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Facilitating Integration of Computational Design Processes in the 

Design and Production of Prefabricated Homes 

This research utilises computational design concepts to address dysfunction in the 

architectural, engineering and construction (AEC) sector. The goal is to identify 

solutions by focussing on the integration of computational design concepts into 

computer-aided design (CAD) processes and into compatible prefabrication 

strategies. 

Precedents are examined and project work is used to set up the modelling 

framework of a three-storey, prefabricated residential building, allowing 

reflection and speculation on solutions to the problems identified. The 

computational design concept of the ‘design domain’ is employed to assist with 

set up of the modelling framework, while computational ‘design rules’ are 

implemented during the developed design stage, including the ‘declarative 

format’ which improves accessibility using visual programming graphs, and the 

‘modular format’ which reveals combined effects between programming and 

prefabrication strategies. 

The intensity of integration between these computational design, AEC CAD and 

prefabrication processes is assessed, allowing solutions to be developed which 

could improve conventional AEC CAD practice and traditional AEC 

prefabrication processes. 

Keywords: integration; computational design; AEC CAD; prefabrication 

INTRODUCTION 

This study identifies problems with existing AEC CAD and prefabrication 

processes which are fragmented and ineffective. The hypothesis affirms that 

computational design concepts are needed to foster the integration of AEC CAD and 

prefabrication processes. Thus, the research questions addressed: 



 

 

• How computational design concepts can instil understanding, in concert with 

current AEC CAD practices, and how they might become integrated with 

everyday architectural design workflows. 

• How prefabrication can benefit from better understanding and incorporation of 

these computational design concepts. 

This research reflects on project work undertaken to gain a better understanding of 

computational design processes incorporated into AEC CAD and compatible 

prefabrication strategies. It is contended that, to achieve the goal of integrated 

computational design, AEC CAD and prefabrication processes, fundamental and 

systemic changes are required. This prompts a proposal for evaluating integration 

intensity to facilitate the formulation of solutions. 

METHODOLOGY 

The strategy employed in this research has been the study of precedents 

followed by investigation through project work, testing the main hypothesis that 

integrated computational design concepts are needed to ensure effective implementation 

of design tasks which, acting in concert with compatible prefabrication strategies, can 

also improve the design and production of prefabricated homes. In summary, the 

methodology followed in this paper is engaged with: 

• Revealing through a literature review the complementarity of computational 

design concepts combined with prefabricated home design and production 

strategies. 

• Substantiating through project work that:  

i. When setting up the framework of a computationally designed model, 

integration is improved through better understanding of the ‘design 



 

 

domain’, and by implementation of more flexible and intelligible ‘design 

rules’. 

ii. There are synergies between the programming concept and the 

prefabrication concept of the modular format, so that working together, 

design and production workflows are enhanced. 

• Recording the findings of this research process through ‘reflection-in-action’, 

the act of noticing while practicing to capture the subtleties of concepts, methods 

and tools used (Schön 2008, 85). 

• Advocating Mapping Integration, introduced by the author as a means of 

evaluating the integration intensity of computational design, AEC CAD and 

prefabrication processes implemented during everyday architectural design 

tasks. 

The objective of the externally funded research stream was to compare conventional 

with prefabricated methods of designing and producing homes. Hence, project work 

carried out as an adjunct to the research stream facilitated this objective and tested the 

main hypothesis. 

Literature Review 

Fragmentation of AEC Systems 

The AEC sector has failed to develop design and production tools that 

implement objectives in an effective way. As Ryan Smith notes in Prefab Architecture, 

a Guide to Modular Design and Construction, the sector has yet ‘…to deliver a product 

that meets the requirements of design, on budget, on time, without falling down or 

leaking’ (Smith 2010, viii). Integrated computational design and production tools offer 

solutions to these problems and can bring the AEC sector forwards into the digital age 



 

 

with its expectations of collaboration and seamlessness, as noted by Mario Carpo in The 

Alphabet and the Algorithm (2011, 79). 

Interoperability, the effective exchange of data and communication, is a key component 

of integration which needs improving in the AEC sector, despite the efforts of  Building 

Information Modelling (BIM), a concept initiated by Charles Eastman et al, at Carnegie 

Mellon University in 1974 (Eastman et al. 1974).  Currently, BIM’s focus is to improve 

AEC management processes for the collection of all project information (Aconex 2017). 

