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Abstract

The Night-Time Economy is characterised by increased levels of drunkenness,

disorderly behaviour and assault-related injury. The annual cost associated with

violent incidents is approximately £14 billion, with the cost of violence with injury

costing approximately 6.6 times more than violence without injury. The severity

of an injury can be reduced by intervening in the incident as soon as possible.

Both understanding where violence occurs and detecting incidents can result in

quicker intervention through effective police resource deployment.

Current systems of detection use human operators whose detection ability is poor

in typical surveillance environments. This is used as motivation for the develop-

ment of computer vision-based detection systems. Alternatively, a predictive

model can estimate where violence is likely to occur to help law enforcement with

the tactical deployment of resources. Many studies have simulated pedestrian

movement through an environment to inform environmental design to minimise

negative outcomes. For the main contributions of this thesis, computer vision

analysis and agent-based modelling are utilised to develop methods for the detec-

tion and prediction of violent behaviour respectively.

Two methods of violent behaviour detection from video data are presented. Treat-

ing violence detection as a classification task, each method reports state-of-the-art

classification performance and real-time performance. The first method targets

crowd violence by encoding crowd motion using temporal summaries of Grey Level
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Co-occurrence Matrix (GLCM) derived features. The second method, aimed at

detecting one-on-one violence, operates by locating and subsequently describing

regions of interest based on motion characteristics associated with violent beha-

viour. Justified using existing literature, the characteristics are high acceleration,

non-linear movement and convergent motion. Each violence detection method is

used to evaluate the intrinsic properties of violent behaviour.

We demonstrate issues associated with violent behaviour datasets by showing that

state-of-the-art classification is achievable by exploiting data bias, highlighting

potential failure points for feature representation learning schemes.

Using agent-based modelling techniques and regression analysis, we discovered

that including the effects of alcohol when simulating behaviour within city centre

environments produces a more accurate model for predicting violent behaviour.
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Chapter 1

Introduction and Motivation

1.1 Motivation

The work presented within this thesis was motivated by observations of the Night-

Time Economy (NTE) within the United Kingdom (UK). In the context of this

work, the NTE refers the economic and social activities that occur between the

hours of 6pm and 6am. Increased levels of drunkenness, disorderly behaviour and

assault-related injury characterise the NTE in Britain [44, 83]. The Crime Survey

for England and Wales documented an estimated number of 1.2 million violent

incidents for the year ending in June 2017, with approximately 46% of those

incidents including injury [36]; these figures relate to incidents within and outside

the NTE. The annual cost associated with violent incidents is approximately £14

billion, with the cost of violence with injury costing approximately 6.6 times more

than violence without injury [34]. Identifying mechanisms for reducing violence

with injury to violence without injury could result in great economic benefit as

well as providing benefits to the victims of violence. Ultimately, the main goal

of violence research would be to determine mechanisms that not only reduce the

severity of an incident, but also stops violent acts from occurring.

In 1997, a Cardiff based multi-agency violence prevention group was formed.

The group members coalesced to form the Cardiff Violence Prevention Pro-

gram (CVPP) which launched in 2003. The primary focus of the CVPP was the
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utilisation of a data sharing network that allows for the sharing of anonymised

data collected from police, health and local government services. The gathered

information was used to devise crime prevention tactics and strategies with the

intent of reducing violent crimes. The founders of the CVPP validate their crime

prevention methods by comparing rates of crime with 14 cities identified as being

statistically similar to Cardiff. The study concluded in 2007 and showed that viol-

ent crime prevention measures resulted in an estimated 42% fewer woundings [37]

with a follow-up paper on the economic effects of this program suggesting sav-

ing an estimated £6.9 million in 2007, with a £1.25 million reduction in health

service costs [38]. This research demonstrates the economic impact of violence

reduction strategies. However, a review of the literature suggests sub-optimal use

of technology when attempting to reduce violence and its effects.

Video Surveillance and Violence

The research developed by the CVPP applied video surveillance systems as part

of their crime prevention strategies. Cameras were used to monitor violent hot-

spots around the city centre in an active capacity, and from this, the authors

hypothesise that monitoring for violence allows for faster police deployment and

subsequent crime intervention. This hypothesis stems from the observation that

injury severity decreased after applying a policing strategy that decreased in-

tervention time [38]. These results corroborate Sivarajasingam et al. [127] who

present a hypothesis that Closed Circuit Television (CCTV) plays an integral role

in reducing violent crime intervention time and therefore reduces the severity of

the incident.

