
1 

Mechanism and Biological Cost of 
MCR-1 mediated colistin resistance in 

Enterobacteriaceae

Mei Li

Department of Medical Microbiology,

School of Medicine,

Cardiff University

A dissertation for the degree of Master of Philosophy in Medical Research



4 

Acknowledgement 

Firstly, I would like to express my sincere appreciation to my supervisors Prof. Timothy R. 

Walsh and Dr. Owen B. Spiller for their guidance and support to my study. 

I would like to thank my colleagues and friends, Qiue Yang, Diego Andrey, Yang Yu, Brekhna 

Hassan, Uttapoln Tansawai, Mark Toleman, Kirsty Sands, Rebecca Milton, Calie Dyer, Ali 

Aboklaish, Giulia Lai, Edward Portal, Refath Farzana, Janis Weeks, Jonathan Tyrrell, for their 

help and kindness in my study and life, also for their help and advice in my thesis writing.

I am also grateful to my parents and the whole big family for their spiritual and financial 

support throughout the two years. And last my thanks would go to my old friends in China who 

listen to me and support me all the time. 



5 

Abstract
Colistin is one of the key antibiotics to treat infections caused by multi-drug resistant (MDR)

Gram-negative bacteria. However; in 2015, plasmid mediated colistin resistance, designated 

mcr-1, was first reported in China. MCR-1 was unusually found in Escherichia coli and 

conferred only low levels of resistance to colistin. Soon mcr-1 was found worldwide and 

caused great concern in public health.

A small number of studies have shown that acquisition of mcr-1 plasmid is associated with no 

or only a slightly decrease in bacterial fitness. In order to assess the capacity to develop high 

colistin resistance in mcr-1 harbouring E. coli and its effect on bacterial fitness and virulence, 

seven wild-type E. coli strains (PN16, PN21, PN23, PN24, PN25, PN42, PN43) from 

Phitsanulok, Thailand were selected and challenged with increased concentration of colistin for 

14 days. All isolates showed an increase in colistin resistance (4- to 64- fold increase in colistin 

MIC up to 256mg/L), and subsequently, designated high level colistin resistant mutants 

(HLCRMs). In all seven HLCRMs, two showed 11- and 3- fold increase in mcr-1 expression 

(PN21 [showed 11-fold] and PN25). No increase in mcr-1 copy number or mutations in the 

immediate genetic context of mcr-1 was detected in all HLCRMs. Interestingly, in PN25 and 

PN42 HLCRMs, amino acid mutations in PmrA and PmrB were identified, respectively.

Those HLCRMs were associated with significant either fitness burden or reduction in virulence, 

or both. In-vitro fitness was measured by growth rate. Compared with wild-type isolates, 

HLCRMs showed slower growth in colistin-free medium (p <0.01). Competition assays

showed relative fitness compared HLCRMs with parental strains which ranged for 0.4-0.7 

(p=**) (except for PN16 [relative fitness 0.9]). 

A Galleria pathogenicity model was used to measure the virulence of wild-type strains and 

mutants. In every case, the death rate of Galleria for HLCRMs was lower than that for wild-type 

strains. Significant difference in bacterial mortality were identified in PN16, PN21, PN23

(p=**/***). 
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Due to its high expression of mcr-1 [11-fold] cellular morphology by transmission electron 

microscopy (TEM) was undertaken on PN21 and its HLCRM to further understand how

MCR-1 has an effect on bacterial cell outer-membrane. However, no obvious difference on 

outer-membrane between PN21 and mutant was identified.

The study shows that HLCRMs from wild-type strains are associated with significant fitness 

burden and decrease in virulence. These data will contribute to our understanding of mcr-1 and 

it’s impact on bacterial fitness, and the emergence and management of colistin resistance.
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1.1 Overview of global antibiotic resistance

1.1.1 History of antibiotics and resistance

The discovery of the first two key antibiotics- Prontosil (the first sulphonamide), which 

decreased the mortality of injured soldiers by 50% during the World War I and World War II

(Domagk, 1965; Gaynes, 2017), and Penicillin, which saved about 12-15 percent of soldiers’ 

lives in the 1940’s (Rao, 2016; Gaynes, 2017) - are recognised as one of the greatest discoveries 

in medicine. The distribution of these drugs not only saved people’s lives but started a new era 

of antibiotics, and laid the foundation of modern pre and post surgical management (Aminov, 

2010; Gaynes, 2017). During the pre-antibiotic era, most people could not live long enough to 

develop cancer, heart disease or other lifestyle diseases and died prematurely, in part, because 

of epidemics, infections by injuries/childbirth etc (Office for National Statistics[GB], 2017).

This changed dramatically after antibiotics were introduced into public healthcare systems

(Armstrong, Conn, & Pinner, 1999; World Health Organization, 2018). The previous deadly 

illness such as Pneumonia and Tuberculosis could be treated efficiently, if not completely.

Mortality from surgical infections and childbirth were also dramatically reduced and common 

injuries would no longer take away people’s life (McKenna, 2015). According to Armstrong et 

al., in the United States, mortality due to infectious diseases declined 92.4% in the 20th century, 

especially from 1938 to 1952. The infectious disease mortality showed a rapid decrease by 8.2% 

per year, with 287 deaths per 100,000 in 1937 to 75 deaths per 100,000 in 1952, respectively

(Armstrong et al., 1999). Whilst vaccines targeted to specific pathogens, have no doubt 
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contributed to the lowering of mortality, the general use of antibiotics was dominant factor in 

these statistics (World Health Organization, available at 

www.who.int/publications/10-year-review/vaccines/en/ ). 

Concurrently, bacteria were challenged and had to rapidly adapt to these environmental 

changes – as they have they had done for millions of years (McKenna, 2015). Bacteria create,

share and spread resistance to antibiotics, and the intemperate use of antibiotics in agriculture 

and human medicine has been shown to accelerate this process (McKenna, 2015). Penicillin 

was distributed in 1943, and widespread penicillin resistance appeared by 1945. Imipenem was 

clinically introduced in 1985 and mobile resistance was first witnessed in 1991(Centers for

Disease Control and Prevention, 2013a; Watanabe, Iyobe, Inoue, & Mitsuhashi, 1991).

Daptomycin, one of the most recent antibiotics, was introduced in 2003, and resistance 

appeared just one year later in 2004 (Centers for Disease Control and Prevention, 2013a) 

(Figure 1.1). The pharmaceutical companies introduced many new antibiotics to solve, or at 

least negate, the resistance problem, but resistance soon developed and fewer new drugs have 

been introduced (Centers for Disease Control and Prevention, 2013a; Ventola, 2015).

According to Antibiotic Research UK, only two new antibiotic classes have been clinically 

implemented in the last 40 years, and thus we are facing a dire situation with fewer new, let 

alone novel, antibiotics to fight resistant bacteria (Antibiotic Research UK, retrieved from 

https://www.antibioticresearch.org.uk/about-antibiotic-resistance/ ). Now, after many decades 

of curing infections, the development of multi-drug resistant (MDR) bacteria has become a 

realistic threat to our lives again. According to the Centers for Disease Control and Prevention

https://www.antibioticresearch.org.uk/about-antibiotic-resistance/
http://www.who.int/publications/10-year-review/vaccines/en/
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(CDC), every year more than two million people are infected by antibiotic-resistant bacteria 

resulting in at least 23,000 deaths in the US (Centers for Disease Control and Prevention, 

2013a). In the UK, there are more than 44,000 deaths a year because of sepsis, exceeding the 

number of lung cancer (35,000) and bowel cancer (16,000). Among those, many deaths are due 

to the lack of effective antibiotic treatment (Antibiotic Research UK, retrieved from 

https://www.antibioticresearch.org.uk/about-antibiotic-resistance/ ). The Jim O’Neil report 

commissioned by former UK Prime Minister, David Cameron, predicted that antimicrobial 

resistance (AMR) will account for 10 million deaths in 2050 (O’Neill, 2014). Now we are in a 

lamentable situation: bacteria develop resistance so fast that the creation of new antibiotics 

cannot provide a sustained therapeutic window, and to make it worse, many of the large 

pharmaceutical companies have little interest in antibiotic research because they cannot yield

any profit (McKenna, 2015; Ventola, 2015).

https://www.antibioticresearch.org.uk/about-antibiotic-resistance/


19 

Figure 1.1 Timeline of key events of antibiotic resistance (Centers for Disease Control and 

Prevention, 2013a). 

1.1.2 Cause of antibiotic resistance crisis

Although AMR occurs naturally, using antibiotics inappropriately in humans and animals is 

accelerating the process (Shallcross & Davies, 2014). At the same time, a lack of new 

antibiotics gives us nowhere to run. The main reasons for the antibiotic resistance crisis today 

are due to overuse of antibiotics and lack of new drugs (Ventola, 2015).
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1.1.2.1 Overuse of antibiotics in human medicine

Clearly, the misuse and overuse of antibiotics speed up the evolution of AMR (Ventola, 2015).

The fact is that antibiotics are heavily overused not only by doctors but outpatients in the 

community (over the counter sales) all over the world and particularly in low-middle income 

countries (LMICs) (Centers for Disease Control and Prevention, 2013a; Van Boeckel et al., 

2014). According to the CDC, in the US nearly 50% of the antibiotics used in humans are not 

needed or are not effective as prescribed (Centers for Disease Control and Prevention, 2013a). 

Studies in the UK demonstrate that almost 50% people visit their GP because of a cough or cold 

hoping to be given antibiotics; and a further study in Wales shows that around 1.6 million 

prescriptions each year are unnecessary (Davies, 2014). Furthermore, the situation in some 

LMICs is worse where antibiotic use is unregulated and over the counter sales rife (Reardon, 

2014). In many LMICs lacking adequate public health care, the market of antibiotics is chaotic 

and completely unregulated - antibiotics can be bought in pharmacies, general stores, and even

in market stalls without prescription (Nepal & Bhatta, 2018). A study in Yemen, Saudi Arabia, 

and Uzbekistan shows that 48%-78% of the patients purchase antibiotics without prescriptions

(Belkina et al., 2014). In addition to the uncontrolled use of antibiotics, the quality and potency 

of the drugs are equally worrying (Ayukekbong, Ntemgwa, & Atabe, 2017). In some 

developing countries, antibiotics are produced locally, sometimes illegally and can be 

counterfeit (Ayukekbong et al., 2017; Hart & Kariuki, 1998; Mayor, 2010). According to

Ozawa et al., in LMICs, nearly seventeen percent of antibiotics are substandard or falsified

(Ozawa, Evans, Bessias, & et al., 2018). All of this misuse contributes to the emergence of 



21 

AMR. Moreover, due to frequent international trading and traveling, new types of AMR can be 

spread globally very quickly (Bernasconi et al., 2016; Cavaco & Aarestrup, 2013; D'Aoust, 

1994; Fernando, Collignon, & Bell, 2010).

1.1.2.2 Irresponsible use of antibiotics in agriculture

Antibiotics are widely used in livestock to either treat infections, prevent current infections or 

metaphylaxis (treatment of the whole heard) or as a growth promoter (Unno, Kim, Guevarra, & 

Nguyen, 2015). For example, in the pig industry, antibiotics are used routinely to prevent 

disease or to avoid the outbreak of infections because of poor living conditions (Kempf et al., 

2013). In modern farms, normally thousands of animals are kept together indoors with limited 

space and reared solely for the purpose of rapidly gaining weight – greater yield of protein and 

larger profits (Pappas, 2011). Famers also use antibiotics routinely as growth promoters to help 

animals against poor living environment (Davies, 2014; Doyle, 2001). It is estimated by 

European Medicines Agency that two thirds of antibiotics in European countries were used in 

farm animals. In the UK, the rate is about 45%, and 80% in the US (European Centre for 

Disease Prevention and Control, European Food Safety Authority, & European Medicines 

Agency, 2015; Department of Agriculture, Environment and Rural Affairs, 2007; Ventola, 

2015).

The antibiotics used in farm animals is an important driver of AMR for some major infectious 

bacteria in humans, such as Salmonella and Campylobacter (Davies, 2014). According to the

WHO, AMR in foodborne bacteria Salmonella and Campylobacter, is clearly the result of 
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antibiotic use in food animals, and has subsequently spread from the food-chain to humans

(World Health Organization, 2011). This occurs in the following events: antibiotic use in farm 

animals kills susceptible bacteria and either maintains resistant bacteria or the bacteria acquire 

resistance (Centers for Disease Control and Prevention, 2013a). The conditions on farms, 

particularly in resource restricted countries also foster the rapid spread of bacteria from one 

animal to another (Davies, 2014).

1.1.2.3 Lack of new antibiotics

The emergence and spread of AMR can be rapid; however, the pace of discovery of new 

antibiotics is glacial by comparison. A decrease in novel and new antibiotics dropped sharply 

after the mid-1990s (Figure 1.2). To make matters worse, most pharmaceutical companies have 

little interest in antibiotic research; 15 of the 18 largest pharmaceutical companies announced 

their intention to leave the antibiotic field due to lack of profit (Bartlett, Gilbert, & Spellberg, 

2013; Ventola, 2015). The CDC and WHO have formally announced that we are running out of 

drugs against Gram-negative infections, including Enterobacteriaceae, Pseudomonas 

aeruginosa, and Acinetobacter (World Health Organization, 2017b). Although there are still

22 new antibiotics have either been launched and/or in clinical trials since 2000, they are 

ineffective against MDR Gram-negative infections or lack any novelty i.e. resistance is likely to 

develop very quickly (Butler, Blaskovich, & Cooper, 2013). However, even if novel antibiotics

are developed, without widespread attitude and behaviour change, antibiotic resistance will 

remain a major threat (Ventola, 2015).
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Figure 1.2 The number of antibiotic discovered each decade (Wikipedia, retrieved from 

https://en.wikipedia.org/wiki/Timeline_of_antibiotics). 
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1.1.3 Antibiotic-resistant infections

On global level, MDR in Gram-negative bacteria is extremely serious. According to the WHO, 

there is a serious lack of treatment options for MDR Gram-negative pathogens, including 

Acinetobacter and Enterobacteriaceae (World Health Organization, 2017c). The situation on 

AMR in Gram-positive bacteria, whilst slightly better, is also a cause for concern, among which

MRSA (Methicillin-Resistant Staphylococcus aureus) and VRE (Vancomycin-Resistant 

Enterococci) are of great concern (Centers for Disease Control and Prevention, 2013a). 

1.1.3.1 MDR Enterobacteriaceae

Enterobacteriaceae pathogens may cause urinary tract infections (UTI), bloodstream infections

(BSI), hospital- and healthcare-associated pneumonia, and various intra-abdominal infections

(Akova, 2016; Malmartel & Ghasarossian, 2016; P. Nordmann, 2014; Paterson, 2006). They 

can spread easily between humans by hand and by contaminated food and water, and can 

readily acquire additional DNA through horizontal gene transfer mediated by plasmids or 

transposons (Patrice Nordmann, Dortet, & Poirel, 2012; Ventola, 2015). Among these, 

Carbapenem-Resistant Enterobacteriaceae (CRE) and extended spectrum β-lactamase 

(ESBL)-producing Enterobacteriaceae are currently of greatest concern (Centers for Disease 

Control and Prevention, 2013a). 

CRE are a group of bacteria that have become resistant to ―all or nearly all‖ antibiotic options 

available, including carbapenems (Ventola, 2015). Carbapenems (imipenem, ertapenem, 

meropenem, and doripenem) are one of the latest developed β-lactams and possess the broadest 
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spectrum of activity (Patrice Nordmann et al., 2012). According to the CDC, in the US, 140,000 

cases of health care associated infections occurred with Enterobacteriaceae, of which 9,300 

were caused by CRE (Centers for Disease Control and Prevention, 2013a). In 2010, an enzyme 

called New Delhi metallo-β-lactamase (NDM) was reported in India and caused great concern 

because it mediated resistance to almost all β-lactams and had quickly spread all around the 

world. (Hammerum et al., 2010; Kumarasamy et al., 2010; D. van Duin & Doi, 2017). Few 

treatment options are available for CRE and these include polymyxins, some aminoglycosides,

and tigecycline (David Van Duin, Kaye, Neuner, & Bonomo, 2013).

Enterobacteriaceae producing ESBLs mediates resistance to extended-spectrum penicillins and

third generation cephalosporins (Cantas, Suer, Guler, & Imir, 2015). An estimate by the CDC 

report that each year, nearly 26,000 (or 19%) healthcare-associated Enterobacteriaceae

infections were attributed to ESBL-producing Enterobacteriaceae, resulting in 1,700 deaths

(Centers for Disease Control and Prevention, 2013a). Moreover, mortality of BSI caused by 

ESBL-producing Enterobacteriaceae is approx. 57% higher than that of non ESBL-producing 

strains (Centers for Disease Control and Prevention, 2013a). 

