
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/119120/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Doe, Robert 2018. Facilitating integration of computational design processes in the design and production of
prefabricated homes. Architectural Science Review 61 (4) , pp. 246-254. 10.1080/00038628.2018.1466686

Publishers page: http://dx.doi.org/10.1080/00038628.2018.1466686

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Facilitating Integration of Computational Design Processes in the

Design and Production of Prefabricated Homes

This research utilises computational design concepts to address dysfunction in the

architectural, engineering and construction (AEC) sector. The goal is to identify

solutions by focussing on the integration of computational design concepts into

computer-aided design (CAD) processes and into compatible prefabrication

strategies.

Precedents are examined and project work is used to set up the modelling

framework of a three-storey, prefabricated residential building, allowing

reflection and speculation on solutions to the problems identified. The

computational design concept of the ‘design domain’ is employed to assist with

set up of the modelling framework, while computational ‘design rules’ are

implemented during the developed design stage, including the ‘declarative

format’ which improves accessibility using visual programming graphs, and the

‘modular format’ which reveals combined effects between programming and

prefabrication strategies.

The intensity of integration between these computational design, AEC CAD and

prefabrication processes is assessed, allowing solutions to be developed which

could improve conventional AEC CAD practice and traditional AEC

prefabrication processes.

Keywords: integration; computational design; AEC CAD; prefabrication

INTRODUCTION

This study identifies problems with existing AEC CAD and prefabrication

processes which are fragmented and ineffective. The hypothesis affirms that

computational design concepts are needed to foster the integration of AEC CAD and

prefabrication processes. Thus, the research questions addressed:

• How computational design concepts can instil understanding, in concert with

current AEC CAD practices, and how they might become integrated with

everyday architectural design workflows.

• How prefabrication can benefit from better understanding and incorporation of

these computational design concepts.

This research reflects on project work undertaken to gain a better understanding of

computational design processes incorporated into AEC CAD and compatible

prefabrication strategies. It is contended that, to achieve the goal of integrated

computational design, AEC CAD and prefabrication processes, fundamental and

systemic changes are required. This prompts a proposal for evaluating integration

intensity to facilitate the formulation of solutions.

METHODOLOGY

The strategy employed in this research has been the study of precedents

followed by investigation through project work, testing the main hypothesis that

integrated computational design concepts are needed to ensure effective implementation

of design tasks which, acting in concert with compatible prefabrication strategies, can

also improve the design and production of prefabricated homes. In summary, the

methodology followed in this paper is engaged with:

• Revealing through a literature review the complementarity of computational

design concepts combined with prefabricated home design and production

strategies.

• Substantiating through project work that:

i. When setting up the framework of a computationally designed model,

integration is improved through better understanding of the ‘design

domain’, and by implementation of more flexible and intelligible ‘design

rules’.

ii. There are synergies between the programming concept and the

prefabrication concept of the modular format, so that working together,

design and production workflows are enhanced.

• Recording the findings of this research process through ‘reflection-in-action’,

the act of noticing while practicing to capture the subtleties of concepts, methods

and tools used (Schön 2008, 85).

• Advocating Mapping Integration, introduced by the author as a means of

evaluating the integration intensity of computational design, AEC CAD and

prefabrication processes implemented during everyday architectural design

tasks.

The objective of the externally funded research stream was to compare conventional

with prefabricated methods of designing and producing homes. Hence, project work

carried out as an adjunct to the research stream facilitated this objective and tested the

main hypothesis.

Literature Review

Fragmentation of AEC Systems

The AEC sector has failed to develop design and production tools that

implement objectives in an effective way. As Ryan Smith notes in Prefab Architecture,

a Guide to Modular Design and Construction, the sector has yet ‘…to deliver a product

that meets the requirements of design, on budget, on time, without falling down or

leaking’ (Smith 2010, viii). Integrated computational design and production tools offer

solutions to these problems and can bring the AEC sector forwards into the digital age

with its expectations of collaboration and seamlessness, as noted by Mario Carpo in The

Alphabet and the Algorithm (2011, 79).

