me to solve for the steady state

values of quantities such as profit Π and welfare U . Finally, I undertake comparative

statics with focus on the existing non-stochastic steady state formulations.

Focus first on the optimal price setting equation and the weighted marginal cost ℵ.

Birkhoff’s theorem tells us that when an economy is in stochastic steady state every

expected function of future variables is in equilibrium- at its long-term average value.

ℵt(π, Y,∆) = u′(Y )Y ν
′(∆Y/A)
A

+ αβE
∞∑

T=t+1
(αβ(1 + π)θ)T−(t+1)u′(Y )Y ν

′(∆Y/A)
A

(4.1)
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where the expectation of the ℵt+1 expression is taken implicitly with respect to the

ergodic measure. Now this can be expressed as an iterated integral with respect to

the ergodic measure.17

Eℵt+1 =
∞∑

T=t+1
(αβ)T−(t+1)

∫
· · ·
∫

(1+π)θ(T−(t+1))u′(Y )Y ν
′(∆Y/A)
A

dµT−(t+1) (4.2)

Now with Tonelli’s theorem Aliprantis and Border [2006] theorem 11.28 p419 and the

fixed point property of the ergodic measure we can write the term from date T − t

term as

(
(αβ)

∫
(1 + π)θdµ

)T−(t+1)(
αβ

∫
(1 + π)θu′(Y )Y ν

′(∆Y/A)
A

dµ
)

where the left hand term represents expected gross inflation cumulated from the

present up to period T − (t + 1), whilst the right hand term is the contribution of

marginal costs at time T − t both evaluated at the ergodic measure. This forms a

geometric progression with initial value the right hand term and ratio αβE(1+π)θ < 1

otherwise the sum diverges and the steady state does not exist. A tighter bound will

appear later. Hence, the expression for ℵ in stochastic steady state is

ℵ(Y, π,∆) = u′(Y )Y ν
′(∆Y/A)
A

+ αβ
E(1 + π)θu′(Y )Y ν ′(∆Y/A)/A

1− αβE(1 + π)θ (4.3)

By the same method for the weighting equation

i(Y, π,∆) = u′(Y )Y + αβE(1 + π)θ−1u′(Y )Y
1− αβE(1 + π)θ−1 (4.4)

Combining gives the implicit functional equation for output

( 1− α
1− α(1 + π)θ−1

)1/(θ−1)
=

θ

θ − 1

(
u′(Y )Y ν

′(∆Y/A)
A

+ αβ
E(1 + π)θu′(Y )Y ν ′(∆Y/A)/A

1− αβE(1 + π)θ
)

(4.5)

17This is formally speaking a weak integral in particular a Bochner integral defined on the space of
the Banach space of forward iterations of the cocycle f and the adjoint space formed by taking Et.
For details consult Aliprantis and Border [2006] chapter 11.9 p428-431.
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/

(
u′(Y )Y + αβE(1 + π)θ−1u′(Y )Y

1− αβE(1 + π)θ−1

)

Viewed as a moment condition we have

( 1− α
1− α(1 + Eπ)θ−1

)1/(θ−1)
=

θ

θ − 1

(
u′(E(Y ))EY ν

′(E∆EY/EA)
EA

+ αβ
E(1 + π)θu′(Y )Y ν ′(∆Y/A)/A

1− αβE(1 + π)θ
)

(4.6)

/

(
u′(EY )EY + αβE(1 + π)θ−1u′(Y )Y

1− αβE(1 + π)θ−1

)

The second associated moment condition is obtained by passing expectations with

respect to the ergodic measure at time t then using Tonelli’s theorem to reveal a

geometric progression on the right hand side.

(1− α)1/(θ−1)E
u′(Y )Y

(1− α(1 + π)θ−1)1/(θ−1)

+ αβ(1− α)1/(θ−1)E
1

(1− α(1 + π)θ−1)1/(θ−1)E
u′(Y )Y (1 + π)θ−1

1− αEβ(1 + π)θ−1 (4.7)

= θ

θ − 1E
u′(Y )Y v′(∆Y/A)/A

1− αβE(1 + π)θ

Note the right hand side is in fact the true stochastic steady state of ℵ the weighted

marginal cost.

For price dispersion there is just the one equation as we have assumed there are

no shocks to price dispersion

∆ = E∆ = 1
(1− α)1/(θ−1)

E(1− α(1 + π)θ−1)θ/(θ−1)

(1− αE(1 + π)θ) (4.8)

where we require that

E(1 + π)θ < 1/α

. For the standard non-stochastic trend inflation model the same condition would

arise without expectation. In the overwhelmingly likely case θ > 218, the expression

would be convex in inflation so that the upper bound on inflation be strictly lower
18corresponding to an economy in its flexible price limit would have markups of less than 100%
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than in non-stochastic steady state.

π < (1/α)1/θ − 1 = π̄NSS

Moreover, the negative covariance term would tighten the bound further. It is intu-

itive that incorporating volatility tightens the conditions for obtaining a stochastic

equilibrium. It follows from theorem 12 that an excessively loose monetary policy

where the rate of inflation is too high or too volatile could be arbitrarily costly to

social welfare. Whilst, the extreme predictions are a figment of a stylized model the

issue of blow up of the proposed solution is important for practical implementation.

Volatility is clearly not second order in the New Keynesian world. Interpreting the

interest rates associated to the fixed point of the cocycle as natural rates the Euler

implies the following natural rates of interest real and nominal are

i(π,∆, Y ) = u′(Y )ψ
βEu′(Y )ψ − 1 (4.9)

r(π,∆, Y ) = u′(Y )ψ
β(1 + π)Eu′(Y )ψ − 1 (4.10)

These are derived from the mapping Y → EtYt+1 the associated moment condition

is.
u′(EY )Eψ
βEu′(Y )ψ (4.11)

The other moment condition found by passing expectations is the following which

could be estimated by a standard orthogonality condition

E
u′(Y )ψ
1 + i

= βEψu′(Y ) (4.12)

where the associated value of
∫
idµ would be its stochastic steady state. The con-

nection between the interest rate prevailing under the fixed point of the cocycle and

that of its true stochastic steady state is obtained by equating the time t + 1 terms

which shows that

i(π,∆, Y ) = u′(EY )Eψ
Eu′(Y )ψ/(1 + i) − 1 (4.13)

This completes the characterization of the steady state.
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4.3.1 Comparative Statics

This subsection compares the stochastic equilibrium with its non-stochastic counter-

part including so called trend inflation where π 6= 0. I consider both the real members

of Z, ∆ and Y and other macroeconomic variables determined by Z such as wages

W and labor L. It is important to remember that with these additional variables

the stochastic equilibrium cannot be obtained by evaluating their value attached to

the present value of the cocycle EZ. For example the stochastic steady marginal

costs EMC 6= ν ′(∆Y/A)/A = ν ′(E∆EY/EA)/EA since certainty equivalence does

not hold for general functions.19 Proofs involve applications of Jensen’s inequality

and monotonicity conditions.

4.3.2 Non-Stochastic Steady State with Trend Inflation

Here for convenience I provide expressions for the non-stochastic steady state with

trend inflation arising in the model laid out in chapter two. The non-stochastic steady

state discussed there constitutes a special case, whilst any non-stochastic steady state

can be viewed as the limit of its non-stochastic counterpart. Salient features for

comparison with the stochastic model are drawn out. As readers may be less familiar

with non-stochastic steady state with trend inflation, I construct an example with

familiar functional forms that yields a closed form solution, although, this is not

essential to subsequent analysis.

u(C) = 1
1− σC

1−σ (4.14)

for σ 6= 1 or where σ = 1

u(C) = log(C) (4.15)

ν(l) = 1
1 + η

l1+η (4.16)

It is easiest to solve first for marginal costs from the price setting relation

MCNSS = θ − 1
θ

( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)( 1− α
1− α(1 + π)θ−1

)1/(θ−1)
(4.17)

19The only instances of certainty equivalence of interest here is the cocycle f itself. Prominent
examples such as linear functional and higher moments of symmetric distributions do not arise or
are not worthy of emphasis here.
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Therefore thanks to constant returns the wage rate is

WNSS = θ − 1
θ

( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)( 1− α
1− α(1 + π)θ−1

)
A (4.18)

Price dispersion is simply the stochastic steady state evaluated as though inflation is

certain to equal its expected value

∆NSS = (1− α(1 + π)θ−1)θ/(θ−1)

(1− α)1/(θ−1)(1− α(1 + π)θ)
(4.19)

Inverting the marginal cost function and substitute in the price dispersion relationship

yields

Y NSS =
(
θ − 1
θ

)1/(σ+η) (1− α)(1+η)/(θ−1)(1− α(1 + π)θ)η/(σ+η)

(1− αβ(1 + π)θ−1)(1+ηθ)/(θ−1) ×

( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)1/(σ+η)
A(1+η)/(σ+η) (4.20)

The resource constraint yields the solution for labor supply

lNSS =
(
θ − 1
θ

)1/(σ+η) (1− α)(1−σ)/(θ−1)(σ+η)

(1− α(1 + π)θ)σ/(σ+η)×

(1− α(1 + π)θ−1)(σθ−1)/(θ−1)(σ+η)
( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)1/(σ+η)
A(1−σ)/(σ+η) (4.21)

Aggregate Profits are given by

ΠNSS =
(

1−
(
θ − 1
θ

)( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)( 1− α
1− α(1 + π)θ−1

)1/(θ−1))
Y NSS (4.22)

Note that with trend inflation not all firms will make different profits depending on

when they last reset their price. Denoting the time since the last reset by the age of

its price a

Πa =
(

(1 + π)−a −MC

)
(1 + π)−aθY (4.23)

Indeed with positive trend inflation there will be some firms making negative profits.

To understand this fix π > 0 and consider the infinite limit lima→∞Πa = −∞ and

then continuity of profit with respect to a implies a cutoff such that all firms with

current price spell a ≥ ā will make negative profits. The bracketed term is the steady
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state mark up. Present discounted welfare is

UNSS = 1
1− β

[ 1
1− σ

(
θ − 1
θ

)(1−σ)/(σ+η)
(1− α)(1−σ)(1+η)/(θ−1)(σ+η)×

(1− α(1 + π)θ)(1−σ)η/(σ+η)

(1− α(1 + π)θ−1)(1−σ)(ηθ+1)/(θ−1)(σ+η)

( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)(1−σ)/(σ+η)
×

A(1+η)(1−σ)/(σ+η) − 1
1 + η

(
θ − 1
θ

)(1+η)/(σ+η)
(1− α)(1−σ)(1+η)/(θ−1)(σ+η)×

(1− α(1 + π)θ−1)(1+η)(σθ−1)/(θ−1)(σ+η)

(1− α(1 + π)θ−1)σ(1+η)/(σ+η)

( 1− αβ(1 + π)θ

1− αβ(1 + π)θ−1

)(1+η)/(σ+η)
×

A(1−σ)(1+η)/(θ−1)(σ+η)
]

(4.24)

Now I compare the stochastic steady state with its non-stochastic analog. The

natural starting point is price dispersion.The following lemma will prove useful20

Lemma 4. Suppose that U and V are strictly increasing functions integrable with

finite mean when integrated with respect to a measure µ not concentrated on a single

point and U is non-negative then EUV > EUEV

Proof.

EUV =
∫
U(V − EV )dµ+ EV EU (4.25)

By assumptions placed on the measure, the first term can be decomposed into the

(non-zero) contribution of terms above and below the expected value EV

∫
U(V − EV ) dµ =

∫
V >EV

U(V − EV ) dµ+
∫
V <EV

U(V − EV ) dµ (4.26)

(Strict) Monotonicity of U , V and the Lebesgue integral allow us to conclude that

∫
V >EV

U(V − EV ) dµ > U(EV )
∫
V >EV

(V − EV ) dµ (4.27)

Similarly when V is below average by the same argument

∫
V <EV

U(EV − V ) dµ < U(EV )
∫
V <EV

(EV − V ) dµ

20This result is not novel to pure mathematicians it is a version of Chebyshev’s algebraic inequality
and is a corollary of a result on p.248 of Pecaric and Fink [1993].
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now reversing yields

∫
V <EV

U(V − EV ) dµ > U(EV )
∫
V <EV

(V − EV ) dµ (4.28)

combining the numbered equations completes the proof.

The following theorem compares the stochastic with its non-stochastic counterpart

as the inflation rate changes under the empirically highly plausible case that θ > 2. A

single crossing property is established via a subtle application of Jensen’s inequality. I

am able to prove that when inflation is positive price dispersion is increasing, convex

and strictly greater than in non-stochastic steady state. Unlike, in non-stochastic

steady state ∆ is positively persistent and increasing at moderate rates of deflation.

This point could have substantial empirical implications. Sustained periods of rapid

deflation are extremely rare, whilst flat price levels with periods of shallow price

decline have been common in economic history. Japan’s recent economic history

subscribes roughly to this narrative. Therefore my analysis calls into question the

empirical significance of negative trend inflation.

Theorem 12. There exists π < π such that ∆ is strictly increasing (decreasing) if

and only if π ≷ π and ∆ is convex (concave) above (below) if and only if π ≷ π and

if θ ≥ 2 π < 0

Proof. Focus first on π we know by continuity of the first derivative that follows from

smoothness that this must be a stationary point. The derivative d∆/dπ is

αθ

(1− α)1/(θ−1)

[
E(1 + π)θ−1E(1− α(1 + π)θ−1)θ/(θ−1)

(1− αE(1 + π)θ)2 −

E(1− α(1 + π)θ−1)1/(θ−1)(1 + π)θ−2

1− αE(1 + π)θ
]

(4.29)

To prove existence of the bounds examine the limiting behavior of the derivatives

around the poles. At the positive pole.

