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ABSTRACT
The pseudo-C` is an algorithm for estimating the angular power and cross-power spectra that is very
fast and in realistic cases also nearly optimal. The algorithm can be extended to deal with contami-
nant deprojection and E/B purification, and can therefore be applied in a wide variety of scenarios
of interest for current and future cosmological observations. This paper presents NaMaster, a pub-
lic, validated, accurate and easy-to-use software package that, for the first time, provides a unified
framework to compute angular cross-power spectra of any pair of spin-0 or spin-2 fields, contami-
nated by an arbitrary number of linear systematics and requiring B- or E-mode purification, both
on the sphere or in the flat-sky approximation. We describe the mathematical background of the
estimator, including all the features above, and its software implementation in NaMaster. We
construct a validation suite that aims to resemble the types of observations that next-generation
large-scale structure and ground-based CMB experiments will face, and use it to show that the code
is able to recover the input power spectra in the most complex scenarios with no detectable bias.
NaMaster can be found at https://github.com/LSSTDESC/NaMaster, and is provided with
comprehensive documentation and a number of code examples.
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1 INTRODUCTION

Two-point functions have proven to be the most useful sum-
mary statistic for cosmology in terms of data compression,
due to the near-Gaussian nature of the modes of the cos-
mic density field that can be easily analyzed to extract cos-
mological information (Gorski 1994; Bond 1995; Tegmark
1997; Tegmark & de Oliveira-Costa 2001). Since the only
true observables in any astronomical dataset are the in-
tensity and polarization as a function of frequency ν and
sky position θ̂, angular 2-point correlators play a particu-
larly central role in most cosmological analyses, both in the
form of configuration-space two-point correlation functions
ξ(θ) and as Fourier-space1 power spectra C` (Asorey et al.
2012; Bonvin & Durrer 2011). Although correlation func-
tions are often easier to estimate from complex observa-
tions (Landy & Szalay 1993), a Fourier space analysis is
advantageous for many other reasons. The most important

? david.alonso@physics.ox.ac.uk
1 In this paper we use the term “Fourier” to describe both the

flat space Fourier expansion as well as harmonic-space expansion
on the sphere. We will also use the term “power spectrum” to
describe both the auto power spectrum of a field and cross-power

spectra between two fields.

is that Fourier space is a natural space for working with
statistics of translation-invariant fields. Therefore, Fourier
space analysis has a clearer separation between linear and
non-linear scales, as well as Gaussian and non-Gaussian
modes (Hamimeche & Lewis 2008). Moreover, individual
band-power measurements are typically significantly less
correlated compared to configuration-space analysis which
makes covariance matrix estimation easier. This has moti-
vated a large body of literature aimed at designing optimal
and efficient power spectrum estimators and used exten-
sively in Cosmic Microwave Background (CMB) two-point
measurements.

While maximum-likelihood (Bond et al. 1998;
Wandelt & Hansen 2003) or minimum-variance and
quadratic estimators (Tegmark 1997; Hamilton et al. 2000;
Tegmark & de Oliveira-Costa 2001; Vanneste et al. 2018)
can recover the power spectrum with virtually no loss of
information (see also the approaches of e.g. Eriksen et al.
(2004); Taylor et al. (2008); Alsing et al. (2016), based
on Bayesian sampling methods), their computational
implementation is prohibitively expensive for high reso-
lution data, since these methods scale as `6max with the
maximum multipole `max (or `4max for optimal algorithms
such as that of Wandelt & Hansen (2003)). For this reason,
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pseudo-C` algorithms (Peebles 1973; Wandelt et al. 2001;
Szapudi et al. 2001; Wandelt et al. 2001; Hivon et al. 2002;
Hansen et al. 2002; Chon et al. 2004; Tristram et al. 2005)
have become a popular alternative that preserves the `3max

scaling of spherical harmonic transforms (and faster in the
flat-sky approximation). This method can be used on fields
with arbitrary spin (Kogut et al. 2003) in both curved and
flat skies, has been extended to deal with contaminant
deprojection in scalar fields (Elsner et al. 2017), and can
be optimized to measure the CMB E/B-mode power
spectrum (Lewis et al. 2002; Bunn et al. 2003; Smith 2006;
Grain et al. 2009; Bunn 2011). Due to the advantages of
this method, a number of useful, publicly available codes
currently exist to carry out some of these calculations
2. Unfortunately, no public, validated and maintained
code exists simultaneously supporting all of the capabilities
described above in a consistent manner. This paper presents
a public software package, NaMaster, that unifies all of
these features providing a general framework to estimate
pseudo-C` angular power spectra in a wide variety of sce-
narios. The paper also presents a few novel results that were
derived as part of the development of NaMaster. These
include extending the contaminant deprojection formalism
to spin-2 fields, combining it with E/B purification and
providing a consistent derivation of the same functionality
in the flat-sky approximation.

The paper is structured as follows: Section 2 introduces
the pseudo-C` estimator in the curved sky, including mode
deprojection and E/B purification. This is then generalized
in the flat-sky approximation. In Section 3 we briefly de-
scribe the implementation of these methods on NaMaster,
as well as its structure and usage. Section 4 presents the
stress tests used to validate the code. We envisage this code
to be useful in analysis of both the Cosmic Microwave Back-
ground data and in the tomographic large-scale structure
from photometric data, so this section illustrates not just
its validity but also applicability in typical user-case scenar-
ios in both fields. We conclude in Section 5. The appendices
provide further details about the mathematical background
used throughout the paper, and present some additional val-
idation tests.

2 THE PSEUDO-C` ESTIMATOR

Here we introduce the pseudo-C` estimator and its rel-
evant extensions. Many of the results presented here
can be found in the literature (e.g. Hivon et al. (2002);
Kogut et al. (2003); Smith (2006); Grain et al. (2009);
Reinecke & Seljebotn (2013); Elsner et al. (2017) and ref-
erences therein), although some others are new as far as we
are aware. In what follows we will use boldface symbols for
vector fields (e.g. a) and sans-serif symbols for matrices (e.g.
C).

2.1 Spherical harmonic transforms and pseudo-C`s

Let a(θ̂) be a spin-sa quantity defined on the sphere, where θ̂
is the unit vector pointing in a particular direction (θ, ϕ). We

2 See, for instance: PolSpice, Xpol, Xpure and hyperQube.

define its spherical harmonic coefficients through a spherical
harmonic transform (SHT) as:

a`m ≡ S
[
a(θ̂)

]sa
`m
≡
∫
dθ̂Ysa†`m (θ̂) a(θ̂), (1)

a(θ̂) = S−1 [a`m]sa
θ̂
≡
∑
`m

Ysa`m(θ̂) a`m. (2)

Note that, in general we will use vector notation such
that, for a complex spin-sa field a, we form the vector
a ≡ (Re(a), Im(a)). The harmonic coefficients above are de-
composed in a similar manner into E and B modes: a`m ≡
(aE`m, a

B
`m) (e.g. see Appendix A and Zaldarriaga & Seljak

(1997)). The matrices Ys`m are defined in terms of the spin-
weighed spherical harmonics, and are described in detail in
Appendix A. Some technical details regarding band-limits
and the practicalities of SHTs in a discretized sphere are
discussed in A1. To simplify the notation, we will also often
abbreviate the pair (`,m) as l.

For two isotropic fields a and b, the power spectrum is
given by their covariance matrix:〈

alb
†
l′

〉
≡ Cab` δ``′δmm′ . (3)

Note that for a general non-zero spin, vectors a and b have
two-components, each of which is a complex number. Nev-
ertheless the rotational invariance requires that elements of
the 2× 2 matrix C` be real.

2.1.1 Power-spectrum estimation

The problem we are attempting to solve is how to estimate
Cab` from a single realization of a and b measured on a cut
sky. In general, the input data for measuring the power spec-
trum come pixelized on a sphere. Instead of dealing with an
infinitely sampled field, we have a finite number of measure-
ments

ai = atrue
i + ni, (4)

where atrue
i is is the true underlying field whose power spec-

trum we would like to estimate and ni is the noise vector,
which in general can be non-white and non-homogeneous.
We will denote the pixel covariance of the noise component
as Ñ3. Note that for the sake of power-spectrum estimation
the there is no conceptual difference between inhomogeneous
noise and a survey mask: masked areas can be simply though
of as areas of infinite noise. Conversely, when we talk about
“multiplying by the mask” we really mean a more general
process of dividing by the expected variance field.

The underlying power spectrum in Eq. 3 means that
there is a non-trivial true underlying covariance matrix
C̃true =

〈
atrueatrue†〉, which in addition to the noise com-

ponent leads to the actual data covariance C̃ =
〈
aa†
〉

=

C̃true + Ñ.
In the standard incarnation of the optimal quadratic

3 Note that the matrices C̃ and Ñ used in this section are the
data and noise pixel-pixel covariance matrices, and therefore are
different from the power spectrum matrices, C` and N`, used in

the rest of the paper (e.g. Eq. 3).
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estimator (Bond et al. 1998), the measurement is produced
on inverse covariance weighted data, namely

FijBj =
1

2
a†C̃−1 Pi C̃

−1a− 1

2
Tr
[
C̃−1PiC̃

−1 N
]
, (5)

where F is the Fisher matrix, the covariance matrix is mod-
eled as a linear sum over band-power parameters Bi, i.e.

C̃ =
∑
i

PiBi + N, (6)

(which defines the response matrices Pi) and the last term
in Eq. 5 corresponds to a bias of the convolved estimates due
to the presence of noise. Thus, this optimal estimator cor-
responds to i) inverse-variance weighting the data, ii) calcu-
lating the spectrum of the weighted data using the response
matrices and iii) deconvolving these estimates using a mode-
coupling matrix which in this particular case happens to be
the same as Fisher matrix. The main computational chal-
lenge when implementing this estimator usually lies in stor-
ing the covariance matrix and its inverse (or computing it
on the fly), particularly in order to estimate the Fisher ma-
trix. This motivates the pseudo-C` estimator, which replaces
these computationally very intensive steps with numerically
more efficient ones at the expense of optimality.

The main improvement is gained by replacing the in-
verse covariance by its diagonal, assuming that the data is
uncorrelated between pixels. The response matrices are also
replaced by simple spherical harmonic transforms and mul-
tiplication of the corresponding harmonic coefficients, fol-
lowed by an average over bandpowers. Both of these steps
reduce to exact optimal estimator in the limit of uncorre-
lated data. The resulting estimates are still biased and re-
quire a mode-decoupling matrix, which can be calculated as
we show in Section 2.1.2.

The pseudo-C` estimates will be optimal when these
steps are close to what an optimal quadratic estimator
would do. First, this requires that C̃ be close to diagonal,
which is true when either the noise is large and uncorre-
lated, or when the underlying power spectrum is close to
white. Multiplication by the mask mixes modes, and re-
placement of multiplication by the response matrix with
band-power averaging, makes sense only when the mask is
“well-behaved”, i.e. compact with no high-frequency struc-
ture in it. If these conditions are not met, the pseudo-C`
estimator will still be unbiased (by construction), but it will
get progressively less optimal. In practical surveys, however,
the loss of optimality rarely exceeds 10-20% and is typically
smaller (Leistedt et al. 2013).

In what follows we will work with two-fields a and b and
spell out in detail how to calculate the cross-power spectrum.
The auto-power spectrum case is the same (with b = a),
but one must additionally subtract the noise-contribution
to the estimate. So far, the discussion has been completely
general, but from now onwards, we will focus on the power
estimation of auto, and cross-power spectra for the spin-0
and spin-2 fields only, as these are the most commonly used
in cosmology.

2.1.2 Mode coupling

Let v(θ̂) be a sky mask or weights map for a, and let us
define av ≡ v(θ̂)a(θ̂). As discussed above we start by con-

sidering a näıve estimator for Cab` from the masked fields:

PCL` (av,bw) ≡ 1

2`+ 1

∑̀
m=−`

avl bw†l . (7)

The incomplete sky coverage couples different ` modes, and
makes this estimator biased. The pseudo-C` method is based
on computing an analytical prediction for this bias and cor-
recting for it. This is straightforward to do using the results
in Appendix A. The harmonic coefficients of a masked field
are given by

avl =
∑
l1l2

Dsall1l2al1vl2 , (8)

where D is defined in Eq. A9. Using the statistical isotropy
of the unmasked field (Eq. 3) and the orthogonality relation
Eq. A11, we obtain:

vec [〈PCL` (avl ,b
w
l )〉] =

∑
`′

Msasb
``′ · vec

[
Cab`′
]
, (9)

where we have defined the vectorization operator
(Hamimeche & Lewis 2008)

vec

[(
CEE CEB

CBE CBB

)]
≡


CEE

CEB

CBE

CBB

 , (10)

vec

[(
CTE

CTB

)]
≡
(
CTE

CTB

)
, vec

[
CTT

]
= CTT , (11)

and T here stands for any spin-0 field.
The mode-coupling matrix M``′ in Eq. 9 can be com-

puted in terms of the harmonic coefficients of the two masks.
We provide analytical expressions for the mode coupling ma-
trices for different combinations of spin-0 and spin-2 fields
in Appendix D.