Interoperability, the effective exchange of data and communication, is a key component

of integration which needs improving in the AEC sector, despite the efforts of Building

Information Modelling (BIM), a concept initiated by Charles Eastman et al, at Carnegie

Mellon University in 1974 (Eastman et al. 1974). Currently, BIM’s focus is to improve

AEC management processes for the collection of all project information (Aconex 2017).

But this research asserts that it is improved technological processes which will have a

greater impact on interoperability, as integration of computational design concepts into

AEC CAD processes will facilitate a seamless workflow from conceptual design to

production.

Sustaining the emphasis in this research on technological solutions, the Discussion

section proposes a means to measure the integration intensity of everyday architectural

design tasks incorporating computational design, AEC CAD and prefabrication

processes.

Computational Design

Computational design methods may be merged with or separate from current

AEC CAD practices, but they have the distinguishing tendency to cultivate

‘intentionality’, or ‘…the mapping of an idea through to an intended outcome’, as noted

by Mark Burry (2011, 25). Indeed, incoherently defined AEC CAD practices have

been attributed to architects’ lack of engagement with its development since the early

1960’s, leaving the technological capabilities of CAD systems to be resolved by

programmers, to the extent that ‘…CAD software developers are meta designers…’

(Terzidis 2006, 54). Consequently, in many architectural practices, CAD is mainly used

to implement ‘computerisation’, a pejorative term, which Terzidis explains as follows:

Generally, it involves the digitisation of entities or processes that are preconceived,

predetermined, and well defined (Terzidis 2006, 57).

By contrast, as observed by Yehuda Kalay (2004, 195), computational design facilitates

the embedding of rules, constraints and goals within modelled objects, thus utilising the

power of the computer and offering itself as a more intelligent aid in design and

production workflows than current AEC CAD.

Prefabrication

Prefabrication also provides the AEC sector with an opportunity to improve the

design and production process. As perceived by Smith et al (2010, xii), it is an approach

which, compared to conventional building practice, will ‘…allow for greater efficiency

and precision’. Though there are many definitions of prefabrication Nicholas

Habraken’s broad description from Supports: an alternative to mass housing (1999) is

instructive because it encompasses the whole spectrum of definitions, and is thus

accommodating rather than confining:

In itself prefabrication means no more than the manufacture of housing

components in one place and their assembly in another (Habraken 1999, p.67).

Prefabrication has a long history in the AEC sector, but architects’ engagement with it

has been irregular and often unsuccessful. It has been argued by Colin Davies in The

Prefabricated Home, that this has been due to a lack of engagement with industry, while

Gropius’ and Wachsmann’s Packaged House exemplified this failure (Davies 2005,

25). Seemingly, architects have preferred to engage with the AEC sector through the

implementation of dimensionally coordinated systems. For example, Rudolph

Schindler’s preoccupation with modular coordination in the 1920s and 30s was an early

attempt to integrate design and construction (Park 2005).

More recently, Kieran and Timberlake in Refabricating Architecture have called for the

‘…development of integrated component assemblies – modules, chunks, grand blocks’,

where the contractor becomes an assembler of components on site (Kieran and

Timberlake 2004, 41). It is this approach to prefabrication using ‘modular component

assemblies’, implemented in conjunction with compatible computational design

concepts, which is examined and evaluated in this research.

Computational Design Concepts

Design domain. Project work examines set up of the framework of the computationally

designed model based on the concept of the design domain. This is described by Jane

Burry as a framework which creates better understanding of the structure of the artefact

being designed because it is a topological space where associations are abstracted from

geometrical form (Burry 2007, 615). Associations in topological space are often

exemplified by visualisation of the smooth transformation from torus to mug. Though

the associations of this abstracted framework create distance between the architect and

design intent, Burry asserts that it allows the deferral and later review of design

decisions, and even provides an expanded cognitive design space for exploration by

students and architects (Burry 2007, 622).

