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ABSTRACT: In this article, the underlying eff ect of 
phosphoric acid etching and additional water vapor on 

chlorine desorption behavior over a model catalyst La3Mn2O7 

was explored. Acid treatment led to the formation of LaPO4 

and enhanced the mobility of lattice oxygen of La3Mn2O7 
evidenced by a range of characterization (i.e., X-ray 

diff raction, temperature-programmed analyses, NH3−IR, 

etc.). The former introduced thermally stable Bro ̈nsted acidic 
sites that enhanced dichloromethane (DCM) hydrolysis while 
the latter facilitated desorption of accumulated chlorine at 
elevated temperatures. The acid-modified catalyst displayed a 
superior catalytic activity in DCM oxidation compared to the 
untreated sample, which was ascribed to the abundance of 
proton donors and Mn(IV) species. The addition of water  
vapor to the reaction favored the formation and desorption of HCl and avoided surface chlorination at low temperatures. 

This resulted in a further reduction in reaction temperature under humid conditions (T90 of 380 °C for the modified 
catalyst). These results provide an in-depth interpretation of chlorine desorption behavior for DCM oxidation, which 
should aid the future design of industrial catalysts for the durable catalytic combustion of chlorinated organics. 

 
 
 
 
 

 

 
 
1. INTRODUCTION 
 
Chlorinated volatile organic compounds (CVOCs) are well-known 

to have deleterious eff ects on human health because of their 

inherent bioaccumulation and potential carcinogenicity; many 

CVOCs have been listed as priority pollutants worldwide.
1,2

 The 

efficient catalytic combustion of CVOCs usually encounters the 

problem of the lack of reliable catalysts to ensure durable 

operation in industrial applications. In general, there are two steps 

involved in CVOC oxidation: the scission of the C−Cl bond (i.e., 

adsorption/hydrolysis) at acidic sites or superficial oxygen 

vacancies, followed by the deep oxidation of 

adsorbates/intermediates at redox sites.
3,4

 The first step, however, 

tends to cause reversible or irreversible deactivation of the applied 

catalysts through surface chlorina-tion. Therefore, efficient 

chlorine desorption from the applied catalyst is integral to the 

durable operation of catalytic CVOC oxidation in industry, and 

the study of chlorine desorption behavior to guide catalyst design 

is highly required.  
Rare earth perovskites have been widely studied in CVOC 

oxidation due to their favorable structural and thermal stability 

which makes them well suited to thermocatalysis under  

 
 
industrial conditions (i.e., thermal shock, chlorine poisoning, 
water vapor, etc.). Many efforts have been devoted to 
improving redox abilities and surface acidities via substitution 

of A/B cations,
5,6

 introduction of acidic supports (i.e., Al2O3, 

TiO2, acidic zeolite)
7
 and loading noble metals.

8
 The 

deactivation of rare earth perovskites, particularly lanthanide 
perovskites, has been reported to be caused by the interaction 
with dissociated chlorine. This has been found to accelerate the 
lanthanum migration to the surface, leading to the formation of 

inactive LaOCl.
9
 The inhibited redox ability by surface 

chlorination was another factor considered to be the cause of 

deactivation.
10

 To date, there is little knowledge on how to 

facilitate desorption of chlorine (in the form of either HCl or 

Cl2) from lanthanide perovskites. In addition, the concentrated 

water vapor in industrial waste gases is reported to compete 
with reactants or become aggregated as clusters  
  
 

  



 
 
that block the access of applied catalysts to reactants, therefore 

leading to catalytic deactivation.
11−13

 However, the 

underlying eff ect of water vapor on the chlorine desorption 
behavior still lacks unified interpretation. As such, the 
deactivation behavior of lanthanide perovskites in CVOC 
oxidation (with or without water vapor) still requires further 
exploration, with the aim to clarify their causes and guide the 
catalyst design for industrial applications.  

In this article, a Manganite layered perovskite (La3Mn2O7+δ) 
with high thermal stability and enriched oxygen species was 
studied as a model catalyst. Phosphoric acid etching was 

conducted to form insoluble lanthanum phosphate (LaPO4, a solid 
acid that has unique characters in thermal stability, 

̈ 14−16 

Bronsted acidity and hydrophilia. ) and expose Mn species 

at the surface. Unlike the HNO3 and HF treatment,
17,18

 the 

H3PO4 etching could induce excess phosphorus and acidity by 

coordination of phosphorus species via the hydroxyl groups.
19

 
Phosphoric acid treatment has been previously applied to Pt/ 
MCM-41 to study its eff ect on Pt species. It was found that the 
increased acidity and oxidized Pt benefited CVOC oxidation. 
In this paper, phosphoric acid was expected to remove 

superficial La cations and form a combined catalyst (LaPO4− 

La3Mn2O7) that might benefit chlorine desorption (via the 
formation of HCl) and divert water molecules from active sites 
in catalytic CVOC oxidation. The aim was to explore the 
eff ect of phosphoric acid etching and water vapor on chlorine 
desorption behavior.  