Violence in the context of this thesis refers to situations in which the behaviour

of one or more persons inflicts physical bodily harm to another person. Violent

behaviour during NTE hours is typically characterised through the use of close

proximity actions like punching, kicking, pushing, jostling or grappling. Incidents
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that involve indirect interactions like throwing projectiles are unexamined in this

work. Aggression is an associated concept whereby a person behaves with intent

to cause physical or emotional harm to another person; aggressive behaviour

typically precedes violence, behaviour that concerns the infliction of harm.

Multiple studies found that the installation of CCTV is associated with an in-

crease in violent crime [38, 43, 127]. The consensus is that the installation

of CCTV allows for the identification of violent instances that would have gone

unnoticed when no cameras were present. By analysing emergency department

statistics, existing research [50] has shown the percentage of violent incidents not

documented by the police for male victims is 57.4% and 60.3% for street assaults

and assaults in licensed premises respectively.

High profile criminal cases and governmental mandates led to the mass adoption

of video surveillance systems across the United Kingdom [39]. The estimated

number of cameras installed across the United Kingdom falls within the range

1.85 million [105] and 4.2 million [42]. Although the adoption of CCTV systems

has shown to lead to an increase in violent crime detection [38, 43, 127], many

instances still go unobserved; this is partly due to inadequate human observation

ability [30, 51, 100, 109, 127, 133]. Concisely, there is too much information to ob-

serve. The simultaneous observation of visual feeds result in reduced observation

ability when attempting to locate scenes of interest [133, 139]. Other factors such

as the length of time observing [30, 51, 100, 109] and the influence of personal

beliefs [47, 106] affect the focus of a human observer.

Computer-based analysis of information is used to augment human capabilities

to aid the disabled [78], or improve task completion accuracy and efficiency [31,

129, 130]. The effectiveness at completing many different tasks has improved

through the aid of computer-based analysis, for instance, Swett et al. [130, 129]

describes a system that allows a radiologist to operate at an enhanced level by

providing feedback concerning the current working diagnosis based on both pa-
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tient and historical data. Computer Aided Diagnosis (CAD) has been widely

adopted in the medical profession with CAD systems resulting in an increased

detection rate of lung, breast and colon cancers [31]. Outside of the medical field,

Sarshar et al. [118] propose a method used to aid with the inspection of sewer

systems by using computer vision to identify defects captured using CCTV for a

supervisor to consider when evaluating the condition of a sewer segment. Rat-

ings are used to assess the remaining service life of a sewer system, information

that is useful for efficient town/city maintenance and operation. All the methods

mentioned have demonstrated an improvement in human efficiency at completing

tasks when using an assistive computer vision system. The development of an

assistive system has the potential to improve violence crime detection rates using

CCTV.

Pedestrian Simulation and Historical Crime Data

The environment and context of a person affect how they behave. Understanding

the effects that induce negative behaviour or outcomes can be used to inform

the development of preventative strategies. Many studies have simulated ped-

estrian movement through an environment to inform environmental design to

minimise negative outcomes [19, 153, 158]. Models have been utilised to determ-

ine how crime is affected by the alteration of the environment [119] and policing

strategies [33]. The use of historical data can reveal regions within an environment

where harmful behaviour is likely to occur. In the context of crime, identifying

these regions and deploying police resources has shown to be beneficial in reducing

crime and its effects [10, 122, 123]. Utilising historical crime data can facilitate

the development of a predictive model that can then be used to evaluate where

crime would occur within a new, unseen environment. The authors of SimDrink

present a model for testing the effects of policy changes on violence during NTE

hours [119]. Predictive tools will allow law enforcement and city management to
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deploy strategies that reduce the impact of violent behaviour.

1.2 Research Hypothesis

The general hypothesis for this thesis is as follows:

Using computer-based analysis, violent crime can be detected and

predicted such that the detection time is reduced, and that instances

that would typically go undetected, are identified.

Influenced by the data available, two focused hypotheses were derived from the

general hypothesis. The hypotheses are as follows:

• Computer vision analysis and machine learning can be used to detect whether

video footage depicts violent or non-violent behaviour.

• Pedestrian simulation and data modelling techniques can be used to gener-

ate an accurate geo-spatial prediction of violent crime.

The literature suggests that decreasing violence detection time and increasing

detection rate will have positive effects on the severity of injury sustained from

a violent incident. Before this can be investigated, the general research hypo-

thesis presented above must be proven. Developing the tools required to perform

computer based analysis to detect and predict violent crime form the main contri-

butions of this thesis.

1.3 Contributions

Research presented in this thesis provides contribution to two distinct fields, Com-

puter Vision based Violence Analysis and Pedestrian Modelling. Computer Vision
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and Pedestrian Modelling concern the detection and prediction of violent beha-

viour respectively.