Design Rules. In the quest for more flexible and intelligible computational design rules

it has been argued by William J Mitchell in A New Agenda for Architectural Design

(1989, 8), that they should be expressed in a ‘declarative’ and ‘modular’ format,

concepts common to the field of computer programming. This research examines this

quest to improve the format in which design rules are expressed, while the rules

themselves are described in more detail as follows:

Design rules in declarative format specify how particular relationships between objects

are processed, but they do not describe how the outcome is achieved. In contrast, as

Kalay explains (2004, 50-53), ‘imperative format’ design rules ‘…are languages where

each action of the computer is spelled out and in the correct sequence’. The difference

between these formats is further illustrated by the user interface which represents them:

declarative formats are represented by visual programming graphs e.g. Generative

Components by Bentley, Dynamo by Autodesk and Grasshopper by David Rutten,

while imperative formats are represented by textual programming languages e.g. C# and

Python.

Design rules in modular format denote discrete input and output parameters, as noted

by Daniel Davis et al (2011, 58) with modules which comprise ‘self-contained chunks

of code’, facilitating sharing, re-use, and debugging. In describing component-based

software engineering best practice, Wilhelm Hasselbring (2002, 2) also defines the

features of the programming concept of the modular format in more detail as follows:

• Reusability. Component reuse in multiple applications to lower costs.

• High cohesion. Cohesion of a component is the extent to which contained

elements are inter-related. For the component to be self-contained or distinctive

high cohesion is desired.

• Interface coupling. Coupling is the extent to which the component is coupled

with other components. The component’s interface should be loose, thus low

coupling is desired.

• Trade-offs. Optimal performance involves trade-offs between many small

components, or a few larger components.

Connections between the programming concept of the modular format and the

prefabrication concept of the modular format - i.e. modular component assemblies, as

noted earlier - are also examined in this study.

Integrated Systems

This review has highlighted the fragmentation and inefficiencies which exist in

AEC CAD and prefabrication processes, and consequently the necessity for a better

understanding of successfully integrated systems to develop solutions to these problems.

For example, when elucidating lessons from Ludwig von Bertalanffy’s (2008) General

System Theory, Barry Russell in Building Systems, Industrialisation and Architecture,

suggested that the ‘interacting forces’ within an open system should be acknowledged:

… intuitive or explicit, there has to be a recognition by architects of the interacting

forces in an open system. Using this open system in a responsive and responsible

way can offer new and original results as well as drawing sensitively on tradition

(Russell 1981, 705).

Furthermore, in The Sciences of the Artificial, Herbert Simon maintained that a

hierarchically structured complex system, which discloses dynamic interactions

between its parts in relation to the whole, is a structural organisation which facilitates

understanding (Simon 1996, 207). Simon correlated this ‘process description’ of

complex systems with an organism’s ‘capacity for acting purposefully on its

environment’ (Simon 1996, 215). These insights suggest that an open, dynamically

interactive design and production system would lead to a more successfully integrated,

effective and adaptable outcome for the AEC sector.

Accordingly, a methodology termed Mapping Integration, is proposed to improve

integration of computational design, AEC CAD and prefabrication processes. It asserts

that the features of this integrated system should include:

• Openness: interoperability, collaboration

• Dynamic interaction: interactivity and operability

These features and their attributes guide reflection of the Findings, while the

methodology for Mapping Integration is described in more detail in the Discussion

section.

Summary

The literature review has examined the state of fragmentation and

ineffectiveness of AEC CAD and prefabrication processes in general, and has explored

precedents which offer solutions to these problems. Computational design concepts

which could improve these processes have been described, including the design domain,

and design rules which utilise the declarative and modular formats. These

computational design concepts are integrated with AEC CAD processes and compatible

prefabrication strategies in an approach which underpins the project work examined in

the Findings which follow.

FINDINGS

The primary problem examined in this research is the challenge of integrating

computational design concepts into AEC CAD and prefabrication workflows to

improve outcomes. Initially this involved set up of the framework of the computational

design model applying the concept of the design domain, and was followed during the

design development stage with an examination of the declarative and modular formats’

ability to improve understanding and intelligibility. CAD tools used to implement

project work and facilitate comparison of findings included: ‘AEC CAD’ (Autodesk

Revit); a ‘visual programming graph’ (Autodesk Dynamo); and ‘advanced CAD’ (

Digital Project/ CATIA), used primarily in the manufacturing sector.