A range of analytical techniques have been employed to 

reveal the structural and chemical properties of fresh and used 

catalysts in catalytic dichloromethane (DCM) oxidation (note: 

the DCM is a typical chlorinated organic that is abundant in 

the pharmaceutical industry exhaust gas). The behavior of the 

chlorine desorption and the solid−gas−liquid reaction (to 

simulate industrial operation condition) was analyzed. 
 

2. EXPERIMENTAL PROCEDURE 

2.1. Preparation of the Catalyst. The La3Mn2O7+δ 

catalyst was synthesized using a modified citric acid route as 

reported by Du et al.,
20

 denoted as La3Mn2O7 (details are 

provide in Section S1 in the Supporting Information (SI)). The 
acid modification was conducted by treating portions (1  
g) of La3Mn2O7 in a 30 mL of 0.1 M H3PO4 solution with 
ultrasonic shaking for 40 min at room temperature. The 
solid products were washed with deionized water three 
times and then dried in a vacuum oven at 40 °C for 24 h. 

The resulting sample was denoted as La3Mn2O7−P.  
2.2. Characterization of Catalysts. Details of 

character-ization techniques, including XRD, HR-TEM, 
XPS, DRIFTS, TPR/TPD, etc. are provided in SI Section 
S2. Temperature-programmed desorption (TPD), 
temperature-programmed reduction (TPR) and temperature-
programmed surface reaction (TPSR) were conducted using 
an automatic multi-purpose adsorption instrument TP-5079 
(Tianjin Xianquan, China) equipped with a thermal 
conductivity detector (TCD) and a portable mass 
spectrograph (MS) QGA (Hiden Analytical, UK).  

Density functional theory (DFT) study was performed using 

the Vienna ab initio Simulation Package (VASP-5.4).
21

 A 
plane-wave basis set with a cutoff  energy of 400 eV within the 
framework of the projector-augmented wave (PAW) method 

was employed. Each atom was converged to 0.05 eV Å 
−1

 for  
geometry optimization. A unit cell (a = b = 3.98 Å, c = 20.92 

Å) with 24 atoms (6 La, 4 Mn, 14 O)
20

 and a 2 × 2 × 1 

 
supercell with 96 atoms was used as the modeled catalyst 

La3Mn2O7. A 3 × 3 × 1 Monkhorst-pack k-point mesh for 

geometry optimization of the La3Mn2O7 composites was 
applied. Lanthanum etching was simulated by removing all the 
La atoms deposited at the exposed facet (1 0 0) (SI Figure S1). 

2.3. Catalytic Test. The catalytic activities were 

evaluated in terms of DCM and CO2/CO conversion as a 
function of temperature. The feed gas (100 mL/min) was 

comprised of 0.1 vol % DCM, 10 vol % oxygen and N2 (as 
the inert diluent gas and/or carrier gas for steam), giving a 
constant gas hourly space velocity (GHSV) of 12 000 mL 

g
−1

 h
−1

. The decomposition of DCM by homogeneous gas 
reactions was neglected for temperatures under 600 °C, and 

the character-istic Tx (the temperature when x % DCM 

conversion or CO2 generation was reached in the light-off  
curves) was used as an indicator for activity. Conversion 
data were collected after an initial period of 40 min for each 
temperature to obtain a nearly constant reaction rate. The 

desorption plot of HCl or Cl2 was recorded using MS. 
Further details are provided in SI Section S2. 

 

3. RESULTS AND DISCUSSION 
 

3.1. XRD, Surface Area, and HR-TEM Measurements. 
As identified through XRD analyses (SI Figure S2), trace 

amount of LaPO4·0.5H2O (JCPDS 46−1439) with the 
characteristic reflections at 2θ of 19.9°, 25.1°, 29.0°, 31.2°, and 

48.1° was observed in La3Mn2O7+δ−P apart from the main 

structure of La3Mn2O7. This result implied that a reaction 

between the surface La
3+

 cations and PO4
3−

 occurred during 

the phosphoric acid etching generating insoluble LaPO4· 

0.5H2O. Surface area measurements demonstrated that each 

catalyst displayed a type II N2 adsorption−desorption isotherm 

with a H3-type hysteresis loop in the relative pressure (p/p0) 
range of 0.2−1.0 (SI Figure S3), thereby revealing the 
existence of slit pores (originating from particles stacking) in 