But this research asserts that it is improved technological processes which will have a 

greater impact on interoperability, as integration of computational design concepts into 

AEC CAD processes will facilitate a seamless workflow from conceptual design to 

production. 

Sustaining the emphasis in this research on technological solutions, the Discussion 

section proposes a means to measure the integration intensity of everyday architectural 

design tasks incorporating computational design, AEC CAD and prefabrication 

processes. 

Computational Design 

Computational design methods may be merged with or separate from current 

AEC CAD practices, but they have the distinguishing tendency to cultivate 

‘intentionality’, or ‘…the mapping of an idea through to an intended outcome’, as noted 

by Mark Burry  (2011, 25). Indeed,  incoherently defined AEC CAD practices have 

been attributed to architects’ lack of engagement with its development since the early 

1960’s, leaving the technological capabilities of CAD systems to be resolved by 

programmers, to the extent that ‘…CAD software developers are meta designers…’ 



 

 

(Terzidis 2006, 54). Consequently, in many architectural practices, CAD is mainly used 

to implement ‘computerisation’, a pejorative term, which Terzidis explains as follows: 

Generally, it involves the digitisation of entities or processes that are preconceived, 

predetermined, and well defined (Terzidis 2006, 57). 

By contrast, as observed by Yehuda Kalay (2004, 195), computational design facilitates 

the embedding of rules, constraints and goals within modelled objects, thus utilising the 

power of the computer and offering itself as a more intelligent aid in design and 

production workflows than current AEC CAD. 

Prefabrication 

Prefabrication also provides the AEC sector with an opportunity to improve the 

design and production process. As perceived by Smith et al (2010, xii), it is an approach 

which, compared to conventional building practice, will ‘…allow for greater efficiency 

and precision’. Though there are many definitions of prefabrication Nicholas 

Habraken’s broad description from Supports: an alternative to mass housing (1999) is 

instructive because it encompasses the whole spectrum of definitions, and is thus 

accommodating rather than confining: 

In itself prefabrication means no more than the manufacture of housing 

components in one place and their assembly in another (Habraken 1999, p.67). 

Prefabrication has a long history in the AEC sector, but architects’ engagement with it 

has been irregular and often unsuccessful. It has been argued by Colin Davies in The 

Prefabricated Home, that this has been due to a lack of engagement with industry, while  

Gropius’ and Wachsmann’s Packaged House exemplified this failure (Davies 2005, 

25). Seemingly, architects have preferred to engage with the AEC sector through the 

implementation of dimensionally coordinated systems. For example, Rudolph 



 

 

Schindler’s preoccupation with modular coordination in the 1920s and 30s was an early 

attempt to integrate design and construction (Park 2005). 

More recently, Kieran and Timberlake in Refabricating Architecture have called for the 

‘…development of integrated component assemblies – modules, chunks, grand blocks’, 

where the contractor becomes an assembler of components on site (Kieran and 

Timberlake 2004, 41). It is this approach to prefabrication using ‘modular component 

assemblies’, implemented in conjunction with compatible computational design 

concepts, which is examined and evaluated in this research. 

Computational Design Concepts 

Design domain. Project work examines set up of the framework of the computationally 

designed model based on the concept of the design domain. This is described by Jane 

Burry as a framework which creates better understanding of the structure of the artefact 

being designed because it is a topological space where associations are abstracted from 

geometrical form (Burry 2007, 615). Associations in topological space are often 

exemplified by visualisation of the smooth transformation from torus to mug. Though 

the associations of this abstracted framework create distance between the architect and 

design intent, Burry asserts that it allows the deferral and later review of design 

decisions, and even provides an expanded cognitive design space for exploration by 

students and architects (Burry 2007, 622). 

Design Rules. In the quest for more flexible and intelligible computational design rules 

it has been argued by William J Mitchell in A New Agenda for Architectural Design 

(1989, 8), that they should be expressed in a ‘declarative’ and ‘modular’ format, 

concepts common to the field of computer programming. This research examines this 

quest to improve the format in which design rules are expressed, while the rules 



 

 

themselves are described in more detail as follows: 

Design rules in declarative format specify how particular relationships between objects 

are processed, but they do not describe how the outcome is achieved. In contrast, as 

Kalay explains  (2004, 50-53), ‘imperative format’ design rules ‘…are languages where 

each action of the computer is spelled out and in the correct sequence’. The difference 

between these formats is further illustrated by the user interface which represents them: 

declarative formats are represented by visual programming graphs e.g.  Generative 

Components by Bentley, Dynamo by Autodesk and Grasshopper by David Rutten, 

while imperative formats are represented by textual programming languages e.g. C# and 

Python. 