The secondary problem examined in this research is the challenge of implementing

compatible computational design, AEC CAD and prefabrication strategies. Different

options for prefabrication were evaluated by the research team and a hybrid option -

panellised walls and floors, plus 3D volumetric components - was determined to

provide the least cost and highest design flexibility. Project work focussed on design

development of the panellised walls and floors.

The intensity of integration of the computational design concepts was guided by

reflection on the features outlined by Mapping Integration described earlier.

The Design Domain

With the building’s envelope previously established following discussions

between stakeholders and planners, project work focussed on set up of the framework of

the design domain’s parts in relation to the whole. The framework of the whole was

defined by grids and levels associated with ‘components’ built-in to the AEC CAD

software, a tool categorised by Schodek et al (2005, 184) as a ‘component based

modeller’ (e.g. Autodesk Revit, Bentley Microstation, Graphisoft Archicad). After

adjustment of grids and levels, ‘grouped’ modules – residential units, bathroom pods,

clip-on balconies - were repeatedly copied into grid locations to facilitate parametric

propagation of changes (Figure 1).

Figure 1. Typical set-up AEC CAD: ‘grouped’ modules - unit, bathroom pods, clip-on balconies (Autodesk Revit).

The AEC CAD process involved an efficient and widespread architectural workflow

relying on mouse-click placement of implicitly defined ‘components’ - predefined wall

and floor assemblies. For example, predefinition determined that walls were joined

perpendicularly based on their centreline, interior face or exterior face location, not in

accordance with the ‘component’s’ assembled ‘parts’ or construction layers. Hence, the

method for joining ‘components’ was implicitly defined by the software engineer’s

assumptions for best practice, rather than explicitly defined by the user or architect.

Templates – explicit set up of the framework

An alternative computational design approach, using the same AEC CAD tool,

set up the design domain of a ‘component family’ as a template which facilitated the

creation of varied wall and floor panel types. With this approach, the origin for

placement and joining of components could be explicitly defined, which facilitated

automated procedures used later on. Thus, with this approach, a stronger interactive

parametric relationship was defined between components (Figure 2).

Figure 2. Floor panel design domain - a template for floor panel types (Autodesk Revit).

Describing a process, not a product

Jane Burry (2007, 615) suggested that a better method for defining the design

domain is a textual rather than a graphical ‘sketch’ of associations and relationships

between elements, because it focusses attention on the process, rather than the product.

This method was tested by defining the wall template’s relationships textually as

follows:

(1) Instantiate the wall panel to any thickness, width or height.

(2) Allow width interfaces to be notched or un-notched.

(3) Provide an origin located to allow for automatic placement of the wall panel in

the model’s framework.

(4) Enable the location of an opening of any height or width to be located in the

panel.

(5) Ensure fixing brackets are automatically located at 600mm centres, set-in

300mm at the panel’s ends.

(6) Ensure that all elements’ data can be automatically scheduled.

This method concentrated awareness on set up of the template and all likely interface

conditions which could be predicted in advance (Figure 3).

Figure 3. Wall panel component design domain: reference planes, associated dimensions, and geometry (Autodesk

Revit).

Setting up the design domain with this method necessitated a logical sequence of steps:

firstly, reference lines and planes were sketched out; then, dimensions were associated

to these entities; lastly, geometry was aligned, allowing parametric relationships to be

established. Such rigour is characteristic of the extra cognitive effort required of

computational design methods. Despite this cost, the benefit of carefully defining and

dynamically engaging components instantiated from the wall and floor panel templates,

was a reduction in the complexity of the whole model. This occurred because templates

minimised the amount of drafting required by maximising the potential for re-use and

sharing of the knowledge embedded in the templates themselves.

Generally, explicit and logical set up of the framework of templates facilitated

visualisation and understanding of relationships between topological, geometrical and

parametrically associated entities.