1.1.3.2 MDR Acinetobacter

Acinetobacter are Gram-negative bacteria that can cause nosocomial pneumonia or 

bloodstream infections, especially among critically ill patients. Many Acinetobacter have 

become resistant to all or nearly all antibiotics and approximately 63% of healthcare-associated 

Acinetobacter infections are caused by MDR Acinetobacter, accounting for 7,000 cases in the 
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US (Centers for Disease Control and Prevention, 2013a). Among these, 500 cases are not 

responsive to any antibiotics (Centers for Disease Control and Prevention, 2013a). Although 

MDR Acinetobacter rarely cause serious infections in healthy people, it can occur in many 

immunosuppressed patients or in patients with other serious underlying diseases (Dijkshoorn, 

Nemec, & Seifert, 2007; World Health Organization, 2014). Carbapenems and polymyxins are 

often used to treat Acinetobacter infections; however, resistance to carbapenems and 

polymyxins are increasingly reported (Cai, Chai, Wang, Liang, & Bai, 2012; Cheng et al., 2016; 

Dijkshoorn et al., 2007; Gagnaire et al., 2017; Gupta et al., 2016; Ko et al., 2007; López-Rojas 

et al., 2013).

1.1.3.3 MDR Pseudomonas aeruginosa

P. aeruginosa is a common cause of nosocomial infections such as hospital-acquired 

pneumonia, complicated urinary tract infections, surgical-site infections, and bloodstream 

infections (Berube, Rangel, & Hauser, 2016). Approximately 8% of all hospital-associated 

infections (accounting for 51,000 cases) reported to CDC are caused by P. aeruginosa, among 

which 13% cases are caused by MDR P. aeruginosa (Centers for Disease Control and 

Prevention, 2013a). Each year, approximately 400 deaths in the US are attributable to infections 

by MDR P. aeruginosa (Centers for Disease Control and Prevention, 2013a). Some MDR P. 

aeruginosa strains are resistant to nearly all β-lactams, aminoglycosides, and fluoroquinolones.

In such cases, colistin associated with adjunctive therapy (such as a β-lactam or rifampicin) is a

potential treatment option (Chatterjee & Agrawal, 2016; Obritsch, Fish, MacLaren, & Jung, 

2005; Riethmuller et al., 2016).
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1.2 Colistin 

The rapid rise of MDR in Gram-negative bacteria has given colistin a renaissance after falling 

out of favour for more than 15-20 years (Biswas, Brunel, Dubus, Reynaud-Gaubert, & Rolain, 

2012). As an old antibiotic, colistin was first introduced into clinical use in Japan, Europe and 

the US in the 1950s, but was then withdrawn due to moderate/severe adverse (toxic) effects

(Biswas et al., 2012; M. E. Falagas & Kasiakou, 2005; Schwarz & Johnson, 2016). In the 1990s, 

as lack of treatment options for MDR Gram-negative bacteria became a serious issue, colistin 

was introduced back into clinical use and listed as a last-resort antibiotic by WHO (M. E. 

Falagas & Kasiakou, 2005; World Health Organization, 2014).

1.2.1 Chemical Structure

Colistin (Polymyxin E) is a member of polymyxin family, a group of cationic polypeptide 

antibiotics, which contains five different derivatives (Polymyxin A, B, C, D and E) (Landman, 

Georgescu, Martin, & Quale, 2008). Polymyxin B and E (colistin) are available in clinical 

practice to treat infections by MDR Gram-negative bacteria (Schwarz & Johnson, 2016). The 

main difference between polymyxin B and E is that polymyxin B contains phenylalanine in 

position 6 while colistin contains D-leucine (Nation, Velkov, & Li, 2014). The major forms of 

polymyxins used worldwide are colistimethate sodium  (CMS) (48.6%) and colistin sulfate

（14.1%, or both forms of colistin (1.4%), while polymyxin B is rarely used (1.4%). Other 

forms are unknown in the study (Wertheim et al., 2013).
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Colistin was developed from Paenibacillus polymyxa subsp. Colistinus. Its tripeptide side chain 

is connected to the fatty acid residue, which is identified as 6-methyl-octan-oic acid (colistin A) 

or 6-methyl-eptanoic acid (colistin B) (Falagas, Polymyxins, sourced from 

http://www.antimicrobe.org/d05.asp).

Figure 1.3 Chemical structure of colistin.

(Wikipedia, retrieved from https://en.wikipedia.org/wiki/Colistin.)
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1.2.2 Spectrum

Most Gram-negative bacteria are susceptible to polymyxins, including A. baumannii, 

P .aeruginosa, and nearly all Enterobacteriaceae. However, Pseudomonas mallei, Burkholderia 

cepacia, Edwardsiella spp., Brucella spp. and the Proteus-group of Enterobacteriaceae are all 

naturally resistant to polymyxins. Furthermore, Gram-positive bacteria, fungi, and parasites are 

unaffected by polymyxins (Falagas, Polymyxins, sourced from 

http://www.antimicrobe.org/d05.asp ). 

The clinical and Laboratory Standards Institute (CLSI) and the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) provide breakpoints for colistin susceptibility 

for Enterobacteriaceae, P. aeruginosa and A. baumannii (Table 1.1). In general, an isolate with 

Minimum Inhibitory Concentration (MIC) ≤ 2mg/L is deemed as susceptible.

Table 1.1 Breakpoints of colistin susceptibility (MIC, mg/L) according to guidelines in 

United States (CLSI) and Europe (EUCAST) S, sensitive; I, intermediate; R, resistant.

（M100S Performance Standards for Antimicrobial Susceptibility Testing 2018）(European 

committee on antimicrobial susceptibility testing 2018). 

Species

CLSI EUCAST

S I R S R

Enterobacteriaceae ≤2 4 ≥8 <2 ≥2

P. aeruginosa ≤2 4 ≥8 <2 ≥2

A. baumannii ≤2 4 ≥8 <2 ≥2

http://www.antimicrobe.org/d05.asp
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1.2.3 Application of Colistin

Colistin is used in clinical practice for both adults and children as a treatment option for 

infections caused by MDR Pseudomonas, MDR A. baumannii and CRE (Tamma et al., 2013).

However, the emergence of colistin resistance is rapidly rising and deeply concerning (Tamma 

et al., 2013).

In veterinary medicine, colistin is widely used to prevent infections in livestock caused by 

Escherichia coli, such as diarrhoea, septicaemia and colibacillosis (Kempf et al., 2013). High 

colistin use has been observed in epidemiological studies in Europe (Kempf et al., 2013). In 

countries such as China, Thailand and Vietnam, high doses of colistin have also used as feed 

additives for growth promotion in both large and small farms (Nguyen et al., 2016; Walsh & 

Wu, 2016; Wongsuvan, Wuthiekanun, Hinjoy, Day, & Limmathurotsakul, 2018). China has 

recently banned colistin as a growth promoter in April 2017 because of the discovery of the 

mobile colistin resistance gene, mcr-1 (Liu et al., 2016; Walsh & Wu, 2016).

1.2.4 Mechanism of action

Colistin and Polymyxin B have a similar mechanism of activation. The structure of polymyxin 

contains a cyclic decapeptide bound to a fatty acid chain. The L-Dab molecules in polymyxin 

are positively charged, while the lipopolysaccharides (LPS) of Gram-negative bacteria are 

negatively charged (Velkov, Roberts, Nation, Thompson, & Li, 2013). Colistin binds to LPS in 

the bacterial cell outer-membrane, displace divalent cations such as Mg2+ and Ca2+ (which are 



31 

associated with stabilizing LPS molecules), and leads to increased permeability of cell 

outer-membrane, resulting in leakage of cell contents and cell death (Velkov et al., 2013).

1.2.5 Colistin Resistance

The main mechanism of colistin resistance is modification of lipid A with 

phosphoethanolamine （PEA）or 4-amino-4-arabinose （L-Ara4N）, resulting in lowering the 

affinity with polymyxins, or in rare cases the loss of LPS (Hinchliffe et al., 2017). In addition 

to these, the use of efflux pumps may also aid colistin resistance (Abiola O Olaitan, Morand, & 

Rolain, 2014). The following examples are key mechanisms of colistin resistance:

1.2.5.1 PmrA/B, PhoP/Q two-component system (TCS) 

PmrA/B and PhoP/Q TCSs are the regulators of LPS modifications in many bacterial species. 

(Chen & Groisman, 2013) The activation of PmrA/B TCS leads to expression of 

PmrA-dependent genes resulting in resistance to polymyxins (Chen & Groisman, 2013), while 

the activation of PhoP/PhoQ TCS leads to polymyxin resistance by indirectly activating 

PmrA/PmrB TCS via PmrD (Abiola O Olaitan et al., 2014). Mutations in these two systems can 

cause constitutive over-expression, resulting in the subsequent activation of the arnBCADTEF

and pmrCAB operons and the synthesis and transfer of lipid A by L-Ara4N and 

lipopolysaccharides (PEA), respectively (Chen & Groisman, 2013). Modification of L-Ara4N 

and PEA decrease the net negative charge of LPS and reduce its avidity for colistin (Abiola O 

Olaitan et al., 2014). In addition, inactivation of the mgrB gene (which encodes a 



32 

negative-feedback regulator of the PhoQ/PhoP signalling system) leads to up-activation of 

PhoQ/PhoP, and subsequently results in modification of LPS mediated resistance to colistin

(Abiola O Olaitan et al., 2014; Poirel et al., 2014).

Figure 1.4 Lipopolysaccharide-modification involved in polymyxin resistance in 

Gram-negative bacteria (Chen & Groisman, 2013).
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1.2.5.2 lpxA, lpxC, and lpxD

In A. baumannii , mutations in three lipid A biosynthesis genes- lpxA, lpxC, and lpxD lead to the 

complete loss of LPS resulting in very high resistance against colistin (MIC >128 mg/L)

(Moffatt et al., 2010). LPS is an important component at outer-membrane in Gram-negative 

bacteria, creating a permeability barrier to prevent large molecules from freely entering the cell 

(G. Zhang, Meredith, & Kahne, 2013). The loss of LPS leads to loss of a binding target for 

colistin, resulting in high resistance (Moffatt et al., 2010).

1.2.5.3 Efflux pump

Efflux pump system plays an important role in AMR and has been found to be linked with the 

mediation of resistance to cationic antimicrobial peptides such as polymyxins (Falagas, 

Polymyxins, sourced from http://www.antimicrobe.org/d05.asp ). For example, the Emr pump 

system in A. baumannii has been proven to be associated with the adaptation to osmotic stress 

and colistin resistance (Lin, Lin, & Lan, 2017); the MexAB-OprM efflux pump in P. 

aeruginosa can provide resistance to colistin (Pamp, Gjermansen, Johansen, & Tolker‐Nielsen, 

2008; Schweizer, 2003); and the AcrAB efflux pump can cause colistin resistance in Klebsiella

pneumoniae and E. coli (Padilla et al., 2010; Warner & Levy, 2010).

1.2.5.4 mcr-mediated colistin resistance

In 2015, a transferable resistance gene to colistin called mcr-1 was first reported in China, 

which was located on a conjugative plasmid in E. coli ( Liu et al., 2016). mcr-1 represents a 

http://www.antimicrobe.org/d05.asp
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―new‖ machinery for colistin resistance where the modification of Gram-negative bacterial 

lipid A is catalyzed by the MCR-1 enzyme, showing a decreased affinity to polymyxin 

(Hinchliffe et al., 2017). Now, mcr-1 has been reported worldwide and is a cause of great 

concern (Schwarz & Johnson, 2016). Following the detection of mcr-1, more plasmid-mediated 

colistin resistant genes- mcr-2, mcr-3, mcr-4 and mcr-5, have been reported (Borowiak et al.,

2017; Carattoli et al., 2017; Xavier et al., 2016; Yin et al., 2017). The continuing identification 

of novel mcr genes indicates a much wider global dissemination of colistin resistance 

determinants in Enterobacteriaceae (Kluytmans, 2017).

1.2.6 Adverse Events

As an old antibiotic, colistin was first introduced into the clinic in the 1950s, but then was 

withdrawn due to its adverse side effects, including nephrotoxicity and neurotoxicity (Matthew 

E Falagas & Kasiakou, 2006). However, the antibiotic resistance crisis together with a lack of 

new or novel drugs has given colistin a renascence and it is now widely used to treat serious 

Gram-negative infections (Das, Sengupta, Goel, & Bhattacharya, 2017).

1.2.6.1 Nephrotoxicity

Polymyxins can cause nephrotoxicity, and colistin shows less cytotoxic compared to 

Polymyxin B (Falagas, Polymyxins, retrieved from http://www.antimicrobe.org/d05.asp ). The 

mechanism of colistin nephrotoxicity is due to an increase in tubular epithelial cell membrane 

permeability, resulting in increased influx of cations, anions and water mediating cell swelling 

http://www.antimicrobe.org/d05.asp
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and lysis (Javan, Shokouhi, & Sahraei, 2015). The nephrotoxicity depends on the concentration 

and length of exposure to polymyxins (Falagas, Polymyxins, retrieved from 

http://www.antimicrobe.org/d05.asp ). Co-administration with other nephrotoxic drugs, 

patient-related factors (such as age, sex, other kidney diseases and severity of patient illness) 

are also related to colistin nephrotoxicity (Javan et al., 2015).

Clinical studies show that the frequency of nephrotoxicity of polymyxins varies from as low as 

0% to as high as 55% (Falagas, Polymyxins, retrieved from 

http://www.antimicrobe.org/d05.asp ). In an early study (1965) by Tallgren et al., 36% patients 

with acute or chronic renal disease showed an increase in plasma creatinine levels 

(TALLGREN, LIEWENDAHL, & KUHLBÄCK, 1965). After the re-introduction of colistin 

into clinical treatment for MDR Gram-negative infections, the data did not support the high 

incidence of polymyxin nephrotoxicity previously reported (Matthew E Falagas & Kasiakou, 

2006). Two studies in intensive care units (ICUs) showed that 14.3% (Markou et al., 2003) and 

18.6% (Michalopoulos, Tsiodras, Rellos, Mentzelopoulos, & Falagas, 2005) of patients had 

demonstrable deterioration in renal function during colistin therapy. To reduce the potential 

damage of colistin to the kidney, it is important to stop polymyxin treatment as soon as primary 

signs of renal dysfunction are recognised (Falagas, Polymyxins, retrieved from 

http://www.antimicrobe.org/d05.asp ). 

1.2.6.2 Neurotoxicity

Compared with nephrotoxicity, the incidence of colistin related neurotoxicity is substantially

http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
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less (Wadia & Tran, 2014). The reported neurological toxicity of colistin is associated with 

dizziness, generalized muscle weakness, facial and peripheral paresthesia, partial deafness, 

visual disturbances, vertigo, confusion, hallucinations, seizures, ataxia, and neuromuscular 

blockade (Falagas, Polymyxins, retrieved from http://www.antimicrobe.org/d05.asp ). Clinical 

studies showed that the most frequently neurological adverse effects were paresthesias, and 

patients with impaired renal function or myasthenia gravis have higher risk of neurological 

adverse effects (Nigam, Kumari, Jain, & Batra, 2015).

1.2.6.3 Other adverse events

Other adverse events such as pruritus, dermatoses, drug fever and gastrointestinal disturbances 

may also occur during colistin therapy. Leukopenia and granulocytopenia may also be 

associated with colistin treatment (Falagas, Polymyxins, retrieved from 

http://www.antimicrobe.org/d05.asp ). Furthermore, people with an allergy to bacitracin are at 

higher risk of hypersensitivity reactions with the use of polymyxins (Falagas, Polymyxins, 

retrieved from http://www.antimicrobe.org/d05.asp ). 

1.2.7 Dosage

Two forms of colistin are clinically available - colistin sulfate and colistimethate sodium (CMS)

(Falagas, Polymyxins, retrieved from http://www.antimicrobe.org/d05.asp ). Colistin sulfate is 

usually administered orally for bowel decontamination or is used as treatment of skin infections 

caused by bacteria. CMS is often used for parenteral therapy and is less toxic with fewer 

http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
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adverse events (Falagas, Polymyxins, retrieved from http://www.antimicrobe.org/d05.asp ).  

The recommended dose of CMS in adult patients is different in countries. Generally, 1mg of 

CMS equals 12,500 IU. In the European countries except for France, CMS is recommended at

4-6mg/kg or 50,000-70,000 IU/kg daily in 2-3 divided doses (Falagas, Polymyxins, retrieved 

from http://www.antimicrobe.org/d05.asp ). In France, 75,000-150,000 IU/kg CMS is 

recommended daily, divided in 1-3 doses. The maximum dosage one day is no more than 12 

million IU (Theuretzbacher, 2014). In the US, the recommended dose of CMS is 2.5-5 mg/kg in 

2-4 doses daily. (Falagas and Vardakas, Polymyxins, retrieved from 

http://www.antimicrobe.org/d05.asp ) For Children, the adult dosing of colistin is 

recommended (Falagas and Vardakas, Polymyxins, retrieved from 

http://www.antimicrobe.org/d05.asp ). However, current data in children is limited and most 

cases are for the treatment of P. aeruginosa in cystic fibrosis patients where dosing schemes are 

empirical. Therefore, the dose for children has not been defined (Falagas and Vardakas, 

Polymyxins, retrieved from http://www.antimicrobe.org/d05.asp ). 