Design rules in modular format denote discrete input and output parameters, as noted 

by Daniel Davis et al (2011, 58) with modules which comprise ‘self-contained chunks 

of code’, facilitating sharing, re-use, and debugging. In describing component-based 

software engineering best practice, Wilhelm Hasselbring (2002, 2) also defines the 

features of the programming concept of the modular format in more detail as follows: 

• Reusability. Component reuse in multiple applications to lower costs. 

• High cohesion. Cohesion of a component is the extent to which contained 

elements are inter-related. For the component to be self-contained or distinctive 

high cohesion is desired. 

• Interface coupling. Coupling is the extent to which the component is coupled 

with other components. The component’s interface should be loose, thus low 

coupling is desired. 

• Trade-offs.  Optimal performance involves trade-offs between many small 

components, or a few larger components. 



 

 

Connections between the programming concept of the modular format and the 

prefabrication concept of the modular format - i.e. modular component assemblies, as 

noted earlier - are also examined in this study. 

Integrated Systems 

This review has highlighted the fragmentation and inefficiencies which exist in 

AEC CAD and prefabrication processes, and consequently the necessity for a better 

understanding of successfully integrated systems to develop solutions to these problems. 

For example, when elucidating lessons from Ludwig von Bertalanffy’s (2008) General 

System Theory, Barry Russell in Building Systems, Industrialisation and Architecture, 

suggested that the ‘interacting forces’ within an open system should be acknowledged: 

… intuitive or explicit, there has to be a recognition by architects of the interacting 

forces in an open system. Using this open system in a responsive and responsible 

way can offer new and original results as well as drawing sensitively on tradition 

(Russell 1981, 705). 

Furthermore, in The Sciences of the Artificial, Herbert Simon maintained that a 

hierarchically structured complex system, which discloses dynamic interactions 

between its parts in relation to the whole, is a structural organisation which facilitates 

understanding (Simon 1996, 207). Simon correlated this ‘process description’ of 

complex systems with an organism’s ‘capacity for acting purposefully on its 

environment’ (Simon 1996, 215). These insights suggest that an open, dynamically 

interactive design and production system would lead to a more successfully integrated, 

effective and adaptable outcome for the AEC sector. 

Accordingly, a methodology termed Mapping Integration, is proposed to improve 

integration of computational design, AEC CAD and prefabrication processes. It asserts 

that the features of this integrated system should include:  



 

 

• Openness: interoperability, collaboration 

• Dynamic interaction: interactivity and operability 

These features and their attributes guide reflection of the Findings, while the 

methodology for Mapping Integration is described in more detail in the Discussion 

section. 

Summary 

The literature review has examined the state of fragmentation and 

ineffectiveness of AEC CAD and prefabrication processes in general, and has explored 

precedents which offer solutions to these problems. Computational design concepts 

which could improve these processes have been described, including the design domain, 

and design rules which utilise the declarative and modular formats. These 

computational design concepts are integrated with AEC CAD processes and compatible 

prefabrication strategies in an approach which underpins the project work examined in 

the Findings which follow. 

FINDINGS 

The primary problem examined in this research is the challenge of integrating 

computational design concepts into AEC CAD and prefabrication workflows to 

improve outcomes. Initially this involved set up of the framework of the computational 

design model applying the concept of the design domain, and was followed during the 

design development stage with an examination of the declarative and modular formats’ 

ability to improve understanding and intelligibility. CAD tools used to implement 

project work and facilitate comparison of findings included: ‘AEC CAD’ (Autodesk 

Revit); a ‘visual programming graph’ (Autodesk Dynamo); and ‘advanced CAD’ ( 

Digital Project/ CATIA), used primarily in the manufacturing sector. 



 

 

The secondary problem examined in this research is the challenge of implementing 

compatible computational design, AEC CAD and prefabrication strategies. Different 

options for prefabrication were evaluated by the research team and a hybrid option - 

panellised walls and floors, plus 3D volumetric components - was determined to 

provide the least cost and highest design flexibility. Project work focussed on design 

development of the panellised walls and floors. 