The Declarative and Modular Formats

The declarative and modular formats, encapsulated by the visual programming

graph, tested Mitchell’s notion (1989, 8) that these formats could improve the flexibility

and intelligibility of computational design concepts. The declarative format facilitated

explicit definition of grids and levels using nodes and wires to establish parametric

relationships between graph and model, thus enhancing interactivity. The grid

intersections were then used to define coordinate locations, offering the following

benefits (Figure 4):

• A record of decisions, and therefore the ability to review or defer them

• An ability to search for grid intersections, and therefore extract coordinates

• A high degree of precision in the placement of components, facilitating the

planning of downstream production outcomes

Figure 4. Set-up of the model’s design domain to find grid intersection coordinates (Autodesk Dynamo).

When the extracted coordinate values were projected to floor levels, the visual

programming graph enabled automated placement and rotation of wall and floor panels,

based on their origin points, although operability was impaired when errors occurred

during placement as some of the graph’s nodes malfunctioned (Figure 5).

Figure 5. Automatic placement and rotation of wall and floor panels based on coordinates projected to locations at

each level (Autodesk Revit & Dynamo).

As implied above, the programming concept of the modular format was also

represented by the features of the visual programming graph. For example, the nodes

were self-contained modules which facilitated sharing and re-use as they were copied

and amended to define a new object, or process relationship. These node modules

represented the wall and floor panels which were referenced into the visual

programming graph from the AEC CAD model templates described above, facilitating

automatic placement of these panels into the CAD model.

Modular format programming and prefabrication

Links between modular format programming and modular format prefabrication

concepts showed that the notion of the interface of the module differed markedly. As

observed by Hasselbring (2002, 2), at the interface between programming modular

components low coupling is desirable, whereas with prefabricated modular components,

whilst low coupling is likely interface conditions change significantly according to the

context of the assembly. For example, floor to floor panel interfaces needed to maintain

fire and acoustic performance, transfer loads continuously, make an allowance for

movement, or even required full separation where inside met outside at balcony

locations (Figure 6).

Figure 6. Floor & wall panel interfaces (background details by Kate Humphries, UQ).

Nevertheless, the modular format, which aimed to improve the flexibility and

intelligibility of programming modules, correspondingly improved definition of

modular component assemblies by promoting self-containment and distinctiveness,

reusability and modifiability, and well-defined interfaces.

Trade-offs

Reusability and modifiability were partly dependent on the wall and floor panel

templates encompassing all the modular components’ interface possibilities, as defined

by their fixed and variable parameter values. But, a trade-off between complexity and

flexibility emerged where many templates could have different, fixed interfaces, or one

template could have many, variable interfaces. Hasselbring (2002, 4-6) observed that, in

software programming, trade-offs between numbers of components, and regulation of

complexity through their reuse or instantiation as types, is supported by ‘domain

engineering’ managed by a component library. Similarly, modular component

assemblies could benefit from such careful management of trade-offs.

Hierarchical structure and the modular format

Using advanced CAD software, design domains were recreated, and the modular

format of prefabrication was re-examined. The graphical user interface (GUI) of

advanced CAD differed from AEC CAD and visual programming graphs because

parametric associations were explicitly formed and managed via hierarchical ‘trees’.

Furthermore, the cognitive burden was increased when setting up frameworks because

components were defined explicitly as ‘solid’ entities containing volumes and physical

properties. For example, the design domain was defined by ‘sketches’, parametrically

associated to geometry, which were comprised of extrusions, pads and pockets related

to each other as solids and voids. This meticulous process is known as ‘feature-based’

modelling in the manufacturing sector (Schodek et al. 2005, 202). Therefore, the wall

panel component was made up of three sketches - an opening, notches, and the ‘pad’ or

panel itself - features which could then be examined in the hierarchical tree where their

parameters were defined and modifiable (Figure 7). Hence, with advanced CAD,

intelligibility and speed are traded for rigour, as observed by Schodek et al (2005, 185).

Figure 7. Framework sketches, ‘feature based’ product assembly & hierarchical tree (Digital Project/CATIA).

Accordingly, wall panel and spaced bracket ‘parts’ were set up as design domains, or

templates, for instantiation of all modular component assemblies. Hence, the set up of

these discrete, self-contained, re-usable components linked modular format

programming with modular format prefabrication concepts (Figure 8).

Figure 8. Grids for each CLT wall and floor panel component, Glulam beam, and automated wall bracket placement

to unit type (Digital Project/CATIA).