π̄ = {π = d−1(0) : d = 1− αE(1 + π)θ}

lim
π→π̄

d∆/dπ =∞
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from the domination of the first term in the bracket which is O(x−2) term. Now

there are more complications with the lower pole π =→ −100% as the limit is zero

for θ > 2. However, since it represents the non-negativity constraint on the price we

know that this pole is shared by both the whole model and the steady state. Therefore

whatever the other parameters every sequence of (stochastic equilibrium) measures

must converge on a sequence of non-stochastic steady state as inflation approaches

the pole. Therefore

lim
π→−100%

d∆/dπ → αθ

(1− α)1/(θ−1)
(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)π

(1− α(1 + π)θ)2 < 0

in the neighborhood of the pole. The intermediate value theorem proves the existence

of a stationary point. Since the derivative must move from negative to positive

uniqueness will prove the existence of the boundary value π.

Now turning to the convexity claim direct computation reveals that

d2∆/dπ2 = αθ(θ − 1)
(1− α)1/(θ−1)E(1 + π)θ−2E(1− α(1 + π)θ−1)θ/(θ−1)

(1− αE(1 + π)θ)2 −

α2θ2

(1− α)1/(θ−1)E(1 + π)θ−1E(1− α(1 + π)θ−1)1/(θ−1)(1 + π)θ−2

(1− αE(1 + π)θ)2 +

2α2θ2

(1− α)1/(θ−1) (E(1 + π)θ−1)2E(1− α(1 + π)θ−1)θ/(θ−1)

(1− αE(1 + π)θ)3 −

αθ(θ − 2)
(1− α)1/(θ−1)

E(1− α(1 + π)θ−1)1/(θ−1)(1 + π)θ−3

(1− αE(1 + π)θ) +

α2θ

(1− α)1/(θ−1)E
(1 + π)2(θ−2)

(1− α(1 + π)θ−1)(θ−2)/(θ−1)
1

1− αE(1 + π)θ

− α2θ2

(1− α)1/(θ−1)E(1 + π)θ−1E(1− α(1 + π)θ−1)1/(θ−1)(1 + π)θ−2

(1− αE(1 + π)θ)2 (4.30)

As with the first derivative we can establish a candidate for the lower bound in this

case π by taking limits around the poles we can see that

lim
π→π̄

d2∆/dπ2 =∞
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from the domination of the third term that is O(x−3). Now in the limit as we approach

the lower pole, the fourth term is dominant since θ > 2 so we know that

lim
π→π̄

d2∆/dπ2 → d2∆NSS/dπ2 < 0

in this case the intermediate value theorem applied to the second derivative provides

a candidate stationary point which will be equal to π if we can establish uniqueness.

Next is the crucial step connecting convexity in stochastic equilibrium with the level

of the stochastic steady state relative to its non-stochastic counterpart. By applying

the Jensen-Cheyshev inequality from Proposition 5 to the stochastic steady state ∆

along with iterated expectations we discover that ∆ ≷ ∆NSS for d2∆/dπ2 ≷ 0 and

therefore by continuity ∆ = ∆NSS if and only if d2∆/dπ2 = 0

It is easiest to establish first the non-positivity of the bounds, starting with the first

derivative. The following sequence of inequalities apply when θ ≥ 2.

d∆
dπ

>
αθ

1− α(1 + π)θE
[
(1 + π)θ−2

(
(1 + π)∆− (1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1)

)]
>

αθ

1− α(1 + π)θE
[
(1 + π)θ−2

(
(1 + π)− (1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1)

)]
≥ αθ

1− α(1 + π)θE(1 + π)θ−2
(

(1 + π)− E(1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1)

)
≥ αθ

1− α(1 + π)θE(1 + π)θ−2
(

(1 + π)− (1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1)

)

The first, second and fourth follow from proposition 5. The first and fourth are Jensen-

Chebyshev, the second uses the properties of ∆ and monotonicity of the Lebesgue

integral. The fourth requires θ ≥ 2 as the relevant second derivative changes sign

(becomes convex) as it approaches the negative pole as

lim
θ<2

π→−100%

α(2− θ)(1 + π)θ−3

(1− α(1 + π)θ−1)1/(θ−1) −
α2(1 + π)2(θ−2)

(1− α(1 + π)θ−1)(θ−2)/(θ−1) =∞

The third inequality follows from lemma 5 since with θ > 2 both (1 + π)θ−2 and the

bracketed term inside the expectation are strictly increasing as the first derivative of
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the brackets is

1 + α(1 + π)θ−2/(1− α(1 + π)θ−1)(θ−2)/(θ−1)(1− α)1/(θ−1) > 0

the weak inequality incorporate the case θ = 2 where (1 + π)θ−2 is a constant rather

than strictly increasing. Therefore the root π = 0 is unique and the strict inequality

implies that any π < 0.

Turning to the convexity bound in search of a contradiction. It is necessary to work

first with the non-stochastic steady state ∆NSS its second derivative is simply (5.32)

with the expectations removed. It can be written as follows

(1 + π)−1
((θ − 1) + α(θ + 1)(1 + π)θ

1− α(1 + π)θ
)d∆

dπ +

αθ

(1− α)1/(θ−1)
(1− α(1 + π)θ−1)1/(θ−1)

1− α(1 + π)θ (1 + π)θ−3+

α2θ

(1− α)1/(θ−1)
(1 + π)2(θ−2)

(1− α(1 + π)θ−1)(θ−2)/(θ−1)
1

1− α(1 + π)θ (4.31)

where the first term comes from the first and fourth terms of the previous expression,

the second comes from combining terms two, three and six whilst the final term is

term five. Since we have already established that the first derivative is (strictly)

positive for (strictly) positive inflation (in Chapter 2) then we know that is strictly

convex for non-negative inflation.

Furthermore, we know that ∆ must be convex at the origin since it always lie strictly

above ∆NSS = 1. This rules out π > 0 since by the intermediate value theorem there

must be some π in the neighborhood of the origin where ∆ is still convex. However to

prove we can still have π < 0 it is necessary to rule out the possibility that ∆ is convex

at any positive π. Suppose this were the case there would have to be 0 < π̃ < x such

that ∆ is strictly convex for 0 < π < π̃. Therefore ∆NSS must cut ∆ from below

hence at π̃ the non-stochastic steady state profile must be steeper

d∆NSS

dπ >
d∆
dπ

since this inequality is strict continuity ensures there is some region to the right of π̃

such that ∆NSS > ∆. Since we have established ∆ must become convex eventually
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there must be some point ˜̃π where the curve again becomes convex such that ∆ is

convex on (π̃, ˜̃π). However since ∆NSS is still convex while ∆ is concave and both

cases are strict near π̃ Gronwall’s differential inequality see Pachpatte [1997] tells us

that

∆NSS(˜̃π) > ∆(π̃) + (˜̃π − π̃)d∆NSS

dπ |π=π̃

∆(˜̃π) < ∆(π̃) + (˜̃π − π̃)d∆
dπ |π=π̃

Hence

∆NSS(˜̃π) > ∆(˜̃π)

However by Jensen’s inequality

∆NSS(˜̃π) ≤ ∆(˜̃π)

and we have reached a contradiction. Therefore ∆ must be strictly convex in π when

inflation is non-negative so any π < 0. The bulk of the work for the case of negative

inflation is achieved by the following powerful single crossing result. Suppose towards

a contradiction that there is we know that there is an intersection ∆(π̃) = ∆NSS(π̃)

where ∆ is increasing but ∆NSS is strictly decreasing. In search of a contradiction

consider boundary of the concave region containing π̃ which can be denoted by ˜̃π.

This is either the negative pole or another solution to d2∆/dpi2 = 0 an application

of Gronwall’s inequality reveals that

lim
π→˜̃π

∆NSS > ∆(π̃)

whilst

lim
π→˜̃π

∆ < ∆(π̃)− (π̃ − ˜̃π)d∆
dπ |π = π̃

Hence

lim
π→˜̃π

∆NSS > lim
π→˜̃π

∆

which contradicts either Jensen’s equality under continuity assumptions or conver-

gence in distribution established at the negative pole. This establishes that any π < π,

it proves that there is a rate of inflation below which ∆ is weakly concave. Therefore
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using the fact that inflation is strictly decreasing in the limit approaching the negative

pole completes the proof of the existence of π.

Proposition 9. Provided that θ ≥ 2, π > π and σ ≥ 1 the stochastic steady state

output Y < Y NSS

Proof. Take the optimal reset price condition with the object of interest the right

hand side ℵ(Z)/i(Z). The first step is to show this is a convex function of π. The

easiest way to do so is to differentiate the left hand side which is a function only

of π. The task is accomplished by computing the second derivative and using the

parameter restriction for θ

α(1− α)1/(θ−1)(1 + π)θ−3
[(θ − 1)(θ − 2)(1− α(1 + π)θ−1) + αθ(1 + π)θ−1

(1− α(1 + π)θ−1)(2θ−1)/(θ−1)

]
> 0

Note that the condition is sharp in θ by considering the limits respectively as α→ 0

and π → −100%. Now Jensen-Chebyshev inequality implies that left hand side

strictly exceeds the right hand side evaluated at the non-stochastic steady state.

This implies that ∆ or Y must differ from their non-stochastic steady state values

to restore equilibrium. The right hand side is clearly increasing in ∆. Therefore to

correct the imbalance ∆ would have to fall. However, this induces a contradiction

since ∆ is convex in π for the relevant parametization. Hence Y must change to

equilibriate the system. To see that it must fall take the derivative of the right hand

side

(
ν ′(∆Y/A)

A
+ Y ν ′′(∆Y/A)

A
+ αβ

E{ν ′(∆Y/A) + Y ν ′′(∆Y/A)}(1 + π)θ/A
1− αβE(1 + π)θ

)
/(

u′(Y )Y + αβ
Eu′(Y )Y (1 + π)θ−1

1− αβE(1 + π)θ−1

)
+

(σ − 1)
(
u′(Y ) + αβ

Eu′(Y )(1 + π)θ−1

1− αβE(1 + π)θ−1

)
×(

Y ν ′(∆Y/A)
A

+ αβ
EY ν ′(∆Y/A)(1 + π)θ/A

1− αβE(1 + π)θ
)
/(

u′(Y )Y + αβ
Eu′(Y )Y (1 + π)θ−1

1− αβE(1 + π)θ−1

)2
(4.32)
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since when σ ≥ 1 the second term is non-negative and therefore unable to cancel

the strictly positive first term. Sharpness depends on parametric assumptions. Sup-

pose 0 < σ < 1 and consider the joint limit where the economy approaches any

non-stochastic steady state and A → 0. There are two competing terms the first

represented by the top two lines above is always positive and the second is negative

by assumption. The idea is to show that in this limiting case the second term will

dominate sufficiently close to these limiting cases. To achieve this consider the ratio

of the negative term to the positive term. The proof will be complete if its limit is

greater than unity. The expression is the following product

lim
A→0
π→π̄

(
u′(Y ) + αβ

Eu′(Y )(1 + π)θ−1

1− αβE(1 + π)θ−1

)
/

(
u′(Y )Y + αβ

Eu′(Y )Y (1 + π)θ−1

1− αβE(1 + π)θ−1

)

×
(
Y ν ′(∆Y/A)

A
+ αβ

EY ν ′(∆Y/A)/A(1 + π)θ

1− αβE(1 + π)θ
)
/(

ν ′(∆Y/A)
A

+ Y ν ′′(∆Y/A)
A

+ αβ
E{ν ′(∆Y/A) + Y ν ′′(∆Y/A)}(1 + π)θ/A

1− αβE(1 + π)θ
)

(4.33)

With functional forms from the previous subsection in place this can be computed

with big O notation. The first ratio (top line) is

O(Y −1) = O(A−(1+γ)/(σ+γ)) The second term is more complicated the numerator

the second line is O(∆Y/A)/A = O(A−σ(1+γ)/(σ+γ)). Now turning to the denom-

inator line three there are terms in this order and others in O(Y ν ′′(∆Y/A)/A) =

O(A−(1+σγ)/(σ+γ)) since σ < 1 this term will dominate and the total order of the

second term will be O(A(1−σ)/(σ+γ)). Hence the order of the whole limit will be

O(A−(1+σγ)/(σ+γ) + (1− σ)/(σ + γ)) = O(A−1) hence the limit will be infinite. This

ensures that for productivity sufficiently low and inflation sufficiently stable the

derivative will be negative and the result overturned for any 0 < σ < 1. This proves

that σ ≥ 1 is a sharp restriction.

The empirical restrictions are not overly burdensome. To my knowledge the lowest

estimate for θ is 2.5 (associated with an average mark up of 67%.) This comes from

De Loecker and Eeckhout [2017] and pertains only to recent US experience. For the

early part of the sample (pre 1980) however, markups averaged only around 20%

corresponding to a much higher θ = 6. Moreover. this appears to be a US specific
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trend Barkai [2017], Gutierrez [2017], driven entirely by rising dispersion across firms

that is not a focus here- see Autor et al. [2017] for further discussion. All estimates in

Christiano et al. [2005] are above 4.5 (see equations 3 and 4 and table 2) and equation

1 and are significantly different from 2.5 at standard levels. This is typical for the

DSGE literature.

For σ microeconomic studies reveal an average estimate close to 2- Havránek et al.