La3Mn2O7 and La3Mn2O7−P.
22

 The phosphoric acid treat-
ment was found to increase the surface area from 

approximately 18.8 m
2
 g

−1
 (for La3Mn2O7) to 90.1 m

2
 g

−1
 

(for La3Mn2O7−P). This increment was attributed to the 
reduction of particle size (from 24 to 35 nm), accompanied by 
the enlargement of pore size (from 8.9 to 15 nm, SI Table S1) 

and the formation of LaPO4·0.5H2O. As evidenced in HR-

TEM analyses (SI Figure S4), the La3Mn2O7 displayed 
uniform spherical particles with a size of 35 ± 7 nm (based on 
150 particles, as shown in the size distribution), whereas the 

La3Mn2O7−P was characterized by much smaller spherical 
particles of 24 ± 5 nm, tangled with needle-like crystals that 

were characteristic of rhabdophane LaPO4·0.5H2O.
23,24

 After 
being subjected to DCM oxidation, the structures of both 

La3Mn2O7 and La3Mn2O7−P were not changed, and no phase 

of MnClx, MnOxCly, or LaOCl was identified. Although the 
decrease in surface area was observed for both used catalysts, 

the surface area of the La3Mn2O7−P catalyst (ca. 63 m
2
 g

−1
) 

was still six times higher than that of La3Mn2O7 (ca. 9 m
2
 

g
−1

). This result was consistent with the report that the 
phosphate treatment could inhibit the crystal grain growth of 

oxides at elevated temperatures.
25

 As a sufficient contact area 
between reactants and catalyst is important for eff ective 

catalytic oxidation,
26

 the large increment in the surface area of 

La3Mn2O7−P would be expected to provide higher access to 
reactants such as DCM, oxygen and water molecules, and 
therefore result in superior activity. 
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Figure 1. Light-off  curves of DCM oxidation over the fresh and used (a) La3Mn2O7 and (b) La3Mn2O7−P catalysts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. H2-TPR profiles of the (a) fresh and (b) used catalysts La3Mn2O7 and La3Mn2O7−P. The first peak at 200−600 °C is related to 
the reduction of reactive oxygen species or manganese species with higher valence states, and the second peak at 600−900 °C corresponds 
to further reduction of Mn(III) to Mn(II).  
 

3.2. Catalytic Activity Measurements. The light-off  curves 

of DCM oxidation over the La3Mn2O7 and La3Mn2O7− 

P catalysts are illustrated in Figure 1. For La3Mn2O7, the T50 
over the used sample (at ca. 435 °C) was 45 °C higher than that of 
the fresh counterpart (at ca. 390 °C). Such an obvious decline in 

DCM conversion over the used catalyst indicated that La3Mn2O7 
experienced deactivation due to chlorine poisoning. In 
comparison, a distinct promotion in the catalytic activity of the 

acid-modified catalyst La3Mn2O7−P was observed, revealing a 

consistent T50 of DCM conversion at 355 °C and a much lower 

T90 at 420 °C over the fresh and used catalysts. A decline in DCM 

conversion was still observed over La3Mn2O7−P, however the 

transition temperature related to Cl poisoning was much lower 

than that of La3Mn2O7 (ca.  
°C for La3Mn2O7−P and ca. 450 °C for La3Mn2O7). The350  
result suggested the eff ect of chlorine poisoning on La3Mn2O7−P 
was confined to a narrower reaction temperature window. In both 
catalysts, the vast majority of DCM was found to be converted 

into CO2, with La3Mn2O7−P demonstrating a particularly high 

CO2 selectivity (SI Figure S5).  
3.3. H2-TPR and XPS Analyses. Analysis of the fresh 

La3Mn2O7 catalyst by H2-TPR (Figure 2), revealed three H2 
consumption peaks centered at approximately 213, 325, and 
433 °C. The peak at 213 °C originated from the reaction 

between H2 and chemisorbed oxygen; the peak at 325 °C 
corresponds to the reduction of Mn(IV) to Mn(III) and that at 
433 °C is assigned to the single-electron reduction of Mn(III) 
located in the coordination-unsaturated microenviron-

ment.
27,28

 The fresh La3Mn2O7−P catalyst displayed peaks at 

 
approximately 188, 325, and 416 °C, all of which were 

much lower than those of La3Mn2O7. The improved redox 

ability of La3Mn2O7−P was proposed to be attributed to the 
increased surface area, the exposure of Mn species and the 
enhancement in lattice oxygen mobility, as will be verified 
later. The additional peak at 240 °C was believed to 
originate from the reduction of exposed Mn(IV) species 

caused by lanthanum etching.
18 

 
For the used catalysts, the H2 reduction peaks both shifted 

toward higher temperature range, implying that the redox 
ability of the catalyst was inhibited after DCM oxidation. In 
particular, most of the Mn(IV) (at ca. 390 °C in Figure 2(b)) in 

the La3Mn2O7 was found to be reduced to Mn(III) (at ca. 495 

°C in Figure 2(b)). This result suggested that the dissociative 
chlorine interacted with the Mn(IV) species (Lewis acidic 
sites) and reduced the Mn valence. In contrast, the used 