2.1.3 Bandpowers

Given the loss of information implicit in masking the origi-
nally curved-sky field, it is in general not possible to invert
the mode-coupling matrix in Eq. 9 directly. One solution to
this problem is to convolve the theory prediction with the
mode-coupling matrix at the likelihood level. A more usual
approach is instead to bin the coupled pseudo-C` into band-
powers. A bandpower q is defined as a set of Nq multipoles
~̀
q ≡ (`1q, ..., `

Nq
q ) and a set of weights defined at those multi-

poles w`q, and normalized such that
∑
`∈~̀q w

`
q = 1. The q-th

bandpower for the coupled pseudo-C` is then defined as

vec
[
B̃abq

]
≡
∑
`∈~̀q

w`q vec [PCL`(a
v
l ,b

w
l )] (12)

〈
vec
[
B̃abq

]〉
=
∑
`∈~̀q

w`q
∑
`′

Msasb
``′ vec

[
Cab`′
]
,

where in the second line we have taken the expectation value
of the first one. One then proceeds by assuming that the
true power spectrum is a step-wise function, taking constant
values over the multipoles corresponding to each bandpower:
Cab` ≡

∑
q B

ab
q Θ(` ∈ ~̀q) (where Θ is a binary step function).

Inserting this in the equation above, it is then possible to
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Figure 1. Depiction of the contaminant deprojection process. Top left: underlying true signal map (galaxy overdensity used in Section

4.1.1). Top right: sky contaminant (dust contamination used in Section 4.1.1). Bottom left: contaminated map obtained by adding the
previous two maps. Bottom right: cleaned map obtained through Eq. 21. Since only one contaminant is considered in this case, the

cleaning is almost perfect. Residual contamination at the power spectrum level must still be subtracted in order to avoid a biased

estimate.

find an unbiased estimator for Babq in terms of the binned

pseudo-bandpowers B̃abq :

vec
[
Babq

]
=
∑
q′

(Msasb)−1
qq′ vec

[
B̃abq′
]
, (13)

where the binned coupling matrix Msasb is

Msasb
qq′ ≡

∑
`∈~̀q

∑
`′∈~̀q′

w`qM
sasb
``′ . (14)

Since, in general, the true power spectrum is not a step-
wise function, the theoretical prediction must be corrected
for the bandpower binning before making any comparison
with the data:

vec
[
Bab,thq

]
=
∑
`

Fsasbq` · vec
[
Cab,th`

]
, (15)

where the filter Fsasbq` is given by

Fsasbq` =
∑
q′

(Msasb)−1
qq′

∑
`′∈~̀q′

w`
′

q′M
sasb
`′` . (16)

The action of the filter Fsasb is therefore given by a sequence
of three operations:

(i) Coupling the different multipoles (Eq. 9).
(ii) Binning into bandpowers (Eq. 12).
(iii) Decoupling the bandpowers (Eq. 13).

Depending on the structure of the mode-coupling matrix,
Fsasb can be significantly different from a näıve binning
operator.

2.2 Contaminant deprojection

In a typical data-analysis case, we deal with contaminants
that pollute the measured signal. Usually, we know some-
thing about these contaminants. As an example, in case of
CMB analysis, we might have a map of a given foreground

at a different frequency which can be marginalized out4. But
even when we do not, we often have a tracer map of a given
effect, for example, the map of dust might tell us something
about systematic errors related to imperfect correction to
dust reddening, or a map of co-added point-spread func-
tion (PSF) fluctuations could be used to remove the possi-
ble correlations between measured ellipticities. Even if the
dust map is non-linearly and perhaps stochastically related
to the amount of reddening, as long as that relation is local
in space, we get a linear contamination on large scales, very
much like complex astrophysics of galaxy formation never-
theless reduces to linear biasing on very large scales (see
Appendix B). Thus, we generically deal with a linear model
of the kind:

aobs(θ̂) = av +

Na∑
i=1

αif
i(θ̂), (17)

where the observed map aobs is composed of a masked sig-
nal map that receives contributions from Na known con-
taminants f i and where the contamination coefficients αi
are unknown (note that we have implicitly applied the same
mask to the contaminant templates f i). The deprojection of
these contaminants from the data can be done and propa-
gated into the estimated power spectrum in a natural way
in the case of quadratic estimators (Rybicki & Press 1992;
Slosar et al. 2004; Elsner et al. 2016), and the method can
be extended to the pseudo-C` algorithm (Elsner et al. 2017).
The process is illustrated in Figure 1. A best-fit value for the
coefficients αi can be found assuming uncorrelated weights

4 It is worth noting that the formalism described here assumes

that a given contaminant template has no significant contribu-
tion from the signal itself. This might not be the case, for exam-

ple, if one blindly took a high-frequency sky map to serve as a

template of dust, since that may still contain a significant CMB
contribution. Care must therefore be exercised when defining the

contaminant templates to marginalize over.
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across the map5

α̂i = Fij

∫
dθ̂ f j†(θ̂) aobs(θ̂), (18)

(F−1)ij ≡
∫
dθ̂ f i†(θ̂) f j(θ̂),

where there is an implicit summation over the repeated in-
dex j in Eq. 18 (which we will omit from now on). The clean
map is then given by

ac(θ̂) ≡ aobs(θ̂)− f i(θ̂)Fij

∫
dθ̂
′
f j†(θ̂

′
) aobs(θ̂

′
) (19)

which, when substituting Eq. 17, yields

ac(θ̂) = av(θ̂)− f i(θ̂)Fij

∫
dθ̂
′
f j†(θ̂

′
) av(θ̂

′
). (20)

The harmonic coefficients of ac are therefore given by

acl = avl − f il Fij
∑
l′

f j†l′ avl′ (21)

Although in general we expect the second term in Eq. 20
to be very small, since the signal and contaminant maps are
uncorrelated, due to this residual statistical contamination,
a direct computation of the pseudo-C` of the cleaned map
would yield a biased estimator beyond the mode coupling
induced by the mask v. This bias can however be estimated
analytically and corrected for. This was done in Elsner et al.
(2017) for scalar quantities, and we generalize their result
here to fields of arbitrary spin.

Considering a second map b with mask w, Nb con-
taminants gi and correlation matrix Gij , the mode-coupled
pseudo-C` of ac and bc is given by:

PCL`(a
c,bc) =PCL`(a

v,bw)

− Gij
2`+ 1

∑
m

∑
l′

avl bw†l′ gjl′g
i†
l

− Fij
2`+ 1

∑
m

∑
l′

f il f
j†
l′ avl′b

w†
l

+
FijGrs
2`+ 1

∑
m

∑
l′,l′′

f il f
j†
l′ avl′b

w†
l′′ g

r
l′′g

s†
l . (22)

Taking the ensemble average of the equation above, we find
that the first term is the usual pseudo-C` estimator. The
combination of the last three terms is what we will refer to
as the deprojection bias, and can be computed as6:

∆Cab` =−Gij PCL`
(
g̃jl ,g

i
l

)
− Fij PCL`

(
f il , f̃

j
l

)
+ FijGrs

[∫
dθ̂ f j†(θ̂)g̃r(θ̂)

]
PCL`

(
f i,gs

)
, (23)

5 The assumption of uncorrelated weights is the key dif-
ference between pseudo-C` and optimal quadratic estimators

(Leistedt et al. 2013). Note that, since the templates are already

multiplied by the mask, the weights are not equal across the map,
but correspond to the mask values in general.
6 These equations can be easily derived by expanding av and bv

in terms of the spherical harmonics of a, b, v and w, making use
of Eq. 3 and repeatedly employing the definitions of the spherical

harmonic transform (Eqs. 1 and 2).

where

g̃il ≡ S
[
v(θ̂)S−1

[
Cab`1S

[
w gi

]sb
l1

]sa
θ̂

]sa
l

, (24)

f̃ il ≡ S
[
w(θ̂)S−1

[
Cab†`1 S

[
v f i
]sa
l1

]sb
θ̂

]sb
l

. (25)

The procedure to obtain an unbiased estimator of the
power spectrum in the presence of contaminants can there-
fore be summarized as follows:

(i) Produce clean versions of both maps (i.e. estimate the
best-fit coefficients in Eq. 18 and subtract the contamination
as in Eq. 20).

(ii) Estimate the pseudo-C` of the clean maps (Eq. 7).
(iii) Estimate the deprojection bias in Eq. 23 and subtract

it from the pseudo-C` above.
(iv) Use the methods described in Sections 2.1.2 and 2.1.3

to account for the mode-coupling matrix.

Two further points must be addressed before moving
on. First, the computation of the deprojection bias requires
an estimate of the true power spectrum Cab` (see Eqs. 24 and
25). In practice, this can be done through an iterative ap-
proach, starting from an initial guess of Cab` and replacing it
by the estimated power spectrum in the previous iteration.
Alternatively, the ensemble average of Eq. 22 can be seen as
a convolution of Cab` , which could be treated by computing
the convolution matrix as a modified version of the standard
mode-coupling matrix that accounts for mode deprojection.
Estimating this convolution matrix in this case becomes sig-
nificantly more computationally intensive, and therefore an
iterative approach is preferred.

Secondly, estimating the deprojection coefficients (Eq.
18) involves inverting the correlation matrix of all the con-
taminant templates. This will not be in general possible
(e.g. if a set of templates are linearly related). The problem
can however be solved self-consistently by using the Moore-
Penrose pseudo-inverse (Elsner et al. 2017). This is trivial
for a symmetric and positive-definite matrix such as F, and
corresponds to setting the inverse of all of its zero eigenval-
ues (or all those below a given threshold) to zero7.

2.3 E/B purification

As described in Lewis et al. (2002); Bunn et al. (2003);
Smith (2006); Zhao & Baskaran (2010); Kim & Naselsky
(2010); Bunn (2011), B-mode purification refers to the map-
level removal of the contamination from E-modes in the B-
mode component of a given map caused by an incomplete
sky coverage and vice-versa8. The procedure is particularly
useful in situations in which the E-mode component of the
signal is significantly larger than the B modes, as is the case
in for the CMB. In this case, removing the leakage at the
power spectrum level (i.e. the standard pseudo-C` approach)
produces a sub-optimal estimator in which the variance in

7 The choice of eigenvalue threshold in NaMaster is accessible to
the user.
8 Note that this is a different effect from the leakage between

different polarized and unpolarized channels in CMB observations
due to instrumental effects (asymmetric beams, pair differencing,

polarization angle calibration etc.)
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the B-mode power spectrum is dominated by the variance of
the leaked E-modes. This section presents the purification
method and the associated modifications to the pseudo-C`
algorithm as described in the references above. In this sec-
tion we describe the algorithm in terms of purifyingB-modes
from E-mode contamination, but we note that the reverse,
i.e. purifying E-modes from B-mode contamination is con-
ceptually exactly the same. Our discussion is also specific
for spin-2 fields.

We define a field f to be a B mode if (DE
s )†f = 0,

where DE
s is the differential operator defined in Eq. A3. At

the same time, and under the definition of the dot product:

(f ,g) ≡
∫
dθ̂ f†(θ̂)g(θ̂), (26)

we define a pure B mode as a field that is orthogonal to all
E modes.

Since DE†
s DB

s = 0, one can always generate a B mode
by applying DB

s to a scalar field. It is then possible to show
that E and B modes thus defined are orthogonal in the full
sky:

(DE
s ϕ,D

B
s ψ) =

∫
dθ̂ (DE

s ϕ)†DB
s ψ = 0, (27)

where ϕ and ψ are two arbitrary scalar fields. This can be
done by integrating by parts and noting that the celestial
sphere has no boundaries. On a cut sky, however, and for
s = 2, this is only true if the fields satisfy Neumann and
Dirichlet boundary conditions simultaneously (i.e. vanishing
value and first derivative on the boundary of the cut sky
region).

Let w(θ̂) be a sky window function defining the sky
region to be analyzed (and the weight to be applied in each
pixel). The standard pseudo B-mode of a spin-2 field P is
then given by

B̃l ≡
∫
dθ̂w(θ̂)

(
sY

B
l (θ̂)

)†
P

=

∫
dθ̂w(θ̂)(DB

s Yl)
†P(θ̂), (28)

Since DB
s Y`m is a B-mode, in the absence of w this expres-

sion would correspond to a projection that filters out all the
E-modes from P. However, w(θ̂)DB

s Y`m is not a B-mode,
and therefore B̃`m receives contributions from ambiguous
E modes (which then propagate into the variance of the
pseudo-C` estimator of the power spectrum). The idea be-
hind B-mode purification is to move w to the right of DB

s ,
defining the pure B component:

Bpl =

∫
dθ̂
(
DB
s (wYl)

)†
P(θ̂). (29)

Since DB
s (wYl) is a B-mode quantity, Bpl should receive con-

tributions only from B-modes.
Expanding DB

2 (wYl), we can write Bpl as:

Bpl =
(
P̃2

)B
l

+ 2
β`,2
β`,1

(
P̃1

)B
l

+ β`,2
(
P̃0

)B
l
, (30)

where (a)Bl stands for the B-mode component of field a, and
we have defined the fields P̃n = (ð2−nw)∗(Q+ iU), where Q
and U are the real and imaginary parts of the field P (see
Appendix A for the definitions of ð and β`,s).