[2015]. Higher values make it easier to hit moments of financial data Braun and

Nakajima [2011], improving our ability to explain results such as the bond premium

and forward guidance puzzles. A literature has attempted to justify this with various

departures from expected utility maximization and full information abstracted from

here. Even if these arguments were rejected. σ = 1 at the end of our range would

appear focal as the sole value that supports a balance growth path- consistent with

the near ubiquitous empirical strategy of filtering away the effects of long-run growth.

This comparison can be extended to other variables of distributional significance for

firms and workers. The main work is done by the following application of Jensen’s

inequality to marginal costs.

Proposition 10. MC > MCNSS if σ ≥ 1 and π ≥ π.

Proof. From the labor supply conditionMC = EMC = E(ν ′(∆Y/A)/A)×(1/φu′(Y )).

The left hand function in the product is strictly increasing and strictly convex in

(∆, Y, 1/A). Likewise the second function is also strictly increasing and convex in

Y since (1/φu′(Y ))′ = σY/u′(Y ) and (1/u′(Y ))′′ = σ(1 + σY )/φu′(Y ) and weakly

convex in 1/φ. It is also strictly increasing and weakly convex in 1/φ. Now we know

that the product of two function that are (strictly) convex and (strictly) increasing

is also (strictly) increasing and (strictly) convex, hence we can apply proposition 5

with respect to (∆, y, 1/A). To complete the proof note that we established earlier

in this chapter that for π ≥ π ∆ is strictly convex and increasing. Therefore MC is

convex in the full set of stochastic process of the model (π, Y.1/φ, 1/A) and since it

is strictly convex in (π, Y, 1/A) we can apply Proposition 5 to reveal that

MC > ν ′(∆Y E(1/A))E(1/A)E(1/φ)/u′(Y )
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Now note that 1/x is strictly convex for the case of interest x > 0 apply this result

to the shock terms yields

MC > ν ′(∆Y/A)/Aφu′(Y )

This result naturally extends to wages, labor supply, and profits

Proposition 11. If σ ≥ 1, θ > 2 and π ≥ π then l > lNSS, W > WNSS and

Π < ΠNSS.

Proof. To establish the first result all we need is to show that there is a positive

relationship between wages and marginal costs in stochastic steady state this follows

because ∂W
∂MC = 1/E(1/A) > 0 likewise for marginal cost ∂l

∂MC = 1/E(νl(l)/A) > 0 so

higher marginal cost implies higher labor supply. Finally, turning to profits from the

restriction on θ we know from previous results that Y < Y NSS then ∂Wl
∂l = EW > 0

and ∂Wl
∂W = El > 0 imply that profits must fall to balance out the stochastic steady

state budget constraint Y = Π + EWL

With empirical eyes it is counter-intuitive that the economy becomes less efficient

and the representative household worse-off because volatility causes there to be too

much work and too little profit. It would seem particularly suprising that inefficiency

linked to sticky prices and volatility increases both wages and hours. However, this

is a figment of several stylized features of the model. The first is an efficient labor

market with interior labor supply. If we introduced a frictional labor market with

unemployment this result may well be reversed. Introducing additional factors of

production could have similar effects if stochasticity caused the capital stock to fall-

ceterus parebus the average marginal product of labor should decline also implying a

reduction in labor demand. Finally, the centrality of falling profits to worker welfare

could be removed by replacing the representative household with a heterogeneous

agent framework as has been analyzed by Broer et al. [2016], Auclert et al. [2017],

Kaplan et al. [2018] and Auclert and Rognlie [2018] among others. Moreover, I feel

the comparative statics and linearization techniques presented here may benefit the

heterogeneous agent research agendas predominant across much of macroeconomics,
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although I leave this for future researchers.

This section has compared the stochastic steady state with its non-stochastic coun-

terpart and shown that under plausible parameter restrictions output is lower whilst

distortions are higher. While there are differences in behavior around zero inflation-

where the stochastic steady state maintains properties of the non-stochastic system

with positive trend inflation; I believe these results could easily be extended by un-

dertaking simulations or making additional restrictions on the tails of distributions.

4.4 Theoretical Significance and Extensions

It is worth dwelling on the theoretical significance of the equilibrium concept I postu-

late here, along with possible extensions of this research agenda beyond the present

boundary of New Keynesian DSGE models. Equilibrium is an almost essential or-

ganizing concept in economics. Unlike its not non-stochastic counterpart stochastic

equilibrium specifies all probabilistic fluctuations. It is a complete description of the

business cycle in the way that a non-stochastic model approximated in deviation for

and augmented with ad hoc shocks is not.

Furthermore, stochastic equilibrium encompasses the conception of non-stochastic

steady state through point measures. Indeed, it can encompass many dynamic mod-

els that are not thought of as having steady states, since in a stochastic environment

even plausible chaotic models have ergodic measures as shown in Lasota and Mackey

[1998] and Arnold [2013]. In fact, the formulation of stochastic equilibrium here is the

broadest possible equilibrium concept for which we can apply the scientific method

with confidence. This is because it is defined in terms of the ergodic distribution the

base of the ergodic hierarchy explained in Frigg et al. [2016]. It is the weakest restric-

tion we can place on the data and still be sure of learning its statistical properties

with a sufficiently large sample. Without ergodicity we either could not construct

statistics to test particular hypotheses or those tests would be inconsistent.

Indeed, the definitions presented here clarify what an equilibrium is and is not. Since

Walras [1874] and Marshall [1890] economists have associated an equilibrium as a

point of equality between supply and demand. Walras’ law explained how this fol-

lowed naturally from rational decision-making by non-satiated consumers. This was
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continued through the aggregate demand- aggregate supply paradigm that formed the

backbone of the initial synthesis between New Classical and Keynesian economics see

Hicks [1937] and Samuelson [1951]. It is maintained here because firms meet all de-

mand at the posted price. Hence, the equilibrium of this and every other variant of

the New Keynesian model is Walrasian.

However, a problem arises when trying to incorporate nominal rigidity. A natural

synthesis is to introduce nominal rigidity through the presence of fixed wages and /

or prices whilst maintaining the equilibrium concept closest to classical economics;

the non-stochastic steady state when there is zero inflation the simplest infinite hori-

zon extension of Walrasian equilibrium. The problem is that in a non-stochastic price

equilibrium price rigidity will never bind- firms will never want to change their price.

In stochastic equilibrium, by contrast price rigidity always bites there is a distribu-

tion of prices and there will always be some firms with sub-optimal prices. Adjustment

is part of the equilibrium with idiosyncratic shocks even if the economy is in equi-

librium we can expect and in fact be (almost) sure that some firms prices will move

further from optimal levels others will move closer. However, we can be (almost) sure

that the two will cancel out.

Stochastic equilibrium itself is not completely novel to economists as discussed earlier

it has been explored informally in financial economics, where there is portfolio allo-

cation under uncertainty. What is surely novel however is the divorce between the

conception of equilibrium and optimization. Walrasian equilibrium is a consequence

of static optimization, whilst most modern economics macro and micro features the

study of equilibrium associated with agents solving dynamic infinite horizon opti-

mization problems. This has caused confusion amongst macroeconomists it is not

uncommon to read statements like

"An equilibrium can now be defined as a collection of stochastic

processes ... given a path for the path for the exogenous variables ... and

the initial conditions ... that satisfy equations ... "

This is in fact a trajectory. 21

Indeed, optimization alone cannot characterize the equilibrium or other behavior of
21The quote comes from p5-6 of the seminal paper Eggertsson [2010]. I could have picked many

similar examples.
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a benchmark New Keynesian model because the model’s central feature is that some

firms are not displaying optimal behavior at any given point in time. This is a radical

methodological departure from previous ideas of economic equilibrium. It answers to

the most serious and widespread criticism leveled at the economics profession that we

rely excessively on optimization. Behavioral economics pursues a complementary ap-

proach in loosening the straitjacket of rational maximizing behavior. However, to my

knowledge it always does so in a framework featuring optimization in all periods.22

Complementarity between the two approaches ought to be explored.

By contrast, the heterodox approach where formal methods have been used has tended

to avoid explicit stochastic formulations reflecting perhaps perceived associations with

rational expectations. For example Homburg [2017] exposits a DGE (Dynamic Gen-

eral Equilibrium) framework based on the temporary equilibrium approach where a

shock generates a sequence of moving equilibrium, see also Grandmont [2006]. The

mathematical justification for this result is empirically problematic. Schlicht [1985]

and Schlicht [1997] provide details. It requires a clear distinction between fast and

slow moving variables. Economics cannot provide this. Stickiness and delayed ad-

justment is ubiquitous in macroeconomic datasets.23 DGE has the unfortunate dis-

tinction of missing both strands of Keynesian analysis uncertainty and price rigidity.

Temporary equilibrium is actually a classical idea first explored by Marshall [1890].

He was working in a partial equilibrium context where he assumed price was the

fast moving variable whilst capacity was slow moving. Hahn et al. [1961] extended

his analysis into general equilibrium. He was fully aware of the disjuncture between

espousing Keynesian macroeconomics based around nominal rigidity and Walrasian

microeconomics based on extreme flexibility a point acknowledged in Hahn [1977].

Stochastic equilibrium addresses this problem whilst incorporating heterodox themes.

It offers a powerful opportunity to bring heterodox economists into the mainstream

economics fold. Up to now economics has had too narrow a conception of equilibrium.

It has hindered our understanding of macroeconomics. A broad scientific consensus
22Typically in behavioral economics a benchmark rational optimizing model is modified by either

changing the information set of the agents so that they have "wrong beliefs" or changing the objective
function they maximize so that they have "different objectives" from the consequentialist utilitarian
benchmark. All the formal models in Wilkinson and Klaes [2012] can be viewed through this lens.

23 This approach is called scale separation in physics. Applications have been more successful since
distinctions between fast and slow moving variables are clearer Kokotovic et al. [1980].
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can be reached.

Moreover, stochastic equilibrium is a technical innovation with powerful implica-

tions for econometrics and microeconomics. Standard estimators are not applicable to

the stochastic equilibrium. The dependence of the support of inflation on the param-

eters, crucial to the proof of Theorem 12, makes the maximum likelihood estimator

inconsistent in general. For exposition consult Greene [2003] and Hirano and Porter

[2003]. 24 The blow up of the model at the boundary means asymptotic normality

is lost for a general class of extremum estimators including Bayesian and General-

ized Method of Moment estimators see Newey and McFadden [1994]. It also means

that the Cramer-Rao and alternative lower bounds on other unbiased estimators also

become unachievable Yaakov et al. [2014] and Lu et al. [2017]. The novel challenge

faced by all potential estimators is that the space of admissible parameters is itself

unknown, whereas usually there is a given parameter set from which the maximum

is chosen. In practical applications one must guard against an estimator yielding a

non-admissible parameter configuration- which could occur if the parameter set were

not estimated sufficiently accurately.

Since stochastic equilibrium is defined by moment conditions (six in this section- two

for each of the Phillips, price dispersion and Euler equations) the natural estimator

would be GMM. Indeed, in such a non-linear model where higher moments can effect

the existence of equilibrium there would be great concern about the imposition of

particular distributions on error with largely ad hoc justification. However, only two

of the six conditions (the basic Euler and price dispersion evolution) yield a sample

moment condition
∑
T g(YT , θ|XT ) = 0 This is because the other four conditions fea-

ture non-linear relationships among expectations of functions. The solution to this

problem lies beyond the scope of the thesis.

Any solution is likely to involve application of techniques from optimal transport.

Optimal transportation is a branch of mathematics that studies how to transform

one probability distribution into another whilst minimizing a cost function that de-

pends on the probability mass moved. Its salient feature is the optimization of a joint
24This result is well understood in the econometrics. There is an econometric literature investi-

gating the non-standard limiting distribution commonly associated with models such as search and
auctions where maximizing behavior connects the support and parameters see for example Flinn et al.
[1982], Smith [1985], Christensen and Kiefer [1991], Donald and Paarsch [2002] and Chernozhukov
et al. [2004].
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distribution subject to restrictions on the marginals. It is an active area of research

across mathematics physics and economics. It has yielded one Fields medal (Cedric

Villani- 2010) and a joint Nobel prize (Leonid Kantorovich and Tiajing Koopmans-

1975). Optimal transport is not novel to the econometric toolkit. It has proven use-

ful in the discrete choice framework where it is used to map between market shares

and unobserved consumer preferences Galichon and Salanie [2015] and Chiong et al.

[2016]. The crucial technical innovation has been multivariate extension of quantile

regression- Koenker and Bassett Jr [1978], by Carlier et al. [2016] and Chernozhukov

et al. [2017] which has been used to identify multivariate risk in Ekeland et al. [2012]

and generalize partial identification approaches from Matzkin et al. [2003] and Heck-

man et al. [2010] to the multidimensional case.25 Galichon [2017] provides a concise

review of this new econometric literature. Galichon [2016] is a monograph that ex-

plains current economic applications with a strong emphasis on computational im-

plementation. Villani [2008] is the seminal mathematical reference.