Furthermore, colistin dosage must be reduced for patients with impaired renal function, and for 

obese patients, the dosage should depend on daily weight (Coly-Mycin, 2005). Although 

colistin is listed in the FDA (US Food and Drug Administration) pregnancy category, it should 

be only be used when the potential benefit is greater than risk (Kazy, Puhó, & Czeizel, 2005).

http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
http://www.antimicrobe.org/d05.asp
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1.3 Transferable colistin resistant gene- mcr-1 

1.3.1 Discovery of mcr-1  

In 2015, Liu et al., first reported transferable colistin resistance mediated by a plasmid from 

food animals in China. The colistin resistance gene, mcr-1, was located on an IncI2-type 

plasmid and conferred a colistin MIC at 8 mg/L ( Liu et al., 2016). Successful transfer of mcr-1 

carrying plasmid to E. coli C600 by conjugation indicated the potential spread of colistin 

resistance under natural conditions. This first report showed that mcr-1 carriage in E. coli was 

also found in meat, chickens, pigs and humans (Liu et al., 2016). The report was significant not 

only because it described a new mechanism of colistin resistance, but indicated that MCR-1 

positive E. coli (MCRPEC) are widespread (Schwarz & Johnson, 2016).

1.3.2 Global Spread of mcr-1 

Following this first report, incidences of mcr-1 were soon reported worldwide: Asia (China, 

Japan, South Korea, Malaysia, Thailand, Cambodia, Laos and Vietnam), Europe (Denmark, 

France, Germany, UK, Poland, Spain, Portugal, Switzerland, Italy, Belgium and The 

Netherlands), Africa (Egypt, Algeria, Nigeria and South Africa), South and North America 

(Argentina, Canada and the USA) (M. S. Arcilla et al., 2016; Coetzee et al., 2016; Falgenhauer, 

Waezsada, Yao, et al., 2016; Figueiredo et al., 2016; Hasman et al., 2015; Hu, Liu, Lin, Gao, & 

Zhu, 2016; Izdebski et al., 2016; Khalifa et al., 2016; Kluytmans–van den Bergh et al., 2016; 

Kusumoto et al., 2016; Lim et al., 2016; Liu et al., 2016; Malhotra-Kumar, Xavier, Das, 
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Lammens, Butaye, et al., 2016; Malhotra-Kumar, Xavier, Das, Lammens, Hoang, et al., 2016; 

McGann et al., 2016; Mulvey et al., 2016; A. O. Olaitan, Chabou, Okdah, Morand, & Rolain, 

2016; A. Quesada et al., 2016; Rapoport et al., 2016; Schwarz & Johnson, 2016; Stoesser, 

Mathers, Moore, Day, & Crook, 2016; Webb et al., 2016; Zurfuh et al., 2016). The bacterial 

host of mcr-1 are various, including E. coli, Salmonella spp., K. pneumoniae, Enterobacter 

aerogenes, Enterobacter cloacae (Doumith et al., 2016; Du, Chen, Tang, & Kreiswirth, 2016; 

Liu et al., 2016; Webb et al., 2016; Zeng, Doi, Patil, Huang, & Tian, 2016), from a wide range 

of sources, including animals (livestock, pet animals and several wild-birds), food (meat and 

vegetables), water, patients and healthy people (Maris S Arcilla et al., 2016; Liakopoulos, 

Mevius, Olsen, & Bonnedahl, 2016; Liu et al., 2016; Mendes et al., 2018; Schwarz & Johnson, 

2016; J. Wang et al., 2017; X. F. Zhang et al., 2016; Zurfuh et al., 2016).

Liu et al., analysed 2649 E. coli isolates (523 samples of raw meat, 804 of animals and 1322 of 

inpatients) collected during 2011-2014 in China, which showed MCRPEC rates of 15%, 21% 

and 1%, respectively (Liu et al., 2016). Suzuki et al., reported that five of 671 isolates collected 

from patients, animals and environment from Japan during 2000-2014 were MCRPEC. 

Interestingly, all of the five mcr-1 positive isolates were from animal samples (Suzuki, Ohnishi, 

Kawanishi, Akiba, & Kuroda, 2016). However, Kusumoto et al., found that 45% of E. coli

isolates collected from diseased swine in Japan during 1991–2014 showed resistance to colistin, 

among which 29% were MCRPEC (Kusumoto et al., 2016). A report from France during 

2007-2014 showed that prevalence of MCRPEC was 5.9% in turkeys, 1.8% in broilers and 0.5% 

in pigs (Perrin-Guyomard et al., 2016). Colistin resistance in Spain was detected in 0.5% E.coli
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in clinical isolates from 2012–2015, among which 15 of 50 available colistin resistant isolates 

were MCRPEC (Prim et al., 2016). A report from the UK identified 15 mcr-1-positive isolates 

(13 Salmonella enterica and 3 E. coli isolates from patients, 2 S. enterica isolates from poultry 

meat) from ~24 ,000 Enterobacteriaceae (including S. enterica, E. coli, Klebsiella spp., 

Enterobacter spp., Campylobacter spp. and Shigella spp.) isolated between 2012 and 2015 

(Doumith et al., 2016). These global reports support the concern that mcr-1 has been spread 

worldwide. Additionally, with air travel and trade exchanges between countries, no country can

possibly avoid the acquisition of mcr-mediated colistin resistance (Rhouma, Beaudry, & 

Letellier, 2016).

Even though the emergence of mcr-1 was first reported in 2015, it was also detected in isolates 

dating back to 1980s (1987) from China and predates the discovery of all mobile 

carbapenemase genes (Shen, Wang, Shen, Shen, & Wu, 2016). Thus, transferable colistin 

resistance existed in the gut flora of food animals for more than 25 years without being detected

(Schwarz & Johnson, 2016; Shen et al., 2016). The outbreak of colistin resistance is, in part,

due to the increasing use of colistin in agriculture and aquaculture, particularly since 2007-8 

(Rhouma, Beaudry, & Letellier, 2016). According to Shen et al., the presence of colistin 

resistance and mcr-1 positive rates were at a minimal level which increased sharply during 2009 

to 2014 in China. During this period, the annual use of colistin increased from 2470 to 2875 

metric tons in food animals and therefore is likely to have contributed to the rapid spread of 

mcr-1 in China (Shen et al., 2016).
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1.3.3 Analysis of molecular characterization

1.3.3.1 mcr-1 carrying plasmid

mcr-1 is normally located on stable plasmids, while rarely on the chromosome (Matamoros et 

al., 2017). Matamoros et al., analysed the population structure of E. coli and the mobile genetic 

elements carrying the mcr-1 gene that had been reported worldwide. Up to 2017, 13 plasmid 

incompatibility types had been reported carrying mcr-1 (Refer to Figure 1.5). Among these, 

90.4% of the identified plasmids belonged to IncX4 (35.2%), IncI2 (34.7%), IncHI2 (20.5%) 

plasmid types. Interestingly, 65.8% of the IncI2 plasmids carrying mcr-1 were reported from 

Asia, while the major plasmid type carrying mcr-1 in Europe was IncI2 plasmids (73.3%) 

(Matamoros et al., 2017). The distribution of these 3 plasmid types from animal (p = 0.24), 

human (p = 0.88) and environmental sources (p = 0.38) was not significantly different 

(Matamoros et al., 2017).
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Figure 1.5 Global phylogenetic analysis of plasmids carrying the mcr-1 gene (Matamoros

et al., 2017)
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Interestingly, the co-existence of IncX4 with other replicons such as IncHI2 and IncI2 were 

detected in mcr-1 positive bacteria (J. Sun et al., 2017). A study by Sun et al., displayed the 

existence of two copies of mcr-1 located separately on two inc types from the same E. coli

strain. Furthermore, they also found multiple copies of mcr-1 located on both plasmid and 

chromosome in the same strain (J. Sun et al., 2017).

1.3.3.2 Population structure

Multi-locus sequence typing (MLST) is an accurate procedure for characterising isolates of 

many bacterial species. According to Matamoros et al., among 410 Enterobacteriaceae in 215 

studies, MCRPEC showed a high overall diversity of in its population structure. The 410 strains 

represents 112 sequence types, among which ST10 was the most prevalent (12.8%) 

(Matamoros et al., 2017). Reported ST types of mcr-1 harbouring isolates from different origins 

worldwide were shown in Figure 1.6.
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Figure 1.6 ST types of mcr-1 isolates from different origins (Y. Wang et al., 2017).

1.3.3.3 Mobile genetic elements

In mcr-1 carrying isolates, an ISApl1 transposon element is often found upstream of mcr-1 on 

IncHI2 or IncI2 plasmid (Matamoros et al., 2017). In the study by Matamoros et al., 77.8% 

mcr-1 on IncHI2 plasmids is flanked by ISApl1 upstream, while only 37.9% of IncI2 plasmids. 

No Insertion element has been reported upstream of mcr-1 in IncX4 plasmids (Matamoros et al.,

2017).

ISApl1 encodes a putative transposase belongs to IS30 family (J. Liu et al., 2008) and is a key 
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component in the mobilization of mcr-1 (Snesrud et al., 2016). Its movement is independent of 

mcr-1 (Snesrud et al., 2017). Studies have shown that under certain condition when ISApl1 is 

highly active, its movement may be detrimental to the host cell (Snesrud et al., 2017).

1.3.3.4 Multiple resistant genes on mcr-1 harbouring plasmid

In the first report of mcr-1, the mcr-1 carrying plasmid did not carry other resistance genes (Liu

et al., 2016). However, in later reports, mcr-1 plasmids often harbour other resistance genes 

such as ESBL and carbapenemase genes (McGann et al., 2016; R. Wang et al., 2018; H. Zhang, 

Seward, Wu, Ye, & Feng, 2016). These plasmids not only support the co-transfer of resistance 

genes, but also the existence of mcr-1 under selective antibiotic pressure even without colistin

(Schwarz & Johnson, 2016).

1.3.4 Mechanism of MCR-1 

The mechanism of colistin resistance by MCR-1 is due to the modification of LPS on bacterial 

cell outer-membrane (Liu et al., 2016). Briefly, mcr-1 encodes a transferase enzyme belonging

to the PEA transferase enzyme family which catalyzes the addition of PEA to lipid A moiety of 

LPS through which reduces the negative charge resulting in reduction of colistin avidity, and 

therefore colistin resistance (Hinchliffe et al., 2017).
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Figure 1.7 PEA transfer reaction catalysed by MCR-1 (Hinchliffe et al., 2017).

MCR-1 has 41% and 40% identity to the PEA transferases LptA and EptC (Liu et al., 2016),

and the fold of the MCR-1 catalytic domain is similar to that of the LptA and EptC transferases

(Stojanoski et al., 2016). LptA is usually being found in Neisseria and specifically transfers 

PEA to only lipid A phosphoryl groups which then confers colistin resistance, while EptC (in 

Campylobacter jejuni) displays a broader substrate tolerance (Liu et al., 2016). Phylogenetic 

analyses showed that MCR-1 is highly homologous to the PEA lipid A transferase in 

Paenibacili, a producer of polymyxins (Gao et al., 2016).

The recent released MCR-1 crystal structure infers that the catalytic domain of 

membrane-bound MCR-1 is a zinc metallo-protein with three disulphide bonds (see Figure 1.8)
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(Hinchliffe et al., 2017). Zinc, disulphide bonds and conserved active site residues (including 

zinc ligands, the acceptor Tr285 and additional positions adjacent to the metal centre) are all 

vital to MCR-1 function in E. coli (Hinchliffe et al., 2017).

Figure 1.8 Crystal Structure of MCR-1 catalytic domain. A.B. Overall fold of MCR-1 

catalytic domain. The crystal structures reveal an overall α-β-α fold and contain 3 

intramolecular disulphide bonds (labelled). Active site is boxed and formed in C and D; C.D. 

Active site of MCR-1 enzyme (Hinchliffe et al., 2017).
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1.3.5 Continuous discovery of new transferable colistin-resistant genes

Following the discovery of mcr-1 in 2015, other plasmid carrying genes encoding colistin 

resistance were reported; namely, mcr-2, mcr-3 etc (Xavier et al., 2016; Yin et al., 2017). The 

latest mobile colistin resistance gene reported is mcr-8 (Wang et al., 2018).

The mcr-2 gene is a 1,617 bp long phosphoethanolamine transferase gene harboured on an 

IncX4 plasmid and shows 76.75% nucleotide identity to mcr-1 (Xavier et al., 2016). mcr-2 

showshigher prevalence (20%) in colistin-resistant E. coli in Belgium than mcr-1 (13%)

(Xavier et al., 2016). mcr-3 shows 45.0% and 47.0% nucleotide sequence identity to mcr-1 and 

mcr-2, respectively (Yin et al., 2017). Interestingly, MCR-3 shows 75.6%-94.8% identity to 

phosphoethanolamine transferases found in Aeromonas species (Yin et al., 2017). Moreover, a 

transposon element, named TnAs2, which has only been characterized in Aeromonas 

salmonicida, is identified upstream of mcr-3. The ∆TnAs2-mcr-3 element found from genome 

sequencing and reported from many countries suggests the likelihood of mcr-3 global 

dissemination (Yin et al., 2017).

Now, mcr-4 and mcr-5 genes have been identified indicating a much wider global 

dissemination of colistin resistance determinants in Enterobacteriaceae (Borowiak et al., 2017; 

Carattoli et al., 2017).
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1.4 Fitness cost of antimicrobial resistance

Antibiotic resistance occurs under the selective pressure of antibiotics (Xiong, Sun, Ding, Wang, 

& Zeng, 2015). The continuing existence of antibiotics helps AMR bacteria survive and 

successfully compete against susceptible phenotype (Tech, 2017). Today, the extensive 

resistance to antibiotics and lack of pipeline drugs is a cause of great concern; therefore, the 

biological cost (such as growth and survival rates inside/outside a host, transmission rates and 

pathogenesis protential) seems to be a strand of potential hope of making it possible to reverse 

antibiotic resistance (D. I. Andersson, 2003; Hernando-Amado, Sanz-Garcia, Blanco, & 

Martinez, 2017).

The hypothesis that antibiotic resistance may bring a biological cost to bacterial hosts comes 

from the analysis of antibiotic resistant mechanisms. Bacteria acquire resistance by two 

different genetic events: recurrent mutation (including recombination) and horizontal genes 

transfer (Sommer, Munck, Toft-Kehler, & Andersson, 2017). The impact of antibiotic 

resistance varies according to different events. In mutation-driven resistance, mutations usually 

happen in genes encoding antibiotic targets or transporter systems (e.g. porins), which are 

intrinsically linked to cellular physiology (Hernando-Amado et al., 2017). Therefore, their 

mutations indicate a less proficient function and a lowering of competitiveness compared to 

sensitive wild-type isolates (Björkman & Andersson, 2000; Melnyk, Wong, & Kassen, 2015).

In the case where resistance is acquired via horizontal transfer, a physiological burden is 

expected as a consequence of the resources required for replication, transcription and 

translation of mobile genetic elements (Hernando-Amado et al., 2017). Concurrently, the 
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synthesized products may interfere with cellular physiology (Hernando-Amado et al., 2017; 

Lenski, 1998).

Therefore, the analysis of biological cost of antibiotic resistance is important if we hope to 

predict resistance development or evaluate the possibility of reducing antibiotic resistance, as 

real-time studies both in clinical or laboratory show the effect of antibiotic resistance on 

bacterial fitness and how mutations can influence the trajectory of adaptive evolution under 

selective pressure (D. I. Andersson & Hughes, 2011; Sommer et al., 2017). Several theoretical 

and experimental studies have demonstrated that the cost of antibiotic resistance is a key factor 

to determine the rate or maintenance of resistance under certain antibiotic pressures or without 

the presence of antibiotics (Melnyk et al., 2015). For example, Levin and colleagues used a 

mathematical model to understand the relationship between antibiotic treatment and the 

frequency of resistant genotypes (Levin et al., 1997). According to that model, as long as hosts 

are treated with an antibiotic, a residual population of resistant bacteria would be found. 

Moreover, a decrease in the frequency of AMR bacteria would be seen under a reduction of 

antibiotic treatment (Levin et al., 1997). Thus it seems possible that healthier sensitive 

genotypes could outcompete their MDR counterparts and therefore, displace resistant 

populations in the absence of antibiotic selection over time (dan i Andersson & hughes, 2010).

In other words, temporarily ceasing antibiotic use can help eliminate resistant bacteria by 

allowing sensitive genotypes to out-compete the resistant population (Melnyk et al., 2015).