The B(E)-purification of a given field is simply achieved

by applying Eq. 30 to theB(E)-mode component of the field.
Note that doing so requires the computation of the first and
second-order derivatives of the weights map w, and therefore
purification methods require masks for which this quantities
are well defined. This usually involves tapering the mask
boundaries to avoid sharp edges. A thorough discussion of
these methods can be found in Grain et al. (2009). Note
that the derivatives of w can be computed analytically in
harmonic space:

ðnw = S−1

[(
− wl

β`,n
, 0

)]
, (31)

At this stage, the pseudo-C` method proceeds as usual,
applying Eq. 7 to the purified field. The purification process
however requires a slight modification of the analytical form
of the mode-coupling matrix. Specifically, if either E or B
modes of a spin-2 field have been purified Eqs. D2 and D3
must be modified by exchanging one factor of(

` `′ `′′

2 −2 0

)
for (

` `′ `′′

2 −2 0

)
+ 2

β`,2
β`,1β`′′,1

(
` `′ `′′

1 −2 1

)
+

β`,2
β`′′,2

(
` `′ `′′

0 −2 2

)
. (32)

per purified field.
It is worth noting that, as described in Grain et al.

(2009), the performance of E/B purification can be opti-
mized by an appropriate choice of window function. The cor-
responding optimal spin-0, spin-1 and spin-2 window func-
tions can be estimated using a preconditioned conjugate-
gradient method. The resulting spin window functions are
no longer related by simple covariant derivatives. The per-
formance of this method, compared with simple apodiza-
tion methods, will depend on the noise properties of the ex-
periment and the footprint geometry. This optimal method
is currently not available in NaMaster, and will be imple-
mented in future releases of the code.

Finally, it is also possible to combine purification and
contaminant deprojection. Since E/B purifications involves
destroying part of the signal (e.g. projecting out all leaked
E modes from a B-mode component), it is more optimal
to use the non-pure maps to compute the contamination
coefficients (αi in Eq. 18). Therefore we will assume here
that purification takes place between the steps (i) and (ii)
described at the end of Section 2.2, and not before step (i). In
this case, although no additional modifications are needed
in the mode-coupling matrix, beyond those we have just
described, the expression for the deprojection bias (Eq. 23)
must be slightly altered. In particular, although the fields
g̃i and f̃ i in Equations 24 and 25 are still computed from
the non-pure versions of f i and gi, all the maps entering
the three instances of PCL` in Eq. 23 must be consistently
E/B-purified before computing those pseudo-C`s.

2.4 Beams and noise

In any practical scenario, the observed sky map will contain
a mixture of signal s (i.e. the component whose power spec-
trum we are really interested in) and noise n (i.e. a stochastic
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A unified pseudo-C` framework 7

contaminant that we do not have a template for). Further-
more, the signal component will often be smoothed on the
smallest scales by an instrumental beam (although this lat-
ter effect is less relevant for galaxy surveys). We discuss how
to deal with both of these complications here.

2.4.1 Beam deconvolution

Including the effect of a spherically symmetric instrumental
beam amounts to a simple redefinition of the mode-coupling
matrix

Msasb
`1`2
→ Msasb

`1`2
W ab
`2 , (33)

where W ab
` is the product of the harmonic transform of the

beams for maps a and b. Note that since any continuous
tangent vector field on the sphere must, at some location,
be zero (the so-called hairy ball theorem), it is impossible
to have an anisotropic beam that is uniform over the en-
tire sphere. However, it is possible that the beam is both
anisotropic and spatially-varying. In this case, the pseudo-
C` power spetrum estimation will produce biased estimates
that will be suppressed by an effective beam. Correcting for
the beam in such cases can also be done analytically, but we
leave this for future work. In practice, if required, the sup-
pression factor can be found by applying the PCL estimator
to a set of mock input maps with the same underlying sig-
nal but with and without application of the beam smoothing
(to both data maps and contaminant maps) and taking the
ratio.

2.4.2 Noise bias

In auto-correlation, the two-point correlation of the noise
component n will contaminate our estimate of the power
spectrum of s, and we must correct for this noise bias. De-
pending on the statistical properties of n, different strategies
can be used to do this, which we describe in Appendix F.

2.5 Flat-sky pseudo-C`s

Using the curved-sky expression presented above and in Ap-
pendix A for the analysis of small sky patches, where the
curvature of the sphere can be neglected, is numerically in-
efficient for two main reasons:

(i) Curved-sky data formats usually store information
about the full sphere, even if the data being stored is limited
to a small sky patch. This can lead to an inefficient use of
memory and storage space, because the standard numerical
implementations of spherical transforms operate on full-sky
data.

(ii) Spherical harmonic transforms are notoriously slower
than discrete Fourier transforms (DFTs), both due to

the scaling of both algorithms (O(N
3/2
pix ) for SHTs vs.

O(Npix log(Npix)) for DFTs) and because by SHTs involve
operations over the full sphere.

(iii) Fourier transforms over a flat patch offer exact
quadrature, which makes them inherently more numerically
stable9.

9 Note that it is also possible to achieve exact quadrature with

For this reason, NaMaster also supports the computation of
power spectra from flat-sky maps. Appendix C describes the
dictionary between spin-s fields and their Fourier/harmonic
coefficients defined in flat and curved skies, and we present
the flat-sky versions of the pseudo-C` methods described in
the previous sections here.

2.5.1 Standard pseudo-C`

Using the definitions presented in Appendix C, it is easy to
show that the Fourier coefficients of a masked field are given
by (Louis et al. 2013)

avl ≡ D(v a)sal =
∑
k

∆k2

2π
R(sa(ϕl − ϕk)) ak vl−k. (34)

Here, D stands for a standard 2D discrete Fourier transform,
and R is a rotation matrix in 2 dimensions. Note that, in the
context of flat-sky fields, the vector l is a 2D wave vector, and
must not be confused with the abbreviation l ≡ (`,m) used
in previous sections. The quantity al is therefore the Fourier
transform of the real-space flat-sky field a(x), where x is
the angular displacement with respect to a given reference
point. Using Eq. 34 it is then straightforward to estimate the
covariance of two masked fields at the same wavenumber:〈

avl bw†l

〉
=
∑
k

∆k2

(2π)2
R(sa∆ϕ)Cabk R†(sb∆ϕ) vl−kw

∗
l−k,

(35)
where ∆ϕ ≡ ϕl − ϕk.

At this stage it is natural to connect directly with the
final bandpowers since, unlike in the curved-sky case, there
is no natural minimal binning (∆` = 1) for the un-masked
power spectrum. In this case we will define a bandpower
Bq, indexed by an integer q as the average of the covariance
above over a set of l values Sq:

vec
[
Babq

]
≡ ∆k2

Nq

∑
l∈Sq

vec
[
avl bw†l

]
, (36)

where Nq is the number of Fourier-space pixels covered by
Sq. Typically, Sq will be the set of pixels within an annulus
defined by an interval (|k|min, |k|max). Taking the expecta-
tion value of the equation above, we can relate this estimator
to the true power spectrum as:

〈vec
[
Babq

]
〉 =

∑
l∈Sb

N−1
q

∑
k

Msa sb
lk · vec

[
Ĉabk

]
. (37)

In this case, the un-binned mode-coupling matrices are a
funciton of l and k as vectors. We provide analytical formu-
las for them in Appendix D. The mode-coupling matrix for
the bandpowers is then given in terms of the un-binned one
as:

Msasb
qq′ =

∑
l∈Sq

N−1
q

∑
k∈Sq′

Msasb
l k . (38)

At this point it is important to note that, with this pro-
cedure, computing the coupling matrix becomes an O(N2

pix)
problem (or at best O(`2maxNpix)), which is worse than the
O(`3max) pseudo-C` algorithm we described in the curved sky

certain spherical pixelization schemes (e.g. Doroshkevich et al.

(2011)).
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8 D. Alonso et al.

case. The key in that case is the orthogonality relation Eq.
A11, which significantly simplifies the expressions D1-D3.
In a flat sky, and in the presence of a discrete and finite
Cartesian grid, it is not possible however to average over
azimuthal Fourier degrees of freedom at constant l in order
to obtain a numerically stable version of the mask power
spectrum for arbitrary weight maps v and w. This would
not be a problem in the continuum limit ((∆x,∆y) → 0),
where similar simplifying relations can be found to vastly
improve the computational efficiency of the method. Taking
the continuum approximation is unfortunately not accurate
enough in practice, as described in Asgari et al. (2016), and
a fully discrete approach is usually necessary. This slower
performance is normally compensated by the smaller pixel
numbers and faster DFTs that can be used in the flat sky,
so that the flat-sky approximation is still preferable over a
curved-sky treatment for small sky patches. Appendix E dis-
cusses these issues in detail, providing the continuum-limit
expressions mentioned above.

2.5.2 Contaminant cleaning

Using the same notation as in Section 2.2, the contaminant-
cleaned version of a is simply given by(c.f. Eqs. 20 and 21):

ac(x) = av(x)− f i(x)Fij
∑
x

∆x2 f j†(x′)av(x′), (39)

acl = avl − f il Fij
∑
k

∆k2 f j†k avk, (40)

where (F−1)ij =
∑

x ∆x2f i†(x)f j(x).
The deprojection bias also takes a similar form (c.f. Eq.

23):

∆Cabl =−Gij g̃jl gi†l − Fij f il f̃ j†l

+ FijGrs

[∑
x

∆x2f j†(x)g̃r(x)

]
f il g

s†
l , (41)

where

g̃il ≡ D
[
v(x)D−1

[
Cabl1D

[
wgi

]sb
l1

]sa
x

]sa
l

, (42)

f̃ il ≡ D
[
w(x)D−1

[
Cab†l1
D
[
vf i
]sa
l1

]sb
x

]sb
l

. (43)

2.5.3 E and B purification

The logic behind E/B purification is the same in flat and
curved skies, and we will not repeat it here. The analogue
of a pure B-mode (Eq. 30) in the flat-sky approximation is:

Bpl =
(
P̃2

)B
l

+ 2`−1
(
P̃1

)B
l

+ `−2
(
P̃0

)B
l
, (44)

(and a similar relation for the pure E component), where
Pn = (ð2−nw)∗(Q+ iU), and w is the sky mask. The deriva-
tives of w can be taken by using the following relation:

ðnw = D−1 [(−`n wl, 0)] , (45)

Note that, in the flat sky, a mathematically (but not
computationally) simpler relation for the pure component
can be found, given by:

Bpl =

∫
dk2

2π
Bkwl−k

k2

`2
, (46)

and similarly for E modes. Comparing with Eq. 35 (where
R is defined in Eq. C9), it is easy to see that the key to work
out the expressions for the pure-E and B coupling matrices
is simply to replace all factors of c and s with k2/`2 and
0 respectively in Equations D5 and D6. Again, under the
assumption that purification takes place after contaminant
deprojection, the only modification to the expression for the
deprojection bias is to make sure that all functions of l in
Eq. 41 are consistently purified (but not any of the other
fields appearing there or in Eqs. 42 and 43).

3 CODE STRUCTURE

All of the methods described above have been implemented
in a software package called NaMaster10. We briefly de-
scribe the code structure here.

The code is written in C and wrapped into python to
facilitate its use and its combination with other software li-
braries for astronomy. NaMaster itself is based on a number
of these libraries:

• HEALPix (Górski et al. 2005) is currently the only
pixelization scheme supported for curved-sky calcula-
tions. Through HEALPix, NaMaster also makes use of
cfitsio (Pence 1999).
• The basic curved-sky operation carried out by

NaMaster is the spherical harmonic transform. For this, the
code makes use of libsharp (Reinecke & Seljebotn 2013).
• In flat sky, SHTs are replaced by 2D DFTs, for which

NaMaster uses the FFTW library (Frigo & Johnson 2005).
• The GNU Scientific Library Galassi et al. (2009) is also

used for some numerical calculations.

As described in the previous sections, some of the op-
erations (e.g. SHTs, deprojection, purification) take place
in each field individually, while others depend on the corre-
lation of a pair of fields (e.g. PCL, mode-coupling matrix,
bias deprojection). It is therefore inefficient to carry out the
per-field operations on every field every time a power spec-
trum is computed, especially if a large number of fields are
being cross-correlated. For this reason, at the python level,
NaMaster is structured around two main classes that in-
corporate the two different types of operations we just de-
scribed. Each of these classes are associated to a counterpart
structure in C:

NmtField. This class stores all the necessary information
about one individual observed spin-0 or spin-2 field. A
NmtField object is defined by a sky mask or weights map
(e.g. v in Eq. 17), 1 or 2 sky maps (depending on the spin),
corresponding to an observation of the field on the sky (aobs

in Eq. 17), a set of contaminant templates (fi in Eq. 17), and
the choice to purify or not the E or B mode component of
the field. Once initialized, this class carries out the following
operations:

• SHT or DFT of the field (Eqs. 1 or C10).
• Contaminant deprojection (Eq. 20).

10 The code source is hosted in
https://github.com/LSSTDESC/NaMaster, and its documen-

tation can be found at http://namaster.readthedocs.io/.
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A unified pseudo-C` framework 9

• E-mode and/or B-mode purification (Eq. 30).