Computer Vision: Violent Crowds

This work presents two distinct methods of violent behaviour analysis. Early

research suggested that the task of violent behaviour detection could be decom-

posed into two classes, One-on-one violence and Crowd Violence. The method

outlined in Chapter 4 concerns the detection of violent behaviour within crowded

environments. Violence in crowds is characterised by the number of pedestrians

involved both directly and indirectly (Figure 1.1). Increased population density

affects the perception of violence as individual actions cannot be reliably identi-

fied due to occlusions. It is also assumed that dense populations and increased

combatant count result in perceived characteristics of violence that differ when

compared to one-on-one violence between two people (Figure 1.2).

The research disclosed in Chapter 4 takes inspiration and methodologies from

crowd counting techniques, in which the number of pedestrians depicted in a

single frame is estimated. Existing research has demonstrated that measurements

derived from a Grey Level Co-occurrence Matrix (GLCM) [54] are powerful at

capturing structural information of a crowd, resulting in high crowd counting ac-

curacy [3, 16, 21, 91, 142]. It is hypothesised that the temporal analysis of GLCM

features could be used to capture crowd motion dynamics that are capable of dis-

criminating between different behavioural classes when used in conjunction with

a machine learning classifier. Temporal changes in appearance are represented

by measuring how GLCM features change over time using four statistics: mean,

standard deviation, skewness and Inter-Frame Uniformity (IFU). The method

proposed demonstrated state-of-the-art performance when compared to existing

real-time violence detection techniques. The contributions of this work are:

1. IFU was designed to measure the stability of appearance over time. Using
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Figure 1.1: Still images depicting violent crowds.

three datasets that contain both violent and non-violent samples, it was

found that the appearance of violence is less stable/linear over time when

compared to similar scenes depicting normality.

2. Analysing longer sections of a video resulted in greater discrimination between

violent and non-violent situations.

3. The computational cost of generating GLCMs and their derived measure-

ments is low, allowing for the production of a real-time system, processing

data at a rate greater than 30 Frames Per-Second (FPS).
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Computer Vision: One-on-One Violence

One-on-one violence in the context of this work is defined as physical and violent

engagement between two participants. This type of violence is mainly differenti-

ated from crowd violence by the number of people involved. Typically, with fewer

people involved, the perception of violent actions such as punching and kicking

are more clear due to reduced visual obstruction caused by the crowd (Figure 1.2).

Figure 1.2: Still images depicting one-on-one violence.

Chapter 5 presents an interest-point based detection algorithm for analysing vi-

olent behaviour. The presented interest-point based method identifies spatiotem-

poral subregions in a video volume that contain objects whose kinetic properties

are reflective of violent behaviour. This method was initially designed to detect

violence that takes the form of one-on-one fighting (a category of violence un-

suited by a crowd violence detector), however testing revealed this approach to
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be suitable towards the analysis of crowds. To briefly summarise, the proposed

method computes dense motion trajectories using a process referred to as particle

advection. The particle advection process extracts accurate motion trajectories

from noisy data, such as crowds [98, 102, 162]. Three measurements are extracted

from the motion trajectories and used to generate a response map where high val-

ues are indicative of regions that have a high violence potential relative to the rest

of the scene; interest points are identified using a Difference of Gaussians (DoG)

interest point detector [81]. The three measurements, acceleration, convergence,

and linearity were designed and justified using existing literature from the fields

of Computer Vision [26, 29, 97] and Pedestrian Modelling [59, 156]. Multiple

feature vectors are generated using data located around detected interest points

identified within a spatiotemporal volume. A spatiotemporal volume is then rep-

resented using a set of features that are aggregated using a Bag-of-Words (BoW)

model. The following contributions have arisen from this method:

1. Experimentally demonstrated that dense feature sampling provides greater

classification ability when attempting to discriminate between violent and

non-violent samples.

2. A comparison of feature sampling methods showed that using an interest-

point based detector to determine regions for description outperformed a

dense grid-based sampling approach for the task of violent behaviour detec-

tion.

3. It was demonstrated that the environment or context of violence could alter

the nature of the violent interaction. Regarding the underlying dynamics

of motion, violence in city centre locations is different than violence that

takes place in crowds, and violence found in the sport of ice hockey.

4. Using a one-class learning methodology, it was demonstrated that the pro-

posed method was capable of distinguishing between normal and violent
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scenes even when training a classifier without data that represented violent

behaviour. Furthermore, the results suggest that one-class learning works

better on datasets whose environments and recording equipment are con-

sistent.