Fitness deficit is variable depending on the mutation, the organism, and the model used to 

determine the cost (Pope, McHugh, & Gillespie, 2010). The biological cost of resistance can be 
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measured in essentially three ways. Firstly, fitness can be evaluated by the growth parameters. 

The simplest way to determine fitness is to grow both resistant and susceptible isolates in vitro

and to measure the density of each culture over time (Melnyk et al., 2015). Secondly, 

competition assays between susceptible ―parents‖ and resistant mutants (daughter cells) can be 

created to evaluate the physiological vigour of the isolates. Fitness is shown as the ratio 

between susceptible and resistant strains after serial passaging the mixture under antibiotic-free 

conditions (Melnyk et al., 2015). Thirdly, in vivo assays are useful to measure fitness cost and 

are more relevant to clinical conditions. Several animal models are recommended, such as mice, 

chickens, Galleria mellonella, Caenorhabditis elegans, and cell cultures. Animal models can 

also be applied on competition experiments between two culture by measure the modification 

of ratio after several days (Pope et al., 2010).

Fitness cost of colistin resistance has been reported in some species, especially in A. baumannii

and K.pneumoniae (Beceiro et al., 2014; Choi & Ko, 2015; Da Silva & Domingues, 2017). Two 

mechanisms have been described in Acinetobacters, one is mentioned PmrA/B mutation 

resulting in modification of LPS, the other is complete loss of LPS by lpxA, lpxC, or lpxD

mutation (Adams et al., 2009; Moffatt et al., 2010; W. Zhang et al., 2017). Beceiro and 

colleagues compared fitness cost and impact on virulence of both mechanisms and showed that 

complete loss of LPS gave very high colistin resistance (MIC >128 mg/L), while PmrA/B 

mutations showed MIC increases from 2-8 mg/L to 16-64 mg/L. Both mechanisms caused a 

significant decrease in bacterial fitness; however, no significant decrease in virulence was 

detected in PmrA/B mutants (Beceiro et al., 2014). Also, López-Rojas et al., published studies 
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about fitness burden and decrease in virulence by pmrA and pmrB mutations, respectively

(López-Rojas et al., 2011; López-Rojas et al., 2013). Recently, Mu et al., compared serum 

resistance from both LPS-loss and LPS-modified mutants and showed that both LPS-loss and 

LPS-modified mutants decreased resistance to serum (Mu et al., 2016). However, in some other 

studies, colistin resistance by PmrA/B mutations were not associated with reduction of fitness 

or virulence. According to Durante-Mangoni, colistin resistance caused by a P233S substitution

in the PmrB sensor kinase did not associate with reduction in bacterial fitness or virulence

(Durante-Mangoni et al., 2015). These results might suggest that the cost in fitness or virulence 

caused by PmrA/B mutations was variable due to location, type, and number of mutations 

(Beceiro et al., 2014).

In K. pneumoniae, loss of fitness and virulence was normally associated with colistin resistance. 

In addition to the PmrA/PmrB TCS, mutations in the PhoP/PhoQ two-component regulatory 

system can also lead to colistin resistance (Chen & Groisman, 2013). Additionally, mutations in 

mgrB are related to colistin resistance, as its product MgrB conveys feedback between 

PmrA/PmrB and PhoP/PhoQ TCSs (Poirel et al., 2014; Wright et al., 2015). Cannatelli et al.,

compared the fitness of two KPC-producing K. pneumoniae isolated obtained from same 

patient after low dosage of colistin treatment. Acquisition of colistin resistance after colistin 

treatment was associated with pmrB mutations but showed no reduction in fitness (Cannatelli et 

al., 2014). Furthermore, they also reported no significant biological cost or reduction in 

virulence (Arena et al., 2016; Cannatelli, Santos-Lopez, Giani, Gonzalez-Zorn, & Rossolini, 

2015). Finally, Kidd et al., found enhanced virulence in a mgrB mutant, which mediated a
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128-fold increase in colistin MIC but showed no change in bacterial growth or biofilm 

formation (Kidd et al., 2016). As K. pneumoniae can cause a wide range of infections, the lack 

of fitness cost of colistin resistance may lead to higher dissemination of resistance and 

undermine the treatment of K. pneumoniae infections (Paczosa & Mecsas, 2016) . 
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1.5 Aims of the Project

Resistance mutations are expected to have an effect on fitness because their targets have 

important functions on bacterial physiology (Melnyk et al., 2015). Colistin resistance is always 

due to the modification or loss of LPS of bacterial cell outer-membrane, resulting in reduction 

of fitness and virulence (Abiola O Olaitan et al., 2014). Previous studies have shown that 

colistin resistance caused by chromosomal mutation can be associated with reduction of 

bacterial fitness in A. baumannii, P. aeruginosa, K. pneumoniae and S. enterica (Choi & Ko, 

2015; Da Silva & Domingues, 2017; Lee, Park, Chung, Na, & Ko, 2016; S. Sun, Negrea, Rhen, 

& Andersson, 2009). However, this biological cost is variable among different mutations, some 

of these point mutations are proved to have less fitness cost or even no fitness cost (Beceiro et 

al., 2014).

Hitherto, little has been known about fitness and virulence in mcr-1 harbouring isolates. Zhang

et al., showed that no reduction in fitness was found between mcr-1 positive transconjugates 

and E .coli J53 (Y. Zhang et al., 2017). This may indicate that acquisition of mcr-1 carrying 

plasmid is cost free (Hernando-Amado et al., 2017). As the production of mcr-1 normally 

gives relatively low resistance in E. coli (4-16 mg/L colistin MIC) (Liu et al., 2016) compared 

to chromosomally mediated mechanisms, it is of interest to explore the effects of increasing 

colistin resistance in mcr-1 positive isolates. Furthermore, as colistin resistance disseminates 

with the prevalence of mcr-1 (Shen et al., 2016), it is important to determine whether there is 

fitness cost with mcr-1 and consequently, provide a limitation to colistin resistance.
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Thus, the aims of this study are to acquire mcr-1 positive high-level colistin resistant mutants, 

and to measure the change in bacterial fitness and virulence and to assess their stability. Whole 

genome sequencing (WGS) on the isogenic sets analysis will also be undertaken. 
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Chapter 2: Methods and Materials
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2.1 strains used in this study

Table 2.1 Strains used in this study

No. Identification Date of isolation Location Source

PN16 E.coli 27 October 2013 Phitsanulok, Thailand chicken meat

PN21 E.coli 12 February 2014 Phitsanulok, Thailand chicken faeces

PN23 E.coli 22 February 2014 Phitsanulok, Thailand duck faeces

PN24 E.coli 22 February 2014 Phitsanulok, Thailand duck faeces

PN25 E.coli 22 February 2014 Phitsanulok, Thailand duck faeces

PN42 E.coli 15 November 2013 Phitsanulok, Thailand faeces from healthy 

human

PN43 E.coli 15 November 2013 Phitsanulok, Thailand faeces from healthy 

human

2.2 Antibiotics, chemicals and regents

Colistin sulfate used in this study was obtained from Alfa Aesar, USA.

2.3 Growth medium

2.3.1 Urinary tract infection (UTI) agar (Sigma-Aldrich, USA)

Ingredients per litre

Peptic digest of animal tissue 18.0 g

Casein enzymic hydrolysate 4.0 g
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Beef extract 4.0 g

Chromogenic mixture 12.44 g 

Agar15.0 g

Final pH (at 25 ) 7.2+/-0.3

Suspend 55.4 g medium in 1 litre distilled water. Sterilize at 121 for 15minutes. 

Table 2.2 Cultural characteristics of UTI agar

Organisms (ATCC) Growth Colour of colony

E. coli (25922) +++ Pink-red

Proteus mirabilis (10975) +++ Light brown

K. pneumonia (13883) +++ Blue to purple (mucoid)

P. aeruginosa (27853) +++ colourless

S. aureus (25923) +++ Golden yellow

Enterococcus faecalis (29212) +++ Blue (small)

2.3.2 LB agar (Fisher Scientific, UK)

Ingredients per litre

Tryptone 10.0 g

Yeastn extract 5.0 g

Sodium Chloride 10.0 g

Agar 5.0 g

Suspend 40 g in 1 litre of purified water.
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2.3.3 LB broth (Fisher Scientific, UK)

Ingredients per litre

Tryptone 10.0 g

Yeastn extract 5.0 g

Sodium Chloride 5.0 g

Suspend 20 g powder in 1 litre of purified water.

2.3.4 BBL™ Mueller Hinton (MH) II broth (Cation-Adjusted) (BD Biosciences, USA)

Ingredients per litre

Beef extract 3.0 g

Acid hydrolysate of casein 17.5 g

Starch 1.5 g

Final pH 7.3+/-0.1

Suspend 22 g of the powder in 1 litre of purified water. Autoclave at 116-121 for 10 

minutes. 

2.3.5 Mueller Hinton (MH) II agar (BD Biosciences, USA)

Ingredients per litre

Beef extract 2.0 g

Acid hydrolysate of casein 17.5 g
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Starch 1.5 g

Agar 17.0 g

Final pH 7.3+/-0.1

Suspend 38 g of the powder in 1 litre of purified water. Autoclave at 121 for 15 

minutes. 

2.3.6 M9 medium (Sigma-Aldrich, UK)

Ingredients per litre

Ammonium chloride 1 g

Disodium hydrogen phosphate 6 g

Potassium dihydrogen phosphate 3 g

Sodium chloride 0.5 g

Final pH 7.4+/-0.2

2.4 Generation of HLCRMs

The optical density (OD) of overnight culture was adjusted to 0.08-1.0 at 600 nm, and 

bacterial sample was further diluted 20 X before being grown in MH broth with 0, 0.25, 

0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256 mg/L colistin overnight at 37 . After that the last well 

with bacterial growth and first well without growth were mixed together and incubated

for 6 hours at 37 . The OD600nm of mixture was adjusted to 0.08-1.0 and diluted for 20

more times before being grown with colistin. The same steps were repeated for 14 days



61 

to get HLCRMs. 

2.5 Minimum inhibitory concentration (MIC)

1) Preparation of antibiotic stock solution and dilution range 

Colistin was diluted serially with MH broth in 96-well plate with a final concentration 

from 128 mg/L to 0.25 mg/L (100 µL each well), the first row was left as a colistin zero

(TTaabbllee 22..33). 

2) Preparation of bacterial inoculum

OD of overnight culture was adjusted to 0.08-0.1 at 600nm, before further diluted to 1 in 

10 with MH broth. ATCC25922 was used as quality control.

3) Sample (100 µL each well) and antibiotic were mixed and grown for 16-20 hours at 

37 . 

4) After incubation， the concentration of colistin for the first row without bacterial 

growth was identified as MIC.
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Table 2.3 MIC template in 96-well plate for colistin

Colistin(mg/L)
0 0.25 0.5 1 2 4 8 16 32 64 128

Sample A
Clean 

LB

Sample A
Clean 

LB

Sample B
LB&

colistin

Sample B
LB&

colistin

Sample C
-

Sample C
-

Sample D
-

Sample D
-

2.6 Polymerase chain reaction (PCR)

PCR was carried out using illustra puReTaq Ready-To-Go PCR Beads (GE Healthcare Life 

Sciences, UK) in a final volume of 20 , also containing 1 µL DNA template, 1 µL loading 

dye, 0.5 µL forward primer(10-20 µmol), and 0.5 µL reverse primer(10-20 µmol) (TTaabbllee

22..44). Primers were purchased from Urofins Genomics, UK. Molecular water

(ThermoFisher Scientific, UK) was used to make up the final volume of 20 µL.

mcr-1 PCR was performed for 1 cycle at 94 for 5 minutes, then 30 cycles of sequential 

incubation for 30 seconds at 95 , 1 minute at 52 and 1 minute at 72 . To finish the 

reaction, an extension cycle at 72 for 10 minutes was taken.
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Table 2.4 Sequences of primers and probes used in this study

Primer/Probe Sequencing(5’-3’) Size (bp) Reference

mcr-1 F GCTACTGATCACCACGCTGT 953 (Yang et 

al., 2017)mcr-1 R TGGCAGCGACAAAGTCATCT 

mcr-1-qF TGGCGTTCAGCAGTCATTAT

mcr-1-qR AGCTTACCCACCGAGTAGAT

mcr-1 probe ROX-AGTTTCTTTCGCGTGCATAAGCCG- BHQ1

rpoB-qF TCCTTTCTATCCAGCTTGACTCGT 200

rpoB-qR CGCAGTTTAACGCGCAGCGG

rpoB probe HEX-ACGTCAGCTACCGCCTTGGCGAACCGGTGT

BHQ1

16S-qF CATTGA CGTTACCCGCAGAA 100

16S-qR CGCTTTACGCCCAGTAATTCC

16S probe FAM-CGTGCCAGCAGCCGCGGTA-TAMRA

2.7 Agarose gel electrophoresis

After the PCR reaction, the reaction mixture was loaded onto an agarose gel to size and 

fractionate the DNA fragment. Hi-Res Standard Agarose (Cambridge Reagents Ltd, UK)

was used at 1.5% in 1 X TBE buffer. Ethidium bromide was added to a final concentration 

of 0.1 µg/mL in the gel. A 1kB plus DNA ladder (Lambda PFG Ladder, New England 

Biolabs, UK) was used to ascertain the size of DNA fragments. Electrophoesis was done 
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at 300V for 30 minutes. DNA patterns were visualised and recorded by G:BOX Chemi XX6 

gel imaging system (Synoptics Ltd, UK).  

2.8 Stability of HLCRMs 

Stability of HLCRMs was detected by serial passaging in colistin-free medium. Overnight 

culture of HLCRMs was diluted by 1:500 into LB broth without colistin and was 

incubated for 18h at 37 at 220rpm. Same process was repeated for 14 days. To further 

measure the proportion of colistin resistant population, Overnight culture was diluted

serially and was inoculated on antibiotic-free agar plates as well as on agar plates with 

0.5 X MIC to colistin of respective HLCRMs. After 18-22h incubation at 37

colony-form units (CFU)/ml of colistin-resistant cells were counted.

2.9 Preparation for genomic DNA

Genomic DNA was extracted using QIAcube system (Qiagen, Germany), using QIAGEN 

spin-column kits (Qiagen, Germany)

2.10 Real time quantitative polymerase chain reaction (RT-qPCR)

2.10.1 Expression of mcr-1 

Expression of mcr-1 for both wild-type isolates and HLCRMs were detected by a 

two-step qRT-PCR using primers mcr-1-qF, mcr-1-qR (TTaabbllee 22..44) and mcr-1 probe with 

Precision 2x qPCR Mastermix (PrimerDesign, UK).
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1) Reverse Transcription: Total RNA was isolated using RNeasy Plus kit (Qiagen, 

Germany) with on column DNase digestion, followed by cDNA synthesis using

QuantiTect Reverse Transcription kit (Qiagen, Germany).

2) Real-Time PCR: PCR amplification was done in a 20 µL reaction volume for the 

96-well plates in the absence of reverse transcriptase, using a StepOnePlus System 

(Thermofisher Scientific, UK). rpoB expression level was used as positive control using 

primers rpoB-qF, rpoB-qR and rpoB probe (TTaabbllee 22..44). Relative expression results were

calculated by the comparative CT analysis method using average CT value.

2.10.2 mcr-1 copy number

mcr-1 copy numbers per cell was determined by qPCR amplification. PCR amplification 

was done in a 20 µl reaction volume for the 96-well plates, using a StepOnePlus System 

(Thermofisher Scientific, UK). 0.1 ng of total genomic DNA was used as template with 

primers (mcr-1 qF/qR, or 16S qF/qR) and probe (mcr-1 or 16S probe) (TTaabbllee 22..44). 

Standard curve for mcr-1 was obtained using as template serial dilutions of 

mcr-1-carrying plasmid DNA extracted from pSU18-mcr-1 strain (single copy of 

mcr-1per cell) (4.3 ng of DNA corresponding to 106 copies, calculated through the 

website: http://cels.uri.edu/gsc/cndna.html)(Yang et al., 2017). And that for 16S was

obtained using as template serial dilutions of mcr-1-carring plasmid DNA extracted from 

E. coli TOP10 (Invitrogen, UK) total genomic DNA (5 ng corresponding to 106 cells). The 

absolute copy number of mcr-1 in the E. coli total DNA samples was determined from the 

http://cels.uri.edu/gsc/cndna.html
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corresponding standard curves, using the CT values.

2.11 S1 pulsed-field gel electrophoresis (S1-PFGE)

S1-PFGE was performed according to the standard operating procedure and DNA 

restriction was under (Centers for Disease Control and Prevention, 

2013b; Toleman, 2018).