NmtWorkspace. This class stores the information neces-
sary to compute an unbiased estimate of the power spectrum
of two NmtFields. The main objective of these objects is
to compute mode-coupling matrices. NmtWorkspaces are
equipped with read/write methods to avoid redoing these
calculations when estimating the power spectra of several
fields with a common set of masks (e.g. for a large number
of tomographic bin or simulations).

NaMaster also includes other convenience classes to
handle bandpowers, covariance matrices etc. as well as rou-
tines to carry out useful operations (e.g. mask apodization,
Gaussian simulations) and to wrap up commonly used se-
quences of operations (e.g. pseudo-C` computation followed
by binning and deconvolution).

The workflow for a typical pseudo-C` run would be:

1 from pymaster import *
2

3 ...
4
5 f2 = NmtField(mask, [map_q,map_u],
6 templates = [[dust_q,dust_u]],
7 purify_b = True, beam=beam_ell)
8 f0 = NmtField(mask, [map_t])
9

10 b = NmtBin(nside, nlb = 10)
11

12 wsp = NmtWorkspace()
13 wsp.compute_coupling_matrix(f0, f2, b)
14

15 cl_bias = deprojection_bias(f0, f2, cl_theory)
16
17 cl_coupled = compute_coupled_cell(f0, f2)
18
19 cl_decoupled = wsp.decouple_cell(cl_coupled,

cl_bias)

Briefly:

(i) In line 1 we import NaMaster’s python module.
(ii) All preliminary I/O operations (reading maps, masks

etc.) take place implicitly in line 3.
(iii) In line 5 we create a field with spin 2. The field is

defined in terms of a mask and maps of the (Q,U) Stokes
parameters. We also provide a set of contaminants to de-
project, an instrumental beam and request for the field’s
B-modes to be purified. Deprojection and purification will
take place at this stage in that order, as explained in Section
2.3. The field’s SHT is also estimated upon initialization.

(iv) We define a second field in line 8. This one is a simpler
spin-0 field with no contaminants or beam.

(v) We define the output bandpower structure in line 10.
In this case we will use bins of 10 multipoles, although more
general schemes are supported.

(vi) In lines 12 and 13 we use an NmtWorkspace object
to compute the mode-coupling matrix.

(vii) The deprojection bias is computed in line 15 using
a best-guess for the true underlying power spectrum.

(viii) The pseudo-C` is computed in line 17.
(ix) The deconvolved bandpowers are finally estimated

using the workspace in line 19. Note that the mode-coupling
matrix must have been precomputed in line 13 for this to be
successful.
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`
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Figure 2. Signal and noise power spectra used in the LSS vali-

dation set. Dark blue, cyan and red curves show the spectra as-

sociated with the δ-δ, δ-γE and γE-γE correlations respectively,
where γE is the lensing E mode. All other cross-correlations are

zero. The dashed lines show the noise power spectra, associated

with shot noise (red) and intrinsic shape scatter (blue).

Further details regarding the different features of
NaMaster can be found in the online documentation
http://namaster.readthedocs.io/.

4 CODE PERFORMANCE AND VALIDATION

The core of our code-validation suite is based on two sci-
ence examples. These examples are not meant to be realistic
mocks of actual data, however, they do contain the dynamic
range and noise-levels of a typical experimental set-up that
we expect in the next decade, while providing us with an
exact, known true power spectrum to compare against. This
section presents these two examples and the results of this
validation in terms of accuracy and computational perfor-
mance. Results will be presented for both curved-sky and
flat-sky realizations. Note that, in all cases, we use the true
signal power spectra as input to compute the bias from con-
taminant deprojection (see Eqs. 24 and 25). This allows us
to verify that the code works as expected, and to isolate any
residual bias associated with software bugs, rather than an
imperfect guess of the true power spectrum.

The following sections present the suite of simulations
used to validate the code and the results of this validation for
the curved-sky calculation. The flat-sky validation follows a
similar procedure, and is presented in Appendix G.

4.1 Validation suite

We base our validation suite on two science cases of rele-
vance for the most relevant next-generation cosmology ex-
periments. We describe these here.

4.1.1 Galaxy clustering and weak lensing

The first validation suite exemplifies the use of pseudo-
C` algorithms in the analysis of large-scale structure
data. Current and next-generation imaging surveys such
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Mask δ

γ1 γ2

Dust Stars

PSF Small-scale

Figure 3. Inputs for the large-scale structure, curved-sky validation set. From top to bottom and left to right: sky mask (1), Gaussian

realization of the galaxy overdensity δ (2) and cosmic shear γi (3,4), dust contaminant for δ (5), star contaminant for δ (6), PSF
contaminant for γ (7, Q component) and small-scale contaminant for γ (8, Q component).

as DES (Dark Energy Survey Collaboration et al. 2016),
KiDS (de Jong et al. 2017), HSC (Aihara et al. 2018),
LSST (Ivezić et al. 2008) and Euclid (Laureijs et al. 2011)
will constrain the growth and geometry of structure through
cosmic time by using the overdensity of galaxies as a proxy
for the matter inhomogeneities (a spin-0 field) and their
correlated shape distortions (a spin-2 field at first order),
mostly caused by weak lensing. These measurements will
mostly follow a tomographic approach, using the angular

auto- and cross-power spectra between these observables
across different bins of photometric redshift (Krause et al.
2017; Joudaki et al. 2018; DES Collaboration et al. 2017).

Large-scale structure data are often characterized by
inhomogeneous sky coverages and complex mask structures,
associated with the presence of bright stars and observa-
tional artifacts. They are also affected by many sky con-
taminants, associated to Galactic sources (dust absorption,
star density) and observing conditions (seeing, airmass etc.)
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Figure 4. Same as Fig. 3 for the large-scale structure, flat-sky validation set.

as discussed in Leistedt et al. (2016). The typically flatter
power spectra for both galaxy clustering and lensing (e.g.
when compared with the damping tail of CMB tempera-
ture fluctuations), makes the pseudo-C` approach ideal for
this kind of analysis (Leistedt et al. 2013, 2016). This sci-
ence case therefore allows us to validate several aspects of
the code simultaneously:

• The unbiased reconstruction of the 6 possible correla-
tions between spin-0 and spin-2 fields.
• The inclusion of inhomogeneous noise and the correc-

tion of the associated noise bias.
• The effects of deprojection for several contaminant tem-

plates in different-spin fields.
• The code’s ability to handle complex masks and high-

resolution pixelization.

For this validation suite we therefore use a mock dataset
mimicking a typical observation of a LSST-like survey in a
particular redshift bin. Slightly different set-ups are used for
the curved-sky and flat-sky validation suites. The character-
istics of these data are as follows:

• Signal: we generate maps of the galaxy overdensity
δ and of the shear field (γ1, γ2) for a redshift bin centred
at z ' 1 with a width ∆z ∼ 0.1 and Gaussian photo-z
tails with width σz = 0.06. For δg we assume unit bias
b(z) = 1 and no contributions from redshift-space distor-

tions or magnification. For γ, we assume no contribution
from intrinsic alignments. The maps are generated as Gaus-
sian realizations of the corresponding angular power spectra
computed with the Core Cosmology Library11 for cosmo-
logical parameters compatible with the 2015 Planck mea-
surements Planck Collaboration et al. (2016). These power
spectra are shown in Fig. 2. Sample realizations of δ and
γ can be seen in Figures 3 and 4 for the curved-sky and
flat-sky cases respectively.
• Mask: for the curved-sky data, we use a mask built as a

combination of the sky coverage output by the LSST OpSim
database (Delgado et al. 2014) and a more conservative
galactic cut based on the reddening map of Schlegel et al.
(1998). To add an extra layer of complexity, we drill 100
additional 1-degree holes on the resulting combined mask.
We also explore the improvement stemming from the down-
weighting of higher-noise in an inverse-variance way in the
presence of inhomogeneous noise (see description below),
which is the reason why the default version of this mask
is not binary, but traces the inverse of the noise variance
(see top left panel of Fig. 3). For the flat-sky data, we use
a high-resolution mask constructed from the bright-object
mask used for the first public data release from the HSC
collaboration (Aihara et al. 2018). The chosen footprint cor-

11 https://github.com/LSSTDESC/CCL
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Figure 5. Top: signal power spectrum (solid dark blue) for the

auto-correlation of the galaxy overdensity, as well as the contam-
inants associated to dust (dashed cyan) and stars (dot-dashed

red). Middle: E-mode lensing power spectrum (solid dark blue)

and the spectra of the PSF and small-scale contaminants used in
our validation set (dashed cyan and dot-dashed red respectively).

Bottom: same as middle panel for the B-mode power spectrum.

Note that in this case the input signal power spectrum is 0. In all
cases the orange dotted line shows the combination of signal and

contaminants.

responds to the VVDS field, covers approximately 20 deg2

and contains structure on a wide range of scales. As can be
seen in the top-left panel of Figure 4, the mask is not bi-
nary, and its value at each pixel correspond to the pixel’s
fractional masked area.
• Contaminants: we contaminate the signal maps de-

scribed above with several different types of residuals. In all
cases we add contaminants linearly, to avoid deviating from
the model described in Section 2.2. The contaminant ampli-
tudes are chosen so that any residual contamination in the
relevant range of multipoles will be detected statistically by
the validation suite. Maps of these contaminants are shown
in the 4 bottom panels of Figure 3 and Figure 4, and their
impact on the angular power spectrum is presented in Fig.
5 for the curved-sky case.

– Dust. For the curved-sky suite, we include a lin-
ear contaminant for δg proportional to the fluctua-
tions around the mean of the dust reddening map
of Schlegel et al. (1998). This contamination affects
mostly the largest scales, and simulates the effect of an
imperfect correction of the dust absorption on the galaxy
number density. The amplitude of the dust fluctuations is
chosen so that their power spectrum within the unmasked
region be ∼ 20% of the galaxy power spectrum at ` ∼ 120.
For the flat-sky suite, we generate a flat-sky Gaussian re-
alization of a field with a power spectrum C` ∝ `−2.4, cor-
responding to the large-` behaviour of the curved-sky dust

map. The amplitude was chosen such that the contami-
nant power spectrum be ∼ 10% of the signal at ` ∼ 400.

– Stars. We add a second contaminant to δg associated
with star contamination. For the curved-sky realizations
this contaminant is proportional to the fluctuation around
the mean of a star density map generated using the LSST
CatSim catalog (Connolly et al. 2014). We modify this
contaminant slightly by adding a white-noise component
that dominates the small-scale spectrum beyond ` ' 400.
We do this in order to simulate the noise-like distribution
of stars on small scales as well as to include a contaminant
source that, unlike dust, can surpass the signal on small
scales. The amplitude of this contaminant is chosen such
that its power spectrum is about 3% of the signal at ` ∼
400.

– PSF fluctuations. We add a large-scale contaminant
for weak lensing in the form of fluctuations in the image
point-spread function (PSF) with a characteristic scale
corresponding to the telescope field of view. We generate
this contaminant as a spin-2 field with equal E and B-
mode amplitude and a power spectrum

CEE` = CBB` ∝
[
2
J1(`θFoV)

`θFoV

]2

, (47)

where J1(x) is the order-1 Bessel function, and 2J1(`θ)/`θ
is the Fourier transform of a circular aperture with radius
θ. For this we assume θFoV = 1.75◦, and therefore we
try to mimic the signature of PSF fluctuations that vary
between different pointings with a 3.5◦ diameter. The am-
plitude of the power spectrum is chosen so that the con-
taminant amounts to 30% of the signal power spectrum
at ` ∼ 50. We use the same prescription for both the
curved-sky and the flat-sky cases.

– Small-scale contamination. Finally we include an ad-
ditional small-scale contaminant to weak lensing with a
flat power spectrum, unit E-B ratio, and an amplitude
fixed so the contaminant’s power spectrum is 20% of the
signal at ` = 500. Although we do not identify this con-
taminant with any specific source, it could arise from e.g.
the impact of stars or blending on shape measurement.

• Noise: for the curved-sky case we generate inhomoge-
neous noise realizations. To do this, we first generate maps
with Gaussian, white and homogeneous noise with a pixel
variance given by 1/npix for δ and σ2

γ/npix for each shear
component, where npix is the average number of sources in
a pixel’s area, and σγ = 0.28 is the intrinsic ellipticity scat-
ter per component. These noise realizations are then locally
rescaled by a factor f(θ̂) = fstar(θ̂) fdepth(θ̂) made up of
two components:

– fstar(θ̂) is a function of the local star density mod-
eled with the same star map used to generate the galaxy
clustering contaminant described above. The function in-
terpolates between fstar = 1 for low star densities and
fstar = 1.5 for high star densities. The specific functional
form used is

fstar =
rstar − 4

2rstar − 4
, (48)

where rstar = Nstar/max(Nstar) and Nstar is the star den-
sity map.

– fdepth(θ̂) is a map of stochastic depth variations gen-
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Figure 6. E-mode and B-mode power spectra (blue and yel-

low respectively) for the cosmological CMB signal (solid lines),

for the curved-sky foreground contaminants (dashed lines) and
for the flat-sky foreground contaminants (dot-dashed lines). The

noise power spectra used for the full- and flat-sky simulations are

shown as black dashed and dot-dashed lines respectively. These
noise curves are intended to depict two different types of experi-

ments: a small-aperture telescope (S.A., dashed lines) targetting

primordial tensor modes, and a large-aperture telescope (L.A.,
dot-dashed lines) targetting the small-scale lensing B-modes.

erated as a Gaussian random field with mean 1 and fluc-
tuations with a typical amplitude of 3-4% and a charac-
teristic scale of θFoV = 1.75◦.