The intensity of integration of the computational design concepts was guided by 

reflection on the features outlined by Mapping Integration described earlier. 

The Design Domain 

With the building’s envelope previously established following discussions 

between stakeholders and planners, project work focussed on set up of the framework of 

the design domain’s parts in relation to the whole. The framework of the whole was 

defined by grids and levels associated with ‘components’ built-in to the AEC CAD 

software, a tool categorised by Schodek et al (2005, 184) as a ‘component based 

modeller’ (e.g. Autodesk Revit, Bentley Microstation, Graphisoft Archicad). After 

adjustment of grids and levels, ‘grouped’ modules – residential units, bathroom pods, 

clip-on balconies - were repeatedly copied into grid locations to facilitate parametric 

propagation of changes (Figure 1). 

Figure 1. Typical set-up AEC CAD: ‘grouped’ modules - unit, bathroom pods, clip-on balconies (Autodesk Revit). 

The AEC CAD process involved an efficient and widespread architectural workflow 

relying on mouse-click placement of implicitly defined ‘components’ - predefined wall 

and floor assemblies. For example, predefinition determined that walls were joined 

perpendicularly based on their centreline, interior face or exterior face location, not in 

accordance with the ‘component’s’ assembled ‘parts’ or construction layers. Hence, the 



 

 

method for joining ‘components’ was implicitly defined by the software engineer’s 

assumptions for best practice, rather than explicitly defined by the user or architect. 

Templates – explicit set up of the framework 

An alternative computational design approach, using the same AEC CAD tool, 

set up the design domain of a ‘component family’ as a template which facilitated the 

creation of varied wall and floor panel types. With this approach, the origin for 

placement and joining of components could be explicitly defined, which facilitated 

automated procedures used later on. Thus, with this approach, a stronger interactive 

parametric relationship was defined between components (Figure 2). 

Figure 2. Floor panel design domain - a template for floor panel types (Autodesk Revit). 

Describing a process, not a product 

Jane Burry (2007, 615) suggested that a better method for defining the design 

domain is a textual rather than a graphical ‘sketch’ of associations and relationships 

between elements, because it focusses attention on the process, rather than the product. 

This method was tested by defining the wall template’s relationships textually as 

follows: 

(1) Instantiate the wall panel to any thickness, width or height. 

(2) Allow width interfaces to be notched or un-notched. 

(3) Provide an origin located to allow for automatic placement of the wall panel in 

the model’s framework. 

(4) Enable the location of an opening of any height or width to be located in the 

panel. 

(5) Ensure fixing brackets are automatically located at 600mm centres, set-in 

300mm at the panel’s ends. 



 

 

(6) Ensure that all elements’ data can be automatically scheduled. 

This method concentrated awareness on set up of the template and all likely interface 

conditions which could be predicted in advance (Figure 3). 

Figure 3. Wall panel component design domain: reference planes, associated dimensions, and geometry (Autodesk 

Revit). 

Setting up the design domain with this method necessitated a logical sequence of steps: 

firstly, reference lines and planes were sketched out; then, dimensions were associated 

to these entities; lastly, geometry was aligned, allowing parametric relationships to be 

established. Such rigour is characteristic of the extra cognitive effort required of 

computational design methods. Despite this cost, the benefit of carefully defining and 

dynamically engaging components instantiated from the wall and floor panel templates, 

was a reduction in the complexity of the whole model. This occurred because templates 

minimised the amount of drafting required by maximising the potential for re-use and 

sharing of the knowledge embedded in the templates themselves. 

Generally, explicit and logical set up of the framework of templates facilitated 

visualisation and understanding of relationships between topological, geometrical and 

parametrically associated entities. 

The Declarative and Modular Formats 

The declarative and modular formats, encapsulated by the visual programming 

graph, tested Mitchell’s notion (1989, 8) that these formats could improve the flexibility 

and intelligibility of computational design concepts. The declarative format facilitated 

explicit definition of grids and levels using nodes and wires to establish  parametric 

relationships between graph and model, thus enhancing interactivity. The grid 



 

 

intersections were then used to define coordinate locations, offering the following 

benefits (Figure 4): 

• A record of decisions, and therefore the ability to review or defer them 

• An ability to search for grid intersections, and therefore extract coordinates 

• A high degree of precision in the placement of components, facilitating the 

planning of downstream production outcomes 

Figure 4. Set-up of the model’s design domain to find grid intersection coordinates (Autodesk Dynamo). 