The most direct crossover with microeconomics is equilibrium refinement. Nash equi-

librium often gives rise to multiple solutions. It is often a case that one or more seems

more intuitive than others. The idea is to use a stronger definition of Nash equilib-

rium to rule out certain equilbria. The most famous sub-game perfection rules out

time inconsistent threats. A popular class of refinements involve perturbations to the

players strategies in an attempt to remove equilibria that are not robust to small noise

or deviations from rationality for example the following equilibrium conceptsSelten

[1975] (trembling hand), Myerson [1978] (proper),Kreps et al. [1982] (sequential) and

van Damme [1987] (approachable). Recent extensions such as Fudenberg and He

[2017b], Fudenberg and He [2017a] and Milgrom and Mollner [2018] have developed

more powerful refinements based around the limits of rational learning and costly

review.
25Connections with microeconomic theory have also been uncovered often in areas adjoining the

econometric applications. For example in matching, pricing and bargaining problems following the
seminal contribution of Chiappori et al. [2010].The paper proved that classical allocation problems
such as those studied by Shapley and Shubik [1971] andBecker et al. [1973] are equivalent to a
classical optimal transport problem. Optimal transport has allowed existence and uniqueness results
in multidimensional matching problems and allowed the removal of restrictions such as quasi-linearity
Figalli et al. [2011], Decker et al. [2013], Dupuy and Galichon [2014], Chiappori et al. [2016], Noldeke
et al. [2017] and Greinecker and Kah [2018]. Likewise Pass [2012], McCann and Zhang [2017], Zhang
[2017] and Warren [2017] have used optimal transport to attack problems of multi-good monopoly.
Blanchet and Carlier [2014] and Blanchet and Carlier [2016] combine mean field games and optimal
transport in an extension of Cournet competition.
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Rigidity in the sense of players moving at random frequencies as in Calvo would be a

natural basis to build a refinement applicable to infinite horizon games. It could allow

game theorists to test the significance of order of actions and in particular the com-

mon assumption of simultaneous play. The nearest links in the recent literature are

with the prominent infinite horizon refinement paper Simon and Stinchcombe [1995]

and the rational inattention literature, such as Ravid [2017]. Stochastic equilibrium

here may provide technical spillovers for example to the stochastic games literature

as well as a direct route to comparative statics without the need to adopt continuous

time scale, Sannikov [2012] and Simon [2016] provide background surveys.

Stochastic equilibrium promises to be a unifying theme across economics, connecting

more tightly than ever before theory and empirics and the three traditional subdis-

ciplines microeconomics, macroeconomics and econometrics. There is likely to be

increased demand for mathematical as well as computational skills. Growing techni-

cal requirements may precipitate greater specialization in training and research within

the profession. The impact of stochastic equilibrium research promises to be both

multifaceted and profound.
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Chapter 5

Valid and Invalid Approximation

This chapter provides concrete explanation about what is wrong from a dynamical

systems perspective with the current practice of approximating the New Keynesian

Phillips curve about its zero inflation non-stochastic steady state, in particular by

showing which properties prevent one applying various versions of the Grobman-

Hartman theorem used to justify linear approximation. It finishes by showing that

linear approximation carried out local to the stochastic steady state constitutes a

valid description of local dynamics.

5.1 Bifurcation, Valid Approximation and Non-negativity

A bifurcation occurs where small changes in the parameter values give rise to abrupt

changes in the "qualitative" or topological behavior of the system. For a suitably

smooth dynamical system such as ours this can only occur at a fixed point and

is associated with changes in the stability, existence or uniqueness of equilibrium.

Consider a sequence of stochastic equilibrium that passes the non-stochastic zero

inflation steady state as ∆ decreases while ∆ > 1 theorem 11 assures a stochastic

equilibrium exists, when ∆ = 1 we have the familiar zero inflation non-stochastic

steady state. However as soon as ∆ < 1 the equilibrium disappears (proposition 5).

A change in the number of equilibria is called a steady state bifurcation, as we are

only changing one parameter ∆ the average value of price dispersion it is called a

codimension one bifurcation. Therefore at the zero inflation non-stochastic steady

state there is a Local Codimension One Steady State Bifurcation.

The formal arguments run as follows
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Definition 20. A dynamical system EZt+1 = f(Zt, γ,USt ) has a bifurcation at γ0 ∈

Γ if for every neighborhood of γ0 such that f(Z∗(γ0), γ,USt ) are not topologically

equivalent.

Proposition 12. The Calvo model laid out in Chapter 2 has a bifurcation at its zero

inflation non-stochastic steady state

Proof. From (2.23) the marginal cost relationship and (2.42) the marginal cost Phillips

curve we know that the dynamics are independent of lagged inflation at the zero in-

flation non-stochastic steady state. However Proposition 1 tells us that in general

(almost everywhere by Sard’s theorem) the dynamics depend on πt−1. Therefore

the non-stochastic steady state is not topologically conjugate to any of its neighbor-

hoods.

Note that the bifurcation has to do with past inflation not price dispersion. The

correct approximation at the zero inflation non-stochastic steady state depends on

deviations in (yt, πt,∆t) even at this zero inflation non-stochastic steady state setting

∆̂t = π̂t the correct relationship is Et∆̂t = α∆t which I established would be non-zero

for πt 6= 0. If we had sufficient data the correct model of the cocycle to estimate would

need to feature (yt, πt,∆t).

Definition 21. A steady state bifurcation occurs where the local topological equiv-

alence between the steady state and the parameter breaks down or the stability of

some equilibria changes.

This definition is an extension of previous results designed to incorporate the case

here where eigenvalues are not used to define the

Proposition 13. There is a steady state bifurcation in π parameter at ZINSS.

Proof. Focus on the behavior of price dispersion in response to perturbations in π = 0

and ∆ = 1

∆(1, π) = (1− α(1 + π)θ−1)1/(θ−1) + α(1 + π)θ−1

This is a smooth function of π and differentiation reveals that

d∆(1, π)
dπ = α(θ − 1)(1 + π)θ−2[(1 + π)− (1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1) ]
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which we established before is zero if and only if π = 0 and the inverse function

theorem completes the proof.

The final result verifies that the codimension is unity and that we do indeed have a

steady state bifurcation. The economic intuition behind this mathematical argument

is a policy experiment where a so called MIT shock is taking place at the ZINSS. A

bifurcation is occurring because this is the place where the the impulse response to

price dispersion changes sign. This reflects the fact that there is a strict minimum

value to ∆ covered in proposition 5.

An instructive alternative is to work with the stochastic steady state and the dis-

persion parameters of its errors. Proposition 5 and the assumptions made on the

errors in chapter two that ensure that shocks canceling out is improbable allows us

to conclude ∆SS = 1 if and only if all shocks have zero dispersion. Therefore the zero

inflation non-stochastic steady state could be viewed as a bifurcation of the stochas-

tic model in the dispersion parameters of the errors1. For the model to be estimable

this codimension would have to be greater than unity and could be arbitrarily large

depending on the detail with which we wanted to describe the error process. This

time the non-negativity constraint is clearer as it pertains to the parameter itself.

This perspective is insightful. with non-negativity in place we only need consider

perturbations where γ > 0 where we know ∆ > 1. This implies the fixed point is

repulsive and the dynamics around ZINSS are therefore equivalent to a supercritical

pitchfork bifurcation where a structurally stable steady state becomes unstable-

see Crawford [1991] p 1002 & 1005 or for more details of the stochastic case consult

Arnold [2013] chapter 9. Refinements through equilibrium stability have been popu-

lar such as the E-stability method that uses expectation shocks to determine whether

models are learnable and therefore robust to plausible uncertainty. By inclusion of

expectation shocks into γ we can see that in fact the ZINSS is not in fact expectation

stable. This overturns results that suggest that close to the ZINSS the New Keyne-

sian model is free from these problems- see Evans and Honkapohja [2001].

The properties of the bifurcation at ZINSS contrast with those widely studied in

physics or other disciplines. Central to the disjuncture is differing ambient space.
1Consult Arnold [2013] for a definition more general than required here and discussion of stochastic

bifurcation.
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With models of the physical world it is natural to work with Rn or more generally

suitable smooth manifolds- see for example Crawford [1991] or Kuznetsov [2013]. Neg-

ative axes can represent differing directions or charges, They are integral to studying

symmetry properties of equilibria and describing conservation laws. In economics

however the emphasis is on optimization problems where non-negativity constraints

are important. In the case of ∆ this forces us to work with the half-open interval

[1.∞) which is not a manifold it is not homeomorphic to R. The ZINSS is on this

boundary where local dynamics are non-Euclidean.

Its salient features are a strictly convex relationship between a state variable Zi and

a perturbation parameter γ local to a unique steady state Z∗(γ0). This ensures that

Z ≥ Z∗i - for proof suppose the converse the intermediate value theorem to contradict

uniqueness. This is not possible if the state space is a manifold we would never ob-

serve Z < Z∗i . This creates novel stability properties. On Rn bifurcations occur where

structural stability properties change. This is not the case here. The steady state is

structurally stable on both sides of the bifurcation, its local stability properties are

unaltered. Therefore eigenvalues ofvalid linear approximation will not lie on the unit

circle. To further appreciate the source of the bifurcation it is instructive to compare

the model with a common manifold bifurcation called a saddle node.

Bifurcations are often associated with changes in the number of equilibria for example

the famous saddle node where two fixed points coalesce. This interpretation can be

restored if we think of deviations in ∆ the steady state rather than the parameter π.

If we plot ∆− 1 on π and perturb the curve vertically downwards we can see that for

a positive perturbation equivalent to relaxing the lower bound on price dispersion to

∆∗ < 1 the two "equilibria" emerge associated with the two branches of the quadratic.

Whilst if the upper bound is raised to ∆∗ > 1 then there is no "equilibrium" any-

more. Therefore the dynamics are mimicking a saddle-node bifurcation in π with

parameter ∆∗ = 1 when we consider negative perturbations about the lower bound

on price dispersion,whereas the disappearance of the equilibrium when we raise the

lower bound cannot be observed for recurrent self-map on a manifold where the in-

termediate value theorem guarantees a fixed point. This subject is ripe for further

mathematical investigation.
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Note that this bifurcation does not arise in the Rotemberg model where price disper-

sion is absent. This has significant empirical content. It means that results obtained

from studies using the ’incorrect’ ZINSS approximation to the Calvo New Keynesian

model can be reinterpreted from the same model with Rotemberg pricing thanks to

Proposition 4. This bifurcation is a property of the price aggregator and models

with non-optimal price setting- therefore it extends to Generalizations of the Calvo

model such as those with heterogeneity in repricing frequency and to models with

Taylor contracts- where there is no equivalence with Rotemberg to fall back on. I

feel my brief study here improves upon previously literature Benhabib et al. [2002],

Barnett et al. [2002], Barnett and Duzhak [2010], Stachurski et al. [2012], La’O [2013],

Beaudry et al. [2015] and Brito et al. [2017] are part of a literature that applies sim-

ilar techniques to physics often relying on specific timing conditions, restrictions on

parameters or admissible uncertainty. Many applied economists seem to have been

aware of bifurcation associated with non-negativity constraints in finance, monetary

policy and investment allocation. Although, to my knowledge the only paper to ac-

tively mention bifurcation in the context of ZINSS is Kim et al. [2011] where it is

used to motivate high order approximation2 I feel this section puts economics on a

firmer footing in our understanding of where to take first order approximations and

the potential pitfalls involved.

5.2 Hyperbolicity

The following section bridges this chapter. It links bifurcation to the notion of hyper-

bolicity that will be used later to derive a notion of valid approximation. A system

displays hyperbolic dynamics if there are expanding and contracting directions for

the derivative under the defining operator T . Its significance is that fixed points of

hyperbolic systems possess powerful stability and representation properties, that are

desirable for economic analysis, which I discuss later in this Chapter. Thus far it has

been assumed that the basic New Keynesian model displays these properties local to

its zero inflation non-stochastic steady state. Here I show it does not.

First some preliminaries, the set of all tangents TX to T is called its tangent bundle.
2Judd [1998] also discusses such techniques in his famous numerical analysis textbook aimed at

economists.
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The operator DT : TX → TX sends the current tangent to the next period tangent

under T . A system displays hyperbolic dynamics, if its tangent bundle TX can be

divided into two DT invariant sub-bundles the stable set ES and the unstable set

EU such that the restriction DT |ES is a contraction and DT |EU an expansion. These

properties are formalized as follows

1. TX = ES
⊕
EU

2. DTESX = EST and DTESX = EST for all X0 ∈ X

3. ‖DT rX0‖ < ρr‖X0‖ for all v0 ∈ ES and r > 0

4. ‖DT−rX0‖ < ρr‖X0‖ for all v0 ∈ EU and r > 0

where ‖·‖ is the norm formed from a suitable Riemann metric3 and ρ ∈ (0, 1) a con-

traction modulus. A similar decomposition this time for the state space surrounding

a fixed point will prove useful.

Definition 22. The stable setWS consists of all points whose trajectories converge

in the infinite future to the steady state X∗ formally

WS(T,X∗) = {X0 ∈ X : lim
r→∞

T r(X0) = X∗}

Likewise the unstable set WU consists of all points whose trajectories converge in

the infinite past to the steady state X∗ so

WU (T,X∗) = {X0 ∈ X : lim
r→∞

T−r(X0) = X∗}

Note that in the second case the limit could be a set as we have not specified T

be a homeomorphism.

Definition 23. In discrete time a dynamical system T : Rk → Rklinearized system

is called hyperbolic if it possesses no eigenvalues on the unit circle.

Remember log-linearization is isomorphic to linearization as it is a linear approx-

imation for X − X̄/X̄ which is homeomorphic to X The following theorem indicates

the power of hyperbolic dynamics for stability analysis.
3A Riemann metric is one that is a smooth function of both arguments of the metric- recall that

this is possible because I have assumed that Z forms a smooth manifold.
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Theorem 13. For a hyperbolic fixed point of a smooth map T : Rk : Rk the stable

space W s(X0) is a smooth manifold and its tangent space is the same dimension as

the stable space of the linearization of T at X0, ES(X0).Likewise, its unstable space

WU (X0) is a smooth manifold that has the same dimension as the unstable space of

the linearization of T at X0, EU (X0) so that WS⊕WU = X.