The logic behind these simulated noise maps is that both
the presence of stars and fluctuations in the survey depth
will modulate the number density of observed objects, and
with it the noise in both δ and γ. A more optimal estimate
of the power spectrum could therefore be achieved by using
an inverse-variance weighting scheme in which the mask is
inversely proportional to f(θ̂).

For simplicity, the flat-sky simulations use only the homo-
geneous part of these noise realizations.

• Pixelization: the main suite of curved-sky simulations
used to validate the code use HEALPix resolution parame-
ter Nside = 1024, corresponding to a pixel size of ∼ 3.4′.
This resolution allows us to validate the code on a large
number of realizations without facing strong computational
challenges on the main scales of interest (` . 2000). As
noted in Appendix H, however, the code has also been val-
idated with a smaller suite of high-resolution simulations
with Nside = 4096, and we have been able to run it suc-
cessfully up to a maximum Nside = 8192 (θpix ∼ 0.4′). The
flat-sky simulations use square pixels of 0.6 arcmin a side.

We should note that, unlike the simulated maps used
here, the true galaxy distribution is markedly non-Gaussian.
However, none of the expressions presented in Section 2 for
the pseudo-C` method assume Gaussianity, and therefore
the method will deliver unbiased estimates of the harmonic-
space two-point function for non-Gaussian fields too.

4.1.2 CMB B-modes from the ground

Our second example corresponds to the measurement
of B-modes in the polarized CMB emission, closely
associated with the presence of primordial gravita-
tional waves. This is one of the main science cases
targeted by current ground-based Stage-3 experiments
such as BICEP/Keck (BICEP2 Collaboration et al.
2016), Advanced ACTPol (De Bernardis et al. 2016;
Louis et al. 2017) or the Simons Array (Suzuki et al.
2016; POLARBEAR Collaboration et al. 2017), as well
as next-generation facilities such as the Simons Observa-
tory (The Simons Observatory Collaboration et al. 2018)
or CMB Stage-4 (Abazajian et al. 2016). Potential future
space missions, such as LiteBIRD (Suzuki et al. 2018)
will be able to make low-resolution, curved-sky maps of
the polarized CMB to put constraints on the primordial
B-mode signal from its reionization bump, at ` < 30, and
will likely make use of pixel-based likelihoods and optimal
quadratic methods. Ground-based experiments, on the
other hand, will be systematics-limited at low `, and will be
able to make higher-resolution maps, for which pseudo-C`
methods are better suited.

The measurement of CMB B modes is affected by two
challenges: the presence of foreground residuals left in the
data by any component separation method, and the much
larger amplitude of the E-mode signal, which can dominate
the uncertainties in the B-mode power spectrum due to E-
to-B leakage. This science case therefore allows us to vali-
date the code when both contaminant deprojection and B-
mode purification are required, as well as in the presence of
a non-negligible instrumental beam.

Our first validation suite is therefore inspired on a
Southern-Hemisphere, high-sensitivity polarization experi-
ment with the following characteristics:

• Signal: we generate Q and U maps of the
CMB as Gaussian realization of a lensed power spec-
trum corresponding to the best-fit parameters from
Planck (Planck Collaboration et al. 2016). For simplicity we
assume no delensing and zero primordial B-modes, so that
the B-mode power spectrum is entirely due to the effects of
CMB lensing. The signal power spectra are shown in Fig. 6.
• Mask: for the curved-sky case we assume a survey tar-

geting a 4000 deg2 footprint. The corresponding mask is
analytically apodized using the “C2” apodization method
of Grain et al. (2009) with an apodization scale of 10 de-
grees. This apodization method is based on smoothing the
transition at the mask edge with a sinusoidal function that
interpolates between 0 and 1 in a differentiable manner. The
observed area encompasses one of the lowest-foreground re-
gions observable from the Southern Hemisphere. For the flat-
sky case we assume a smaller sky fraction of 500 deg2 with
a similar apodization. The assumed masks are shown in the
top panels of Figure 7.
• Noise: for the curved-sky and flat-sky case we assume

white noise levels of 1 and 0.5µK arcmin in intensity respec-
tively. We also include a 1/f -like component associated with
atmospheric noise with a characteristic scale `knee and tilt
αknee such that the noise power spectrum can be written as

N` = σ2
N

[
1 +

(
`knee

`

)αknee
]
, (49)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz093/5289876 by Acquisitions user on 05 February 2019



14 D. Alonso et al.

Mask Mask

30◦ 15◦ 0◦ 345◦ 330◦

-40◦

-50◦

D
ec

QFG
QFG

30◦ 15◦ 0◦ 345◦ 330◦

-40◦

-50◦

D
ec

UFG
UFG

30◦ 15◦ 0◦ 345◦ 330◦

-40◦

-50◦

RA

D
ec

Figure 7. Left panels: mask (top), and Q and U components (middle, bottom) of the foreground contaminant used in the CMB

curved-sky validation set. Right panels: same as left panels for the flat-sky validation set. All maps have units of µKCMB.

where σ2
N is the white-noise variance in one steradian. We

use αknee = 2.4 and `knee = 10 and 300 for the curved-sky
and flat-sky cases respectively. The beam-deconvolved noise
power spectra in both cases are shown in Fig. 6.

• Beam: we assume a Gaussian beam with full-width
at half-maximum of θFWHM = 20 and 1.4 arcmin for the
curved-sky and flat-sky cases respectively. This resolution
corresponds to what could be achieved at 150 GHz with a
small aperture experiment (0.4m, S.A.) and a large aper-
ture experiment (6m, L.A.) in either case. The choice of
`knee described above for the noise curves is also consistent
with the atmospheric noise levels achievable with those types
of telescopes (The Simons Observatory Collaboration et al.
2018). As shown in Fig. 6, the combination of beam size and
`knee makes the two experiments sensitive to the B-mode
power spectrum in different ranges of scales, corresponding

to the primordial B-mode signal around the recombination
bump (S.A.) and to the high-ell lensing signal (L.A.).

• Contaminants: we assume a dust-like residual for
both the curved-sky an flat-sky cases. For the curved-sky
set-up, we use maps of the dust emission at 150 GHz gen-
erated by PySM (Thorne et al. 2017) and scaled so that the
amplitude of the residual power spectrum is about 10% of
the lensing B-mode signal at ` = 50. For the flat-sky signal
we generate a Gaussian realization of a dust-like component
with power spectra CEE` ∝ `−2.5 and CBB` ∝ `−2.3, where
the spectral tilts were estimated from the high-` behaviour
of the PySM maps in the low-foreground footprint. The am-
plitudes of these power spectra were fixed by requiring that
the B-mode power be about 20% of the lensing B-mode
power spectrum at ` = 550 and so that CEE` /CBB` ' 2, as
found in Planck Collaboration et al. (2016). The foreground
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Figure 8. Left panel: average over all simulations in our curved-sky LSS validation suite of the six power spectra between δ, γE and γB
(solid lines). The analytical prediction for the input signal power spectra are shown as darker dashed lines, and lie mostly superposed on

the solid line (for the non-zero cases δ× δ, δ× γE and γE × γE). The null power spectra (δ× γB , γE × γB and γB × γB) are compatible
with zero. The middle subplot shows the mean residuals with respect to the input power spectra normalized by the 1σ error over the

mean (i.e. the scatter over simulations divided by
√
Nsim). The residuals are scattered around zero and their fluctuations are well within

those expected under the assumption of Gaussian statistics given 1000 independent realizations (see Fig. 9). For comparison, the lower

panel show the mean relative difference for the power spectra of contaminated maps without contaminant deprojection. Right panel:

correlation matrix (Cij/
√
CiiCjj) of all measured power spectra estimated from 1000 realizations.

residual maps we use are shown in the bottom panels of Fig-
ure 7, and their power spectra are compared with the signal
and noise spectra in Fig. 6.
• Pixelization: the curved-sky case, targetting the B-

mode recombination bump at ` ∼ 100, uses a HEALPix
resolution parameter Nside = 256, corresponding to 14-
arcmin pixels and sufficient to measure power spectra to
multipoles ` ∼ 500. The flat-sky case, targetting the lens-
ing B-modes, uses square 2-arcmin pixels. These correspond
to scales ` . 5000, well within the signal-dominated regime
given the noise level and beam sizes quoted above.

4.2 Curved-sky large-scale structure validation

We generate 1000 realizations of contaminated maps of the
galaxy overdensity δ and cosmic shear γ using the models
described in Section 4.1.1 with resolution Nside = 1024. In
our fiducial run, we included all contaminants, and used a
non-binary mask that traces the shot-noise fluctuations due
to the presence of stars and depth variations. For each sim-
ulation, we use NaMaster to compute all six possible cross-
correlations between the δ and the E and B modes of γ
(which we will label γE,B), including map-level contaminant
deprojection and removal of the noise and deprojection bias
in the power spectrum. We use band-powers defined by aver-
aging over groups of ∆` = 3 multipoles. The typical running
time for one realization is ∼ 200s using 32 OpenMP threads.
Subsequent runs are typically faster since we cache the cou-
pling matrices, which are the slowest step in the pipeline.
More details about timing and scalability of NaMaster can
be found in Appendix I.

The upper plot in the left panel of Fig. 8 shows the
six deconvolved bandpowers averaged over simulations (solid
lines) compared with the analytical prediction for the input

signal power spectra (darker dashed lines). The middle panel
of the same figure shows the average residual with respect
to the analytical prediction normalized by the error on the
mean (given by the standard deviation of all Nsim = 1000
simulations divided by

√
Nsim). We see that the latter are

accurately recovered by NaMaster in all cases, including all
null correlations (δ × γB , γE × γB and γB × γB), and that
the normalized residuals fluctuate around zero with typical
variations of ∆C`/σ` . 3, corresponding to expected . 3σ
fluctuations. For comparison, the bottom panel of the figure
shows the mean relative difference for power spectra of con-
taminated maps without deprojection, where we can appre-
ciate that the residuals, ∆C′`/σ

′
`, appear to not be centered

around zero in some cases, i.e., the estimated power-spectra
are biased.

To quantify the presence of any residual bias in the
estimator we start by computing, for each simulation and
cross-power spectrum in the validation suite, the quantity:

χ2
i = (si − t)T Cov−1 (si − t), (50)

where si is the vector of Ndof power spectrum values esti-
mated in the i-th simulation, t is the analytical prediction
for the input power spectrum, and Cov is the covariance ma-
trix of the estimator, which we compute by averaging over
all simulations:

Cov =
1

Nsim

Nsim∑
i=1

(si − s̄)(si − s̄)T , s̄ ≡ 1

Nsim

Nsim∑
i=1

si. (51)

The full covariance matrix is very close to diagonal, as shown
in the right panel of Fig. 8. Under the assumption that the
estimator is unbiased (〈s〉 = t), the values of χ2

i should fol-
low a χ2 distribution with a Ndof degrees of freedom. Figure
9 shows the distribution of χ2

i across simulations approxi-
mating the covariance matrix as diagonal (blue histograms),
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Figure 9. Distribution of the χ2 values found for each of the 1000 simulations in our curved-sky LSS validation suite (blue histograms).

Results are shown for all possible cross-correlations, labeled in the top right corner of each subplot. The simulated distributions are

compared with the expected χ2 distribution (solid lines) assuming Gaussian statistics for Ndof = 681 degrees of freedom (denoted by
the dashed vertical lines). The dot-dashed vertical lines mark the χ2 value found for the mean residual with respect to the input power

spectrum (see middle panel of the left panel in Fig. 8). The associated PTE values are & 0.1, and thus no statistically significant bias is

found by our validation suite.

compared with the predicted χ2 distribution for Ndof = 681
(marked by the vertical dashed lines) for the six different
power spectrum combinations. Both distributions are found
to be compatible. Moreover, the dot-dashed lines show the
values of χ2 found for the mean residual with respect to the
input power spectra (middle panel of Fig. 8). The proba-
bility to exceed (PTE) associated with these χ2 values are
higher than 10% in all cases, and therefore our validation
suite does not show any statistically significant bias in the
estimator. This bias, if any, must be at least

√
1000 ∼ 30

times smaller than the statistical uncertainties associated
with our validation suite, which are representative of the
statistical power of next-generation galaxy surveys.

Our validation suite also allows us to explore the im-
pact of the sub-optimal inverse-variance weighting of the
pseudo-C` estimator. The comparison with the uncertain-
ties associated with optimal quadratic estimators has been
made before in the literature (Leistedt et al. 2013), and we
will not explore this here. Instead, we can study the im-
pact on the final uncertainties of using a mask that imple-
ments exact inverse-noise weighting (i.e. the mask shown
in the top left corner of Figure 3, inversely proportional to
the number density variations induced by stars and depth
fluctuations) against a top-hat mask that weights all pix-
els equally. Repeating our analysis for the latter mask, we
observe a negligible increase of ∼ 0.5 − 1% in the diago-
nal error bars. Thus, except in the case of large variations
in noise properties (as will be the case for inhomogeneous

scanning strategies in CMB experiments, for instance), the
exact weighting scheme used with the pseudo-C` estimator
is unlikely to produce significantly better uncertainties.