When the extracted coordinate values were projected to floor levels, the visual 

programming graph enabled automated placement and rotation of wall and floor panels, 

based on their origin points, although operability was impaired when errors occurred 

during placement as some of the graph’s nodes malfunctioned (Figure 5). 

Figure 5. Automatic placement and rotation of wall and floor panels based on coordinates projected to locations at 

each level (Autodesk Revit & Dynamo). 

As implied above, the programming concept of the modular format was also 

represented by the features of the visual programming graph. For example, the nodes 

were self-contained modules which facilitated sharing and re-use as they were copied 

and amended to define a new object, or process relationship. These node modules 

represented the wall and floor panels which were referenced into the visual 

programming graph from the AEC CAD model templates described above, facilitating 

automatic placement of these panels into the CAD model. 

Modular format programming and prefabrication 

Links between modular format programming and modular format prefabrication 

concepts showed that the notion of the interface of the module differed markedly. As 

observed by Hasselbring (2002, 2), at the interface between programming modular 



 

 

components low coupling is desirable, whereas with prefabricated modular components, 

whilst low coupling is likely interface conditions change significantly according to the 

context of the assembly. For example, floor to floor panel interfaces needed to maintain 

fire and acoustic performance, transfer loads continuously, make an allowance for 

movement, or even required full separation where inside met outside at balcony 

locations (Figure 6). 

Figure 6. Floor & wall panel interfaces (background details by Kate Humphries, UQ). 

Nevertheless, the modular format, which aimed to improve the flexibility and 

intelligibility of programming modules, correspondingly improved definition of 

modular component assemblies by promoting self-containment and distinctiveness, 

reusability and modifiability, and well-defined interfaces. 

Trade-offs 

Reusability and modifiability were partly dependent on the wall and floor panel 

templates encompassing all the modular components’ interface possibilities, as defined 

by their fixed and variable parameter values. But, a trade-off between complexity and 

flexibility emerged where many templates could have different, fixed interfaces, or one 

template could have many, variable interfaces. Hasselbring (2002, 4-6) observed that, in 

software programming, trade-offs between numbers of components, and regulation of 

complexity through their reuse or instantiation as types, is supported by ‘domain 

engineering’ managed by a component library. Similarly, modular component 

assemblies could benefit from such careful management of trade-offs. 

Hierarchical structure and the modular format 

Using advanced CAD software, design domains were recreated, and the modular 

format of prefabrication was re-examined. The graphical user interface (GUI) of 



 

 

advanced CAD differed from AEC CAD and visual programming graphs because 

parametric associations were explicitly formed and managed via hierarchical ‘trees’. 

Furthermore, the cognitive burden was increased when setting up frameworks because 

components were defined explicitly as ‘solid’ entities containing volumes and physical 

properties. For example, the design domain was defined by ‘sketches’, parametrically 

associated to geometry, which were comprised of extrusions, pads and pockets related 

to each other as solids and voids. This meticulous process is known as ‘feature-based’ 

modelling in the manufacturing sector (Schodek et al. 2005, 202). Therefore, the wall 

panel component was made up of three sketches - an opening, notches, and the ‘pad’ or 

panel itself - features which could then be examined in the hierarchical tree where their 

parameters were defined and modifiable (Figure 7). Hence, with advanced CAD, 

intelligibility and speed are traded for rigour, as observed by Schodek et al (2005, 185). 

Figure 7. Framework sketches, ‘feature based’ product assembly & hierarchical tree (Digital Project/CATIA). 

Accordingly, wall panel and spaced bracket ‘parts’ were set up as design domains, or 

templates, for instantiation of all modular component assemblies. Hence, the set up of 

these discrete, self-contained, re-usable components linked modular format 

programming with modular format prefabrication concepts (Figure 8). 

Figure 8. Grids for each CLT wall and floor panel component, Glulam beam, and automated wall bracket placement 

to unit type (Digital Project/CATIA). 

Summary 

The Findings examined the integration of computational design, AEC CAD and 

prefabrication concepts during the implementation of an everyday architectural design 

task, and also briefly compared AEC CAD with advanced CAD strategies which 

encapsulate computational design concepts. The outline methodology, Mapping 



 

 

Integration, guided this ‘reflection-in-action’ and will be examined in more detail in the 

Discussion which follows. 