Computer Vision: Depth

When recording violent incidents, it is often the case that the camera operator

attempts to get as close as possible for the best view. Capturing footage of nor-

mal behaviour must be performed similarly. Otherwise, any comparison between

the normal and violent behaviour will be biased based on perceived depth. In

Chapter 3, the rate at which each violent behaviour dataset used throughout this

thesis is affected by the perceived depth bias is quantified. It was demonstrated

that publicly available datasets are subject to perceived depth bias. This inform-

ation is used to inform a discussion regarding the importance of scale invariant

or depth corrected analysis.

Agent Based Modelling and Violent Hotspot Analysis

Understanding where and when disorder and violence will occur is of value to

efforts aimed at mitigating harm [131]. It is assumed that the physical and

social environment influence harm in the NTE through factors associated with

population density, street congestion, drinking establishment opening times, and

blood alcohol levels [149]. Agent-based models allow for the simulation of real-

world pedestrian flow. In many night-time locations, alcohol is used as a social

lubricant and is synonymous with an unsteady gait and violence. Empirically

justified effects of alcohol, by time and dose, are incorporated in an agent-based

model to simulate drunken behaviour [101]. The key behavioural characteristic

associated with alcohol induced intoxication are changes in a gait [28, 68, 132,
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110]. A person’s ability to maintain a normal walking cycle without staggering

decreases as they ingest more alcohol, becoming more intoxicated.

The density, velocity and invasions of personal space of simulated pedestrians

are measured and used as variables for predicting violent crime hotspots. Violent

crime hotspots are generated using a Gaussian Kernel Density Estimation (KDE)

process applied to geo-coded crime data obtained from law enforcement agencies;

the local spatial distribution of violent crime is assumed to be Gaussian as is

typical of hotspot analysis [15, 23, 48, 141]. Regression analysis and statistical

correlation testing are used to measure and compare the predictive ability of

variables derived from pedestrian simulation using real-world environments and

data.

1. Introduction of a Personal Space Invasion (PSI) measurement as informed

by existing literature on the proximity of human comfort zones [52]. The

investigation of PSI was justified by the assumption that invasions of per-

sonal space induces violent behaviour. This assumption was derived from

literature on stress induced by close proximity interactions [69, 128], and

the relationship between stress and violence [4, 22, 73, 95, 103].

2. PSI is a powerful predictor of violent behaviour, providing evidence for the

hypothesis that stress-induced violence results from invasions of personal

space.

3. Demonstrably shown using regression and statistical testing that an agent-

based model informed by characteristics associated with pedestrian intoxica-

tion allows for an increased level of violent crime prediction when considered

alongside a model that lacks intoxicated characteristics.

4. Presented a foundation for future work for the creation of a more accurate

simulation of intoxicated pedestrian behaviour.
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1.3.1 Contributions Relative to the Hypotheses

The computer vision hypothesis targets the investigation of an algorithms ability

to detect violent behaviour captured on video. The computer vision hypothesis

was derived from the general hypothesis and aims to reduce the effects of viol-

ence through the detection of violent behaviour. As discussed in Chapter 1 and

Chapter 2, the power of reducing the effects of violence through CCTV lies in

aiding real-time detection of violence. For this reason, as implied by the general

hypothesis, the investigation of the computer vision hypothesis has a constraint

of real-time computation attached. Algorithms that have a computational delay

are not suited for deployment in an active surveillance capacity. With this con-

sideration in mind, Chapters 4 and 5 present two independent methods of violent

behaviour detection that operate in real-time, where real-time is defined as oper-

ating at over 30 frames per second. The classification performance of each method

for the binary classification task of violent behaviour detection was demonstrated

to be non-random (Receiver Operating Characteristic (ROC) > 0.5, Figure 1.3);

better than random classification performance is evidence against the rejection

of the computer vision hypothesis. Although the reported classification perform-

ance is high, which provides evidence for the hypothesis, the criteria for accepting

the hypothesis has yet to be developed. Developing the criteria for accepting the

violent behaviour detection hypothesis is discussed in Chapter 7, Section 7.5. An

investigation into the image quality and perceived depth biases have revealed

potential issues with data commonly used to evaluate violent behaviour predic-

tion. Information about data biases, feature sampling, and insight derived from

one-class learning, can be used to influence future research that works towards

proving the violent behaviour detection hypothesis.

The goal of the prediction hypothesis is to investigate the ability of pedestrian

simulation techniques for violent crime prediction. In terms of the work presen-

ted in Chapter 6, evidence refuting the hypothesis would manifest if pedestrian
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Figure 1.3: Receiver Operating Characteristic score reported by each

algorithm presented in this thesis on four different violent behaviour

datasets.

simulation produced measures that either did not correlate with violent crime or

resulted in a regression model with a low R2 score. Through correlation analysis

and regression modelling, the results in Chapter 6 show that this is not the case.