La3Mn2O7−P displayed a retained low-temperature redox 

ability with most of the active oxygen and Mn(IV) species 
(centered at 320 °C, 410 and 465 °C in Figure 2(b)) still 
present. This result suggested that the chlorine might be 
eff ectively desorbed from the catalyst surface that possessed 
the Mn(IV). Indeed, XPS measurements on the used catalyst 

revealed that the used La3Mn2O7−P had ca. 5% residual Cl on 

the surface, that is, much lower than the used La3Mn2O7 (at 
ca. 14.8%).  

In the literature,
9,10,29

 Mn(IV) was proposed to be the most 

active species for low-temperature CVOC oxidation. Here, the 
regeneration of Mn(IV)-O center via chlorine removal was 
considered to be the rate-determining step for CVOC 
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Figure 3. O2-TPD profiles of (a) La3Mn2O7 and (b) La3Mn2O7−P catalysts. Three types of oxygen species were cataloged as α-O, α’-O, 
and β-O, depending on the maximum temperatures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. (a) DFT calculation on the Mn−O bond distance for lanthanide perovskite before and after lanthanum etching at the surficial 

lanthanum-rich layer and (b) the electronic localization function (ELF) of Mn sites deposited at facet (010).  
 
oxidation. In general, a dual active center was involved in the 
CVOC oxidation process over perovskites: an acidic site 
(electrophile) for attacking chlorine, and a basic site 
(nucleophile) for attacking carbon, followed by the adsorbates 

being oxidized at redox sites to form CO2 and H2O. In 

La3Mn2O7, the Mn(IV)-O species acted as both the adsorption 

center and redox site. As such, the accumulation of dissociated 
chlorine on the redox site that led to the reduction of Mn(IV) 
to Mn(III) would cause catalyst deactivation.  

XPS analysis of the fresh La3Mn2O7 catalyst revealed a 

lanthanum enrichment feature with 40% La excess on the 
surface. The semiquantitatively measured La/Mn atomic ratio 
(2.1) was much higher than the theoretical value (1.5). After 
acidic treatment, a peak at ca. 133.4 eV was observed in the 
XPS spectra of P 2p (SI Figure S6) which suggested the 

formation of LaPO4 in La3Mn2O7−P (with the surface atomic 

ratio of La: Mn: P at 2.3:1:1.1). This resulted in the reduction 

of the La/Mn atomic ratio in the main phase La3Mn2O7 to 1.2 

(as LaPO4·0.5H2O has an atomic ratio La/P of 1). The even 

lower La/Mn ratio than the theoretical datum suggested that 
many manganese species had been exposed to the catalyst 
surface after acid etching. Such an exposure, leading to 
transition metal-rich termination, is expected to induce 

enriched oxygen vacancies on the catalyst surface.
30

 Indeed,  
the O 1s XPS revealed that the Oad/Olat atomic ratio in the 

La3Mn2O7−P was measured at 1.0, much higher than that of  
La3Mn2O7 (0.4) (SI Figure S7). Notably, the La3Mn2O7−P 

displayed distinct OH
−
 and adsorbed H2O species at the 

surface; these species should originate from the increased 

 
surface area and the P−OH or water (crystal water or “zeolitic” 

water
24,31

) residing in the LaPO4·0.5H2O structure. 

3.4. O2-TPD Analyses and DFT Calculations. In the O2- 

TPD profile, the desorbed oxygen species can be categorized 
into chemisorbed oxygen species (α-O) at 100−300 °C, 
superficial lattice oxygen (α’-O, including the nonstoichio-
metric oxygen α“-O) at 300−600 °C and bulk lattice oxygen 
(β-O) above 600 °C. As shown in Figure 3(a), the fresh 

La3Mn2O7 displayed three desorption peaks with maxima at 

approximately 150 °C, 590 °C (with a shoulder at 445 °C) and 
1000 °C. The low-temperature peak α-O at 150 °C was 
assigned to the oxygen chemisorbed on oxygen vacancies; the 
α’-O peak at 590 °C was the superficial lattice oxygen 
generated from grain boundaries and dislocations, and the 
shoulder at 445 °C originated from the over-stoichiometric 

oxygen (α“-O) in manganese-based layered perovskites.
32

 The 

β-O peak at 1000 °C was mainly the bulk oxygen desorbed via 
vacancy migration inwards with the increase of temperature. 