DISCUSSION 

Project work tested the hypothesis that computational design concepts are 

necessary to foster the integration of AEC CAD and prefabrication processes during the 

set up and design development stages of a three-storey residential building. The 

computational design concepts examined included the design domain, and design rules 

in the declaratory format and the modular format. A methodology, Mapping 

Integration, guided testing of the hypothesis during project work and forms the basis of 

a proposal for measuring integration intensity. 

Design Domain - a template for reuse 

The design domain is a useful computational design concept because it increases 

understanding and awareness of interactive relationships between elements, components 

and the envelope. The design domain is generally defined as a singular entity - a 

‘control rig’ or ‘jig’ as perceived by Aish and Woodbury (2005, 11, 2007, 223) - but, as 

demonstrated here, it is better understood as a series of templates comprising the 

envelope, its components, and elements. The design domain describes set up of the 

templates which define these interactive relationships, thus allowing retrospective 

action to be taken to alter design intent. Another key advantage of the template is its 

tendency to reduce drafting by maximising the potential for re-use and sharing of the 

knowledge embedded in the templates themselves. 

AEC CAD provided limited opportunities for setting up these frameworks, except at the 

component level, while advanced CAD provided every opportunity for setting up 

complex parametric associations between elements, components and the envelope but at 



 

 

a high cognitive cost. Furthermore, though not utilised for this task, advanced CAD 

could have enhanced the dynamically interactive qualities of the design domain by 

encapsulating rules, checks, constraints and scripted ‘knowledge patterns’ within its 

design domain templates. 

Thus, when setting up the design domain AEC CAD favoured ease of operability with 

reduced rigour, while advanced CAD traded-off ease of operability for rigour and 

precision. Clearly, for the design domain to become a concept which assists with 

integration of AEC CAD processes, ease of operability, rigour and precision should be 

possible at a reasonable cognitive cost. 

Declarative Format – the challenges of scale 

As a computational design concept, the declarative format improved intuitive 

understanding of interactive relationships between elements -  relationships which are 

visually represented by nodes and wires - thus addressing Mitchell’s (1989, 8) hope that 

the intelligibility of computational design processes could be improved. However, the 

flexibility of the declarative format is harder to verify. The project work demonstrated 

that nodes could fail, weakening operability. Other known problems include: ‘scaling-

up’ which occurs when the graph becomes too large and complex, thus compromising 

operability and intelligibility (Burnett and al 1995, 46); and also ‘separation’ between 

the visual programming graph’s interface and the geometric model which creates 

abstract separation between design intent and its implementation, as noted by Robert 

Aish (2005, 11). Hence, though useful to improve understanding of computational 

design concepts, these shortcomings of the declarative format impair its capacity to 

assist with integration of AEC CAD processes across the scales of element, component 

and envelope. 



 

 

Modular Format – for programming and prefabrication 

Mitchell’s (1989, 8) additional assertion that the modular format could improve 

the intelligibility and flexibility of computational design processes was supported by its 

application to programming modules ensuring that they were self-contained, distinct 

with well-defined interfaces, reusable and modifiable. The project work demonstrated 

that such features could improve the prefabrication of modular component assemblies, 

an approach also promoted by Kieran and Timberlake: 

If we were to construct our buildings on site utilising preassembled components, 

the engineers could think in a more effective wholistic part-to-whole manner 

(Kieran and Timberlake 2004, 40). 

Project work also demonstrated that advanced CAD encapsulates both the programming 

and prefabrication concepts of the modular format, a connection between concepts 

which suggests that further research would be productive. This suggest that the 

computational design concept of the modular format could successfully contribute to 

the integration of AEC CAD and prefabrication processes. 

Mapping Integration 

Following von Bertalanffy’s and Simon’s (2008, 1996) observations noted 

earlier, it is conjectured that an integrated computational design, AEC CAD and 

prefabrication process would possess the following features and attributes: 

Openness 

 (O)  Openness: interactions and exchange of feedback 

  (Io)  Interoperability: exchange possible; error-free; sharing; re-use 

(Co)  Collaboration: participants work together to create or achieve objectives 

Dynamic Interaction 

 (In)  Interactivity:  



 

 

i parametric associations 

  ii encapsulated knowledge 

(Op) Operability:  

i effective, user-friendly, reliable, supportable, maintainable 

ii intelligible, low cognitive burden 

iii affordance, ‘…the potential of the technology to enable the 

assertive will of its user’ (Kalay 2004, 476) 

Accordingly, a methodology is proposed, Mapping Integration, which would provide a 

graphical representation of the integration intensity of everyday design tasks (Figure 9). 