The results in Chapter 6 provides evidence for the hypothesis being true. The

introduction of a measure of personal space invasion proved useful for improv-

ing regression model performance when compared to a model that considered

only pedestrian density and velocity. Additionally, the inclusion of intoxicated

processes that simulate drunken behaviour was demonstrated to yield a further

increase in violent crime prediction accuracy. Lastly, a theoretical model for

improving the intoxicated pedestrian model is proposed in Chapter 6, but not

implemented due to data limitations. The threshold for absolute acceptance of
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the prediction hypothesis is not currently known and needs to be determined.

One avenue for determining a threshold of acceptance is to survey expert opinion

to discuss the minimum model accuracy required to be usable in real-world con-

ditions. To satisfy the global hypothesis, a controlled study would be required to

understand the effects of deploying a prediction system.

1.4 Organisation of Thesis

Chapter 2, Section 2.1 provides a review of the literature associated with the

effectiveness of human CCTV observation and computer vision based methods

for violent behaviour analysis. Chapter 2, Section 2.4, presents a review of the

literature regarding pedestrian simulation, crime prediction, and crime hotspot

analysis. The information presented in Chapter 2 reveals the knowledge gap that

the work presented in this thesis aims to fill.

The data used for each experiment in this document is introduced and described

in Chapter 3. Chapter 3 presents an evaluation of the biases that exist in each

video dataset; issues associated with data used to evaluate violent behaviour

detection methods are discussed.

Chapters 4 & 5 present computer vision based solutions for the violent behaviour

detection task. Chapter 6 presents an investigation into the efficacy of alcohol

informed pedestrian simulation model for the task of violent behaviour detection.

Finally, Chapter 7 presents conclusions and future work.

1.5 List of Publications

The work introduced in this thesis is based on the following publications.



1.5 List of Publications 15

• Kaelon Lloyd, Paul L. Rosin, David A Marshall, and Simon C. Moore:

Detecting violent and abnormal crowd activity using temporal analysis of

grey level co-occurrence matrix (GLCM)-based texture measures. Machine

Vision and Applications, 28(3-4), 361-371, 2017

• Kaelon Lloyd, David A Marshall, Paul L. Rosin, and Simon C. Moore: Vi-

olent behaviour detection using local trajectory response. 7th International

Conference on Imaging for Crime Detection and Prevention, 14-6, 2016

Publications Pending

• Kaelon Lloyd, Simon C. Moore, David A Marshall, and Paul L. Rosin: Pre-

dicting violent crime using agent-based modelling: Investigating an alcohol

informed model, PlosOne, 2018 Under revision

• Kaelon Lloyd, David A Marshall, Paul L. Rosin, and Simon C. Moore: Vi-

olent behaviour detection using local trajectory response:An Analysis Using

Real-World CCTV Data. Journal Pattern Recognition, 2018, Undergoing

revision



16

Chapter 2

Literature Review

2.1 Introduction

Presented in this chapter is a review of all relevant literature to both provide

context for, and justify the existence of, research developed for this thesis. The

scope of research within this thesis covers two distinct fields of research to solve

two related problems, these being the detection and the prediction of violent be-

haviour. Due to the dual nature of this thesis, the literature review is divided into

two sections; the first section concerns surveillance footage analysis and violent

behaviour detection. The other section concerns pedestrian behaviour simulation

and violent behaviour prediction.

2.2 Video Surveillance and Closed Circuit Tele-

vision

Closed Circuit Television (CCTV) is a video transmission service that transmits

live video feeds through a closed connection to a central point for viewing and

archiving. The term CCTV does not, by definition, equate to video surveillance,

but it has become heavily associated, resulting in the terms CCTV and video

surveillance systems being used interchangeably throughout the literature.
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It is a widely stated that Britain has the most CCTV cameras per person than any

other country with the most common estimate being approximately 4.2 million in

total with the attributing fact that a person is seen by 300 cameras per day [105]; a

more recent report [42] quotes a figure closer to 1.85 million. A person is expected

to fall in view of at most 70 different cameras a day. It is difficult to determine

the true CCTV camera count as the United Kingdom Hoeme Office does not keep

track of the number of installed CCTV cameras as the task is infeasible due to

the number of privately owned surveillance systems [105].