4.3 Curved-sky CMB B-mode validation

We have carried out a similar set of tests on an ensemble of
1000 simulations from the CMB validation suite described
in Section 4.1.2. In our fiducial run we both deprojected
the foreground contaminants and subsequently used B-mode
purification to decouple E and B-modes at the map level,
since this is the main feature of the code we want to validate.
The left panel of Figure 10 shows the mean of the EE, EB
and BB power spectra computed for all simulations (solid
lines) compared with the expectation from the input spectra
for EE and BB (dashed lines, mostly superposed on the
solid ones). The average residuals normalized over the error
on the mean, shown in the lower panel of the same figure,
fluctuate around zero with an amplitude of up to 3σ, as
would be expected in the absence of a bias in the estimator.

The above figure was created using B-mode purifica-
tion. Disabling this option has no impact on the bias of the
estimates, but increases its variance as we show in the Fig-
ure 11. We plot diagonal error bars with (red) and without
(blue) B-mode purification for the BB (solid), EB (dashed)
and EE (dot-dashed) power spectra. Although there is no
practical improvement in the error bars for the EE spec-
trum (there is even a slight increase due to the loss of the
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Figure 10. Left: average over all simulations in our curved-sky CMB validation suite of the three spin-2 power spectra (EE, EB and

BB, solid lines) using mode deprojection and B-mode purification. The analytical prediction for the input signal power spectra are shown
as dashed lines, and line mostly under the solid lines for the non-zero cases (EE and BB). The null power spectrum EB is compatible

with zero. For comparison, the red dot-dashed line shows the result of not correcting for the mode-deprojection bias when estimating the

B-mode power spectrum, which leads to a strong bias on small `. The bottom panel of this figure shows the mean residuals with respect
to the input power spectra normalized by the 1σ error on the mean (i.e. the scatter over simulations divided by

√
Nsim). The residuals

are scattered around zero with random fluctuations of up to ∼ 3σ. Right: exact bandpower window functions (solid black), which fully
account for the effects of mode-coupling, compared with the input top-hat bandpower weights (red). Using the correct window functions

is in general important in order to avoid parameter biases. Results are shown for the BB power spectrum.

Figure 11. 1σ errors on the BB, EB and EE power spectra

(solid, dashed and dot-dashed lines respectively) for the standard
pseudo-C` estimator (blue) and for the estimator with purified B

modes (red). B-mode purification is able to produce significant
gains in sensitivity for the B-mode power spectrum, particularly

at low `.

ambiguous E modes to purification), and the improvement
is only mild for the EB case, very significant gains can be
obtained for the BB power spectrum, reducing uncertainties
by up to a factor of ∼ 10 on large scales.

At this point we can use the validation suite to illus-
trate the relation between the input power spectrum and
the theoretical prediction for the de-convolved bandpowers.
As described by Equations 15 and 16, the mode-coupling
asociated with the sky mask and the subsequent de-coupling
into bandpowers performed by inverting the binned mode-

coupling matrix implies that the window function Fq` in
Eq. 16 differs in general from a simple binning operator,
even if the bandpower weights in Eq. 12 are chosen to be
top-hat functions with a fixed width ∆` = 12. This is il-
lustrated in the right panel of Figure 10, which shows, in
black, the exact window function for different bandpowers
(solid black), in comparison with the input top-hat band-
power weights (solid red). Results are shown for the BB
power spectrum. Depending on the specific problem, and
on the range of scales under study using the simpler top-hat
windows or even simply evaluating the theory power spectra
at the bandpower centres may lead to e.g. significant biases
in subsequent parameter inference stages. NaMaster pro-
vides simple and fast functions to apply the exact window
functions to theory power spectra.

As in the case of the LSS validation set, we also study
the distribution of χ2 values from each simulation in or-
der to quantify the presence of any possible bias. Unlike
in the LSS suite, we find that in this case the covariance
matrix is noticeably non-diagonal, and cannot be replaced
by the diagonal errors when computing the χ2. The non-
zero off-diagonal elements are caused by two effects. First,
the limited footprint area, map apodization and choice of
bandpowers leads to a noticeable level of anti-correlation
between neighboring bandpowers at low `. This can be seen
in the left panel of Figure 12, which shows the covariance
matrix of simulations without foreground contaminants or
deprojection. Second, introducing contaminant deprojection
produces additional correlations that affect the lowest band-
powers and also involves a level of cross-talk between the
three different cross-spectra.

The distribution of χ2 values found from the simula-
tions is shown in Fig. 13 for the three power spectra. As
before, the vertical dashed lines show the number of degrees
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Figure 12. Left: covariance matrix for power spectra computed in the absence of foreground contaminants computed from the 1000
simulations of our curved-sky CMB validation suite. The incomplete sky coverage causes a noticeable anti-correlation of neighboring

bandpowers at low ` for the three power spectra (EE, EB and BB, see inset for the EE case), but beyond that, the covariance matrix is

close to diagonal. Right: the same as the left panel but this time for simulations containing foreground contaminants. The combination of
B-mode purification and contaminant deprojection produces noticeable correlations at low `, especially in the BB spectrum, that must

be taken into account.

Figure 13. Distribution of χ2 values found for the 1000 simulations in our curved-sky CMB validation suite (blue histograms). Results
are shown for the three polarized spectra (EE, EB and BB), labeled in the top right corner of each panel. The simulated distributions

agree well with the expected χ2 distribution (solid line) assuming Gaussian statistics for Ndof = 43 degrees of freedom (denoted by the
dashed vertical lines). The dot-dashed vertical lines mark the χ2 value found for the mean residual with respect to the input power

spectrum (see lower half of the left panel in Fig. 10). The associated PTE values are & 0.4, and thus no statistically significant bias is

found by our validation suite.

of freedom (Ndof = 43), while the dot-dashed line marks
the χ2 value of the mean residuals (bottom panel of Fig. 6).
The associated PTE values are all above 40% and therefore,
as in the case of the LSS validation set, we do not detect
any significant bias in the estimator when including both
contaminant deprojection and B-mode purification.

5 DISCUSSION

The pseudo-C` power spectrum estimator is one particu-
lar example of quadratic minimum-variance estimators as

presented by Tegmark (1997) in which the proposal covari-
ance matrix of the data is assumed to be diagonal in real
space. This allows us to significantly reduce the computa-
tional complexity of the problem, from O(N3

pix) to O(N
3/2
pix )

through both analytical and numerical simplifications, as de-
scribed in Section 2. A number of techniques that are nat-
urally included in the standard quadratic estimator, such
as mode deprojection and B-mode purification, can also be
implemented in the standard pseudo-C` algorithm without
altering the computational complexity of the method. Al-
though this speed boost is achieved at the expense of op-
timality (in terms of the estimator’s variance), the degra-
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dation in sensitivity will be small or negligible as long as
the data does not deviate significantly from the diagonal
assumption. This implies that the pseudo-C` approach is a
good choice for non-steep power spectra for which the typical
correlation length is smaller than the mask structure, and
in general on small scales, where the impact of the power
spectrum shape drops as the number of available modes in-
creases (Efstathiou 2004, 2006). As we have argued, this will
be the case for a wide range of relevant science cases pursued
by next-generation cosmological observations.

This paper presents NaMaster, the first public, vali-
dated and easy-to-use power spectrum estimation software
package that implements the pseudo-C` method to compute
angular cross-power spectra for any pair of spin-0 or spin-2
fields, including all their generalizations (flat-sky, deprojec-
tion and purification). We have described the steps taken to
validate the code, showing that it is able to provide unbi-
ased results in a wide variety of scenarios. In particular, we
have constructed a realistic validation suite that resembles
the type of data, masks and contaminants that will affect
future wide-area optical galaxy surveys and ground-based
CMB polarization experiments. As shown in Section 4, we
are able to recover the input power spectrum in all cases
(which include varying degrees of contamination, purifica-
tion, different spins etc.) with no detectable bias down to
. 1/30-th of the statistical uncertainties.

Besides describing and validating the code, and in or-
der to generalize the pseudo-C` estimator to all the cases
supported by NaMaster, this paper has also presented a
number of results that are, to the best of our knowledge,
new. These include:

• Extending the analytical treatment of contaminant de-
projection presented in Elsner et al. (2016) to fields of arbi-
trary spin.
• Combining contaminant deprojection and E/B purifi-

cation.
• Consistently deriving all of this functionality (standard

pseudo-C`, deprojection and purification for arbitrary spins)
in the flat-sky approximation.

Although NaMaster is intended to make power spec-
trum estimation as easy as possible, some tasks are too de-
pendent upon the properties of the data to be analyzed to
automatize them in a general way, and users are therefore
in charge of them. We list the most important of these here:

• NaMaster operates directly on maps. Galaxy survey
data, however, are normally provided in the form of object
catalogs, and the conversion those into the desired maps
(e.g. galaxy overdensity or shear) must be done externally.
• E/B purification can only be carried out in the con-

text of pseudo-C` estimators when the mask is differentiable
up to its second derivatives, which can usually be achieved
with an appropriate apodization. Although NaMaster pro-
vides tools to carry out this type of operations, some of the
properties of the input mask (e.g. sharp corners) will in gen-
eral spoil differentiability even after apodization. Users must
therefore take care to inspect the mask derivatives before
making use of NaMaster’s purification feature.
• A crucial part of any quadratic power spectrum estima-

tion is the removal of noise bias in the auto-correlation of a
given dataset. Although we have provided analytic formulas

to estimate this bias in certain simple scenarios (see Section
2.4), these are often not applicable. Users must therefore
make sure that a sufficiently accurate estimate of the noise
bias can be achieved (e.g. through simulations) or to use
only cross-correlation data.
• Contaminant deprojection will be able to provide an

accurate estimate of the power spectrum as long as two
conditions are met. First, users must be able to provide a
comprehensive list of possible contaminants as would be ob-
served in their data (e.g. beam-smoothed, mean-subtracted
etc.). Second, a good estimate of the underlying signal power
spectra must be provided in order to calculate and subtract
the deprojection bias. We have outlined a possible iterative
process to do so in Section 2.2.

NaMaster does not currently produce a covariance
matrix estimate. Although computationally efficent ana-
lytical estimates of the Gaussian covariance matrix can
be derived under certain approximations (Efstathiou 2004;
Brown et al. 2005), this is not widely supported by the
code for several reasons. First, for many problems, such as
large-scale structure power spectrum estimation, the covari-
ance matrix contains important contributions from the con-
nected four-point function that depend on the precise na-
ture of the problem and go beyond the estimation step that
NaMaster strives to do well. Second, with all additional op-
tions included, especially if a large number of contaminant
templates are deprojected, the exact analytical estimates are
either computational unfeasible or overly approximate. Since
a majority of the forthcoming experiments will rely on a
large number of mock datasets available for testing system-
atic effects, these maps also offer a natural path towards
estimating the data covariance.

NaMaster is open-source software and publicly avail-
able at https://github.com/LSSTDESC/NaMaster. To
maximize the usefulness of this software for the community,
it is accompanied by an extensive documentation and exam-
ple code. NaMaster is written in C and OpenMP-parallelized
to maximize its performance, although we encourage its
use through the companion python wrapper, the fastest-
growing language of choice in the analysis of astronomical
data. The code is in constant development, and we will strive
to implement further functionality to e.g. estimate covari-
ance matrices, extend the range of supported sky pixeliza-
tions and enhance its computational performance.
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APPENDIX A: GENERALITIES AND
SPHERICAL HARMONIC TRANSFORMS

Let ð and ð̄ be the following complex differential operators
defined on the sphere when acting on a spin-s quantity fs:

ðfs ≡ −(sin θ)s
(
∂θ + i

∂ϕ
sin θ

)
(sin θ)−s fs(θ, ϕ),

ð̄fs ≡ −(sin θ)−s
(
∂θ − i ∂ϕ

sin θ

)
(sin θ)s fs(θ, ϕ).

(A1)

The following properties can be easily derived for the ac-
tion of these operators, and are useful to derive some of the
formulas presented here:

• If fs is a spin-s quantity, (fs)
∗ is a spin-(−s) quantity.

• ðfs is a spin-(s+ 1) quantity, and ð̄fs is a spin-(s− 1)
quantity.
• (ðnfs)∗ = ð̄n(fs)

∗

• ð(f g) = fðg + gðf
• ð2(f g) = fð2g + gð2f + ðfðg

We start by defining the spin-weighed spherical har-
monics with spin s ≥ 0:

sY`m ≡ β`,sðsY`m, −sY`m ≡ β`,s(−1)sð̄sY`m, (A2)

where β`,s ≡
√

(`− s)!/(`+ s)! and Y`m are the standard
spherical harmonics. These functions satisfy the property:
(sY`m)∗ = (−1)s+m −sY`−m.