Summary

The Findings examined the integration of computational design, AEC CAD and

prefabrication concepts during the implementation of an everyday architectural design

task, and also briefly compared AEC CAD with advanced CAD strategies which

encapsulate computational design concepts. The outline methodology, Mapping

Integration, guided this ‘reflection-in-action’ and will be examined in more detail in the

Discussion which follows.

DISCUSSION

Project work tested the hypothesis that computational design concepts are

necessary to foster the integration of AEC CAD and prefabrication processes during the

set up and design development stages of a three-storey residential building. The

computational design concepts examined included the design domain, and design rules

in the declaratory format and the modular format. A methodology, Mapping

Integration, guided testing of the hypothesis during project work and forms the basis of

a proposal for measuring integration intensity.

Design Domain - a template for reuse

The design domain is a useful computational design concept because it increases

understanding and awareness of interactive relationships between elements, components

and the envelope. The design domain is generally defined as a singular entity - a

‘control rig’ or ‘jig’ as perceived by Aish and Woodbury (2005, 11, 2007, 223) - but, as

demonstrated here, it is better understood as a series of templates comprising the

envelope, its components, and elements. The design domain describes set up of the

templates which define these interactive relationships, thus allowing retrospective

action to be taken to alter design intent. Another key advantage of the template is its

tendency to reduce drafting by maximising the potential for re-use and sharing of the

knowledge embedded in the templates themselves.

AEC CAD provided limited opportunities for setting up these frameworks, except at the

component level, while advanced CAD provided every opportunity for setting up

complex parametric associations between elements, components and the envelope but at

a high cognitive cost. Furthermore, though not utilised for this task, advanced CAD

could have enhanced the dynamically interactive qualities of the design domain by

encapsulating rules, checks, constraints and scripted ‘knowledge patterns’ within its

design domain templates.

Thus, when setting up the design domain AEC CAD favoured ease of operability with

reduced rigour, while advanced CAD traded-off ease of operability for rigour and

precision. Clearly, for the design domain to become a concept which assists with

integration of AEC CAD processes, ease of operability, rigour and precision should be

possible at a reasonable cognitive cost.

Declarative Format – the challenges of scale

As a computational design concept, the declarative format improved intuitive

understanding of interactive relationships between elements - relationships which are

visually represented by nodes and wires - thus addressing Mitchell’s (1989, 8) hope that

the intelligibility of computational design processes could be improved. However, the

flexibility of the declarative format is harder to verify. The project work demonstrated

that nodes could fail, weakening operability. Other known problems include: ‘scaling-

up’ which occurs when the graph becomes too large and complex, thus compromising

operability and intelligibility (Burnett and al 1995, 46); and also ‘separation’ between

the visual programming graph’s interface and the geometric model which creates

abstract separation between design intent and its implementation, as noted by Robert

Aish (2005, 11). Hence, though useful to improve understanding of computational

design concepts, these shortcomings of the declarative format impair its capacity to

assist with integration of AEC CAD processes across the scales of element, component

and envelope.

Modular Format – for programming and prefabrication

Mitchell’s (1989, 8) additional assertion that the modular format could improve

the intelligibility and flexibility of computational design processes was supported by its

application to programming modules ensuring that they were self-contained, distinct

with well-defined interfaces, reusable and modifiable. The project work demonstrated

that such features could improve the prefabrication of modular component assemblies,

an approach also promoted by Kieran and Timberlake:

If we were to construct our buildings on site utilising preassembled components,

the engineers could think in a more effective wholistic part-to-whole manner

(Kieran and Timberlake 2004, 40).

Project work also demonstrated that advanced CAD encapsulates both the programming

and prefabrication concepts of the modular format, a connection between concepts

which suggests that further research would be productive. This suggest that the

computational design concept of the modular format could successfully contribute to

the integration of AEC CAD and prefabrication processes.