The mass adoption of CCTV in the United Kingdom was fuelled by a few key

events in the early 1990s. In particular, an Audit Commission called for “a massive

expansion of proactive intelligence led policing and singled out CCTV as having

a major role to play in crime prevention [39]”. This statement resulted from the

observation of criminal activity which was reported in the same document:

The introduction of closed-circuit TV cameras into Airdrie town centre,

with public support, has had dramatic results. In the first twelve

months of operation, recorded crimes dropped from 2,475 to 627, of

which 447 (71%) were cleared up. Break-ins to commercial premises

dropped from 263 to 15 and incidents of vandalism from 207 to 36. The

reduced workload in incident response has allowed increased patrol in

rural areas. The costs of installation and maintenance are met by the

local business community. [39]

The audit report, helped along by the use of CCTV in solving the high-profile

murder of James Bulger, greatly affected the speed of adoption of CCTV:

The extent of the Home Office backing for and reliance on CCTV is

indicated by the fact that by 1995, 78% of the Home Office budget

for crime prevention was being used to fund schemes to put CCTV in

public places. [46]
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The United Kingdom government provided funding for CCTV systems until the

year 2003 through the Crime Reduction Programme (CRP), at which point the

cost associated with installation, use, and maintenance of such systems was trans-

ferred to local authorities [41]. Lack of a centralised CCTV management group

resulted in local CCTV systems developing differently over time. Early CCTV

technology often captured poor quality video footage when compared to today’s

standards. Unfortunately, discussions with local police organisations revealed

that the cost of CCTV upgrades were high, and often cameras have not received

an update. As reported by Gerrard et al. [41] “Anecdotal evidence suggests

that over 80% of the CCTV footage supplied to the police is far from ideal”. As

informed by the literature, CCTV footage quality is poor in quality and over-

abundant. The following section will discuss how data overabundance and data

quality have an influence on the ability for a human to complete vision-based

tasks.

2.2.1 Surveillance and Crime

Surveillance cameras record the actions of objects and people. It is beneficial

to identify the actions depicted in order to detect criminal behaviour so that

appropriate measures can be performed by security personnel. CCTV can be used

either passively or actively. Active CCTV analysis requires a human observer

watch a live video feed and identify instances of criminal, or abnormal activity.

The active use of CCTV surveillance systems allows the operator to guide the

appropriate personnel towards a scene of interest; any developments can be viewed

from a strategic location which allows the operator to determine the best course of

action to take regarding ground units. Passive usage of CCTV systems manifest

itself in one of two ways. The first is archival; when an incident is recorded but

not detected, the footage can be retroactively accessed for evaluation or playback

during court hearings. The second use of passive CCTV an effect referred to as the
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Panopticonisation effect, where the presence of a camera is enough to dissuade

people from committing crimes. The term panopticonisation derives from the

name given to a prison design by Jeremy Bentham, in which the geometry of the

building does not allow prisoners to determine whether they are being observed.

Prisoners cannot perform any malicious behaviour with any degree of confidence

that they will not be caught. Therefore prisoners cannot confidently assess the

risk of their actions and must adopt good behaviour by default. However, the

panopticonisation effect does not affect violent incident rates during the NTE [43,

117, 150, 151]. It is hypothesised that violence is a spontaneous activity and that

perpetrators do not consider their environment before engaging [43, 117].

In some cases premeditated, or more planned, offences, such as burg-

lary, vehicle crime, criminal damage and theft decreased in most areas

during the evaluation period, while more spontaneous offences, such

as violence against the person and public order offences did not. [43]

As presented in Chapter 1, the introduction of CCTV is associated with an in-

crease of recorded violent crimes. Incidents that would have previously gone

undocumented are now being observed by a CCTV operator and document. The

literature suggests that CCTV must be used actively to have any effect on violent

crime as passive effects of CCTV on violence were found to be insignificant [43].

2.2.2 Unfocused Human

The following quote by Virilio concisely conveys the benefits of using CCTV

cameras when compared to human supervisors. In this subsection, I will present

a review of the literature that more scientifically presents the underlying notion

of Virilio’s statement.
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Human Visual capability has difficulty competing with the high sur-

veillance capabilities of the camera: the camera does not blink, sleep

or get bored and, unlike images captured on videotape, the results of

human visual surveillance cannot be rewound or replayed in a court

of law. [140]

This quote concisely outlines some of the negative effects of being human in

a surveillance position.To motivate the work presented in this thesis, the flaws

associated with human-based operation of CCTV are discussed and used to

justify a computer-based replacement or aide. Human flaws can be expressed

as falling within one of the three categories, vigilance, quantity and targeting

information. These categories all fall under the overarching theme of focus, a

persons’ ability to remain, with sufficient interest, on the task at hand.