For La3Mn2O7−P, the oxygen desorption peaks appeared at 

approximately 150 °C, 573 °C (with a shoulder at 400 °C) and 
715°C, all of which experienced a lower temperature shift in 

comparison with that of La3Mn2O7. In particular, the amounts 

of α’-O (α“-O) and β-O were found to be both distinctly 

increased in the La3Mn2O7−P, suggesting that the acidic 

treatment had eff ectively improved the lattice oxygen mobility 

in the catalyst. In the used La3Mn2O7, the chemisorbed (α-O) 

and over-stoichiometric oxygen (α“-O) disappeared, whereas 

those still existed in the used La3Mn2O7−P. This result 

indicated that the La3Mn2O7−P had a better redox cycle in 
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Figure 5. (a,b) NH3−IR spectra of the fresh La3Mn2O7, LaPO4 (derived from the reaction of La(NO3)3 and H3PO4) and La3Mn2O7−P 

catalysts; (c,-d) NH3-TPD profiles of the fresh and used catalysts La3Mn2O7 and La3Mn2O7−P. The signal of NH3 desorption was 
recorded using MS (m/z = 16).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. DCM-TPSR profiles of (a) HCl and (b) Cl2 desorption for La3Mn2O7 (□) and La3Mn2O7−P (  ) catalysts in the first and second runs.  
 
DCM oxidation. The ability for efficient chlorine desorption 
should account for such an enhanced redox cycle. Notably, 

for the used La3Mn2O7−P (Figure 3(b)), the peak 
corresponding to the subsurface lattice oxygen species (at 
675 °C) merged into the superficial ones (605 °C). This 
indicated that the lattice oxygen migrated outwards, leaving 
vacancies at the subsurface during the DCM oxidation.  

DFT calculation was used to verify the enhanced oxygen 
mobility of the modified catalyst after La etching. After 
stripping La from the first layer, the exposed oxygen at the 

surface (i.e., O1’ and O2”) was found to bond tightly with Mn. 
However, the oxygen anion at the shared vertex site of two 

MnO6 (i.e., O1, O2, and O3) was easier to lose with enhanced 

mobility because of the adjacent Mn−O bonds (Mn1−O1) 
being elongated to ca. 2.304 Å from the original 1.984 Å. The 
electronic localization function (ELF, Figure 4b) also 
confirmed the existence of less covalent interactions between 

 
the Mn sites and their adjacent O atoms after La removal. 

According to Kagomiya et al.,
33,34

 the oxygen atoms at the 

shared vertex could be easily liberated at elevated temper-
atures, leaving oxygen vacancies, which enhanced the mobility 

of superficial and subsurface oxygen as reflected in O2-TPD 

profiles. Actually, the La cation was inclined to attract oxygen 

and elongate the Mn−O bond as reported,
35

 so the superficial 

Mn−O bond being released from La attraction became stronger 
while those in the second and third layers were weakened due 
to residual La cations, leading to easier oxygen desorption and 
facilitated oxygen mobility.  

3.5. Surface Acidity Assessment. In the NH3-TPD 
profile, the acidic sites can be generally divided into weak 
acidity (<200 °C), moderate acidity (200−400 °C) and strong 

acidity (>400 °C). As shown in Figure 5, the fresh La3Mn2O7 

displayed a weak ammonia desorption peak below 400 °C that 
mainly originated from the Lewis acid sites of Mn with an 

  



 
 

Scheme 1. The Chlorination and Dechlorination Process for DCM Oxidation over Applied Catalysts
a 

 
 
 
 
 
 
 
 
 
 
 
 
aThe migration of lattice oxygen pushed the Cl atoms out of the occupied sites, and its mobility aff ects the Cl2 formation in step 3; the 
structural −OH or water could react with Cl to form HCl, and its eff ective supply aff ects the HCl formation in step 4.  
 

empty orbital.
36,37

 After phosphoric acid treatment, an intense 
ammonia desorption peak ca. 214 °C with a shoulder ca. 303 
°C appeared that possibly originates from the exposure of 

Mn(IV) with Lewis acidity at 1628 cm
−1

 in NH3−IR (Figure  
5(b)) and the formation of LaPO4·0.5H2O with Bro ̈nsted 

acidity at 1437 and 1668 cm
−138,39

 in NH3−IR (Figure 
5(a,b)). In the used catalysts (Figure 5(d)), the total acidity of 