2.11.1 Buffers and reagents

1) TE buffer (10 mM Tris:1 mM EDTA, pH 8.0)

10 ml of 1 M Tris, pH 8.0 

2 ml of 0.5 M EDTA, pH 8.0 

To a total volume of 1000 ml with sterile ultrapure clinical laboratory reagent water 

(CLRW)

2) Cell suspension buffer (100 mM Tris:100 mM EDTA, pH 8.0)

100 ml of 1 M Tris, pH 8.0 

200 ml of 0.5 M EDTA, pH 8.0

To a total volume of 1000 ml with sterile ultrapure water (CLRW)

3) Cell lysis buffer (50 mM Tris:50 mM EDTA, pH 8.0 + 1% Sarcosyl) 

50 ml of 1 M Tris, pH 8.0 

100 ml of 0.5 M EDTA, pH 8.0

100 ml of 10% Sarcosyl (N-Lauroylsarcosine, Sodium salt) 

To a total volume of 1000 ml with sterile ultrapure water (CLRW)
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4) 10 X Tris-boric acid/EDTA (TBE) buffer

Tris base 108.0 g

Boric acid 55.0 g

0.5 M EDTA (pH 8.0) 20.0 mL

To a total volume of 1000 ml with sterile ultrapure water (CLRW)

5) 1/10 TE buffer (1 mM Tris-HCl, 0.1 mM EDTA, pH 8.0). 

5 mL of 1 X TE is diluted to 50 mL with sterile ultrapure water (CLRW) to produce 1/10

X TE buffer.

6) 1 X S1 buffer (30 mM sodium acetate pH 4.6, 1 mM ZnSo4, 5% glycerol). 

10 X S1 buffer is prepared as:

12.3 g of Sodium acetate

0.92 g Zinc acetate

200 mL sterile ultrapure water (CLRW)

250 mL of glycerol

Final pH 4.6

To a final volume of 500 mL with sterile ultrapure water (CLRW)

5 mL of 10 X S1 buffer is diluted to 50 mL with sterile ultrapure water (CLRW) to 

produce 1 X S1 buffer. 

*10 X S1 buffer needs to be stored at -20 .

7) 0.5 X TBE (45 mM Tris-HCl, 45 mM boric acid, 1 mM EDTA). 

100 mL of 10 X TBE is diluted to 2000 mL with sterile ultrapure water (CLRW) to 

produce 0.5 X TBE.
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2.11.2 Making plugs with SeaKem Gold (SKG) agarose (Lonza, Switzerland)

Bacterial colonies were inoculated into 2 ml cell suspension buffer (with a final 

concentration of OD 0.8-1.0 at 600nm). 400 µl cell suspensions were mixed with 400 µl 

melted 1% SKG agarose and 20 µl of Proteinase K (20 mg/ml stock), before dispensed 

into clean plug mold. 

2.11.3 Lysis of cells in agarose plugs

Plugs were transferred into 5 ml cell lysis buffer with 25 µl Proteinase K (20 mg/ml 

stock) and were incubated at 55 °C at 150-175 rpm for 1.5-2 hours. 

2.11.4 Washing of agarose plugs after cell lysis

After Incubation with cell lysis buffer, plugs were washed with 10-15 ml pre-heated 

sterile ultrapure water (CLRW) for two times, then with 10-15 ml pre-heated sterile TE

buffer for four times, shaking at 55°C for 10-15 minutes each wash. Plugs could be stored 

in TE buffer at 4 °C. 

2.11.5 Restriction digestion of DNA in agarose plugs

After washing, plugs were incubated in 300 µL 1/10 TE for 5 minutes at room 

temperature and then pre-restricted by 200 µL S1 buffer for 5 minutes at room 

temperature. Restriction was done by 200 µl S1 enzyme master mix (1 unit of S1 nuclease
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[Invitrogen, UK]) overnight at 4˚C. After restriction, plugs were treated with 200 µL 0.5 X 

TBE for 5 minutes at room temperature before loading into1% SKG agarose (melted with 

0.5 X TBE). Lambda PFG Ladder (NEB, UK) was used as marker.

2.11.7 Electrophoresis Condition

Gel was run on a CHEF-DR III apparatus (Bio-Rad, Hercules, CA, USA) under following 

conditions. 

Initial switch time: 4s 

Final switch time: 45s

Voltage: 6 V

Included Angle: 120°

Run time: 18 hours 

2.12 In gel hybridisation

After the electrophoresis, the gel was dried and then dealt with direct agarose gel 

probing (Toleman, 2018).

2.12.1 In gel hybridisation components

1) Denaturing solution (0.5 M NaOH, 1.5 M NaCl)

20 g NaOH 

87.66 g NaCl
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To a total volume of 1000 ml with sterile ultrapure water (CLRW)

2) Neutralising solution (0.5 M Tris-HCl, PH 7.5, 1.5 M NaCl)

60.5 g Tris base

87.6 g NaCl

Final pH7.5

To a total volume of 800 ml with sterile ultrapure water (CLRW)

3) Pre-hybridisation solution: 

(6 X SSC, 0.1%[W/V] ) polyvinylpyrrolidone

0.1% Ficoll, 

0.5% SDS

150 mg/L Herring testes DNA

1 mL full cream milk

To a total volume of 20 mL with sterile water (CLRW)

2.12.1 Pre- hybridisation

Once dried, the gel was re-hydrated in the following steps: 200 mL deionized DNase-free 

water for 5 minutes, 200 mL denaturing solution at room temperature for 45 minutes

and 200 mL neutralising solution for 45 minutes at room temperature. Then re-hydrated

gel was moved to a hybridisation tube and incubated with 20 mL pre-hybridisation 

solution at 65 °C for 24 hours.
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2.12.2 Probe preparation and hybridisation

mcr-1 probe was prepared by random priming labelling method using purified mcr-1 

positive PCR product (using QIAquick Gel Extraction Kit (Qiagen, Germany)) with

radio-active 32P dCTP (Stratgene, Amsterdam, Netherlands) as a label, according to 

. Once labelled, unincorporated 32P dCTP and unlabelled 

nucleotides were removed by a sephadex G50 gravity flow gel filtration column 

(illustraTM NickTM Columns Sephadex G-50 DNA grade, GE Healthcare Life Sciences, 

UK). Labelled probe was boiled for 6 minutes before added into pre-hybridised gel

overnight at 65 °C.

2.12.3 Film development

After hybridisation, gel was washed with 100 mL 2 X SSC, 0.1% SDS for one hour at 65 °C

before put into film cassette. Detection film used was Lumi-Film Chemiluminescent 

Detection film (Roche, Germany). Films were developed using standard film 

development and fixer solutions.

2.13 Growth rate 

To test the growth curve, 10 μL overnight culture was added into 10 mL LB broth and 

incubate at 37ºC at 220 rpm for 8 hours. OD value at 492 nm was measured every one hour.
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2.14 Competition assay by flow cytometry

Competition assay was tested for seven wild-type strains and seven HLCRMs using flow 

cytometry. Green fluorescent protein (GFP)-labelled DH5- was used as control. All 

competitions were carried out in M9 medium (Sigma-Aldrich, UK) with six replicates per 

strain/condition. Flow cytometry was performed on an Accuri C6 (BD Biosciences, UK).

Briefly, overnight culture was diluted by 1:400 for each wild-type strain, HLCRM and 

GFP-labelled DH5- around 1000 events per 1 in M9 broth. Each diluted sample 

strain was mixed with GFP-labelled DH5- , and 

incubated at 37 ºC at 220 rpm for 6 hours. The starting ratio between wild-type 

strains/HLCRMs and GFP-labelled DH5- was measured by flow cytometry. After 6 

the bacterial mixture was diluted by 1: 400, and the final ratio 

between sample strains and GFP-DH5- was measured by flow cytometry. Relative 

fitness was calculated between each wild-type strain/HLCRM and GFP-DH5- by 

formula below.

p0 stood for the initial proportion of an unlabelled stain, and p1 stood for the final 

proportion of an unlabelled stain after competition. ndilution was the factor that reflected

the fold difference in cell density at the beginning/end of the competition.
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The relative fitness of HLCRMs to their parental strains was further calculated by HLCRM/

parental for each repeat, and error propagation was used to account for the uncertainty.

2.15 Galleria mellonella pathogenicity model

Pathogenicity in vivo was examined in a Galleria model. G. mellonella caterpillars (Live 

Foods UK Ltd., http://www.livefood.co.uk) were stored in the dark and were used within 

7 days from shipment.

1) 10 mL overnight culture was centrifuged at 4000-6000 rpm for 10 minutes and 

bacterial pellet were washed with 5mL sterile normal saline twice.

2) Washed bacterial pellet were standardised in suspensions with sterile normal saline 

equating to 1x109, 108, 107, 106 and 105 CFU/ml.

3) 10 healthy G. mellonella larvae with similar size (15-20 mm) and weight 

(approximately 0.2 g) were manually selected for each level of inoculation in triplicate.

Each group of larvae were placed into a sterile 10 x 10 mm Petri dish.

4) Selected larvae were injected with 10 of suspension into the hemocoel using a 

Hamilton Syringe, through the rear left pro-leg, and were incubated at 37 ºC for 72 

hours. 

5) The amount of died and alive worms was checked every 24 hours. Death was denoted

when larvae no longer respond to touch and exhibit grey/dark pigmentation.

6) Data were analysed by Kaplan-Meier survival curves using GraphPad Prism 7.0.

http://www.livefood.co.uk/
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2.16 DNA sequencing

2.16.1 Illumina WGS and bioinformatics analysis

Whole genome sequencing (WGS) was carried out on the HLCRM isolates using the Illumina 

MiSeq platform (Illumina Inc., CA). Briefly, gDNA was extracted from an overnight culture 

(2 ml) using the QIAcube automated system (Qiagen, Germany), and resulting gDNA were 

quantified using the Qubit 3.0, using the dsDNA high sensitivity assay (Thermos Fisher 

Scientific), with quality ratios of gDNA (A260/280 and 260/230) determined via Nanodrop 

(ThermoFisher Scientific). DNA libraries were prepared for paired-end sequencing (2 x 301 

cycles) using Nextera XT (Illumina). Quality control (QC) of raw sequence reads included 

fastqc (0.11.2), and quality and adaptor trimming were performed using Trim galore (0.4.3). 

For each E. coli isolate, at least 80 X coverage was generated. Reads were assembled in 

contigs using the de novo assembler SPAdes (3.9.0) (.fasta) and were aligned to the original 

fastq reads using BWA aligner (0.7.15). Any assembly mapping errors in the contigs was 

corrected, using Pilon (1.22). Assembly metrics were evaluated using Quast (2.1). MLST loci

(by MLST 2.0), acquired resistance genes (by ResFinder 3.1, with minimum 90% identity and 

80% coverage), and plasmid replicons (by PlasmidFinder-2.0, using Enterobacteriaceae 

database with minimum 95% identity and 80% query coverage) were retrieved from the 

online databases (CGE platform: https://cge.cbs.dtu.dk/services/). 

https://cge.cbs.dtu.dk/services/
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2.16.2 Nanopore sequencing and bioinformatics analysis

High-molecular weight gDNA was extracted from the HLCRM following a 

chloroform-precipitation method. The total gDNA was quantified following a serial dilution 

using the Qubit 3.0 and the quality was assessed following the metrics as described above. 

Sequencing libraries were prepared using the Rapid Barcoding Kit (SQK-RBK004) following 

manufacturers’ instructions. Following a QC check of the Nanopore flowcell (R9.4) just 

before use, over 1, 200 active pores were detected. The flowcell was primed according to the 

manufactures guidelines, and the library was gently mixed using a pipette tip, and loaded onto 

the Nanopore flowcell (R9.4). WGS was performed for 48 hours using a MinION and 

associated MinKNOW software. Raw fastq sequences were concatenated and the HLCRM 

were de-barcoded using Porechop. Unicycler (Wick, Judd, Gorrie, & Holt, 2017) was used to 

create a hybrid assembly with a combination of MiSeq short reads and MinION (Oxford 

Nanopore) long reads. The resulting hybrid assembly was visualised using Bandage to 

confirm complete genome assembly of the chromosome and plasmids.

Single nucleotide polymorphisms (SNPs) between wild-type strains and corresponding 

HLCRMs were analysed using Geneious 10.2.6. The circular comparisons among 

mcr-1-related IncX4 and IncI2 plasmid backgrounds were performed using BLAST Ring 

Image Generator (BRIG v0.95). 

2.17 Bacterial morphology by transmission electron microscopy (TEM)

Briefly, overnight culture was diluted into 50 ml fresh LB media with 2 mg/L colistin. 

After an 8-hour incubation, glutaraldehyde was added to the sample with a final 
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concenreation of 1%. Sample was fixed in 4% low melting point agarose, dehydrated 

through graded propan-2-ol, and infiltrated and embedded through LR white acrylic 

resin (London Resin Company, UK). After embedding, sections of 80 nm thickness were 

cut on an Ultracut E. ultramicrotome with a glass knife and collected on mesh copper 

grids and strained by lead citrate before observation with a Philip CM12 TEM (FEI UK 

Ltd, UK) at 80 kv. Images were captured by a Megaview III digital camera and AnalySIS 

(Soft Imaging System GmbH, Germany).
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Chapter 3: Results
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3.1 Identification of mcr-1 positive strains and acquisition of HLCRMs

3.1.1 Bacteria strains and susceptibility testing.

The aim of this study is to acquire high colistin resistant mutants (HLCRMs) and to examine the 

fitness cost of mcr-1 to the host bacterium. For this purpose, seven mcr-1 positive wild-type E. 

coli strains from different origins (PN16 from chicken meat, PN21 from chicken faeces, PN23, 

PN24, PN25 from duck faeces and PN42, PN43 from human faeces) from Phitsanulok, 

Thailand were selected for this study. 

3.1.2 Generation of high-level colistin resistant mutants (HLCRMs)

MICs were performed by broth micro-dilution for each strain and colistin MICs ranged from 4 

to 8 mg/L – all demonstrating low-level resistance to colistin (Liu et al., 2016). This data is 

consistent with previous studies that report colistin MICs with mcr-1 positive E. coli strains 

range from 4-16 mg/L (Liu et al., 2016; Rhouma, Beaudry, Theriault, & Letellier, 2016). To 

produce HLCRMs, wild-type isolates were treated with increasing concentrations of colistin in 

continuous culture for 14 days. A portion of the population was removed each day and colistin 

MICs were determined by broth micro-dilution. E. coli ATCC 25922 was used as a QC strain. 

After 14-days of passaging, all isolates demonstrated an increase in colistin MIC (Table 3.1 and 

Figure 3.1). The highest increase was seen in PN43 with a 64-fold increase in colistin MIC to 

256 mg/L. The colistin MIC against PN23 HLCRM also reached 256 mg/L, followed by PN16, 
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PN21 and PN25 at 128 mg/L. Whilst PN24 and PN42 showed only a 4- and 8-fold increase to 

16 mg/L and 32 mg/L, respectively. Throughout the passaging, the E. coli were stored daily at 

-80 ºC until further required. However, the Day14 mutant for PN16 was too weak to grow from 

-80 ºC, and therefore the Day13 mutant was used as the end-point HLCRM for PN16. 

Table 3.1 MICs of colistin against wild-type strains for 14-day passaging

MIC of colistin (mg/L)

Day PN16 PN21 PN23 PN24 PN25 PN42 PN43

1 8 4 8 4 8 4 4

2 8 8 8 4 8 8 4

3 8 8 8 4 8 8 4

4 8 8 16 4 8 8 8

5 16 8 16 4 8 8 8

6 32 8 32 8 16 16 16

7 16 16 32 8 16 16 16

8 16 16 32 8 32 32 16

9 16 32 128 16 32 32 32

10 16 32 128 16 32 32 64

11 16 64 128 16 64 32 128

12 16 64 128 16 64 32 128

13 32 64 128 16 64 32 256

14 128 128 256 16 128 32 256
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Figure 3.1 Generation of HLCRMs over a passaging period of 14 days. Seven wild-type 

MCRPEC were treated with increasing concentration of colistin for 14 days. 

qRT-PCR was performed for mcr-1 to examine whether the increase in colistin resistance is 

associated with mcr-1 expression. Results indicated that the expression of mcr-1 in 6 mutants 

increased compared to their respective parental strains. HLCRMs of PN21 and PN25 showed 

the highest increase in mcr-1 expression with 11- and 3- fold, respectively. HLCRMs of PN16, 

PN23, PN24 and PN43 displayed a 1.2- to 1.9-fold change compared to their respective parent 

strains. However, the MCR-1 expression level of HLCRM PN42 showed no discernible 

increase in expression but a slight decrease (Figure 3.2 A).

Furthermore, mcr-1 copy number was also examined in the HLCRMs by qRT-PCR. The copy 

number for wild-type isolates ranged from 1 (chromosomal copy for PN43) to 5.6 (PN23). 

Increase in the mcr-1 copy number was seen in PN16, PN21 and PN25 mutants (Table 3.2 and 
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Figure 3.2 B). 

Table 3.2 mcr-1 copy number per cell comparing Day0 (parent) and Day14 (HLCRM)

(mcr-1 copies/cell)

Strain PN16 PN21 PN23 PN24 PN25 PN42 PN43

Day0 3.1 2.1 5.6 4.3 1.8 3.2 1

Day14 3.6 3.8 3.5 2.1 3.3 1.5 1
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Figure 3.2 A. mcr-1 expression represented as fold-change comparing Day14 to Day0.