Figure 9. Mapping Integration – sub-tasks’ features assessed for integration intensity. 

In the diagram above, integration intensity increases as values rise on the vertical scale. 

For instance, the interactivity (Ini, Inii) levels of Task 1 (Ti) utilising the non-parametric 

methods of AEC CAD are very low, while the interoperability (Ioi, Ioii) levels of Task 3 

(Tiii) utilising advanced CAD are high. Sub-tasks representing the overlap of concepts, 

methods and tools are rated separately as shown. The goal of Mapping Integration is to 

further speculation and discussion about solutions. Following further research, the 

methodology will be developed and presented in more detail. 

CONCLUSION  

Utilising everyday architectural design tasks this research reflected on strategies 

to improve the integration of AEC CAD and prefabrication processes by implementing 

three computational design concepts: the design domain; the declarative format; and the 

modular format. These emergent computational design concepts have allowed 

insufficient time for practice to consider their utility and implications, thus it was 

appropriate to record findings through the methodology of ‘reflection-in-action’. 



 

 

The concept of the design domain enhanced intelligibility during set up of the model’s 

templates because the act of intentionally associating multiple frameworks exposed 

interactive relationships between components and the whole. The added benefit of 

reduced drafting due to reuse of these templates supports the argument that this 

computational design concept should be more widely implemented in architectural 

practice. 

Recommendations for improving the format of design rules in order to improve the 

flexibility and intelligibility of computational design processes, as advocated by 

Mitchell (1989, 8), highlighted the need for continuous review of these emergent tools. 

For instance, project work revealed that the visual programming graph which represents 

the declarative format, though accessible to computational design newcomers, is 

hindered by issues of scale, complexity and separation. Their recent introduction by 

AEC CAD suppliers, as an adjunct to the shortcomings of ‘component based modellers’ 

(Aish and Bredella 2017, 8), might encourage architects to be more watchful. 

Nevertheless, the modular format deserves further examination of properties which link 

programming efficiencies to prefabrication improvements, as demonstrated by the 

modular component assembly approach. Over the past 40 years advanced CAD and the 

manufacturing sector have developed methods and solutions to this approach deserving 

greater attention from the AEC sector. 

In testing the hypothesis that computational design concepts can assist with integration 

of AEC CAD and prefabrication processes, this research has determined that more work 

needs to be done. In this vein, Mapping Integration, has been presented to foster the 

development of solutions appropriate to architects needs and the nature of their practice.  

Computational design concepts integrated with AEC CAD and prefabrication practices 



 

 

would encourage explicitly defined and intentionally devised workflows, thus requiring 

architects to interweave intuition with logic and rigour. Such a combination of concepts 

would prompt enhanced responses to the complex demands of the AEC sector and 

contribute to the emergence of an architecture fully engaged with the processes of 

design and production. 
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Figure 1. Typical set-up AEC CAD: ‘grouped’ modules - unit, bathroom pods, clip-on balconies (Autodesk Revit). 

 

Figure 2. Floor panel design domain - a template for floor panel types (Autodesk Revit). 

 

Figure 3. Wall panel component design domain: reference planes, associated dimensions, and geometry (Autodesk 

Revit). 

 

Figure 4. Set-up of the model’s design domain to find grid intersection coordinates (Autodesk Dynamo). 



 

 

 

Figure 5. Automatic placement and rotation of wall and floor panels based on coordinates projected to locations at 

each level (Autodesk Revit & Dynamo). 

 

Figure 6. Floor & wall panel interfaces (background details by Kate Humphries, UQ). 

 

Figure 7. Framework sketches, ‘feature based’ product assembly & hierarchical tree (Digital Project/CATIA). 

 



 

 

 

Figure 8. Grids for each CLT wall and floor panel component, Glulam beam, and automated wall bracket placement 

to unit type (Digital Project/CATIA). 

 

Figure 9. Mapping Integration – sub-tasks’ features assessed for integration intensity. 

 