La3Mn2O7−P was retained, along with the moderate acidity 
increasing and the weak acidity decreasing. This result 

indicated that the acidity in the La3Mn2O7−P was very stable 

in DCM oxidation. As reported,
23,40

 the LaPO4·0.5H2O 

associated with H3PO4 at the surface forming LaPO4· 0.5H2O
•
 

(H3PO4)x that was stable up to 1400 °C. This result explains 

why the acidity of La3Mn2O7−P could be stable up to high-
temperatures in DCM oxidation. Note that such a highly 
stabilized Brönsted acidity is particularly beneficial for 
industrial applications because it can consistently benefit the 

DCM adsorption
41

 and provide protons for efficient DCM 
oxidation, even under the frequent thermal shock during 
operation conditions.  

3.6. Cl Removal Capacity Measurements. To 
confirm the enhanced chlorine removal ability in the 

La3Mn2O7−P catalyst, temperature-programmed surface 
reaction (TPSR) measurements with an inlet of 1000 ppm 

DCM and 10 vol % O2 in He were conducted.  
For La3Mn2O7, as shown in Figure 6, no obvious desorption 

of HCl and Cl2 was observed in the first run as the temperature 
elevated. However, desorption was observed for both as the 
temperature was maintained at 600 °C. This behavior should 

be ascribed to the retention of Cl on the surface of La3Mn2O7 
in the fast heating process. In the second run, initial 
temperature for HCl desorption appeared at approximately 500 

°C and that of Cl2 was at approximately 450 °C. This result 
indicated that the chlorine desorption only occurred at 
temperatures above 450 °C in this catalyst and explains why 
the catalyst inevitably experienced deactivation due to 
chlorination at temperatures lower than 450 °C (Figure 1). For 

La3Mn2O7−P, the HCl started to desorb at 400 °C (note: there 
were a trace amount of HCl desorbed at 100−350 °C, as shown 

in the enlarged figure of SI Figure S8), and the Cl2 began 
desorption at approximately 350 °C in both runs. Likewise, the 

La3Mn2O7−P would not desorb Cl until the temperature 
reached 350 °C, in agreement with the activity measurements. 
Notably, the amount and the desorption rate of chlorine in 

terms of HCl or Cl2 from the La3Mn2O7−P was much higher 

than those from La3Mn2O7 in both runs. This result verified 

that the La3Mn2O7−P was indeed efficient for the formation 

and desorption of Cl2. This desorption ability 

 
was eff ectively retained in the used catalyst. The efficient 
chlorine desorption was also found to suppress the 
chlorination of intermediate products (i.e., electrophilic 

chlorination) as the generation of CHCl3 was limited in 

both the fresh and used La3Mn2O7−P (SI Figure S9).  
3.7. Proposed Reaction Mechanism. In DCM oxidation 

over the La3Mn2O7 type catalysts, a surface chlorination process 

of the catalyst was observed that had been proven to originate 

from the formation of Mn−Cl bonds (as evidenced by H2-TPR, 

XPS and DCM-TPSR analyses), leading to catalyst deactivation. 

Such a chlorination process was proposed to occur through the 

extraction of Cl from DCM molecules at Lewis acidic sites or 

oxygen vacancies (steps (1−2), Scheme 1). With the temperature 

elevating, the Mn−Cl bond tended to break to form Cl2 or HCl (as 

shown in DCM-TPSR, steps (3−4), Scheme 1). The generation of 

Cl2 was strongly relevant to the mobility of lattice oxygen species, 

for example, α’-O and β-O. The isolated Cl atoms captured in 

metal oxide oxygen vacancies preferred to move toward the 

surface upon heating. This is due to the acceleration of the lattice 

oxygen migration via the oxygen released from subsurface. This 

then results in the pushing outward of the superficial trapped Cl• 

(i.e., the Deacon process), the aggregation of which would form 

molecular-like species such as Cl2 (step (3), Scheme 1). As such, 

the accelerated oxygen diffusion due to the shared vertex oxygen 

removal in La3Mn2O7−P could favor the Cl removal from the 

catalyst surface and thus cause the release of more Cl2 than that of 

La3Mn2O7 (Figure 6). This process would leave vacancies in the 

subsurface layer according to Amrute et al. and Yang et al.,
42−44

 

as confirmed by the reduced desorption of subsurface lattice 

oxygen on the after-test La3Mn2O7−P in Figure 4(b). Given that 

the amount of HCl generation (assisted by proton donor, for 

example, water and hydroxyl groups) from La3Mn2O7−P was four 

times higher than that of Cl2, the dissociative Cl appears to prefer 

being trapped by hydroxyl groups or water in the vicinity via 

hydrogen bonding, forming molecular-like HCl (step (4), Scheme 

1). Similar results in DFT calculations and experiments have been 

reported by Cen et al. and Dai et al.,
45,46

 respectively. 
 