Proof is given in Teschl [2012] part 2.9.2 p259. 4 The next result a version of the

celebrated Grobman-Hartman theorem provides the crucial application of hyperbolic

dynamics to justify the use of linear approximations.

Theorem 14. For a C1 map T : X → X with derivative dT that has a hyperbolic

fixed point at the origin there exists a homeomorphism h(X) : N(X)→ Q(X) where

N(X) is a neighborhood of the origin for T (X) and Q(X) a neighborhood of the origin

in the tangent space TXRk such that T (X) = h−1(X) ◦ (dT (0)) ◦ h(X)

For proof follow p 262-266 part 2.9.3 Teschl [2012]. Observant readers will have

noted that this theorem cannot be applied here because ∆ > 1 the following remarks

treat this issue.

Remark 5. This result naturally extends to maps defined on open intervals since

these are homeomorphic (topologically equivalent) to Rk. However, this is not the case

for closed or half open intervals such as [1,∞) the state space for ∆ or indeed any

other intervals containing the non-stochastic steady state ∆ = 1. Consult corollary

4.4 to theorem 4.3 in Coayla-Teran et al. [2007] for a more abstract extension.

The problem is that the dynamics of the benchmark New Keynesian model lin-

earized at its non-stochastic steady state are not hyperbolic.

Proposition 14. The log-linearized approximation exposited in Section 2.5 to the

Calvo model explained in Section 2.1-2.4 does not display hyperbolic dynamics on Rk

about the non-stochastic steady state.

Proof. Recall that Xt = (πt, yet ) and the relevant operator is T = EtVt+1. Since

EtXt+1 = 0 we know that the stable linear manifold EST (0) of the approximate linear
4Since I am working with smooth functions here I have assumed smoothness- Teschl [2012] does

not he prefers to work with Cq functions that are continuously differentiable k times- his proof carries
over mutatis mutandis to the family of smooth functions C∞.
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system is the whole space so it is two dimensional. However, we also know that the

economy has previously been in non-stochastic steady state so Xt−s = 0 for all s > 0

and the unstable manifold EUT (0) must also take up the whole state space. Hence, the

dimensionalities of the two linear manifolds sum to four. Formally, dim(ES
⊕
EU ) =

2 + 2 = 4 > dim(X) = dim(WS⊕WU ) = 2 a contradiction of stable manifold

theorem 13.

5.2.1 Valid Approximation: Stochastic Grobman Hartman

This subsection presents versions of the Grobman Hartman theorem applicable to hy-

perbolic fixed points in stochastic settings. There are extensions to trajectories which

will be used when deriving the Phillips curve and settings that could incorporate ap-

proximate numerical solutions. The theorems come originally from Coayla-Teran

et al. [2007] and they have been incorporated into Arnold [2013]. Finally, a simple ar-

gument involving topological conjugacy carries allows one to move smoothly between

linearzation and log-linearization (linearization in percentage deviations.)

Theorem 15. Let µ∗ be the stochastic equilibrium of a suitably smooth cocycle

EZt+1 = f(Zt, γ,USt ) such that N(Z) is a neighborhood of hyperbolic point (Z0, (US)0

then µ∗ a.e. there exists a homeomorphism such h(Z) : N(Z)→ K(Z) and W (Z) is

a neighborhood of the tangent bundle of the origin in T 0
Z such that:

f(Z,US) = h−1(f(Z0, (US)0)) ◦DZ0,(US)0)f(·)) ◦ h(Z0, (US)0))(Z)

for all Z in the domain of the composition.

This theorem is adapted from theorem one of Coayla-Teran et al. [2007]. The

alterations I made were to move from a tangent space in Rn to its analog for a Eu-

clidean manifold a tangent bundle5 to reflect the fact that our ambient space is not

Rn recall that π has poles. Also note that hyperbolicity is a property of the whole

system including the error terms. As we are working with interior points here the

system will be hyperbolic if and only if there are no eigenvalues on the unit circle.

Its interpretation is as follows we can take linear approximations around any point

we desire (Z,USt ) provided we are prepared to assume or verify hyperbolicity and be
5The appendix to Arnold [2013] gives a presentation of tangent bundles adequate for our purposes.
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confident of getting a qualitative description of local dynamics. This holds whether

or not we are at an equilibrium point.

I will take approximation only about the stochastic steady state. For two reasons

firstly to facilitate comparison with perturbations about the non-stochastic steady

state. Secondly so that the deviations can be interpreted as states of the business

cycle. It would be possible to conceive of alternative linearization schemes that used

different points of approximation. This could provide a powerful link between DSGE

and the econometric literature on regime switching and asymmetric VAR. Prominent

examples include Auerbach and Gorodnichenko [2012] and Tenreyro and Thwaites

[2016] that address the possibilities that the effectiveness of fiscal and monetary policy

vary over the business cycle, whilst Cameron et al. [1997] consider whether macroeco-

nomic responses to post-war oil price shocks were asymmetric. It might also provide

a justification for numerical methods involving linear approximation taken away from

steady state such as Boppart et al. [2017].6 Finally the theorem has powerful impli-

cations for the structure and dynamic properties of the Phillips curve.

Remark 6. Theorem 16 implies that linearization around the stochastic steady state

or any other point with hyperbolic dynamics accords with the dimensionality of the

non-linear model established in Chapter 2 by Proposition 1.

A Phillips curve approximated correctly will not look like the ZINSS Phillips curve

but instead its dynamics will resemble that of the trend inflation model- even if there

is no trend inflation. Conversely, the qualitative dynamics of the Rotemberg Phillips

curve derived at ZINSS will accord with the true non-linear model because there is no

bifurcation at this point and therefore its non-stochastic steady state is hyperbolic.

The final result concerns trajectories.

Theorem 16. For T (Z0, (UJ)0) be a hyperbolic stationary trajectory for a suit-

ably smooth cocycle EZt+1 = f(Zt, γ,USt ) there exists a homeomorphism h((UJ)0) :

N((UJ)0) → W ((UJ)0) N(Z) is a neighborhood of hyperbolic point (Z0, (US)0) →

W ((UJ)0) is a neighborhood of the origin in tangent bundle TZ∗ such that T (Z0, (UJ)0) =

h−1(UJ0 , ZJ0 ) ◦DZ∗f ◦ h(UJ0 ))(Z) for all Z in the domain of the composition,
6Fatehi Nia and Rezaei [2017] provide a Grobman-Hartman theorem appropriate for iterated

functions but it is only valid in R which is to restrictive for economic application.
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It is an adaption of Theorem 4 in Coayla-Teran et al. [2007] with a specific random

homeomorphism of interest (as defined in the paper.) This result only applies to im-

pulse response functions- we have to take the linearization from the steady state.Its

main role is to validate the application of the inverse powers of the lag operator

(arbitrary forward iteration of the linear approximation) in the subsequent Phillips

curve derivation. For practical purposes this result justifies forecasting from the lin-

ear model.

The final step is to verify that these results carry over to log-linearization or lin-

earization in percentage deviations. To do so I prove the linear and log-linear solu-

tions are topologically conjugate. As topological conjugacy is an equivalence relation

this implies conjugacy between non-linear and log-linear models consistent with valid

approximation.

Proposition 15. The log-linear and linear approximations are topologically conju-

gate,

Proof. Consider the demeaning transform h : Z → (Z1/Z
∗
1 , · · · , Zk/Z∗k)′ and the

linearization transform by g so EZt+1 − Z∗ = g(Zt − Z∗, USt ) then by basic algebra

log-linearization is represented by the transformation h◦g◦h−1 which is topologically

conjugate to g since h−1 ◦ h ◦ g ◦ h−1 = g ◦ h−1

The intuition is that linearization and log-linearization are isomorphic because we

can move from one to the other by simply adjusting coefficients leaving the dynamics

of the system unchanged. The analysis for this chapter is now complete we are now

free to log-linearize the New Keynesian Phillips curve about its stochastic steady state

confident in its qualitative properties.

5.3 Log-Linearization and NKPC

This chapter performs log-linearization around the stochastic steady state and in

particular derives an expression for the New Keynesian Phillips Curve. The crucial

difference between stochastic and non-stochastic steady state approximations is that

in the stochastic case the coefficients of the linear approximation will depend in gen-

eral on the higher moments of the cocycle evaluated at the ergodic measure. Hence,
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linear approximations are not certainty equivalent as covariance and higher moments

are reflected in the slope coefficients. For those well versed in non-stochastic approxi-

mations this may seem deeply counterintuitive in fact it is perhaps the most powerful

aspect of stochastic approximation. It provides motivation for stochastic Grobman-

Hartman theorem of the previous chapter. Finally, the dynamic properties of the

stochastic model are then analyzed and compared to non-stochastic alternatives.

5.3.1 Basic Phillips Curve Solution

This subsection applies the results from the previous two chapters to log-linearize the

model local to its stochastic steady state (π, π,∆, y). It is most convenient to start

with (2.35) and (2.36)

ℵ̂t = η
ν ′(∆Y/A)Y

Aℵ
∆̂t + (1 + η)ν

′(∆Y/A)Y
Aℵ

ŷt − (1 + η)ν
′(∆Y/A)Y

Aℵ
ât

+ αβθ

ℵ
E(1 + π)θ−1ℵEtπ̂t+1 + αβE(1 + π)θ Etℵ̂t+1 (5.1)

ît = ψu′(Y )(1− σ)
i

ŷt + αβ(θ − 1)
i

E(1 + π)θ−2 iEtπ̂t+1

+ αβE(1 + π)θ−1Etît+1 + ψu′(Y )Y
i

ψ̂t (5.2)

The comparative statics are instructive ℵ̂ the business cycle deviation of weighted

marginal costs is increasing in ∆̂ and ŷ as these place upward pressure on real wages,

whilst greater technical efficiency ât has the opposite effect. The state of expected

inflation Etπ̂t+1 influences weighted marginal costs through the level of future sales

and the next periods expectation Etℵ̂t+1 reflects the recursive evolution of the supply

side of the economy under Calvo pricing. Conversely î gives the deviation of the

weights for the resetters marginal revenue. There is no role for price dispersion

or technology here. There are forward looking terms similar to the supply side.

Crucially though the effect of changes in output on marginal revenues depends on the

propensity for intertemporal substitution reflected by σ (the inverse of the elasticity of

substitution) if σ > 1 the propensity to smooth consumption dominates the incentive

to substitution over time such that higher output today implies higher expected

future marginal revenues- conversely if σ < 1 the substitution exceeds the smoothing
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incentive so higher current output is associated with lower future marginal revenues.

When σ = 1 the two forces balance out.

To solve out the model I use the lag and expectation operators to condense the

expressions for ℵ̂ and î to

(1− αβE(1 + π)θ L−1)ℵ̂t = η
ν ′(∆Y/A)Y

Aℵ
∆̂t + (1 + η)ν

′(∆Y/A)Y
Aℵ

ŷt

− (1 + η)ν
′(∆Y/A)Y

Aℵ
ât + αβθ

E(1 + π)θ−1 ℵ
ℵ

L−1π̂t + w̃0L−1ûjt (5.3)

(1− αβE(1 + π)θ−1 L−1)ît = ψu′(Y )(1− σ)
i

ŷt

+ αβ(θ − 1)E(1 + π)θ−2 i
i

L−1π̂t + w̃1L−1ûjt (5.4)

As previously, the error terms above reflects the difference between the actual and

expected values of π, ℵ and i in period t + 1 that comes about because the future

value of the structural jump errors are unknown and the model is linear in percentage

deviation form. Now using the reset price equation to remove ℵ and i the price

level construction equation to express the reset price in terms of inflation and then

manipulating terms in the lag operator yields

(L− αβE(1 + π)θ)(1− αβE(1 + π)θ−1L−1)π̂t = (1− α(1 + π)θ−1)
α(1 + π)θ−2

×
[
(L− αβE(1 + π)θ−1)

(
η
ν ′(∆Y/A)Y

Aℵ
∆̂t + (1 + η)ν

′(∆Y/A)Y
Aℵ

ŷt

− (1 + η)ν
′(∆Y/A)Y

Aℵ
ât + αβθ

E(1 + π)θ−1ℵ
ℵ

L−1π̂t

)
− (L− αβE(1 + π)θ)