Relative changes of mcr-1 expression (Day14 compared to Day0) were calculated using

∆∆CT analysis method by mean CT value (n=2).

B. mcr-1 copy number expressed as fold-change comparing Day14 to Day0. Fold changes 

in mcr-1 copy number were obtained by comparing each Day14 and Day0 strains.
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3.1.3 Stability of HLCRMs

Stability experiments were undertaken for each HLCRM to examine their ability to maintain 

higher levels of resistance to colistin. This was achieved by passaging in LB broth without 

colistin over a period of 14 days and numerating the HLCRMs (CFU/ml) on Müller-Hinton 

agar plate with 16, 32, 64, 128 mg/L colistin and without colistin.

Difference in CFU/ml for each day was demonstrated in log phase (Figure 3.3). For three of the 

HLCRMs (PN24, PN25 and PN42) the CFU/ml (overall bacterial population) remained at the 

same level after 14 days passaging without colistin, indicating that their HLCRMs were highly

stable. The other strains showed a varying decrease in CFU/ml after 14 days, especially for 

PN43 where the CFU/ml dropped gradually but continuously and after ten days, no growth on 

at 128 mg/L colistin could be detected. HLCRMs PN16, PN21 and PN23 also showed 

significant decrease in their HLCRM populations over 14 days, indicating that their respective 

HLCRMs are not particularly stable. 

Colistin MICs were performed on strains isolated during the 14-day passaging without colistin 

The MICs were generally kept consistent with CFU/ml levels except for PN21 and PN43. 

Interestingly, even though the CFU/ml for strains PN21 and PN43 decreased to a very low-level 

after 14 days, their MICs were kept at 128 mg/L and 256 mg/L, respectively (Table 3.3).  
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Figure 3.3 Stability of HLCRMs after 14-day passaging without colistin. CFU/ml was 

grown on media with/without colistin, ratio of CFU/ml with/without colistin was calculated.

Table 3.3 MICs of wild-type strains, high level mutants and stability strains

MIC of colistin (mg/L)

Wild-type HLCRM(Day14) Stability

8 32(Day13) 8

PN21 4 128 128

PN23 8 256 64

PN24 4 16 16

PN25 8 128 64

PN42 4 32 32

PN43 4 256 256
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3.1.4 Location of mcr-1 comparing Day 0 parent isolates and HLCRMS (Day 14)

To locate the mcr-1 gene, S1-PFGE and southern blot were undertaken and analysed (Figure 

3.4). Results showed that except for PN43, all mcr-1 genes were located on different size of 

plasmids. No obvious plasmid size change was found between original wild-type isolates and 

respective mutants. The mcr-1 gene of PN43 is located on chromosome, which is very unusual

although has been previously reported (Falgenhauer, Waezsada, Gwozdzinski, et al., 2016).

Figure 3.4 S1-PFGE analysis of wild-type isolates and their corresponding Day14 

HLCRMs. In-gel hybridization with 32P-labelled mcr-1 gene probe after PFGE of nuclease S1 

digested genomic DNA.
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3.1.5 Whole genome sequencing (WGS) analysis

WGS was proposed on each wild-type isolate and HLCRM using Illumina. In addition, five 

HLCRMs (of PN16, PN24, PN25, PN42, PN43) were also sequenced by nanopore long reads 

and were corrected by Miseq short reads. 

The mcr-1 gene from these isolates were located on an Incl2 plasmid (PN16 and PN21) and 

IncX4 plasmid (PN23, PN24, PN25 and PN42), respectively. Unusually, mcr-1 for strain PN43 

was located on the chromosome. In addition to mcr-1, these isolates also harboured other 

resistance genes (see appendix section). The isolates were examined for different sequence 

types (MLSTs) and identified the following MLST groups: ST-2040, ST24*, ST-1121, ST-7986, 

ST-101, ST-744, and ST-410. I also determined the mcr-1 copy number by qPCR and found the 

plasmid number to be ranging from 1 to 5.6 copies per cell. 

In addition to PN43, the mcr-1 harbouring plasmids of the six wild-type E. coli isolates

belonged to IncI2 and IncX4 plasmid types, with sizes of ~60 kb and ~35-40 kb (Table 3.4), 

respectively. The GC content of all plasmids was approx. 42%, typical of plasmids associated 

with Enterobacteriaceae. Genetic structure of both plasmids were demonstrated in Figure 3.5 A, 

B. Similar with previous studies, the insertion sequence, ISApl1, was detected upstream of 

mcr-1 in the IncI2 plasmid in PN16 and PN21 (Figure 3.5 C) (Liu et al., 2016). However, no 

insertion sequence was found in front of the mcr-1 gene in the IncX4-type plasmids (Gao et al.,

2016). mcr-1 in PN43 is chromosomally located, and is flanked upstream by ISApl1 and 

adjacent to IS1294 in the downstream (Figure 3.5 C). ISApl1 is always flanked at either or 
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both side of mcr-1, and it has been reported that mcr-1 is frequently transferred with ISApl1

composite transposon (Poirel, Kieffer, & Nordmann, 2017; Snesrud et al., 2016). IS1294 is an

IS91-like element, a rolling-cycle transposon (Tavakoli et al., 2000), which suggests that 

IS1294 plays an important role in recombination of mcr-1 segment.

Table 3.4 Characteristics of mcr-1 positive strains

No. MLST mcr-1 location Plasmid**
(type/size)

phylogenetic 
group

PN16 ST-2040 plasmid
IncI2

57,820 bp
A

PN21 Unknown
(ST-24*) plasmid

IncI2
~ 60,989 bp

D

PN23 ST-1121 plasmid
IncX4

~ 33,858bp
D

PN24 ST-7986 plasmid
IncX4

35,075 bp
D

PN25 ST-101 plasmid
IncX4

40,590 bp
D

PN42 ST-744 plasmid
IncX4

39,141 bp
A

PN43 ST-410 chromosome NA B2

*Sequence type for PN21 was determined using E. coli#2 configuration (Jaureguy et al.,

2008) .Other strains were identified following E. coli#1 configuration (Wirth et al., 2006). 

**The plasmid size of PN21 and PN23 were estimated depend on illumina sequencing data. 

Others were on the basis of MinION long reads sequencing data.
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C

Figure 3.5 Genetic contexts on plasmids and chromosome in E. coli. A. Genetic structure of 

plasmid from PN16, PN21; B. Genetic structure of PN23, PN24, PN25 and PN42; C. Genetic 

environment of mcr-1 on IncI2, IncX4 plasmids and chromosome. Arrows stand for open 

reading frame (ORFs) and the orientation of transcription. hp: hypothesis protein.

Sequencing analyses comparing the HLCRMs and their respective parental strains, showed no 

mutations in the mcr-1 structural gene resulting in amino acid substitutions for MCR-1 and no 

other non-codon (silent) changes. The immediate genetic context of mcr-1 in each of the 

isogenic sets was also analysed and no mutations in either the promoter or the broader adjacent 

genetic environment could be determined. Interestingly, point mutations were found in PN25 

and PN42 in pmrA and pmrB genes, respectively. The genes pmrB and pmrA encode a 

two-component system (TCS) which is associated with chromosomally encoded colistin 

resistance although colistin resistance in E. coli through pmrB and pmrA changes are 
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considerably less frequent than in Klebsiella and Pseudomonas (S. Sun et al., 2009). In PN25, 

the point mutation in pmrA results in the amino acid substitution R81S. This same substitution 

was previously reported in E. coli and has been inferred as a conserved position in the protein 

resulting in a raised colistin resistance (Alberto Quesada et al., 2014). In PN42, a single 

nucleotide mutation in pmrB resulted in the substitution V161M. Similar substitution (V161G) 

was reported in E. coli previously and gave colistin MIC of 4 mg/L (Alberto Quesada et al.,

2014). Song Sun and colleagues found that the pmrB V161M substitution is associated with 

colistin resistance in S. enterica Serovar Typhimurium and resulted in 32-fold increase in 

colistin MICs (from 0.125 mg/L to 4 mg/L) (S. Sun et al., 2009). However, these changes in E. 

coli are particularly rare (Alberto Quesada et al., 2014).

Further sequencing analysis on single nucleotide polymorphisms (SNP) between HLCRMs and 

parental strains are ongoing. All SNPs recognised detected so far were listed in appendix.

Interestingly, in PN25 HLCRM, except for the mutation in pmrA, several point mutations on 

rfaY gene (or waaY) resulted in amino acid substitutions T183Q, T184P, A185L, V186F, 

L187STOP were detected in HLCRM compared to its wild-type parental strain. rfaY gene is 

associated with the completion of the core region of bacterial lipopolysaccharide (LPS) and the 

attachment of O-antigen (Klena, Pradel, & Schnaitman, 1992; Z. Wang, Wang, Ren, Li, & 

Wang, 2015). However, no proof was found that mutation on rfaY gene was related to colistin 

resistance. Thus further experiments such as mutation detection in rfaY and pmrA genes, and 

mcr-1 plasmid knockout are needed to understand the effect of rfaY gene on colistin resistance

and the main cause of high MIC (128 mg/L) in PN25 HLCRM.
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3.1.6 Discussion 

In this study, samples from a variety of resources including human and animal and collected 

from Northern Thailand where colistin resistance in E. coli is becoming a national crisis (A. O. 

Olaitan et al., 2016; Srijan et al., 2018). Further analysis of additional isolates from Thailand 

(Uttapoln, personal communication) support my original findings and confirm that that mcr-1 

gene is widely disseminated in animals, humans and the environment in northern Thailand. 

Similarly, to previous studies, many mcr-1 positive strains also harbour other resistance genes 

(Schwarz & Johnson, 2016). For example, all of my isolates except for PN23, contained 

blaCTX-M or/and blaTEM. CTX-M enzymes, which belong to extended-spectrum ß-lactamases 

(ESBLs), contribute to bacterial resistance to third generation cephalosporins, such as 

cefotaxime and ceftazidime (see appendix) – both commonly used to treat severe hospital 

infections throughout Southeast Asia (Lestari, Severin, & Verbrugh, 2012; Suwantarat & 

Carroll, 2016). As colistin is now recognised as a last resort antibiotic for infections caused by 

MDR Gram-negative bacteria, the co-existence of mcr-1 and ESBL genes may reduce 

treatment options for MDR Gram-negative pathogens such as E. coli (Schwarz & Johnson, 

2016). Moreover, we found that mcr-1 positive isolates belonged to the global sequence types 

commonly associated with additional resistance mechanism such as KPC, OXA, NDM and 

rmtC/D (Table 3.4) (Deng et al., 2015; Falgenhauer, Waezsada, Gwozdzinski, et al., 2016; 

Hansen et al., 2016; Kim et al., 2017; Mavroidi et al., 2012; Mushtaq et al., 2011). 

Consequently, pan-drug resistance (PDR) in these MLST groups could potentially rapidly 

develop. 
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According to the S1-PFGE results, the size of mcr-1 plasmids did not show noticeable changes

(Figure 3.4). Combined with the analysis of WGS results, that no mutations were found in the 

contigs covering the mcr-1 gene, their promoters or adjacent regions between Day0 and 

HLCRMs, these observations may indicate that the mcr-1 gene and its immediate genetic 

context is very stable.

Although all of the seven isolates were mcr-1 positive, as they were disparate wild-type strains 

with complicated genetic backgrounds, the differences in the generation of HLCRMs is, 

understandably, also likely to be different. In two of the HLCRMs, PN21 and PN25, mutants 

showed a 11- and 3-fold increase in mcr-1 expression. No considerable increase in 

mcr-1expression or mcr-1 copy number was detected in the other HLCRMs. Interestingly, In 

PN25 and PN42, amino acid mutation in PmrA/B was detected in their respective HLCRMs. 

PN25 had R81-S substitution in PmrA, while PN42 had V161M in PmrB, and both mutations

have been previously reported in E.coli and S. enterica (Alberto Quesada et al., 2014; S. Sun et 

al., 2009). R81 is in the phosphate acceptor domain of PmrA, the mutation leads to a totally 

conserved position of the protein, and V161 is in kinase domain of PmrB. Both substitutions 

may influence the phosphate transfer resulting in colistin resistance in E. coli (S. Sun et al.,

2009). However, for strains PN16, PN23, PN24 as well as PN43, the exact mechanism of 

increase of colistin resistance hasn’t been elucidated. Combined with the results for the stability 

experiment, these data suggest the initiation of mechanisms for temporary acquisition of high 

colistin resistance (except for PN16 and PN24 HLCRMs with low MICs of 16-32 mg/L).
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3.2 Reduction in bacterial fitness and virulence of HLCRMs

3.2.1 Growth rate 

After the 14-day passaging, all mutants showed an increase in colistin resistance, some were 

particularly high with colistin MICs up to 256 mg/L. To examine whether this high resistance to 

colistin had an effect on bacterial physiology, a series of growth experiments were undertaken 

on both mutants and the original wild-type strains.  

To examine the growth of the original strains and respective mutants, growth curves of Day0, 

Day3, Day7, Day11 and Day14 for each strain were evaluated in triplicate by testing the OD 

value at 492 nm for 8 hours. For PN16, the Day14 mutant was too weak to recover from -80ºC; 

and therefore, the Day13 HLCRM was chosen as its respective ―end-point‖ mutant. As shown 

in Figure 3.6, all the Day14 mutants (except for PN16) demonstrated a significant lower rate of 

growth compared with their respective wild-type isolates. After 8 hours, the OD value of 

HLCRMs was less than half of wild-type isolates (p < 0.001).

Although all of the isolates showed an overall gradual decrease in growth rate, the rate varied 

between each HLCRMs (shown in Figure 3.6). For example, PN23 and PN43 HLCRMs 

showed a gradually lower rate of growth over time compared with their parental strains. For 

PN21 and PN25, the growth rate dropped on Day11, while no significant decrease was found in 

bacterial growth of PN16 or its corresponding HLCRMs. PN42 showed an interesting rate in 

growth - on Day3 it dropped; however, on Day7 it recovered and then dropped again on Day11.
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Figure 3.6 Growth rate collected at OD492nm in 8 hours. A-G. Growth rates for wild-type 

(Day0) isolates as well as Day3, 7, 11, 14 mutants for each strain were examined in 

colistin-free medium for 8 hours. The mean values in triplicate were shown. Error bars 

represented the SD. *PN16 Day14 mutant was unable to grow, so Day13 mutant was used for 

tests.
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3.2.2 Competition assay

in vitro fitness cost was further evaluated by competition assay between wild-type strains and 

HLCRMs. E. coli DH5-α labelled by GFP was used as a control. Both wild-type isolates and 

mutants were mixed with GFP-labelled DH5α at approximately 50:50 and were incubated at 

37ºC at 220rpm for 6 hours. The exact ratio at starting and ending points was measured by flow 

cytometry (Figure 3.7, statistical analysis is presented in Table 3.5). Relative fitness was 

calculated by relative ratio between each wild-type strain and HLCRM. Statistical analysis was 

performed using a paired t-test. *= (p < 0.05), **= (p < 0.01), ***= (p < 0.001). 

Except for PN16, all HLCRMs were associated with a significant fitness cost compared with 

their respective wild-type strains. After 6 hours’ incubation, the HLCRMs of PN21, PN23, 

PN24, PN25 and PN42, showed relative fitness of 0.4-0.6 (p =**) to their respective parental 

strain. HLCRM PN43 possessed a relative fitness of 0.78 (p =**) to its respective parent strain, 

yet HLCRM PN16 had a fitness rate similar to its original wild-type strain (with a relative 

fitness of 0.94, p > 0.05). Interestingly, PN21 and PN23 mutants, which showed 11- and 3-fold 

increase in mcr-1 expression level, were associated with the highest fitness cost (relative fitness 

0.41, p =**).
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Figure 3.7 Relative fitness of each HLCRM and wild-type strain. Relative fitness was 

calculated by relative ratio between each wild-type strain and HLCRM. Means of 6 repeats

were shown. Error bars represented SD.

Table 3.5 Statistic analysis of relative fitness

Relative 

fitness

repeats mean SD propagated 

errors

p-value

PN16-D13 6 0.9380 0.0809 0.0875 0.132

PN21-D14 6 0.4114 0.0293 0.0816 0.0022**

PN23-D14 6 0.4083 0.0385 0.1404 0.0022**

PN24-D14 6 0.4382 0.0133 0.0445 0.0022**

PN25-D14 6 0.6047 0.0557 0.1196 0.0022**

PN42-D14 6 0.5169 0.0309 0.0650 0.0022**

PN43-D14 6 0.7779 0.0534 0.1003 0.0022**
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3.2.3 Galleria pathogenicity model

To test the potential decrease of pathogenic potential following generation of HLCRMs, G. 

mellonella were infected with both HLCRMs and their corresponding parental strains. Larvae 

of the wax moth (G. mellonella) are used as a reliable model to measure the pathogenesis of 

several pathogens including E. coli (Jønsson, Struve, Jenssen, & Krogfelt, 2016). Larvae were 

infected with 103 to 107 CFU/ml bacteria and were grown in 37°C for 72h. Death of Galleria 

was checked every 24 hours and survival rates for each strain are shown in Figure 3.9.  