Vigilance

An activity of interest can manifest itself at any time, and so cameras must

constantly record footage to capture unforeseen events. It is imperative that a

CCTV observer remains vigilant at all times so to identify any sudden events

of interest. A study by Miller et al. [100] investigating U.S Coast Guard crew

fatigue defines the concept of vigilance:

Vigilance is the ability to sustain and focus attention in a boring situ-

ation, with the goal of quickly and accurately detecting the occurrence

of a rare, unpredictable, important event. [100]

A report by Miller et al. [100] identified numerous factors that resulted in the de-

cline of a person’s level of vigilance. The factors, reported in order of importance,

are age, hours slept, and hours worked. Similarly, a description of old, privately

published research produced for the U.S Department of Energy was presented
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in a more recent paper by Green et al. [51]. The description of their previous

research is as follows:

Experiments were run at Sandia National Laboratories 20 years ago

for the U.S. Department of Energy to test the effectiveness of an

individual whose task was to sit in front of a video monitor(s) for

several hours a day and watch for particular events. These stud-

ies demonstrated that such a task, even when assigned to a person

who is dedicated and well-intentioned, will not support an effective

security system. After only 20 minutes of watching and evaluating

monitor screens, the attention of most individuals has degenerated to

well below acceptable levels. Monitoring video screens is both boring

and mesmerizing. There is no intellectually engaging stimuli, such as

when watching a television program. This is particularly true if a staff

member is asked to watch multiple monitors. [51]

Strong evidence for the hypothesis that human observation effectiveness decreases

over time exists [51, 100, 109, 30]. Parasuraman et al. [109] presented a study

investigating the ability of a human at detecting intent when handling a weapon.

The authors found that image quality was an important factor when investig-

ating the relationship between time and task effectiveness [109]. CCTV obser-

vation centres in the United Kingdom utilise legacy hardware that is known to

produce poor quality footage. Considering the findings presented by Parasura-

man et al. [109], one would expect to observe poor vigilance in some cases. A

United Kingdom Home Office report reported that the amount of time an oper-

ator remains effective when given a continuous data stream is not conclusively

known, but that the time after which effectiveness drops is somewhere between 30

and 120 minutes. When considering that a typical workday is 8 hours long, then

it is expected that for the majority of a typical work day, a CCTV observer would

be expected to under-perform for the majority of the time they are working.
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Concisely, human operators are unable to maintain focus over long periods of

time due to various factors. With this in mind, it is important to highlight

that this imperfection in human visual attention longevity presents a foundation

for computer-based assistance. Unless programmed to do so, a computer-based

system does not suffer from longevity issues; they operate consistently as they

cannot suffer fatigue, a major focal factor in the Miller et al. [100] study.

Quantity

It is important to note that a typical surveillance control room is fitted with

numerous monitors that each show many live video feeds each. A study under-

taken by Voorthuijsen et al. [139] saw several participants sit through two hours

of recorded surveillance footage while noting any incidents depicted; the results

showed that when presented with 4 video feeds at once, the detection rate drops

from 91% down to 72% compared to monitoring a single video feed. The paper

also notes that the performance may not be fully indicative of real life conditions

as the test participants kept a high level of concentration throughout, this could

be due to the short test time, a longer, more typical eight or twelve-hour test

would better reflect real-life conditions. A similar study by Tickner et al. [133]

found that when identifying suspicious incidents within and around a prison,

the detection accuracy for 4, 9, and 16 monitors was 93%, 94%, and 64% re-

spectively. Furthermore, they reported that suspicious incidents that took place

further away from the camera were more likely to be missed. As a decrease in

operator effectiveness is seen by introducing a few extra video feeds, what sort

of effectiveness would be seen after adding an extra 8? or what about 67? or

even 646? Gill et al. [43] explain that CCTV systems can be very large and so

intuitively, large teams of observers would be required to effectively keep track of

everything in view, this will however become cost ineffective after a certain point.
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Target Information

Visual search tasks using CCTV can be aided by the use of high-level semantic

target information that informs the observer of their target; this information can

be determined by the observer and learnt over time by watching past footage of

similar events [64, 65]. The identification of suspicious behaviour can be useful as

a form of targeting information, as suspicious activity is often a precursor of crime.

Howard et al. [65] demonstrated that the cognitive speed of scene evaluation for a

visual search task locating suspicious movement was slow, which can have severe

effects on active CCTV observation. The degree to which a person is acting in a

suspicious manner is subjective. Norris et al. [105] observed surveillance system

operators and monitored their behaviour alongside crime statistics.