(
ψu′(Y )(1− σ)

i
ŷt + αβ(θ − 1)E(1 + π)θ−2i

i
L−1π̂t

)]
+
(
w̃2L + w̃3 + w̃4L−1)ûjt (5.5)
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Expanding the lag operator, collecting terms and passing expectations from time t

yields

π̂t−1 − αβE(1 + π)θ−1(2 + π)π̂t + (αβ)2E(1 + π)θ−1E(1 + π)θEtπ̂t+1 =

1− α(1 + π)θ−1

α(1 + π)θ−2
ην ′(∆Y/A)Y

Aℵ
∆̂t−1

+ 1− α(1 + π)θ−1

α(1 + π)θ−2
(1 + η)ν ′(∆Y/A)Y

Aℵ
ŷt−1

− 1− α(1 + π)θ−1

α(1 + π)θ−2
(1 + η)ν ′(∆Y/A)Y

Aℵ
ât−1

+ βθ(1− α(1 + π)θ−1)E(1 + π)θ−1ℵ
(1 + π)θ−2ℵ

π̂t

− β(1− α(1 + π)θ−1)E(1 + π)θ−1

(1 + π)θ−2
ην ′(∆Y/A)Y

Aℵ
∆̂t

− β(1− α(1 + π)θ−1)E(1 + π)θ−1

(1 + π)θ−2
(1 + η)ν ′(∆Y/A)Y

Aℵ
ŷt

+ β(1− α(1 + π)θ−1)E(1 + π)θ−1

(1 + π)θ−2
(1 + η)ν ′(∆Y/A)Y

Aℵ
ât

− αβ2θ(1− α(1 + π)θ−1)E(1 + π)θ−1E(1 + π)θ−1ℵ
(1 + π)θ−2ℵ

Etπ̂t+1

− 1− α(1 + π)θ−1

α(1 + π)θ−2
(1− σ)ψu′(Y )

i
ŷt−1

− β(θ − 1)(1− α(1 + π)θ−1)E(1 + π)θ−2i
(1 + π)θ−2i

π̂t

+ β(1− σ)(1− α(1 + π)θ−1)ψu
′(Y )
i

E(1 + π)θ

(1 + π)θ−2 ŷt

+ αβ2(θ − 1)(1− α(1 + π)θ−1)E(1 + π)θE(1 + π)θ−2i
(1 + π)θ−2i

Etπ̂t+1 + w̃5û
j
t−1 + w̃6û

j
t

(5.6)
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removing terms in ℵ and i inside via substitution and several applications of Tonelli’s

theorem then simplifying coefficients and compressing errors yields

β

(
αE(1 + π)θ−1(2 + π) + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
π̂t =

π̂t−1 −
ην ′(∆Y/A)Y (1− α(1 + π)θ−1)/α(1 + π)θ−2A

ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)∆̂t−1

− (1− α(1 + π)θ−1)/(1 + π)θ−2

ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)×[
(1 + η)ν ′(∆Y/A)Y

A
− (1− σ)ψu′(Y )(θ − 1)

θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)

]
ŷt−1

+ β(1− α(1 + π)θ−1)/(1 + π)θ−2E(1 + π)θ−1ην ′(∆Y/A)Y/A
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)∆̂t

+ β(1− α(1 + π)θ−1)/(1 + π)θ−2

ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)×[
(1 + η)ν ′(∆Y/A)Y

A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
]
ŷt

+ αβ2
(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
Etπ̂t+1

+ w̃6u
j
t−1 + w̃7u

j
t

(5.7)

The expression can be compressed further by removing the two lagged terms ∆̂t−1

and ŷt−1. To do so it is necessary to log-linearize the Euler and policy rules.

ψ̂t − σŷt = β
Eψu′(Y )/(1 + π)

ψu′(Y ) (aππ̂t + ayŷt)

− Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π) Etπ̂t+1 −
u′(Y )
u′′(Y )

Eψu′′(Y )/(1 + π)
Eψu′(Y )/(1 + π) σEtŷt+1 (5.8)
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Lagging the relationship and including the later period error term yields

ŷt−1 = u′(Y )
u′′(Y )

Eψu′′(Y )/(1 + π)
Eψu′(Y )/(1 + π) σ

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
ŷt

− aπβ

ψu′(Y )Eψu
′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
π̂t−1

+ Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
π̂t

+ 1
/(

σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
ψ̂t−1

− ψEu′(Y )/(1 + π)
Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
ψ̂t (5.9)

Finally the log-linearized price dispersion relationship and its lagged form are

respectively where I have used the expression for the stochastic steady of ∆

Et∆̂t+1 = αθ

[
E(1 + π)θ−1 − E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1)∆

]
Etπ̂t+1

+ αE(1 + π)θ∆̂t (5.10)

∆̂t−1 = ω̃8û
j
t−1 + ω̃9û

j
t + 1

αE(1 + π)θ ∆̂t

− θ
((1− α)1/(θ−1)∆E(1 + π)θ−1 − E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)

(1− α)1/(θ−1)∆E(1 + π)θ

)
π̂t (5.11)

combining (7.7), (7.9) and (7.11) yields the following expression for the Phillips curve

πt = b0π̂t−1 + b1ŷt + b2∆̂t + b3Etπ̂t+1 + ω̃10û
j
t−1 + ω̃11û

j
t−1 (5.12)

to compact notation I use the substitution bi = b̃i/b where b is the coefficient on infla-

tion in (7.7) when the lagged terms are substituted out and the reset price relationship



136 Chapter 5. Valid and Invalid Approximation

is used for further simplification

b = αβE(1 + π)θ−1(2 + π)

+ 1− α(1 + π)θ−1

α(1 + π)θ−2

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
[
αβ

{(
θ
E(1 + π)θ−1ν ′(∆Y/A)Y/A

1− αβE(1 + π)θ

− β (θ − 1)2

θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)
E(1 + π)θ−2ψu′(Y )Y
1− αβE(1 + π)θ−1

)
+
(

(1 + η)ν ′(∆Y/A)Y
A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
)

× Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)}
− ηθν ′(∆Y/A)Y/A

([
E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ−1

− E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)(1− αE(1 + π)θ)
]

/E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ(1− αE(1 + π)θ)
)]

(5.13)

b̃0 = 1 + 1− α(1 + π)θ−1

(1 + π)θ−2

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
×
{

aπβ

ψu′(Y )Eψu
′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
×
(

(1 + η)ν ′(∆Y/A)Y
A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
)}

(5.14)

b̃1 = 1− α(1 + π)θ−1

(1 + π)θ−2

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
×
{
β

[
(1 + η)ν ′(∆Y/A)Y

A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
]

− u′(Y )
u′′(Y )

Eψu′′(Y )/(1 + π)
Eψu′(Y )/(1 + π) σ

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
×
(

(1 + η)ν ′(∆Y/A)Y
A
− (1− σ)ψu′(Y )(θ − 1)

θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)

)}
(5.15)
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b̃2 = η(1− α(1 + π)θ−1)
α2(1 + π)θ−2

(
− ν ′(∆Y/A)Y/A

E(1 + π)θ + α2βE(1 + π)θ−1ν ′(∆Y/A)//A
)

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
(5.16)

b̃3 = αβ2
(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
(5.17)

By substituting the Phillips curve into the Euler we have

ŷt = c0π̂t−1 + c1π̂t + c2∆̂t + c3Etŷt+1 + ω̃12û
j
t−1 + ω̃13û

j
t−1 (5.18)

For each coefficient write ci = c̃i/c where

c = αβ2
(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
+ 1− α(1 + π)θ−1

(1 + π)θ−2

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
×
{
β

[
(1 + η)ν ′(∆Y/A)Y

A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
]

− u′(Y )
u′′(Y )

Eψu′′(Y )/(1 + π)
Eψu′(Y )/(1 + π) σ

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
×
(

(1 + η)ν ′(∆Y/A)Y
A
− (1− σ)ψu′(Y )(θ − 1)

θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)

)}
× Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
(5.19)
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c̃0 = −
{

1 + 1− α(1 + π)θ−1

(1 + π)θ−2

/(
ν ′(∆Y/A)Y

A
+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
×
[

aπβ

ψu′(Y )Eψu
′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
×
(

(1 + η)ν ′(∆Y/A)Y
A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
)]}

× Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
(5.20)
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c̃1 = −αβ2
(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
× aπβ

ψu′(Y )Eψu
′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
+ Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
× αβE(1 + π)θ−1(2 + π)

+ 1− α(1 + π)θ−1

α(1 + π)θ−2

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
[
αβ

{(
θ
E(1 + π)θ−1ν ′(∆Y/A)Y/A

1− αβE(1 + π)θ

− β (θ − 1)2

θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)
E(1 + π)θ−2ψu′(Y )Y
1− αβE(1 + π)θ−1

)
+
(

(1 + η)ν ′(∆Y/A)Y
A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
)

× Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)}
− ηθν ′(∆Y/A)Y/A

([
E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ−1

− E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)(1− αE(1 + π)θ)
]

/E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ(1− αE(1 + π)θ)
)]

(5.21)

c̃2 = −η(1− α(1 + π)θ−1)
α2(1 + π)θ−2

(
− ν ′(∆Y/A)Y/A

E(1 + π)θ + α2βE(1 + π)θ−1ν ′(∆Y/A)//A
)

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
× Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
(5.22)
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c̃3 = Eψu′(Y )/(1 + π)2

Eψu′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
× αβ2

(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
(5.23)

For the price dispersion recursion we have

∆̂t = d0π̂t−1 + d1π̂t + d2yt + d3Et+1∆̂t+1 + ω̃14û
j
t−1 + ω̃15û

j
t−1 (5.24)

as before write di = d̃i/d

d = αβ2
(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
− θ

([
E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ−1

− E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)(1− αE(1 + π)θ)
]

/E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ(1− αE(1 + π)θ)
)

× η(1− α(1 + π)θ−1)
α(1 + π)θ−2

(
− ν ′(∆Y/A)Y/A+ β

E(1 + π)θ−1ν ′(∆Y/A)//A
E(1 + π)θ

)
/(

ν ′(∆Y/A)Y/A+ αβ
E(1 + π)θν ′(∆Y/A)Y/A

1− αβE(1 + π)θ
)

(5.25)
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d̃0 =
{

1 + 1− α(1 + π)θ−1

(1 + π)θ−2

/(
ν ′(∆Y/A)Y

A
+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
×
[

aπβ

ψu′(Y )Eψu
′(Y )/(1 + π)

/(
σ + ayβ

ψu′(Y )Eψu
′(Y )/(1 + π)

)
×
(

(1 + η)ν ′(∆Y/A)Y
A
E(1 + π)θ−1

− (1− σ)ψu′(Y )θ − 1
θ

(1− α)1/(θ−1)

(1− α(1 + π)θ−1)1/(θ−1)E(1 + π)θ
)]}

× θ
([

E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ−1

− E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)(1− αE(1 + π)θ)
]

/E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ(1− αE(1 + π)θ)
)

(5.26)

d̃1 = −θ
([

E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ−1

− E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)(1− αE(1 + π)θ)
]

/E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ(1− αE(1 + π)θ)
)

(5.27)

d̃2 = η(1− α(1 + π)θ−1)
α2(1 + π)θ−2

(
− ν ′(∆Y/A)Y/A

E(1 + π)θ + α2βE(1 + π)θ−1ν ′(∆Y/A)//A
)

/(
ν ′(∆Y/A)Y/A+ αβ

E(1 + π)θν ′(∆Y/A)Y/A
1− αβE(1 + π)θ

)
× θ

([
E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ−1

− E(1 + π)θ−2(1− α(1 + π)θ−1)1/(θ−1)(1− αE(1 + π)θ)
]

/E(1− α(1 + π)θ−1)θ/(θ−1)E(1 + π)θ(1− αE(1 + π)θ)
)

(5.28)

d̃3 = β2

E(1 + π)θ
(
αE(1 + π)θ−1E(1 + π)θ + (1− α(1 + π)θ−1)

(1 + π)θ−2 ×[
θE(1 + π)θ−1E(1 + π)θ−1ν ′(∆Y/A)Y/A(1− αβE(1 + π)θ−1)
ν ′(∆Y/A)Y/A+ αβE(1 + π)θν ′(∆Y/A)Y/A(1− αβE(1 + π)θ)

− (θ − 1) E(1 + π)θE(1 + π)θ−2ψu′(Y )Y/(1− αβE(1 + π)θ−1)
ψu′(Y )Y + αβE(1 + π)θ−1ψu′(Y )Y/(1− αβE(1 + π)θ−1)

])
(5.29)
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substituting in yields the canonical Phillips curve form

Etπ̂t+1 = b′0π̂t−1 + b′π̂t + b′1yt + b′2∆̂t + ω̃16û
j
t−1 + +ω̃17û

j
t (5.30)

whilst the aggregate demand curve from the Euler and Taylor equation takes the form

Etŷt+1 = c′0π̂t−1 + c′1π̂t + c′yt + c′2∆̂tω̃18û
j
t−1 + +ω̃19û

j
t (5.31)

using ∆̂t = d′0π̂t/(1 − d′1L) + ω̃19û
j
t . I can solve for a VARMA representation by

lagging each relationship by a period, thus

ŷt = c′4π̂t−1+c′5π̂t−2+c′6πt−3+c′7ŷt−1+c′8ŷt−2+ω̃20û
j
t−3+ω̃21û

j
t−2+ω̃22û

j
t−1+ω̃23û

j
t−1

(5.32)

π̂t = b′4π̂t−1+b′5π̂t−2+b′6π̂t−3+b′7ŷt−1+b′8ŷt−2+ω̃24û
j
t−3+ω̃25û

j
t−2+ω̃26û

j
t−1+ω̃27û

j
t

(5.33)

This is a Vector Autoregressive Moving Average- VARMA (p, q) where

Xt = A
p∑
i=0

Xt−i + B
q∑

j=0
et−j

here X = (ŷ, π̂), e = (ψ̂, â) and p = q = 3 Further parametized coefficients reported

on request.
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Chapter 6

Thesis Conclusion

This thesis shows that there are problems with the approximation of the benchmark

Calvo New Keynesian model at its non-stochastic steady state. This is clear because

the underlying system has a canonical form with a rich persistence structure; it can

be represented as a VARMA (3,3). This is not equivalent to the reduced form approx-

imation taken at the non-stochastic steady state, which is the trivial VAR (0). This

is because there are non-hyperbolic dynamics around the non-stochastic steady state.

I relate this to bifurcation and the novel notion of a weak non-negativity constraint

all properties local to this extreme point of the state space.

I have derived the Phillips curve. It generates persistence and will allow me to analyze

policy trade-offs with the potential for substantial implications for optimal policy. I

find a compelling practical motivation to substantially extend and dramatically re-

lax the economic notion of equilibrium. It has the benefit of aligning economics with

other sciences. Economics will always be dominated by optimization since it is how we

model human responses to well-defined incentives. However, constant optimization is

a shibboleth and it will surely prove useful for economic theory to have an implement

in its toolkit to model situations where its absence is potentially significant. It may

also allow greater plurality of ideas and arguments to enter the mainstream macroe-

conomic debate.