In every case, the wild-type isolates had a higher killing rate than their respective HLCRMs 

(Figure 3.8). Comparing the Galleria killing rate for Day 14 with Day 0; HLCRMs of PN16, 

PN21 and PN23 showed a significantly reduced ability to kill larvae compared to their parent 

strains which is indicative of lower pathogenicity/virulence (pPN16=0.0056**, 

pPN21=0.0029**, pPN23=0.0003***). For strains HLCRM PN42 and PN43, although 

decrease of larvae killing was observed between Day 0 and Day 14, it was not statistically 

significant (p > 0.05). 
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Figure 3.8 Killing of Galleria by HLCRMs and their respective E. coli parental isolates 

expressed as mortality fractions. Mortality of larvae after being injected bacteria for 72 

hours. Ten larvae were tested in each treatment and means of 3 independent repeats were 

shown with SD. Statistical significance was calculated by t-test. *= (p < 0.05), **= (p < 0.01), 

***= (p < 0.001). Concentration of bacteria injected: PN16, PN23, PN24, PN42 and PN43 and 

their corresponding mutants, 10^7 CFU/mL; PN21 and PN25 and their mutants, 10^6 

CFU/mL.

Furthermore, to better understand the trend of decrease in virulence, mutants of Day3, Day7 

and Day11 were also chosen to infect Galleria (Figure 3.9). Generally, the ability of killing 

larvae reduced by time of passage; for example, for HLCRM PN21 the survival rate of Galleria 

increased from 0 to 0.9 by Day0, Day3, Day7, Day11 and Day14. Similar trends were detected 

in strains PN16, PN23, PN24, and PN25. Thus, the HLCRMs show reduced ability to kill larvae 

which is indicative of lower virulence. 
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Figure 3.9 Galleria survival rate for original strain and their respective mutants. A-G.

demonstrated the percentage of G. mellonella survival (n=30) for 72 hours after being treated 

with wild-type (Day0) strains, as well as Day3, 7, 11 and 14 mutants. 



100 

3.2.4 TEM on parent and HLCRM E. coli

Since HLCRM of PN21 showed the highest increase of mcr-1 expression level (-11 fold 

increase), to further understand the effect of mcr-1 expression on LPS and cell outer-membrane, 

transmission electron microscopy (TEM) was undertaken on PN21 and its respective mutant to 

examine the bacterial morphology. However, as shown in Figure 3.10, no significant difference 

was observed at the cell outer-membrane between PN21 and its respective HLCRM. Moreover, 

no obvious cellular degradation of membrane was observed in HLCRMs. Both parental strains 

and HLCRMs possessed an integrated membrane with highly uniform electron density in the 

cytoplasmic region typical of normal cellular structure.
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A. PN21

B. PN21-HLCRM

Figure 3.10 Cell morphology of bacterial outer-membrane for PN21 and its HLCRM.
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3.2.5 Discussion

In section 3.1, HLCRMs were acquired after in vitro development at colistin resistance. All of 

the HLCRMs showed higher resistance to colistin than their respective wild-type strains, some 

of which possessed very high levels of resistance to colistin (MIC of 256 mg/L). In this section, 

a series of experiments were undertaken to measure the fitness and virulence of wild-type 

strains (Day 0) and their respective HLCRMs. For growth rates and Galleria models, Day3, 

Day7, Day11 mutants were chosen to examine their trend in fitness and virulence. 

In E. coli, mcr-1 is the main factor that leads to colistin resistance (Shen et al., 2016). According 

to a previous report, the acquisition of mcr-1 plasmids is not associated with a considerable 

fitness cost (Y. Zhang et al., 2017). It can also be hypothesized that the global increase in 

colistin use, as well as the lack of fitness cost for acquisition of mcr-1, may lead to the outbreak 

of high-level colistin resistance in E. coli and the rapid spread throughout the world (Shen et al.,

2016; Zhou et al., 2018). However, due to the fact that mcr-1 always mediates low resistance to 

colistin in E. coli (Liu et al., 2016), studying the effect of high colistin resistant E. coli in 

bacterial fitness is helpful to better understand the relationship of mcr-1 and its host, and to 

predict future trends of mcr-1 mediated resistance in clinical and agricultural sectors. 

There results show that most HLCRMs possess a significant loss in fitness. Compared with 

parental strains, HLCRMs (except for PN16) showed slower growth in colistin free medium. 

Data from competition assays further support that HLCRMs are less competitive than their 

wild-type isolates (relative fitness 0.41-0.78, p=0.002**). The high fitness cost of HLCRMs 
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may limit the spread of E. coli with high colistin resistance in clinical and agricultural 

environments, and could explain the fact that mcr-1 is often associated with a low level of 

resistance to colistin (Liu et al., 2016).  Loss of in vitro fitness cost was observed in the PN16 

mutant – the Day13 mutant was used because of the lack of viability of the Day14 mutant from 

-80°C and had a relatively low resistance (MIC 32mg/L) compared with other HLCRMs. 

The fact that HLCRMs are associated with reduction in fitness has been reported by our recent 

study in Nature Communications, where E. coli Top10, Top10 (pBAD) and Top10 

(mcr-1/pBAD without L-arabinose induction) were passaged with colistin in the same way as 

the 7 wild-type strains in this study (Yang et al., 2017). After 14 days, the colistin MIC of 

TOP10 (mcr-1/pBAD) HLCRMs increased from 0.5 mg/L to 32 mg/L, while TOP10 and 

TOP10 (pBAD) stayed susceptible（with MICs to colistin of 0.5 mg/L). The TOP10 

(mcr-1/pBAD) mutant was correlated with a decrease in fitness compared with E. coli TOP10 

and TOP10 (pBAD) (Yang et al., 2017). These data indicate that HLCRM can be generated 

from laboratory-based isolates after acquisition of mcr-1, and in most cases, this comes with a 

price of lower bacterial fitness (Yang et al., 2017).

Furthermore, a decrease in virulence by the HLCRMs determined in vivo Galleria models 

further supports this idea. In every case, survival rates of Galleria after being challenged with 

HLCRMs was higher than their respective wild-type parental strains, even for PN16. However, 

the decrease in PN24, PN25, PN42 and PN43 were insignificant (p > 0.05). Interestingly, 

PN24 and PN25 were assigned phylogenetic group D, PN43 was identified in group B2. E. coli 

strains can be mainly assigned into four phylogenetic groups: A, B1, B2, and D, and virulent 
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strains mainly belong to groups B2 and D, as these groups are normally associated with more 

virulence properties such as biofilm production and hemolysin secretion (Chakraborty et al.,

2015; Soto et al., 2007). The virulent phylotypes may have an influence on the insignificant 

decrease of virulence in PN24, PN25, PN43 HLCRMs as these strains belong to more virulent 

groups. In PN42, the mutant in Day 14 showed higher mortality of larvae compared to Day 3, 7 

and 11 mutants (Figure 3.9 F), which may indicate a ―recovery‖ in virulence in Day14 

HLCRM. However, the mechanism of this increase in virulence remains unclear. 

Colistin resistance by chromosomal mutation is often associated with fitness cost and decrease 

in virulence in species, especially in A. baumannii (Beceiro et al., 2014; Da Silva & Domingues, 

2017). There are two mechanisms leading to colistin resistance in A. baumannii, one is by 

mutations in PmrA/B TCS that modifies LPS resulting in less affinity to colistin and hence 

resistance (Adams et al., 2009), and the other is by mutations in lpx genes resulting in 

completely loss of LPS (Moffatt et al., 2010). Both MCR-1 and mutations in PmrA/B (in A. 

baumannii) lead to resistance to colistin by the addition of phosphoethanolamine (PEA/ pEtN) 

to lipid A (Baron, Hadjadj, Rolain, & Olaitan, 2016; Gao et al., 2016). Induced colistin resistant 

A. baumannii is often associated with a decrease in fitness and virulence (Da Silva & 

Domingues, 2017). López-Rojas et al. measured the fitness and virulence on ATCC19606 and 

colistin resistant mutant RC64. RC64 showed a 32-fold increase to 64 mg/L in MIC compared 

with ATCC19606 (López-Rojas et al., 2011). The resistant mutant showed reduced fitness 

(with competition index of 0.016) and decreased virulence with a higher lethal dose (6.9 log 

colony-forming units vs. 4.9 log units of ATCC19606) (López-Rojas et al., 2011). Beceiro et al. 
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compared the fitness and virulence ATCC19606 and its laboratory-selected mutant (prmB

mutation). The colistin-resistant mutant showed lower in vitro growth (competition index of 

0.35), and a slight decrease in virulence with a higher reduction in C. elegans brood size

(Beceiro et al., 2014). However, in the clinical sector, the situation is more complicated since 

resistant bacteria from clinical settings normally have an undefined genetic basis for resistance 

and fitness ( Andersson, 2006; Holmes et al., 2016). Loss of a fitness cost in colistin resistant 

bacteria has been reported (Da Silva & Domingues, 2017). For example, Durante-Mangoni et 

al., collected both colistin susceptible and resistant A. baumannii during a long-term colistin 

therapy from an immunocompromised patient (Durante-Mangoni et al., 2015). The lack of 

fitness cost and decrease in virulence were associated with colistin resistance due to P233S 

mutation in PmrB (Durante-Mangoni et al., 2015). So far, it is unknown whether mcr-1 is 

capable to induce very high colistin resistance in E. coli under clinical or agricultural pressures, 

or its effect on bacterial fitness. However, this study may indicate the possibility of emergence 

of mcr-1-mediated high colistin resistance, and the reversibility as a result of biological cost in 

HLCRMs.
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Chapter 4: General Discussion
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4.1 Aims of this study

Acquisition of antibiotic resistance has been recognised as a relevant problem to human health

(Hernando-Amado et al., 2017). Bacteria can develop resistance through two different ways: 

vertical evolution by mutations where antibiotic tolerant genotypes are selected and are passed 

to the next generation (Figure 4.1 A); or horizontal evolution where bacteria acquire resistance 

genes via horizontal transfer, including conjugation, transduction and transformation (Figure 

4.1 B) (Sommer et al., 2017).

Both of these mechanisms are important for the development of antibiotic resistance, especially 

horizontal transfer that contributes to the spread of resistant genes to sensitive organisms

(Normark & Normark, 2002; Sommer et al., 2017). For example, the ―superbugs‖ mediated by 

blaNDM have been spread to almost everywhere since its first detection in 2008 (C.-R. Lee et al.,

2016). The blaNDM gene is mostly carried by plasmids and can be transmitted among strains, 

species and genus (Khong et al., 2016). The dissemination of these superbugs has prompted 

widespread concern as some organisms are resistant to almost all antibiotics (World Health 

Organization, 2017b). 

Colistin (Polymyxin E) is now listed as a last resort antibiotic to treat serious infections caused 

by MDR Gram-negative bacteria by WHO (World Health Organization, 2017a). Prior to mcr-1, 

resistance to colistin had been reported but was chromosomally mediated, and therefore, in 

terms of dissemination is limited (Liu et al., 2016). The discovery of plasmid-mediated colistin 

resistance via mcr-1, caused worldwide concern as it potentially heralded the end of polymyxin 
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antibiotics (Liu et al., 2016; Walsh & Wu, 2016). Moreover, mcr-1 positive E. coli (MCRPEC) 

isolates were detected in a collection from 1987, which suggests that its appearance is earlier 

than anticipated (Shen et al., 2016). This may explain the reason why MRCPEC had quickly 

been reported all around the world after the first publication of MCRPEC (Schwarz & Johnson, 

2016).

Figure 4.1 Mechanisms of antibiotic resistance acquisition. A. Bacteria gain resistance by 

vertical evolution: mutation(s) within the bacterial genome. Blue cells represent 

antibiotic-sensitive bacteria, and red cells represent resistant organisms; B. Acquisition of 

antibiotic resistance by horizontal evolution: horizontal gene transfer through conjugation, 

natural transformation and phage transduction (Sommer et al., 2017).
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It is generally accepted that antibiotic resistance is associated with a cost of fitness to the 

bacterial cell. This cost includes decreased bacterial growth rate, survival rate, transmission of 

resistance rate and disease-causing properties (Sommer et al., 2017). Colistin resistance has 

been reported with a fitness cost in other species such as A. baumannii and K. pneumoniae due 

to chromosomal mutations in PmrA/B or PhoP/Q TCS (Choi & Ko, 2015; López-Rojas et al.,

2011). In A. baumannii, colistin resistance due to mutations in lpxA, lpxC, and lpxD genes leads

to a complete loss of LPS and is associated with a high fitness cost (Moffatt et al., 2010).

However, few studies have studied the fitness cost of mcr-1 mediated colistin resistance, 

especially when mcr-1 can only cause comparative low-level colistin resistance (Liu et al.,

2016; Zhang et al., 2017).

According to previous studies which are somewhat limited, fitness cost studies on acquisition 

of mcr-1 positive plasmids in E. coli, suggest that acquisition of mcr-1 is either associated with 

no reduction or a slight decrease in bacterial fitness (Kong et al., 2017; Liu et al., 2016; Yang et 

al., 2017; Y. Zhang et al., 2017; Zhou et al., 2018). Fitness cost associated with the acquisition 

of antibiotic resistance might reduce the spread of resistance in an antibiotic-free environment 

as it helps sensitive bacteria outcompete resistant organisms (Hernando-Amado et al., 2017).

No cost resistance may make resistance less reversible (Sommer et al., 2017). Thus the lack of 

fitness cost of acquisition of mcr-1 may aid the maintenance of mcr-1 plasmid under colistin-free 

conditions (Hernando-Amado et al., 2017).

As mcr-1 expression in E. coli is attenuated to mitigate cellular toxicity, the colistin MICs for 

MCRPEC are invariably 4-16mg/L (Liu et al., 2016). Therefore, the aim of this study was to 
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acquire high-level colistin resistant MCRPEC mutants (termed HLCRMs), and to assess 

whether high-level colistin resistance is associated with a fitness burden and subsequent 

reduction in virulence. To acquire HLCRMs, seven non-clonal wild-type MCRPEC isolates 

were grown under increasing concentrations of colistin for 14 days (Methods and materials 2.4). 

I then examined the fitness and virulence for both wild-type and HLCRMs, including growth 

rate, competition assay and their pathogenic potential in in vivo Galleria models. Additionally, 

the stability of HLCRMs was examined by passaging in the absence of colistin for 14 days and 

reversion frequency calculated. S1-PFGE and WGS analysis were performed to identify DNA 

differences between parental strains and HLCRMs.
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4.2 Creation and Assessment of HLCRMs

After being treated with gradually increasing concentrations of colistin, the level of colistin 

resistance for each wild-type MCRPEC strain showed varying degrees (4- to 64-fold increase) 

of increased resistance. E. coli Top10 was used as negative control being treated in an identical 

manner; however, after 14 days, no considerable increase in colistin resistance was observed 

(data not shown).

In MCRPEC, the level of colistin resistance can be readily increased under the pressure of 

colistin within a short-time frame (14 days). In contrast, when treated in an identical manner,

mcr-1 negative E. coli invariably maintained their susceptible phenotypes. Unlike K. 

pneumoniae or P. aeruginosa, E. coli rarely are able to mediate resistance to colistin via 

chromosomal mutations – this was the underpinning reason why mcr-1 was first discovered

(Liu et al., 2016; Urban, Tiruvury, Mariano, Colon-Urban, & Rahal, 2011). Therefore, the fact 

that mcr-1 can enhance E. coli in gaining higher levels of resistance to colistin is perhaps not 

expected. Normally, with MCRPEC isolates, the colistin MICs range from 4-16mg/ml and 

occasionally reaches 32mg/ml (Huang et al., 2017; Liu et al., 2016). However, it is clearly 

possible that with the presence of mcr-1 high-levels of colistin resistance can be obtained. 

In 2/7 HLCRMs, PN21 and PN25, the mcr-1 expression level was increased 11- and 3- fold, 

respectively, compared with the wild-type parental strains, which may support, in part, that the 

expression of mcr-1 attributes to high-level colistin resistance. However, in the other five 

mutants, the increase in colistin resistance cannot be attributed to mcr-1 expression or the mcr-1 
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copy number (Results 3.1.2). This may indicate that although mcr-1 expression is directly 

associated with E. coli colistin resistance also insusceptibility, other mechanisms must 

contribute to the development of HLCRMs. Interestingly, HLCRMs created from PN25 and 

PN42, showed chromosomal mutations in the PmrA/B TCS. In the case of HLCMR PN25, an 

R81S mutation in PmrA was demonstrated, whilst in the PN42 HLCRM, a V161M mutation in 

PmrB was evident. Both mutations have been previously associated with colistin resistance in E. 

coli (Alberto Quesada et al., 2014); however, the V161M substitution in PmrB from PN42 

HLCRM did not exactly match the variant (V161G) previously reported in E. coli (Alberto 

Quesada et al., 2014). Both substitutions might mediate colistin resistance by affecting 

phosphate transfer between the PmrA/B TCS as R81 is located in the phosphate receiver 

domain of PmrA and V161 is located in the kinase domain of PmrB (S. Sun et al., 2009).