In Scheme 1, steps 1−4 only showed the HCl formation 

(hereafter denoted as Type I HCl) originating from the 

regeneration of chlorinated surface (i.e., the Cl was extracted 

from the Lewis sites or oxygen vacancies). However, in the 

DCM−TPSR measurements (Figure 6), we also observed small 

amounts of HCl desorbed at 100−350 °C (SI Figure S8) in the 

La3Mn2O7−P catalyst. This HCl should originate from the 

Bro ̈nsted acidic sites that provided protons to form HCl 

directly (hereafter denoted as Type II HCl, as shown in step 
  

http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04582/suppl_file/es8b04582_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04582/suppl_file/es8b04582_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b04582/suppl_file/es8b04582_si_001.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. (a) and (b) Profiles of H2O, HCl and Cl2 desorption from La3Mn2O7 and La3Mn2O7−P in a stream of HCl (50 ppm in He). The 

baselines were calibrated by a blank experiment. (c) TPD spectra of H2O (m/z = 18) for La3Mn2O7 and La3Mn2O7−P after purging at 100 

°C in He for 1 h. The peaks correspond to (I) desorption of adsorbed molecular H2O; (II) associative desorption from hydroxyl group 
clusters; (III) and its trail from vicinal and spaced hydroxyl groups.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Overall conversion rates of DCM ( ), CO2 (○) and CO (□) over the catalysts (a) La3Mn2O7 and (b) La3Mn2O7−P in DCM 
oxidation with 1.5 vol % water vapor.  
 
(1’) in Scheme 1). The Type II HCl was even liberated at 
room temperature once the DCM comes into contact with 

the La3Mn2O7−P (SI Figure S10).  
To further evaluate the possibility of Type II HCl 

dissociation on catalyst surface that might also cause the 
catalyst chlorination (as shown in step (2’) in Scheme 1), 
HCl−TPSR was conducted, in which a flow of HCl in He was 

continuously purged onto the La3Mn2O7 and La3Mn2O7−P 

catalysts, followed by the recording of HCl, Cl2, and H2O 

desorption from 100 to 600 °C. As shown in Figure 7, the 

observation of Cl2 formation suggested that the Type II HCl 

was indeed dissociated over the La3Mn2O7 and La3Mn2O7−P 

catalysts. Hisham et al.
47

 had reported that the HCl 

dissociation over metal oxides was an exothermic reaction, 
which suggested that the dissociation process could occur 

easily on the La3Mn2O7 and La3Mn2O7−P catalysts. The 

dissociated Cl from the Type II HCl might further cause the 

 

catalyst chlorination that would be eventually transferred 

into type I HCl at high temperatures.  
In the HCl-TPSR profile, it was also observed that the HCl 

desorption coincided with the H2O in both the La3Mn2O7 and 

La3Mn2O7−P catalysts. This suggested that the HCl might adsorb 

on the surface H2O sites and desorb with the H2O at elevated 

temperatures. We first analyze the diff erent types of H2O on the 

catalyst surface. As shown in Figure 7c, the H2O-TPD revealed 

three types of H2O in the catalysts. The first peak centered at ca. 

220 °C is ascribed to the adsorbed H2O molecules that are directly 

contacted with the catalyst surface
6,45

 (denoted as Type I); the 

second peak is associated with the dehydration of structural 
hydroxyl group clusters (denoted as Type II), and the third peak at 
477 °C and the tail above 500 °C corresponds to the dehydration 

of strongly bonded hydroxyl groups
48

 (via the interaction of 

migrated vicinal and spaced groups,
49

 respectively, denoted as 

Type III). 
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Figure 9. (a) TPD spectra of H2O (m/z = 18) for La3Mn2O7 and La3Mn2O7−P after heating (at 500 °C for 1 h) and rehydration (at 100 °C for 1 h). 

Peaks correspond to (I) desorption of adsorbed molecular H2O; (II) associative desorption from hydroxyl group clusters; (III) and its trail from 

vicinal and spaced hydroxyl groups. (b) The stability of La3Mn2O7−P in the presence of vapor for 850 min at 340 °C in DCM oxidation.  
 