Furthermore, the thesis offers axiomatic treatments of coordination failure arising

from price rigidity as well as the Lucas critique, that I hope further economic un-

derstanding and overturn counterintuitive results such as the Divine Coincidence.

Finally, the paper outlines a sophisticated arsenal of mathematical techniques from
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topology and ergodic theory that are unfamiliar to most economic theorists partic-

ularly in macroeconomics. The comparative statics techniques devised in Theorem

13 and Proposition 11 could have significant application across wide areas of mod-

ern economics. Finally, I hope my research will allow fruitful collaboration between

economists and mathematicians and mathematical physicists in areas hitherto seen

as unrelated.

I continue to work on further details. The greatest challenge I have had with the

thesis is the size of the problem to be tackled. Dynamic Stochastic General Equilib-

rium models are an order of magnitude larger than models studied by micro-theorists.

I have shown that the mathematics involved is extremely challenging and arguably

substantially more wide-ranging and advanced than the techniques currently popu-

lar in microeconomics. I believe the thesis can lead to a complete solution to the

canonical New Keynesian model including plausible optimal policy. However, I feel

I have given readers a flavor of the kind of techniques and arguments required to

attack this problem, perhaps the largest and most challenging our profession has to

offer today. Getting the New Keynesian framework right is of crucial importance to

the conduct of macroeconomic policy, public understanding of the business cycle and

in so far as one can devise new schemes to manage it, social welfare. Furthermore,

it is of central importance to the economic profession. The scientific achievements

of other branches of economics are frequently undermined in public perception by

the widely-supposed failures of macroeconomists. I have shown there is significant

truth to this position in terms of DSGE models used for monetary policy. This line

of research that treats DSGE as a dynamical system has the potential to win back

public respect for academic macroeconomics, with positive spillovers for the rest of

the profession.
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Chapter 7

Appendices

The appendix is organized into two sections. The first covers results from Chapter 2

the second results from Chapter 3.

7.1 Results from Chapter 2

The first two subsections cover comparative statics from Section 2.2 in particular

Subsection 2.2.3. The third extends the policy analysis in 2.4. The final two relate

to arguments in 2.6 Stochastic Averaging

7.1.1 Mathematics of GSM

As far as I understand GSM is a new mathematical concept however it is perfectly con-

gruous with existing work on generalized mean which tries to search for general prop-

erties common to all measures of central tendency that depend upon all observations

in the sequence. GSM encompasses other ’average concepts’ such as the weighted av-

erageM =
∑
iwixi, the generalized power meanM(ρ′) = limρ→ρ0 [

∑
xρi ]1/ρ where ρ ∈

R̄ where special cases include ρ0 = 0 corresponds to the geometric mean Π(xi . . . xn)
1
n

and the more general f meanMf = f−1(
∑
i xi) which need not be homogeneous and

compositions of these consult Means and Means [2003] for a broader perspective on

this literature. It possesses two useful properties.

There are several points worth discussing about the definition. The first is that con-

dition one only applies to non-stochastic sequences this is to swerve around Jensen’s

inequality which ensures thatME[x] 6= E[ME[x]] For example the generalized power

mean order 2
∑
i(x2

i )1/2 is a GSM on R but as a composition of a norm (the Eu-

clidean) and a linear function it is a convex function soME[x] ≥ E[ME[x]] for proof
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see Boyd and Vandenberghe [2004]. The strictly increasing requirement in condition

(ii) rules out the median and the mode that in general do not depend on all the

variables. The continuity restriction rules out functional dependence upon the mode

which is a measure of tendency but not central tendency; since with non-convexities

in the sample space distribution the mean might never occur but the mode might

be the minimum value. Continuity also ensures that a ’generalized mean’ represents

the underlying sequence with small changes in one leading to small changes in the

other and vice versa. Recall that consistent with the construction of the optimization

problem of an individual firm which is small relative to the aggregate economy it

is the case that ∂E(f(x))
∂x = Ef ′(x). I assume throughout that the stochastic process

admits the existence of D[Ef)] wherever its non-stochastic counterpart exits. Hence

the expectations operator is passive here. However, as it is not primary interest here

I will not pursue this here as the properties of averages is not my primary line of

inquiry. If a linear approximation is taken then this GSM is equivalent to a more

conventional weighted average of expected future reset prices, although valid only

locally. This is a well known result its use in economics dating back at least to Fis-

cher [1977]. Since I go onto distinguish between linear and non-linear models this

approach is inconvenient for me.

7.1.2 Proof Lemma 1

There are two cases to consider, the first with constant returns to scale is simpler as

actual marginal costs will not differ from those of a flexible price firm. The second case

where there are decreasing returns to scale requires establishing a mapping between

firms’ marginal costs under rigid and flexible prices. This section draws heavily on

concepts in infinite dimensional analysis and measure theory. For those with minimal

background Aliprantis and Border [2006] Chapters 6, 7 and 10 would be a good

starting point- pages 227-229, 274 and 391 provide the basic definitions. Case 1:

Constant Returns to Scale Begin by substituting [18] into [19] which yields:

(p∗t )−θEt
∞∑
T=t

wT

[
(p∗t )−

θ

θ − 1p
f
T

]
= 0
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where the weight wT = (1−α)T−tQt,TYT (PT )θ−1 is determined by aggregate variables

and is therefore independent of the price-setting problem of an individual firm.

Condition [i] follows because when pft = pf by construction of the price level pft = Pt,

then substituting into the first order condition of the optimal reset price problem [18]

yields the flexible price problem with p∗t = pft .

The existence and uniqueness of the functionA requires differentiation and an implicit

function argument, whilst condition [ii] follows from inspecting partial derivatives. To

do so I introduce an auxiliary variable to enable implicit differentiation

Bt(p∗t ,P
f
t ;S,Ωt) = (p∗t )−θEt

∞∑
T=t

wT [p∗t −
θ

θ − 1p
f
T ]

where Pft = 〈pft , p
f
t+1, · · · 〉 is the future path of optimal flexible prices and S the

stochastic process including but not limited to terms in w and Ωt is all information

about the process up to time t. The state spaces are pft ∈ Pf , Pft ∈ Pf×Pf · · · , p∗t ∈

P∗ and Bt ∈ B. As Bt and p∗t are non-stochastic variables their state spaces have the

Euclidean norm ‖.‖E corresponding to the familiar notion of ’distance’ from the origin.

For the stochastic variables- pft and P
f
t the norms are respectively the L1 norm ‖pft ‖ =∫

Pf |p
f
t |dµ[S,Ωt] and ‖Pft ‖P = Et

∑∞
T=twT ‖p

f
T ‖ where the expectation is taken with

respect to the product measure overPf defined because the function B forms a Hilbert

space. Now since B is comprised of the sum of functions continuously differentiable

in the relevant variables (in section 2 I assumed MC had two derivatives and other

functions are power functions which are smooth) we know that it’s Fréchet derivative

exists and is continuous. Recall that the Fréchet derivative DB is a generalization of

the derivative to Banach spaces such that

DBt ≡ lim
δ→0

Bt(p∗t + δh,Pft + δh;St,Ωt)− Bt(p∗t ,P
f
t ;St,Ωt)

δ

The final condition to apply the implicit function theorem is that Bt and p∗t be

diffeomorphic local to zero which follows from

∂Bt
∂p∗t
|Bt=0 = −θBt

p∗t
+ (p∗t )−θEt

∞∑
T=t

wT = (p∗t )−θEt
∞∑
T=t

wT > 0
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The full proof is laid out in Lang [2001] p15-21. Finally condition [ii] is verified by

implicit differentiation.

Et
∂Bt
∂pfτ

= − θ

θ − 1(p∗t )−θEtwτ < 0

Et
∂p∗t

∂pfτ
= −Et[

∂Bt
∂pfT

/
∂Bt
∂p∗t

] = θ

θ − 1
Etwτ

Et
∑∞
T=twT

> 0

Case 2: Decreasing Returns to Scale

Here marginal costs are increasing in output so in general there will be a difference

between marginal costs paid at the flexible price output and sticky prices. The proof

follows swiftly from establishing an increasing relationship between marginal costs of

every firm whatever its price. Call this relationship f so

MCt(i)
(
pi
P

; Ωt

)
= f

(
pi
P

; Ωt

)

MC∗t = f(1; Ωt)

we know from 2.2.1 this is increasing and differentiable in the second argument (which

includes output and an appropriate representation of shocks and parameters.) Hence

for every real price of an individual firm i there is a diffeomorphism H(piP ) : Ωt →

MCt(i)(piP ; Ωt) hence f = H(piP ) ◦ H−1(1)) which retains the property of being an

increasing diffeomorphism hence

Et
∂Bt
∂pfτ

= − θ

θ − 1(p∗t )−θEtwτH ′τ < 0

Et
∂p∗t

∂pfτ
= −Et

∂Bt
∂pfτ

/
∂Bt
∂p∗t

= θ

θ − 1
EtwτH ′τ

Et
∑∞
T=twT

> 0

Derivation of Remark 1

Proof. Bt can be rewritten as

Bt =
(
p∗t
Pt

)−θ ∞∑
T=t

(1− α)T−tQt,TYTΠθ−1
t,T

[
p∗t
Pt
−Πt,TMCT

(
p∗t
Pt

Πt,T

)]
> 0
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I proceeding as before by an implicit function argument:

Et
∂Bt
∂Πt,T

|Bt=0 = −Et
[
(θ − 1) BtΠt,T

+
(
p∗t
Pt

)−θ ∞∑
T=t

(
(1− α)T−tQt,TYT

(
MCT − y′T (i)

)(
p∗t
Pt

)( 1
Πt,T

)2
MC ′T (i)

)]
< 0

Et
∂Bt

∂(p∗t /Pt)
|Bt=0 = Et

[
− θ Bt

p∗t /Pt
+(

p∗t
Pt

)−θ ∞∑
T=t

(1− α)T−tQt,TYT (Πt,T )θ−1
(

1 − y′T (i)MC ′T (i)
)]

> 0

Et
∂(p∗t /Pt)
∂Πt,T

= Et
[∑∞

T=t(1− α)T−tQt,TYT
(
MCT − y′T (i)(p

∗
t
Pt

)( 1
Πt,T )2MC ′T (i)

)
∑∞
T=t(1− α)T−tQt,TYT (Πt,T )θ−1(1 − y′T (i)MC ′T (i)

) ]
> 0

Understanding Policy Rule

7.1.3 Taylor (1979)

In keeping with the style of the time Taylor simply laid out log-linear equations

without an underlying non-linear model- in keeping with Chapter 2 I consider price

rather than wage contracts and simplified some familiar features such as discounting.

The first equation states that the deviation of the reset price p̂∗t from (non-stochastic)

equilibrium is set as a weighted average of expected future realizations of the deviation

of the optimal flexible price deviation p̂t throughout the (M period) duration of the

contract.

p̂∗t = 1
M

(p̂t + · · ·+ Etp̂t+M−1)

The price level is equivalent to the optimal flexible price deviation as firms problems

are identical hence

p̂t = 1
M

(p̂∗t + · · ·+ Etp̂∗t−(M−1))

To solve out for the inflation gap π̂t = p̂t− p̂t−1 substitute out the optimal reset price

using the lag operator L where Lmxt = xt−m and L−mxt = Etxt+m for any m ≥ 0
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on the first equation yields

p̂∗t = 1
M

(1− L−M )
(1− L−1) p̂t

Now note that 1− LM = 1− L+ L− L2 + L2 − L3 + · · ·+ LM−1 − LM implies

(1− LM )p̂t = πt−1 + πt−2 + · · ·+ πt−(M−1)

(1− L−M )p̂t = πt+1 − πt+2 − · · · − πt+M

which yields the final result

Etπt+1 = πt+
1

m2 − 1 Et[(πt+2 − πt−1) + (πt+q − πt−(q+1)) + · · ·+ (πt+M − πt−(M−1))]︸ ︷︷ ︸
q+1 < M

The expectation of next period inflation Etπt+1 is a function of past and future and

inflation and the canonical expression below confirms that it is different from zero

in general and can therefore give rise to provide the basis for a non-trivial forward-

looking monetary policy.

πt+1 = −πt−· · ·−πt−(M−3) +(m2−1)(πt−(M−2)−πt−(M−1))+πt−M + · · ·+πt−(2M−2)

By altering the time scale to annual frequency the expectation structure advocated

by Taylor in defense of his rule would be correct if contracts lasted two years (eight

quarters) and the annual inflation rate π̂∗t = p̂t − p̂t−4, Etπ̂∗t+1 = p̂t+4 − p̂t were the

inflation measure as then

Etπ∗t+1 = π∗t

as Taylor argued. In reality the average contract length tends to be shorter around

three to four quarters in European nations and two to three quarters in the United

States compare Dhyne et al. [2006] and Alvarez et al. [2006] with Bils et al. [2004]1.
1Naturally, if we believed US firms changed their prices every two quarters and we altered the

inflation measure to the quarterly rate as standard in our models then the unit root result would retain
and Taylor’s expectation structure would be correct. With wage rigidity instead or in combination
with price rigidity the dynamics of these model for given contract length are analogous up to the
interpretation of coefficients- see Edge [2002] orAscari [2003]. Dixon and Le Bihan [2012] show that
the weighted average length of wage spells in a representative French Panel dataset is two quarters.
Although this maybe anomalous for my purposes since Dickens et al. [2007] using annualized data
shows that nominal wages in France are substantially more flexible than those in most other OECD
nations, including in particular the United States.
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Naturally, there are methodological doubts about the practice of calibrating stylized

models with micro data. This is why Taylor’s rule was always marketed as a guide to

policy rather than a strictly optimal policy which depends on model specific details.