However, it remains unknown whether these colistin resistance strains in Quesada’s study

harboured mcr-1, as mcr-1 was reported one year later in 2015 (Quesada et al., 2014, Liu et al.,

2016). Also it is not clear whether the existence of mcr-1 may have an effect on enhancing 

mutations in the PmrA/B TCS under the selective pressure of colistin. It may indicate that the 

presence of mcr-1 affords a degree of protection and cell survival enabling these mutations to 

occur and be selected by the presence of colistin.   

Furthermore, some of the HLCRMs showed the ability of keeping the high-level colistin 

resistance even without presence of the drug. PN25 and PN42 HLCRMs, in which mutations in 

the PmrA/B TCS were identified (HLCRM of PN25 also showed 3- fold increase in mcr-1 

expression), did not demonstrate decrease in bacterial growth or considerable reduction 
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(one-fold decrease) in colistin MICs for 14 days. Therefore, it can be hypothesized that these 

mutations are indeed stable. For HLCRM PN21, no significant decrease in MIC was detected 

even though the growth rate of PN21 reduced by 50% after passaging. In HLCRMs PN16, 

PN23, PN24 and PN43, the exact mechanisms of increasing resistance to colistin were not 

identified, but the result of stability experiments demonstrated that those mechanisms could 

only give a temporary increase in colistin resistance (except for PN24). Further studies are 

needed to understand the mechanisms of these HLCRMs.
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4.3 How does HLCRMs affect the bacterial fitness and virulence?

Colistin is a critical important antibiotic, and plasmid-mediated colistin resistance (mcr genes) 

is a cause of great concern to public health (Schwarz & Johnson, 2016). It has been generally 

accepted that acquisition of antibiotic resistance by either target alteration or other mechanisms 

resulting in reduction in bacterial fitness (Melnyk et al., 2015). MCR-1 mediates resistance to 

colistin by modification of the LPS on the bacterial outer-membrane, which is important for 

solute and protein translocation and signal transduction of the cell (Hinchliffe et al., 2017; 

Koebnik, Locher, & Van Gelder, 2000). Some studies recently have shown that acquisition of a 

mcr-1 plasmid has no considerable effect on bacterial fitness, (Kong et al., 2017; Y. Zhang et 

al., 2017) but it remains unknown whether high colistin resistance in E.coli is associated with a 

biological cost. 

In general, the seven HLCRMs showed slower growth (except for PN16) and less competitive 

ability as compared to wild-type parental strains. It can be assumed that under clinical 

conditions or in farm productions, the high resistance will also impose a biological cost (dan i 

Andersson & hughes, 2010; Hernando-Amado et al., 2017). This loss of fitness due to high 

resistance to colistin may explain why mcr-1 is often associated with low MIC values (Liu et al.,

2016). What is more, MCR-1 induced colistin resistance is based on addition of PEA which 

decreases the net negative charge of lipid A and reduces the avidity of colistin binding 

(Hinchliffe et al., 2017). The PEA modification reduces net negative charge of lipid A from -1.5 

to -1, while another cationic substitution by 4-amino-4-deoxy-l-arabinose (L-ara4N) which is 

more efficient decreases negative charge to 0 (Nikaido, 2003). The lower ability of charge 
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alteration by PEA may also have an effect on resistance level to colistin. 

So far, chromosomal mutation based resistance to colistin is mostly dependent on the addition 

of PEA or L-ara4N to the Lipid A moiety of LPS, or rarely by complete loss of LPS (Abiola O 

Olaitan et al., 2014). In many studies, resistant mutants are induced by in vitro treatment with 

sub MIC colistin and meanwhile show decrease in fitness and virulence in A. baumannii and K. 

pneumoniae (Beceiro et al., 2014; Choi & Ko, 2015; Fernández‐Reyes et al., 2009; Mu et al.,

2016). Clinical studies in A. baumannii demonstrate that resistant isolates are often detected 

after treatment with colistin (López-Rojas et al., 2013; Rolain, Roch, Castanier, Papazian, & 

Raoult, 2011). Although reduction of fitness has been identified when compared with 

susceptible isolates and in some instances the lack of biological cost or retention of virulence 

has also been identified (Cannatelli et al., 2014; Durante-Mangoni et al., 2015). In this study, 6 

out of 7 HLCRMs are linked to considerable fitness cost and all mutants displayed a decrease in 

virulence (3 were significant, p < 0.01), which may limit the resistant level in mcr-1 harbouring 

E.coli (Liu et al., 2016).
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4.4 How might expression of mcr-1effect bacterial fitness and virulence?

In this study, two of the HLCRMs showed a significant increase in mcr-1 expression. PN21 and 

PN25 showed 11- and 3-fold increase in mcr-1 expression levels, respectively. At the same time, 

the HLCRMs demonstrated a significant biological cost (including decrease in growth rates and 

inferiority in competition assay with the exceptation of PN16 and a decrease in pathogenic 

potential). These data would suggest that high mcr-1 expression levels can lead to lower fitness 

and pathogenicity in E. coli.  

MCR-1 is a member of phosphoethanolamine (PEA) transferase enzyme family and can 

mediate resistance to colistin by modification of LPS on bacterial cell outer-membrane (Liu et 

al., 2016) The MCR-1 enzyme catalyses the addition of PEA to lipid A, which alters the surface 

charge and subsequently leads to a reduction in colistin binding, resulting in colistin 

insusceptibility (Hinchliffe et al., 2017). In our recent report, the increased expression of mcr-1 

not only mediates a significant biological cost (even cell death), but a degradation of the E. coli

outer-membrane (Yang et al., 2017). LPS, a critical feature of the outer-membrane in 

Gram-negative bacteria, is also likely to be significantly altered (Moffatt et al., 2010). The 

modification of LPS by over-expression of mcr-1 can lead to leakage of the cellular cytoplasm 

resulting in cell death (as shown below in Figure 4.2 [reproduced from Yang et al., 2017]).  

However, in HLCRM PN21, even though it possessed very high level of resistance to colistin 

(MIC of 128 mg/L), no significant modification in the cell wall (thickening of outer-membrane, 

loss of membrane definition and abnormal cytoplasmic morphology) was detected. Compared 
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with the inducible mcr-1 expression model in pBAD vector reported by Yang et al., where the 

over expression of mcr-1 can contribute up to more than 1000- fold increase than un-induced 

pBAD/mcr-1, the mcr-1 expression of PN21 HLCRM showed only an 11- fold increase (Yang 

et al., 2017). As PN21 is a wild-type strain, understanding the mechanism of HLCRM might be 

more complicated. However, it could still suggest that high mcr-1 expression can significantly 

contribute to a reduction in bacterial fitness and virulence.

Figure 4.2 Cellular morphology of inducible mcr-1 in E. coli Top10 by transmission 

electron microscopy (TEM). Over-expression of mcr-1 is induced by 0.2% (w/v) L-arabinose.

A. B. TEM micrographs of un-induced E.coli; C. TEM micrographs of induced MCRPEC

(Yang et al., 2017).



118 

4.5 Does PmrA/B mutation have an effect on bacterial fitness and virulence 

in mcr-1 harbouring E.coli?

As the isolates were wild-type strains with various genetic backgrounds, the exact mechanism 

of HLCRM will be challenging to identify. To further understand the mechanism of HLCRMs, 

we compared the genetic context of both HLCRMs and their parental strains. As described 

above, amino acid mutations on PmrA (R81S) and PmrB (V161M) are detected in PN25 and 

PN42 (Figure 4.3), respectively.

Figure 4.3 Domains of the PmrA/B TCS and positions of mutations conferring colistin 

resistance in this study. PmrA domains, amino acid(aa) positions 1-112: cheY-homologous 

receiver domain(REC); aa 145-216: Transcriptional regulatory protein, C-terminal domain

(Trans_reg_C). PmrB domains, aa 13-35: First transmembrane domain (TM1); aa 35-66: 

dPeriplasmic domain (PD); aa 66–88: Second transmembrane domain (TM2); aa 89-141: 

Histidine kinases, adenylyl cyclases, methyl-binding proteins, and phosphatases (HAMP 

domain); aa 142–202: Histidine kinase A domain (HisKA); aa 249-356: Histidine kinase-like 

ATPases (HATPase_c). (Abiola O Olaitan et al., 2014)
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Antibiotic resistance caused by chromosomal mutation is often associated a fitness cost, as 

acquisition of resistance often depends on modification of essential targets such as ribosome, 

DNA gyrase, RNA polymerase or the cell wall (Melnyk et al., 2015; Sommer et al., 2017). The 

alteration of these targets normally has harmful effects on the host and results in reduced fitness

(Hernando-Amado et al., 2017). Both mutations identified in this study have been reported by 

Quesada et al., whether these mutation mediating colistin resistance are linked to a decrease in 

fitness is not clear (Alberto Quesada et al., 2014).

In the study by Sun et al., mutations in Salmonella PmrA/B (including R81-H mutation) lacked

of fitness cost and had a high mutation rate (S. Sun et al., 2009). However, the level of colistin 

resistance was very low (with MICs to colistin < 5mg/L). In other studies, A. baumannii

(mainly), K. pneumoniae and P. aeruginosa, the reduction in fitness or virulence caused by 

PmrA/B mutation was variable depending on the location, type, and the number of mutations 

(Beceiro et al., 2014; Da Silva & Domingues, 2017). Thus, further studies are needed to 

understand the fitness cost of chromosome-mediated colistin resistance in E. coli. 
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4.6 Limitations and improvements

According to this study, colistin resistance in isolates harbouring mcr-1 could be enhanced 

under the pressure of increasing colistin concentrations. However, this increase in resistance 

came with a price in fitness as well as virulence. Although it has been shown that high level 

colistin resistance in mcr-1 isolates is associated with a reduction in fitness and virulence; how 

mcr-1 mediates or modulates this process is not clear. Since they are wild-type isolates, the 

genetic basis for their resistance remains uncertain but is part of my future work. As no 

mutation was detected in the mcr-1 structural gene or its surrounding context, and there was no 

obvious increase in mcr-1 copy number, there might exist other mechanisms the bacteria as 

employed to adapt to the pressure of higher concentration of colistin. Further sequencing 

analysing on HLCRMs and parental strains are ongoing and following experiments will be 

undertaken to better understand the mechanism of HLCRMs in this study (eg. Genetic 

expression analysis on efflux pump systems linked to colistin resistance [Warner & Levy, 2010], 

detection of novel mcr genes, and mutation deletion analysis in LPS related genes identified 

in this study.)

As MCR-1 is a lipid A modifying enzyme, it is not clear that the rate or amount of modified LPS 

is proportional to the level of mcr. With regard to the cell morphology image on PN21 and its 

corresponding HLCRMs (Figure 4.2), the modification on the outer-membrane in the 

HLCRMs could be moderate or even small. Additionally, it is not clear whether the decrease in 

bacterial pathogenicity is associated with the modification of LPS, an important virulence 

factor in Gram-negative bacteria pathogenesis (Kömerik, Wilson, & Poole, 2000; Steimle, 
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Autenrieth, & Frick, 2016). Ergo, further studies are also needed to understand effects of 

modification on LPS or Lipid A and its subsequent effects on bacterial virulence/pathogenicity.
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4.7 Future work

The phenomenon of fitness cost associated with AMR is a potential hope to reduce the 

frequency of resistant bacteria, and possibly to reverse antibiotic resistance (dan i Andersson & 

hughes, 2010; Holmes et al., 2016). Experimental studies and theoretical modelling supports 

the reduction of antibiotic use and thereby benefitting fitter susceptible strains over less fit 

resistant strains such that susceptible organisms may outcompete resistant ones in the absence 

of selection (dan i Andersson & hughes, 2010; Hernando-Amado et al., 2017). However, 

several studies have demonstrated that fitness cost can be reduced by compensatory mutations 

and hence help to support the maintenance of antibiotic resistance (Qi, Toll-Riera, Heilbron, 

Preston, & MacLean, 2016).

In this study, HLCRMs showed a significant biological cost and reduction in virulence 

compared to wild-type parental strains. The results support current surveillance and prevalence 

data that mcr-1 normally only contributes to low-level colistin resistance (Liu et al., 2016). My 

work shows that with a high fitness cost, mcr-1 positive isolates are able to gain very high 

colistin resistance (up to 256 mg/L) within a short time. This significant reduction in fitness 

shows potential reversibility of colistin resistance; however, there is the possibility that after 

compensatory mutations high-level colistin resistant E. coli are stabilized in the population with 

less reversibility of resistance (Qi et al., 2016).

For future work, it would be interesting to explore fitness adaptations of mcr-1 HLCRMs. As 

shown in stability experiments in this study, some of the mutants showed no decrease in 
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CFU/ml on colistin after passaging for 14 days LB suggesting that HLCRMs can be stable. 

Thus further studies are needed to detect how E. coli would get used or can be attenuated to 

high-levels of colistin pressure, and to predict the reversibility of antibiotic resistance under the 

competition with susceptible phenotypes. Also, further analysing of whole genome sequencing 

in HLCRMs and mutants after stability is needed to better understand the cause of fitness cost 

and potential compensatory evolution. At last, further exploration in SNPs between PN21, 

PN23 and their HLCRMs are needed, especially for PN23, as it contains only one plasmid 

according to S1-PFGE image (Figure 3.4) and result of plasmidFinder (see Appendix). 
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Appendix 

Table 1 Acquired antimicrobial resistance genes

PN16 PN21 PN23 PN24 PN25 PN42 PN43

Aminoglycoside aadA1 aac(3)-IId - aadA1

aac(3)-IId

aadA2

- aph(3')-Ia

aph(3'')-Ib

aph(6)-Id

aadA1

aac(3)-IId

aadA5

aadA2

aadA2

aadA1

aac(3)-IId

Beta-lactam blaTEM-1B

blaCMY-2 

blaTEM-1A

blaCTX-M-55

- blaTEM-1B

blaCTX-M-55

blaCTX-M-14 blaCTX-M-55

blaCTX-M-14

blaTEM-1B

blaTEM-1B

blaCTX-M-55

Fluoroquinolone qnrS1 qnrS1 - qnrS1 - qnrS1 qnrS1

Fosfomycin - fosA4 - - - - -

MLS - Macrolide, 

Lincosamide and 

Streptogramin B

mdf(A) mdf(A) mdf(A) mdf(A)

mef(B)

mdf(A) mph(A)

mdf(A)

mef(B)

mdf(A)

lnu(F)

Phenicol cmlA1 - - catA2

cmlA1

- catA1

cmlA1 -

cmlA1

catA2

floR

Sulphonamide sul3 - - sul3 - sul2

sul3

sul1

sul2

sul3

Tetracycline tet(M) tet(A) tet(B) tet(A) tet(B) tet(B) tet(A)

tet(M)

Trimethoprim - - - dfrA12 dfrA17

dfrA12

dfrA12
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Table 2 Plasmid types in seven wild-type strains 

Strain Plasmid type
PN16 Col(BS512)

IncFIA(HI1)
IncFIB(AP001918)
IncFIC(FII)
IncHI1A
IncHI1B(R27)
IncI1
IncI2

PN21 Col(BS512)
Col440II
IncFIA
IncFIB(AP001918)
IncFII
IncI1
IncI2

PN23 IncX4
PN24 IncFII

IncN
IncR
IncX1
IncX4

PN25 Col(BS512)
IncX4

PN42 IncFII
IncI1
IncX1
IncX4

PN43 Col(BS512)
IncFIB(AP001918)
IncFII
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Table 3 SNPs identified in HLCRMs assembled to wild-type strains

Strain Gene Substitution in HLCRMs
PN16 gspA2 F73Y

hp V5M, S38P, D42A
panF several mutations
garK A9S
hp C5S, S65R
hp nucl deletion after K195
hp D101N

PN24 hp K229T, R327H

hp M10L, G14E, M17L, S18G
uxuA V160E

hp C187R

PN25 rfaY L187STOP
rpoB H551P
basR (pmrA) R81S
rhsC V67D
hp R51K

PN42 rpob Y1281D
basS (pmrB) V161M
aceE1 nuc deletion after M775
hp G60S, N20D
hp T13A, L33F
fadH S97R
dmlR I174K
ywnH Y28C
rshC 7 A984E
glmS C134W
polA K124E

PN43 aceE E448STOP
skp Q103STOP

rhsC 
A807S, D814E, F815Y, R845S, 
Q852L, Y853S

xylE R540W
malG S24W