We can then define the E-mode and B-mode spherical
harmonic vectors as:

sY
E
`m ≡ DE

s Y`m ≡ −
β`,s
2

(
ðs + ð̄s
−i(ðs − ð̄s)

)
Y`m

= −1

2

(
sY`m + (−1)s −sY`m
−i(sY`m − (−1)s −sY`m)

)
(A3)

sY
B
`m ≡ DB

s Y`m ≡ −
β`,s
2

(
i(ðs − ð̄s)
ðs + ð̄s

)
Y`m

= −1

2

(
i(sY`m − (−1)s −sY`m)

sY`m + (−1)s −sY`m

)
, (A4)

which also defines the differential operators DE,B
s . For s = 0,

these functions are simply 0Y
E
`m = (Y`m, 0) and 0Y

B
`m =

(0, Y`m).
Finally we define the matrix operator Ŷs`m to have

sY
E,B
`m as columns:

Ŷs`m ≡
(
sY

E
`m,s YB

`m,
)
. (A5)

These matrices satisfy the following properties:

Ŷs†`m = (−1)m+sŶ−s`−m (A6)∫
dθ̂ Ŷs†`mŶs`′m′ = 1̂δ``′δmm′ , (A7)∫
dθ̂
(
Ŷs†l (θ̂)Ŷsl1(θ̂)

)
Ŷ0

l2(θ̂) ≡ D̂sll1l2 , (A8)

where we have abbreviated the pair (`,m) as l, and

D̂sll1l2 = (−1)s+m
√

(2`+ 1)(2`1 + 1)(2`2 + 1)

4π
(A9)(

` `1 `2
−m m1 m2

)(
` `1 `2
s −s 0

)
d̂`+`1+`2 .

Here

d̂n =
1

2

(
1 + (−1)n −i[1− (−1)n]
i[1− (−1)n] 1 + (−1)n

)
, (A10)

and the Wigner 3j symbols satisfy the orthogonality relation∑
mm1

(
` `1 `2
m m1 m2

)(
` `1 `3
m m1 m3

)
=
δ`2`3δm2m3

2`2 + 1

(A11)

A1 Pixelization and signal band-limits

SHT transforms as defined in Eq. 1 are, strictly speaking,
defined for continuous fields on the sky and results in an
infinite number of spherical harmonic coefficients. In prac-
tice, we have to always deal with discretized sky maps with
a finite number of pixels at which the field is sampled, and
consequently use a finite number of spherical coefficients.
If the sampling of the underlying signal is too sparse, we
will get aliasing of higher frequency modes. In flat spaces,
Nyquist’s theorem provides a clear prescription for uniform
sampling on a grid. Since there is no such natural sam-
pling on a sphere, the situation is more complex and de-
pends on the pixelization scheme used (Driscoll & Healy
1994; McEwen et al. 2011). Nevertheless, clear heuristic pre-
scriptions exist. Most importantly, the typical pixel separa-
tion needs to be smaller than the wavelength of the highest
frequency mode present in the underlying signal. As a nat-
ural consequence, the smoothing of the map must always
precede any downgrade in resolution (or equivalently down-
sampling) if it is necessary to do so for numerical expediency.
Similarly, any mask should be applied at the highest possi-
ble resolution and the resulting map smoothed before being
down-graded.

For the same reasons, even if the signal is correctly
sampled in a band-limited sense, one must always estimate
power over the entire power band, even if one is not in-
terested in certain region of ` space. Otherwise, the power
spectrum estimator will try to “explain” the variance associ-
ated with ` modes not considered by artificially inflating the
power in the estimated modes. For the HEALPix pixeliza-
tion scheme (Górski et al. 2005), commonly used in cosmol-
ogy and also in this paper, Leistedt et al. (2013) suggest the
following prescription: if one wants to measure power up
to `max, one should employ pixelisation of Nside=`max/2
and estimate band-powers up to 2`max, but then discard
measurements above `max after correcting for pixel-response
suppression and accounting for their contribution to the co-
variance matrix of measurements.

In this paper we do not consider these issues any further
as NaMaster is a generic tool and it is up to the user to
ensure band-limit and pixelization constraints are properly
accounted for.

APPENDIX B: LINEAR CONTAMINATION
FROM NON-LINEAR CONTAMINATION

Consider a contaminant field c (e.g. a point-spread function
(PSF) size) that affects the observable field o (e.g. the num-
ber count densities) through a non-linear, but local on some
scale local functional F :

δo(θ̂)→ δo + F [δc] (B1)

where we can, without loss of generality, take out the mean
effects (i.e. there is some mean PSF size and fluctuations

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz093/5289876 by Acquisitions user on 05 February 2019



22 D. Alonso et al.

around this mean size produce additional fluctuations in the
number density of fluctuations).

In general, for sufficiently non-linear functionals F , the
Taylor expansion around δc(θ̂) is not valid. However, one
can look at the effect of smoothing by a kernel of size S(R),
which in Fourier space is equivalent by multiplication by

e−k
2R2

. We get

δRo (θ̂)→ δRo + S(R)[F [δc]] = δRo + F ′R[δRc ], (B2)

where we used a shorthand δRx = S(R)[δx] and F ′R is now
a different functional that takes a smoothed δc and returns
out a smoothed δo. The crucial point is that F ′R must still
be local, since one cannot turn a local functional into a non-
local one by application of smoothing.

This means, that for a well behaved δc, such that vari-
ances of both δRc and δRo are small for a large enough R, the
Taylor expansion is valid for F ′R (even if it is not for F ),
giving

δRo (θ̂)→ δRo + bδRc + c∇2δRc (B3)

or in Fourier space

δo(θ̂)→ δo + bδc + ck2δc (B4)

for k � R−1. In other words a “local” contaminant becomes
“linearly biased” in the k → 0 regime, very much like very
non-linear physics of galaxy formations results in linearly
biased galaxy field on large scales.

APPENDIX C: FLAT SKIES AND FOURIER
TRANSFORMS

C1 Spin-s fields in flat sky

In the flat sky we will label a position in the plane by two
coordinates (x, y) ≡ x. These coordinates can be directly
related to increments in the spherical coordinates (θ, ϕ) by
considering a sufficiently small map centered around the
equator (i.e. sin θ ∼ 1). In this case we identify the x coordi-
nate with a latitude shift (δθ = −δx) and the y coordinate
with longitude shifts (δϕ = δy). The differential operator ð
now takes the form:

ð = (∂x − i∂y), ð̄ = (∂x + i∂y). (C1)

The analog of the standard spherical harmonics for flat skies
are plane waves eikx, and the action of ð on these is:

ðseikx = (ik)se−i sϕkeikx, ð̄eikx = (ik)sei sϕkeikx (C2)

In analogy with the full sky case, we start by defining
the basis functions:

sYk(x) ≡ k−sðseikx = is e−isϕkeikx, (C3)

−sYk(x) ≡ (−k)−sð̄seikx = (−i)seisϕkeikx, (C4)

where ϕk is the polar angle of k. We then define the Fourier
coefficients of a spin-s complex field a(x) as:

sal ≡
∫
dx2

2π
sY∗l (x)a(x), −sal ≡

∫
dx2

2π
−sY∗l (x)a∗(x).

a(x) =

∫
dl2

2π
sYl(x)sal, a∗(x) =

∫
dl2

2π
−sYl(x)−sal.

(C5)

These are then related to the E and B-mode coefficients as:

sEl ≡ −1

2
[sal + (−1)s −sal] , (C6)

i sBl ≡ −1

2
[sal − (−1)s −sal] . (C7)

Note the preceding (−) sign. For scalar fields (s ≡ 0) the E
and B modes are defined omitting that sign.

In analogy with our curved-sky nomenclature, let us
now write a as a vector such that in real space a(x) ≡
(Re(a), Im(a)), and in Fourier space al ≡ ( sEl, sBl). We
can rewrite the Eq. C5 in vectorial form:

a(x) ≡
∫
dl2

2π
sEl(x)al, al ≡

∫
dx2

2π
sE
†
l (x)a(x), (C8)

where, in analogy with Eqs. A3 and A4, we have defined the
matrix basis functions:

sEl ≡ −1

2

[
sYl + (−1)s −sYl i( sYl − (−1)s −sYl)

−i( sYl − (−1)s −sYl) sYl + (−1)s −sYl

]
= − 1

2ls

(
ðs + ð̄s i(ðs − ð̄s)
−i(ðs − ð̄s) ðs + ð̄s

)
eilx

= −is
(

cos(sϕl) sin(sϕl)
− sin(sϕl) cos(sϕl)

)
eilx

= −isR†(sϕl)eilx. (C9)

Here R(ϕ) is a rotation matrix.

C2 Discrete description and DFTs

As we discuss in 2.5.1, it is more convenient to describe
power spectrum estimation methods in a discretized flat sky.
Let the patch of the sky under inspection be contained by a
rectangle of sides Lx and Ly (in units of radians), and let us
discretize this rectangle by dividing it into an Nx ×Ny grid
with pixels of area ∆x2 ≡ ∆x∆y = (Lx/Nx)(Ly/Ny). Each
pixel in this grid is then labeled by a pair of integers n ≡
(nx, ny), and is assigned coordinates xn ≡ (nx∆x, ny∆y).
Each field in the pixelized map a(x) is therefore defined for
nx ∈ [0, Nx − 1], ny ∈ [0, Ny − 1].

In this case, the spin Fourier transform (Eq. C9) of the
pixelized field can be computed as its discrete Fourier trans-
form (DFT):

ak ≡ D (a)sak ≡
∑
x

∆x2

2π
saE
†
k(x)ax, (C10)

where the wavenumber k is now discretized as k =
(jx∆kx, jy∆ky), the integers j(x,y) run from −N(x,y)/2 to
N(x,y)/2− 112 and the pixel size is ∆k(x,y) ≡ 2π/L(x,y).

The following properties of the DFT are worth recalling:

• Periodicity:

a(kx,ky) = a(kx+Nx∆kx,ky)

= a(kx,ky+Ny∆ky)

= a(kx+Nx∆kx,ky+Ny∆ky). (C11)

• For a real-valued scalar a, its DFT satisfies a∗kj
= akN−j

(where N ≡ (Nx, Ny)).

12 This is the valid domain when N(x,y) is even. For odd N(x,y)

the interval becomes [−(N(x,y) − 1)/2, (N(x,y) − 1)/2].
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• The orthogonality relation of the basis functions now
takes the form:∑

x

sE
†
l (x) sEk(x) = NxNyδl,k1̂. (C12)

• The power spectrum of a pixelized field is defined as:

〈alb
†
k〉 ≡

δl,k
∆k2

Cabl . (C13)

APPENDIX D: MODE-COUPLING MATRICES

For curved skies, and different combinations of spin-0 and
spin-2 fields, the mode-coupling matrices introduced in Eq.
9 are given by (Hivon et al. 2002; Kogut et al. 2003):

M00
``′ =

2`′ + 1

4π

∑
`′′

P vw`′′

(
` `′ `′′

0 0 0

)2

1, (D1)

M02
``′ = M0+

``′ 1, (D2)

M0+
``′ =

2`′ + 1

4π

∑
`′′

P vw`′′

(
` `′ `′′

0 0 0

)(
` `′ `′′

2 −2 0

)
,

M22
``′ =


M+
``′ 0 0 M−``′
0 M+

``′ −M−``′ 0
0 −M−``′ M+

``′ 0
M−``′ 0 0 M+

``′

 , (D3)

M±``′ =
2`′ + 1

4π

∑
`′′

P vw`′′

(
` `′ `′′

2 −2 0

)2
1± (−1)`+`

′+`′′

2
,

where 1 is the unit matrix, and P vw` ≡ (2`+ 1) PCL`(v, w).
In the flat sky, the un-binned mode-coupling matrices

introduced in Eq. 37 are given by:

M00
l k ≡

(2π)2

L2
xL2

y

vl−kw
∗
l−k, (D4)

M02
l k ≡

(2π)2

L2
xL2

y

vl−kw
∗
l−k

(
c −s
s c

)
(D5)

M22
l k ≡

(2π)2

L2
xL2

y

vl−kw
∗
l−k


c2 −c s −c s s2

c s c2 −s2 −c s
c s −s2 c2 −c s
s2 c s c s c2

 , (D6)

where c ≡ cos 2∆ϕ and s ≡ sin 2∆ϕ.

APPENDIX E: FLAT-SKY PSEUDO-C`S IN THE
CONTINUUM LIMIT

In the continuum limit, the Fourier coefficients of the masked
field (see Eq. 34) are:

avl =

∫ ∫
dk2dq2

2π

[∫
dx2

(2π)2 saE
†
l (x) saEk(x) 0Eq(x)

]
ak vq

=

∫
dk2

2π
R (sa∆ϕ) akvl−k, (E1)

The covariance of the Fourier coefficients of two masked
fields is then given by:〈

avl bw†l

〉
=

∫
dk2

(2π)2
R(sa∆ϕ)Cabk R†(sb∆ϕ)vl−kw

∗
l−k.

(E2)

Defining the pseudo-C` as the nomalized angular average of
alb
†
l we obtain:

〈PCL`(a,b)〉 ≡ (2π)2

S

∫
dϕl
2π

〈
avl bw†l

〉
(E3)

=

∫
kdk qdq

(2π)2

[
(2π)2

S

∫
dϕqdϕkdϕl

2π
vqw

∗
q

R(sa∆ϕ)Cabk R†(sb∆ϕ)δ(q− l + k)
]
,

where S is the observed sky area (in steradian), and where
we have eliminated the dependence on l− k by introducing
an additional integral over dq2δ(q− l + k).