The water clusters (denoted as Type IV) interacting via 
hydrogen bonding would be removed during sample 
pretreat-ment step (at the 100 °C), which did not appear in 

the H2O-TPD profile.  
Accordingly, the H2O desorption peak(s) centered ca. 120− 

220 °C in the HCl-TPSR profile (Figure 7a,b) should be 

ascribed to H2O clusters (Type IV) and H2O molecules (Type 
I), and the peak above 300 °C should be assigned to structural 

hydroxyl (Type II). According to other studies,
50,51

 the HCl 

inclined to dissociate on H2O clusters (n ≥ 4) or interact with 

H2O molecules via hydrogen bonding. This explained why the 
HCl would be desorbed with water simultaneously. In the 

H2O-TPD profile, it was also noted that the La3Mn2O7−P 

produced larger amounts of Type I and Type II H2O than those 

of the La3Mn2O7. The former should be mainly from “zeolitic” 

water
24,31

 residing in the LaPO4·0.5H2O structure and the 

hydrogen bonding (with the oxygen of H2O molecule) at 
Bro ̈nsted acidic sites.  

3.8. Water Vapor Effect. As either the H2O molecules or 
hydroxyl groups (−OH) could promote HCl desorption, it is 
likely that additional water vapor (which exists in many 
industrial waste gases) might be able to inhibit the catalyst 
chlorination by facilitating HCl desorption. Indeed, as shown 
in Figure 8, with the addition of 1.5 vol % vapor, the values of  
T50 of DCM conversion in La3Mn2O7 and La3Mn2O7−P were 
both eff ectively reduced to approximately 300 °C, which was  
nearly 85 °C lower than those in dry condition. As the 

temperature increased, La3Mn2O7 exhibited a plateau in DCM 

conversion up to 450 °C and La3Mn2O7−P showed a 

consistently increasing activity. The latter yielded the T90 of 
DCM conversion at approximately 380 °C and no obvious 
deterioration was observed after repeated usage in four runs 
(SI Figure S11). This activity is comparable to that of the Pt/ 

CeO2−Al2O3 catalyst reported in the literature.
52 

 
The additional water vapor increased the concentration of 

molecular H2O and hydroxyl groups (−OH, via the 

dissociation of H2O on M-(OH)n sites, that is, acid−base 

centers according to Gun’ko et al. and Yin et al.
49

 
,53

) 
which favored HCl formation and desorption. This was 

consistent with many other studies,
12,54

 which all 

demonstrated that the addition of H2O could lead to the 
generation of more HCl in CVOC oxidation. As such, the 
catalyst chlorination could be inhibited, thus enabling the 
catalytic activity in DCM oxidation to be maintained.  

To verify the cause of the plateau in DCM conversion in the 

La3Mn2O7 catalyst, another H2O-TPD measurement was 

 
conducted in which the catalyst was preheated at 500 °C 

for 1 h and then rehydrated at 100 °C for 1 h.  
As shown in Figure 9a, La3Mn2O7 exhibited a lack of Type 

I H2O and was inclined to form a stable hydroxyl layer on the 
surface. The −OH species appeared to be uniformly distributed 

as both Type II and Type III H2O revealed a plateau-like 

desorption curve. As reported,
55,56

 the reactivity of hydroxyl 
groups in the vicinity of Cl determined the reaction rate for 
HCl formation. Therefore, the stable hydroxyl layer would 
impair the formation of HCl and the subsequent desorption 

from the La3Mn2O7, leading to the occurrence of a plateau in 
DCM conversion. This plateau would diminish until the 
reaction between Cl and hydroxyl groups recovered at a high 

temperature (herein, ca. 450 °C for La3Mn2O7, Figure 8).  
In La3Mn2O7−P, the presence of “zeolitic” channels in 

LaPO4·0.5H2O would be able to store the additive vapor, and  
the proton in the Bro ̈nsted acidic sites could activate the vapor 

(via formation of H3O
+
 or H5O2

+57
). As such, the Type I H2O  

in the La3Mn2O7−P is distinct, which ensured sufficient H 

and H2O molecules react with dissociated Cl and desorb the 
HCl, respectively. Moreover, the Bro ̈nsted acidity in the 

La3Mn2O7−P catalyst might be capable of hydrolyzing the 
intermediates (i.e., chloromethoxyl group) and further 

prevent the chlorination of the catalyst.
58 

 
It was also found that further increasing the amount of 

additive water to 5 vol % did not cause obvious deactivation in 

DCM oxidation for the La3Mn2O7−P catalyst (SI Figure S12). 
The catalyst could retain high DCM conversion after aging at 
340 °C for approximately 850 min in the presence of 5 vol % 

H2O. This result revealed an excellent water-resistant ability of 

the catalyst, making it very promising for use in industrial 
applications (Figure 9b). 
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