Mapping Integration

Following von Bertalanffy’s and Simon’s (2008, 1996) observations noted

earlier, it is conjectured that an integrated computational design, AEC CAD and

prefabrication process would possess the following features and attributes:

Openness

 (O) Openness: interactions and exchange of feedback

 (Io) Interoperability: exchange possible; error-free; sharing; re-use

(Co) Collaboration: participants work together to create or achieve objectives

Dynamic Interaction

 (In) Interactivity:

i parametric associations

 ii encapsulated knowledge

(Op) Operability:

i effective, user-friendly, reliable, supportable, maintainable

ii intelligible, low cognitive burden

iii affordance, ‘…the potential of the technology to enable the

assertive will of its user’ (Kalay 2004, 476)

Accordingly, a methodology is proposed, Mapping Integration, which would provide a

graphical representation of the integration intensity of everyday design tasks (Figure 9).

Figure 9. Mapping Integration – sub-tasks’ features assessed for integration intensity.

In the diagram above, integration intensity increases as values rise on the vertical scale.

For instance, the interactivity (Ini, Inii) levels of Task 1 (Ti) utilising the non-parametric

methods of AEC CAD are very low, while the interoperability (Ioi, Ioii) levels of Task 3

(Tiii) utilising advanced CAD are high. Sub-tasks representing the overlap of concepts,

methods and tools are rated separately as shown. The goal of Mapping Integration is to

further speculation and discussion about solutions. Following further research, the

methodology will be developed and presented in more detail.

CONCLUSION

Utilising everyday architectural design tasks this research reflected on strategies

to improve the integration of AEC CAD and prefabrication processes by implementing

three computational design concepts: the design domain; the declarative format; and the

modular format. These emergent computational design concepts have allowed

insufficient time for practice to consider their utility and implications, thus it was

appropriate to record findings through the methodology of ‘reflection-in-action’.

The concept of the design domain enhanced intelligibility during set up of the model’s

templates because the act of intentionally associating multiple frameworks exposed

interactive relationships between components and the whole. The added benefit of

reduced drafting due to reuse of these templates supports the argument that this

computational design concept should be more widely implemented in architectural

practice.

Recommendations for improving the format of design rules in order to improve the

flexibility and intelligibility of computational design processes, as advocated by

Mitchell (1989, 8), highlighted the need for continuous review of these emergent tools.

For instance, project work revealed that the visual programming graph which represents

the declarative format, though accessible to computational design newcomers, is

hindered by issues of scale, complexity and separation. Their recent introduction by

AEC CAD suppliers, as an adjunct to the shortcomings of ‘component based modellers’

(Aish and Bredella 2017, 8), might encourage architects to be more watchful.

Nevertheless, the modular format deserves further examination of properties which link

programming efficiencies to prefabrication improvements, as demonstrated by the

modular component assembly approach. Over the past 40 years advanced CAD and the

manufacturing sector have developed methods and solutions to this approach deserving

greater attention from the AEC sector.

In testing the hypothesis that computational design concepts can assist with integration

of AEC CAD and prefabrication processes, this research has determined that more work

needs to be done. In this vein, Mapping Integration, has been presented to foster the

development of solutions appropriate to architects needs and the nature of their practice.

Computational design concepts integrated with AEC CAD and prefabrication practices

would encourage explicitly defined and intentionally devised workflows, thus requiring

architects to interweave intuition with logic and rigour. Such a combination of concepts

would prompt enhanced responses to the complex demands of the AEC sector and

contribute to the emergence of an architecture fully engaged with the processes of

design and production.

REFERENCES

Aconex. 2017. "What is BIM." Aconex, accessed 16 November.

https://www.aconex.com/what-is-BIM.

Aish, Robert. 2005. "From Intuition to Precision." eCAADe 23, Lisbon.

Aish, Robert, and Nathalie Bredella. 2017. "The evolution of architectural computing:

from Building Information Modelling to Design Computation." Architectural

Research Quarterly 21 (1).

Burnett, M, and et al. 1995. "Scaling up Visual Programming Languages." Computer

28 (3):45-54.

Burry, Jane. 2007. "Mindful spaces: computational geometry and the conceptual spaces

in which designers operate." International Journal of Architectural Computing

5 (4):611-624.

Burry, Mark. 2011. Scripting Cultures: Architectural Design and Programming, AD

Primers. Hoboken, NJ: John Wiley & Sons Ltd.