As shown in Asgari et al. (2016), these expressions can
be simplified through the following steps:

(i) Substitute

δ(q− l + k)→
∫

dr2

(2π)2
ei(q−l+k)r (E4)

(ii) Integrate over the angular parts of r, l and k using the
following relation:∫ 2π

0

dϕ ei x cosϕei nϕ = 2π in Jn(x), (E5)

where Jn is the cylindrical Bessel function of order n.
(iii) Integrate over the angular part of q, defining the

power spectrum of the masks as:

C̃vwq ≡ (2π)2

S

∫
dϕqvqw

∗
q (E6)

(iv) Solve the last isolated integral over the radial part of
r by using the following relation:∫ ∞

0

dr r J0(qr) Jn(kr) Jn(`r) =
cosnθ

πk` sin θ
, (E7)

where θ is the angle between sides ` and k of the triangle
formed by three sides of length q, ` and k.
(v) Make the change of variables q2(`, k, θ) ≡ `2 + k2 −

2k` cos θ to simplify the integral over the radial part of q.

This yields the following relation analogous to Eq. 9:

vec
[
Cabl

]
=

∫ ∞
0

dkMsasb
`k · vec

[
Cabk

]
, (E8)

where:

M00
`k =

k

2π

∫ π

0

dθ

π
C̃vwq(`,k,θ) (E9)

M02
``′ = M0+

``′ 1̂, M0+
`k =

k

2π

∫ π

0

dθ

π
C̃vwq(`,k,θ) cos 2θ (E10)

M22
``′ =


M++
``′ 0 0 M−−``′
0 M++

``′ −M−−``′ 0
0 −M−−``′ M++

``′ 0
M−−``′ 0 0 M++

``′

 (E11)

M±±``′ =
k

2π

∫ π

0

dθ

π
C̃vwq(`,k,θ)

1± cos 4θ

2
. (E12)

These can also be expressed as integrals over q:

MXY
`k =

k

2π

∫
q dq

2π
C̃vwq F (`, k, q)GXY (`, k, q), (E13)

where F (`, k, q) = 0 if `, k and q do not form a triangle, and

F (`, k, q) ≡ 4√
2`2k2 + 2k2q2 + 2q2`2 − `4 − k4 − q4
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otherwise. The functions GXY are given by

G00 ≡ 1, (E14)

G0+(`, k, q) ≡ `4 + k4 + q4 − 2k2q2 − 2`2q2

2k2`2
, (E15)

G++(`, k, q) ≡
[
`4 + k4 + q4 − 2k2q2 − 2`2q2

2k2`2

]2

, (E16)

G−−(`, k, q) ≡ 1−G++(`, k, q). (E17)

Since in the flat-sky limit ` is a continuous variable,
bandpowers Babq can be defined as averages over a given in-
terval in `, [`min

q , `max
q ]:

Babq ≡
∫ `max

q

`min
q

d`

`max
q − `min

q

Cab` . (E18)

The binned coupling matrix is therefore given by:

Msasb
qq′ ≡

∫ `max
q

`min
q

d`

`max
q − `min

q

∫ `max
q′

`min
q′

d`′Msasb
``′ . (E19)

The main complication in using the pseudo-C` formal-
ism in the continuum limit is the need to compute the angle-
averaged mask pseudo power spectrum Cvw` . Flat fields are
most easily analyzed when pixelized in a Cartesian grid,
and under this setup the mask power spectrum is not a
well defined quantity for infinitesimally small intervals of `.
This leads to non-negligible biases and poor performance
Asgari et al. (2016) due to the need to use highly resolved
finite intervals to compute the integrals presented in the
previous section. This motivates the discrete formalism used
throughout this paper, which connects directly with the stor-
age format of flat-sky maps.

APPENDIX F: NOISE BIAS CALCULATION

Different strategies can be followed to estimate the pseudo-
C` noise bias:

Homogeneous noise. If the noise is homogeneous, and
can be described by a known noise power spectrum N`, the
procedure is simple: first, convolve the known noise power
spectrum with the pseudo-C` mode-coupling matrix. Then,
estimate the contribution from contaminant deprojection by
using N` in lieu of Cab` in Eqs. 23, 24 and 25. The total noise
bias is then the sum of both contributions, corrected for the
pseudo-C` convolution using Eq. 15.

Uncorrelated noise. If the noise is inhomogeneous but

uncorrelated (i.e. 〈n(θ̂) n†(θ̂
′
)〉 = 1σ2

n(θ̂)δ(θ̂, θ̂
′
)13), it is

also possible to find an analytical estimate of the noise bias.

• It is not difficult to prove that the pseudo-C` of the
noise contribution is given by

PCL`(n,n) = 1

∫
dθ̂

4π
v2(θ̂)σ2

n(θ̂) (F1)

= 1A2

∫
dθ̂

4π
σ−2
n (θ̂), (F2)

13 Here δ(θ̂, θ̂
′
) is the Dirac δ-function on the sphere, and σ2

n is

the local noise variance in one steradian.

where, in the second line, we have assumed that we use
an inverse-variance noise weighting scheme, in which the
weights map is v(θ̂) = Aσ−2

n (θ̂).
• The additional bias from contaminant deprojection can

also be computed analytically, starting from Eq. 22, as:

∆Cnn` =− 2FijPCL`
(
f i, v2σ2

nf j
)

+ FijFrs

[∫
dθ̂ v2σ2

n f j†fr
]

PCL`
(
f i, fs

)
. (F3)

General case. In general, if the noise is both non-white
and inhomogeneous, the total noise bias can be estimated
by averaging the result of applying the pseudo-C` estimator
to a large number of noise realizations with the same noise
properties as the data, assuming that those properties are
sufficiently well characterised to produce those simulations.
If that is not the case, a common approach to avoiding the
noise bias altogether is to use only cross-correlations of data
splits with independent noise contributions.

APPENDIX G: FLAT-SKY VALIDATION

In order to validate the flat-sky features of NaMaster, we
follow the same procedure used in Sections 4.2 and 4.3 for
the LSS and CMB validation suites respectively.

Before we discuss these results, a technical point, spe-
cific to the flat-sky case, must first be addressed. The the-
ory prediction for the pseudo-C` method is given by Eq.
37 (before multiplying by the inverse binned mode-coupling
matrix, Eq. 38). This involves a convolution of the power
spectra interpolated into the discretized Fourier plane with
the un-binned mode-coupling matrix. This is an O(N2

pix)
operation that would be too expensive to perform at every
step of a Monte-Carlo chain, and therefore NaMaster uses
a different approximate approach. This consists of first in-
terpolating the theory power spectrum into the discrete
Fourier plane, followed by an averaging of the interpo-
lated power spectrum into a set of radial rings with a
width given by the minimum wavenumber probed (given by
min(2π/Lx, 2π/Ly)), and spanning all possible values of |l|.
This binned power spectrum, an object of size ∼

√
Npix, is

then convolved with a high-resolution version of the mode-
coupling matrix. This high-resolution matrix is given by a
variation of Eq. 38 in which Sq′ represents all the values
of the wavenumber k in one of the narrow rings described
above (instead of the final wide bandpowers). The convolved
power spectrum is then multiplied by the inverse binned cou-
pling matrix (given by Eq. 38 exactly) to produce the final
theoretical prediction. As we show below, this procedure,
which is O(Npix), is able to reproduce the exact theoretical
prediction with a negligible error in all cases explored here.

Figure G1 shows, with solid lines, the mean over all sim-
ulations of the 6 LSS power spectra and the 3 polarized CMB
power spectra in the left and right panels respectively. The
analytical predictions for the non-zero input power spectra
are shown as dashed lines in both cases, and agree with the
simulation mean almost perfectly. The mean residuals nor-
malized by the 1σ error on the mean are shown in the lower
half of both figures, and feature fluctuations with amplitudes
smaller than ∼ 3-4σ.
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Figure G1. Left and Right: the analogues of the left panels of Figures 8 and 10 for the flat-sky LSS and CMB validation sets respectively.

Again, we quantify the presence of a bias in the esti-
mator by studying the distribution of the χ2 values across
simulations. In analogy with Figures 9 and 13, these are
shown in the upper and lower panels of figure G2 for the
LSS and CMB suites respectively. In all cases the distri-
butions (blue histograms) agree well with the expected χ2

distribution (solid lines) for the appropriate number of de-
grees of freedom (vertical dashed lines). The χ2 values of
the mean residuals shown in the lower panels of Fig. G1 and
marked by vertical dot-dashed lines in Fig. G2 have PTE
values above 10%. We therefore do not observe any signif-
icant bias in the estimator, proving NaMaster’s usefulness
in the analysis of current and next-generation experiments
in situations requiring the use of the flat-sky approximation.

APPENDIX H: CURVED-SKY VALIDATION
FOR DIFFERENT PIXEL RESOLUTIONS

We checked that NaMaster returns unbiased power-spectra
for all possible values of the HEALPix resolution parameter
Nside. In this appendix we show that we recover the correct
power spectra using the inputs from our curved-sky LSS
validation suite (see Section 4.1.1). In particular we tested
Nside ranging from 8 to 8192. For the latter, the computa-
tional resources needed make it very challenging to generate
and analyze a large enough number of simulations to have
a good statistical power. However, we generate 100 simula-
tions with Nside = 4096 and show the results in Figure H1.
We can see that the power spectra are recovered without any
noticeable bias in the expected range of validity ` . 2Nside.

APPENDIX I: PERFORMANCE AND
SCALABILITY

One of the known advantages of the pseudo-C` estimator
is that it is usually much faster that other known esti-
mators (Elsner et al. 2017) since the complexity scales as
O(`3max), where `max is the maximum multipole at which
the power-spectra are calculated. In order to check how
NaMaster execution time changes with `max, we compute

the curved-sky angular auto and cross-power spectra of a
spin-0 and a spin-2 field, with no contaminants. We change
the resolution of the HEALPix maps by varying the Nside

parameter in the range [16, 2048], and we calculate the
power-spectra up to `max = 3Nside. We use one interactive
Cori-Haswell node at the National Energy Research Scien-
tific Computing Center (NERSC). This kind of nodes have
two 16-core Intel Xeon (E5-2698 v3) processors at 2.3 GHz,
and 128 GB DDR4 of RAM. We executed the code using 32
OpenMP threads. In the top panel of Figure I1 we can see
the results for this test. We show the results for the auto-
power spectra for the spin-0 and spin-2 fields (Data 00, and
Data 22, respectively), as well as the results for the cross-
power spectra (Data 02). In all cases we find that the code
scales as expected (the solid red line shows the expected
∝ `3max behaviour). We can also see that, for very small
Nside, data handling time starts to be comparable to the
power-spectrum computation time, increasing the execution
time with respect to the expectation.

Not all parts of the power spectrum estimation take the
same amount of time. E.g. even though the scaling with `max

is the same, the computation of the mode-coupling matrix
typically takes longer than a performing single SHT. Com-
putation times can be significantly increased if deprojection
over a large number of maps is required or if E/B purifica-
tion is required. The bottom panel of Figure I1 shows the
execution times associated to the most relevant types of op-
erations. These are (using the labels provided in the figure):

• Field s = 0 and s = 2: generating a NmtField object.
This entails taking the SHT of a given spin-0 or 2 map as
well as that of its associated weights map.

• Deproj.: generating a NmtField object with contami-
nant deprojection. This is the same as the above in addition
to computing the SHT of a set of contaminant templates. In
this case we include 5 templates, and the additional compu-
tation time will increase linearly with the number of tem-
plates.

• Purification: generating a NmtField object with B-
mode purification. This is the same as “Field s = 2” in
addition to computing the pure B-modes. This entails esti-
mating a more accurate SHT of the apodized mask as well as
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Figure G2. Top and bottom: the analogues of Figures 9 and 13 for the flat-sky LSS and CMB validation sets respectively.

a combination of harmonic-space and real-space operations
described in Section 2.3.

• Deproj. + purif.: generating a NmtField object with
both B-mode purification and contaminant deprojection.
This entails all of the operations implied by “Deproj.” and
“Purification” in addition to the computation of the B-
mode-purified templates (see Eqs. 24 and 25).

• MCM s1-s2: generating the pseudo-C` mode-coupling
matrix for a spin-s1 field and a spin-s2 field.

The times reported in this figure correspond to the time
required to perform a single instance of the corresponding
operation for fields with resolution Nside = 1024 using 16
OpenMP threads. Note that, even though the computation
of the mode-coupling matrix dominates the total execution
time in the simplest scenarios, in the most complex situa-

tion, involving both purification and deprojection, setting
up a single field can take significantly longer.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure I1. Top panel: computing time for the auto-power spectra

of curved-sky spin-0 (data 00, hollow circles), and spin-2 (data 22,
solid triangles) contamination-free maps, as wells as their cross-
power (data 02, solid circles) as a function of `max. We include the
expected scaling ∝ `max for the pseudo-C` estimator (solid red

line) for comparison. Bottom panel: execution time for different
tasks associated with the pseudo-C` estimator. We show times for
fields with resolution Nside = 1024, which can be extrapolated to

other resolutions using a ∝ N3
side scaling, as described above. The

description of the different tasks shown is given in the main text.
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