A literature on robustness of rules across models and optimal simple rules follows this

lead. Rudebusch [2001], Onatski and Stock [2002], Levin et al. [2003], Levin et al.

[2006], Žaković et al. [2007], Brock et al. [2007] and Sala et al. [2008] are examples

of major papers on robustness, whilst for optimal simple rules consult Schmitt-Grohe

et al. [2007],Kumhof et al. [2010], Taylor et al. [2010] and Orphanidesa and Wielandb

[2013]. The two are frequently linked with simple rules tending to be more robust

to model misspecification and parameter uncertainty Levin et al. [1999], Levin et al.

[2007] and Taylor et al. [2010] detail this argument. Results from Section 2.6

This subsection presents more details of the derivations related to the persistence

problem with the benchmark New Keynesian model, alongside several extensions

which indicate the robustness of the puzzle.

7.1.4 Eigenvalues and Convergence

To begin with the expression for the eigenvalues of the matrix A is as follows.

λ1 =
σ−1(ay + ωβ−1) + 1 + β−1 −

√
[σ−1(ay + ωβ−1) + 1 + β−1]2 − 4β−1(1 + σ−1(ay + ωaπ))

2

λ2 =
σ−1(ay + ωβ−1) + 1 + β−1 +

√
[σ−1(ay + ωβ−1) + 1 + β−1]2 − 4β−1(1 + σ−1(ay + ωaπ))

2

Note that both are positive and the larger eigenvalue λ2 is always greater than one.

We need both to be outside the unit circle for unconditional convergence. In the case

where the discriminant term under the square root is negative the solution takes the

form xt = e−γt(Acos(zt) + Bsin(zt)) which will converge non-monotonically when

the real part of both eigenvalues is outside the unit circle (γ > 0) see for example

Simon and Blume [1994] for an exposition of this case.
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7.1.5 Full Solution for Benchmark Model

The coefficients for inflation are

ζ1
π = −σβω

2(λ−(1+i)
2 − λ−(1+i)

1 )
σβ2(λ2 − λ1)

ζ2
π = βω2(λ−(1+i)

2 − λ−(1+i)
1 )

σβ2(λ2 − λ1)

ζ3
π = σω[(βλ2 − 1)λ−(1+i)

1 − (βλ1 − 1)λ−(1+i)
2 ]

σβ2(λ2 − λ1)

For output we have

ζ1
y = σβω[(βλ2 − 1)λ−(1+i)

2 − (βλ1 − 1)λ−(1+i)
1 ]

σβ2(λ2 − λ1)

ζ2
y = −βω[(βλ2 − 1)λ−(1+i)

2 − (βλ1 − 1)λ−(1+i)
1 ]

σβ2(λ2 − λ1)

ζ3
y = σ(βλ1 − 1)(βλ2 − 1)(λ−(1+i)

2 − λ−(1+i)
1 )−−ω[(βλ2 − 1)λ−(1+i)

2 − (βλ1 − 1)λ−(1+i)
1 ]

σβ2(λ2 − λ1)

Finally for interest rates

ζ1
i = −aπσβω

2(λ−(1+i)
2 − λ−(1+i)

1 ) + ayσβω[(βλ2 − 1)λ−(1+i)
2 − (βλ1 − 1)λ−(1+i)

1 ]
σβ2(λ2 − λ1)

ζ2
i = aπβω

2(λ−(1+i)
2 − λ−(1+i)

1 )− ayβω[(βλ2 − 1)λ−(1+i)
1 − (βλ1 − 1)λ−(1+i)

2 ]
σβ2(λ2 − λ1)

ζ3
i =

aπβω[(βλ2 − 1)λ−(1+i)
1 − (βλ1 − 1)λ−(1+i)

2 ] + aπω
2(λ−(1+i)

2 − λ−(1+i)
1 )

+ ayσ(βλ1 − 1)(βλ2 − 1)(λ−(1+i)
2 − λ−(1+i)

1 )− ayω(βλ2 − 1)λ−(1+i)
2 − (βλ1 − 1)λ−(1+i)

1
σβ2(λ2 − λ1)

None of the three interest rate coefficients can be decisively signed which explains

the counter-intuitive or uncertain signs of all other coefficients.This confirms the in-

terpretation in the text that the error terms do not correspond with our intuition of

what a shock is when policy responds to contemporaneous variables. For example,

ζ1
π < 0 implies that a preference shock which causes the household to move consump-

tion from the next period to the present actually causes present consumption to fall.

This is a consequence of the increase in real interest rate associated with the Taylor

principle. When there are repeat eigenvalues the form of the solution is different.
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The repeat eigenvalue is λ = σ−1(ay + ωβ−1) + 1 + β−1 as many terms are zero in

the expansion we find that see Halmos [1958]

A−(1+i) = −iλ−(1+i) + (1 + i)λ−iA−1

. General solution equation (37) then allows us to calculate the ζ coefficients.

7.2 Proofs from Chapter 3

This item proves the three propositions about price dispersion in the stochastic New

Keynesian model mentioned in Chapter 3.

7.2.1 Proof of Proposition 5

Proof. The proof that ∆ ≥ 1 is an application of Jensen’s inequality. First define two

functions.

g(pi) = pi ∗
(
pi
P

)−θ

φ(pi) =
(
pi
P

)θ/(θ−1)

We need to assign a probability measure for the prices. Any non-singular measure as-

signing zero probability pi = 0 at every history will suffice. Note that the construction

of the price level ensures that then P > 0 with probability one. Therefore, we know

that φ is strictly convex on every measurable set since d2φ
dpi2

= θ
(θ−1)2

φ(pi)
p2
i
> 0, ∀ pi > 0.

Although in the first part of the proof I will only use the weak convexity property.

Note that P =
∫

Ω g dµ. Now since φ is a convex function defined on a metric space it

follows from theorem 7.12 (p. 265) in Aliprantis and Kim that it has a sub-derivative

at every point. Hence we may select a and b such that:

ap∗ + b ≤ φ(p∗)

For all possible reset prices p∗ and for the particular value p∗ = P

aP + b = φ(P )
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It follows that:

φ ◦ g(p∗) ≥ ag(p∗) + b

For all p∗ since we have a probability measure the integral is monotone with µ(Ω) = 1.

Note that:

∆ =
∫

Ω
φ ◦ g dµ

≥
∫

Ω
(ag + b) dµ

= a

∫
Ω
g dµ+

∫
Ω
b dµ

= aP + b

= φ(P )

= 1

Where I have used respectively the monotonicity of the Lebesgue integral, the

linearity of the Lebesgue integral and the definition of the functions see Royden and

Fitzpatrick (p80-82).

For the second part we need to be clear about the nature of the measure used. It is

a discrete measure corresponding to price dispersion statistics defined at each time t.

As a probability measure it is defined by the triplet (Ω,Σ, µ) where Ω is a probability

space Σ is a sigma-algebra of sets and µ is a probability measure defined for every

set in Σ. Ωt is the set of all prices in the economy at time t. Σt is the set of all

subsets (or power set) of Ωt denoted Σt = P(Ωt) and µt is the share of particular

prices in the economy at time t. To generalize the result across models simply modify

the probability measure. The definition of Σt will be the same for all discrete time

models but Ωt and µt will change. For the Calvo model without indexation used here

they are as follows:

Ωt = {· · · , p∗−1, p
∗
0, p
∗
1, · · · , p∗t }

µt(p) = Σt
−∞δT (p)αt−T (1− α)

Where p∗T indexes the reset price at time t and δT is the indicator function for time T .
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Defined as δT (p) =


1 if p = p∗T

0 otherwise.
∀ 0 ≤ T ≤ t Note that the incongruous feature

of having an infinite history of reset prices is not necessary to prove Lemma 1 for the

Calvo model - the result would pass with a finite history of reset prices starting at p∗0

with the measure µt(p) = Σt
T=1δT (p)αt−T (1−α)+δ0(p)αt. For the Yun [1996] model

where the Calvo pricing firms not allowed to re-optimize, index to trend inflation π̄

they are:

Ωt = {· · · , (1 + π̄)t+1p∗−1(1 + π̄)tp∗0, (1 + π̄)t−1p∗1, · · · , p∗t }

µt(p) = Σt
−∞δ̂t,T (p)αt−T (1− α)

Where δ̂t,T (p) =


1 if p = (1 + π̄)t−T p∗T

0 otherwise.
∀ 0 ≤ T ≤ t

For the Generalized Taylor Economy:

Ωt = {· · · , p∗t−(J−1),J , p
∗
t−(J−2),J , p

∗
t−(J−2),J−1, · · · , p

∗
t−1,2, p

∗
t−1,3, · · · , p∗t−1,J , p

∗
t,1, p

∗
t,2, · · · , p∗t,J}

µt(p) =
J∑
j=1

j−1∑
k=0

δt−k,jγj/j

Note that the second subscript now indicates contract length and J is the maximum

contract length. γj is the share of firms with contract length j. There is staggered

pricing for each contract length so 1/j is the fraction of firms with contract length j

resetting at a given time. The need to generate staggered nominal adjustment within

each sector is the reason why we cannot begin the contract history at the date t = 0.

Note that unlike with Calvo there is not a single reset price in each period but one

for each contract length 1 through j.

Finally, other models of state dependent pricing can be admitted trivially by making

parameters in the measure dependent on the parameters and history of shocks.

To derive the conditions for ∆ > 1 we need to employ the strict convexity property

of φ which is as follows:

φ(sp+ (1− s)p′) < sφ(p) + (1− s)φ(p′)
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for any s in (0,1) and p 6= p′. Select any p′ we know from its weak convexity property

that φ has a sub-derivative at p′ so:

ap+ b ≤ φ(p)

ap′ + b = φ(p′)

Now here begins a contradiction argument. Suppose another point p′′ had the same

sub-derivative then:

ap′′ + b = φ(p′′)

Now consider a convex combination p′′′ = sp′ + (1− s)p′′. As φ is strictly convex we

know that:

sφ(p′) + (1− s)φ(p′′) > φ(p′′′)

However, as we have assumed they have the same subderivative we obtain a contra-

diction:

s(ap′ + b) + (1− s)(ap′′ + b) = ap′′′ + b > φ(p′′′)

Therefore for all p∗ 6= P :

φ ◦ g(p∗) > ag(p∗) + b

Now partition the sample space as follows: Ω1
t = Ωt\{p∗T : p∗T = Pt} and Ω2

t = Ωt\Ω1
t

This allows me to decompose the condition for ∆ = 1 as follows:

∫
Ω1
t

φ ◦ g dµ+
∫

Ω2
t

φ ◦ g dµ =
∫

Ω1
t

(ag + b) dµ+
∫

Ω2
t

(ag + b) dµ

Now we can cancel the second expression on each side because we know they are

always equal on every set in Ω2
t and we can invoke uniform continuity of the Lebesgue

integral to extend this to the sigma-algebra. Rearranging and reparametizing with

the function h = φ ◦ g − (ag + b) yields the condition:

∫
Ω1
t

h dµ = 0
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Now the next step is to prove that the set Ω1
t has measure zero. Since h ≥ 0, I can

apply Chebyshev’s inequality which states that for any ε > 0:

µ({h > 0}) ≤ 1
ε

∫
Ω1
t

h dµ = 0

. Take the union over sequences εk ↘ 0 to obtain µ({h > 0}) = 0. Now note that:

p ∈ Ω1
t ⇒ h(p) > 0⇒ p ∈ {h > 0}

So Ωt
1 ⊆ {h > 0} thus µ(Ω1

t ) = 0.Now this means every subset of Ω1
t must have

zero probability including every individual reset price p however this contradicts the

definition of Ω that a positive fraction of firms are selling at price p. Therefore Ω1
t is

the empty set and Ω2
t = Ω, so ∆ = 1 if and only if every reset price p∗ = p. To prove

pi = P write the price level as P =
∫
i pi(

pi
P )dµ.Note that with all firms setting the

same price pi is independent of µ which with a dispersed price level would reflect the

share of firms resetting prices at a certain date. We can therefore factorize pi from

the integral to leave P = pi∆ since I have already shown that ∆ = 1 when all pi = P ,

the proof is complete.

7.2.2 Definition 1 and Lemma 3 Material

This subsection contains extensions of Lemma 3 to cover various nominal indexation

schemes proposed in the literature and the example cited in the text.

7.2.3 Taylor Pricing Example

Here is an example where under Taylor contracts non-zero inflation eliminates price

dispersion. All contracts last two periods so the price level and dispersion are given

respectively by

P 1−θ
t = 1

2(p∗t )1−θ + 1
2(p∗t−1)1−θ

∆t = 1
2

(
p∗t
Pt

)−θ
+ 1

2

(
p∗t−1
Pt

)−θ
Suppose θ = 2, p∗0 = 1, p∗1 = 2 which solves to give price level P1 = 4

3 and price

dispersion ∆1 = 10
9 . Now consider time t = 2 the firms that set their price in period
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0 now get to reset their price. Therefore the reset price p∗0 = 1 is replaced by p∗2 with

p∗1 = 2 the other price in the economy. Now applying Lemma 2 ∆2 = 1 if and only if

p∗2 = 2. This implies P2 = 2 then inflation is non-zero in fact πt = 50%.
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