Carpo, Mario. 2011. The Alphabet and the Algorithm. Cambridge, MA: MIT Press.

Davies, Colin. 2005. The Prefabricated Home. London: Reaktion Books.

Davis, Daniel, Jane Burry, and Mark Burry. 2011. "Untangling Parametric Schemata:

Enhancing Collaboration through Modular Programming." Designing Together -

CAADFutures 2011, Liège.

Eastman, Charles, David Fisher, Gilles Lafue, Joseph Lividini, Douglas Stoker, and

Christos Yessios. 1974. An Outline of the Building Description System.

Pittsburgh, PA: Carnegie Mellon University, Institute of Physical Planning.

Habraken, Nicholas J. 1999. Supports: an alternative to mass housing. 2nd ed.

Gateshead, Tyne & Wear: Urban International Press. Original edition, 1961.

Hasselbring, Wilhem. 2002. "Component-Based Software Engineering." In Handbook

of Software Engineering and Knowledge Engineering: Emerging Technologies,

edited by Shi Kuo Chang, 289-305. Singapore: World Scientific.

Kalay, Yehuda E. 2004. Architecture's New Media: principles, theories and methods of

Computer-Aided Design. Cambridge, MA: MIT Press.

Kieran, Stephen, and James Timberlake. 2004. Refabricating Architecture: How

Manufacturing Methodologies are Poised to Transform Building Construction.

New York, NY: McGraw Hill Professional.

Mitchell, William J. 1989. "A New Agenda for Computer-Aided Design." Electronic

Design Studio, Boston, MA.

Park, Jin-Ho. 2005. "Demountable and interchangable construction system: R. M.

Schindler's Panel Post Construction." The 2005 World Sustainable Building

Conference, Tokyo.

https://www.aconex.com/what-is-BIM

Russell, Barry. 1981. Building Systems, Industrialisation and Architecture. London:

John Wiley & Sons.

Schodek, D, M Bechthold, K Griggs, K M Kao, and M Steinberg. 2005. Digital Design

and Manufacturing: CAD/CAM Applications in Architecture and Design.

Hoboken, NJ: John Wiley & Sons Inc.

Schön, Donald A. 2008. Part 1: Professional Knowledge and Reflection-in-Action. In

The Reflective Practitioner: How Professionals Think In Action. New York, NY:

Basic Books Original edition, 1983.

Simon, Herbert A. 1996. The Sciences of the Artificial. 3rd ed. Cambridge, MA: MIT

Press. Original edition, 1969.

Smith, R E. 2010. Prefab Architecture: A Guide to Modular Design and Construction.

Hoboken, NJ: John Wiley & Sons.

Terzidis, Kostas. 2006. Algorithmic Architecture. Oxford: Elsevier.

von Bertalanffy, L. 2008. "An Outline of General System Theory." In Emergence,

Complexity and Self-Organisation: Precursors and Prototypes. Marblehead,

MA: ISCE Publishing (accessed 12 September 2017).

Woodbury, Robert, Robert Aish, and Axel Kilian. 2007. "Some Patterns for Parametric

Modelling." ACADIA 2007, Halifax, Nova Scotia.

Figure 1. Typical set-up AEC CAD: ‘grouped’ modules - unit, bathroom pods, clip-on balconies (Autodesk Revit).

Figure 2. Floor panel design domain - a template for floor panel types (Autodesk Revit).

Figure 3. Wall panel component design domain: reference planes, associated dimensions, and geometry (Autodesk

Revit).

Figure 4. Set-up of the model’s design domain to find grid intersection coordinates (Autodesk Dynamo).

Figure 5. Automatic placement and rotation of wall and floor panels based on coordinates projected to locations at

each level (Autodesk Revit & Dynamo).

Figure 6. Floor & wall panel interfaces (background details by Kate Humphries, UQ).

Figure 7. Framework sketches, ‘feature based’ product assembly & hierarchical tree (Digital Project/CATIA).

Figure 8. Grids for each CLT wall and floor panel component, Glulam beam, and automated wall bracket placement

to unit type (Digital Project/CATIA).

Figure 9. Mapping Integration – sub-tasks’ features assessed for integration intensity.