Categorical suspicion is the largest single type, accounting for one-

third of all targeted surveillance. Thus the most frequent reason that

an individual is targeted is not that of what they have done, but

because of who they are, and operators identify them as belonging

to a particular social category which is deemed to be indicative of

criminal or troublesome behaviour. [105]

An observer applies less focus on information that they consider non-criminal in

favour of data that they believe to be criminally associated. Personal experience

is not the only informant of targeting information, as in one case, Norris and

Armstrong [106] disclose that the practice of race-based targeting was encour-

aged. Both Norris and Armstrong, and Goold et al. [47] discovered that racial

bias was present in CCTV observation, leading to one race being targeting dis-

proportionally. If the information that guides an observers gaze, the targeting

information, is derived from a place of trusted and verifiable intelligence then it

can lead to a functional benefit as useless information is discarded. However, if
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the targeting is weak or incorrect given the task, then focus of an observer will

be directed away from potentially important scenes.

2.3 Violent Behaviour Detection

In this section, a review of computer vision based methods of violent behaviour

detection will be presented and summarised.

When in motion, violent behaviour is commonly associated with sudden increases

in object velocity, acceleration. This association stems from the intent to injure or

hurt. For one person to cause damage to another, they must transfer a substantial

amount of energy (force) from their body to another. To cause damage, one must

increase the rate of acceleration of a weapon or attacking appendage (Equation

2.1).

Force = Mass ∗ Acceleration (2.1)

Given this association, Datta [26] and Deniz [29] produced methods that detect

violent behaviour by identifying high motion acceleration. Deniz notes that high

acceleration often manifests itself as a visual motion blur which can be measured

and used to describe the kinematics of a scene. The method proposed by Deniz

operates by computing the low-pass filter that is required to transform one frame

into the next frame within an image sequence. The low-pass filter represents the

nature of the motion blur that has developed across frames as ellipses. The low

pass filter C is computed using fast Fourier transformed representations of con-

secutive images (Equation 2.2), where F(.) represents the Fourier transformation

function.

C = F(Ii)
F(Ii−1)

(2.2)
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To detect ellipses, the low-pass filter C is transformed using a Radon transform-

ation and projected using vertical maximum projection to produce a histogram

in which peaks represent motion blur. The histogram is described using various

statistics that are used to represent the kinematics of a scene. Visual motion

blur is an artefact introduced by an image capturing device. Motion blur arises

when the rate of image capture is slower than the rate of motion of an object;

causing the capture device to record the visual composition of a moving object

as it occupies different locations in a frame over time. The magnitude of the

blur effect is often in proportion to the speed of the object, where faster motions

are likely to induce a larger motion blur. The rate of motion blur is contingent

on the capture device, meaning that if a camera with sufficiently high shutter

speed is used to record violence, then no motion blur will be induced. Therefore,

Deniz et al. [29] assumes that the recording device is insufficient for recording

violence, but as technology progresses, this assumption may become invalid.

Many of the following methods within this discussion derive motion statistics from

optical flow approximation. Optical flow approximation is the process of approx-

imating the perceived motion vectors of objects between two adjacent images in

time; the aim is to identify pixel or feature displacement and derive perceived

motion. Optical flow can be described as the motion of pixel I(x, y, t) that moves

a distance of (dx, dy) over dt time. Many optical flow approximation methods

assume that the pixel intensity does not change as it moves and time progresses,

this is known as the brightness constancy assumption and results in Equation 2.3.

I(x, y, t) ≈ I(x+ dx, y + dy, t+ dt) (2.3)

From Equation 2.3, the Optical Flow Equation 2.4 can be derived. Optical flow

approximation methods are defined by their approach at solving the optical flow

equation [63, 87]. Naturally, methods that adhere to the brightness constancy
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assumption will perform poorly in scenes with rapidly changing illumination.

Ixu+ Iyv + It = 0 (2.4)

Where

Ix = δI

δx
; Iy = δI

δy

u = dx

dt
; v = dy

dt

Shifting focus back to violence, Datta et al. [26] implemented a structured ap-

proach to solve the task of measuring person-on-person violence by first determ-

ining a person’s silhouette, and subsequently their head, for tracking. The third

derivative of displacement (by time), known as Jerk (Equation 2.5), is then incor-

porated in the composition of the Acceleration Measure Vector (AMV) to describe

violent motion.

j = da

dt
= d2v

dt2
= d3x

dt3
(2.5)

The authors justify the inclusion of jerk through data observation and state that

“During violence, the motion trajectory of a person experiences a drastic change

after being hit by the other person and jerk is an effective way to capture this

behavior”. In addition to AMV descriptor, the method of violence detection uses

information about the orientation of limbs, “During violence, people raise arms

and or legs, and hence the orientation of hand and or leg starts to change to-

wards being parallel/negative to the ground plane”. The method described by

Datta et al. [26] assumes that a person’s body is both visible and trackable.

This assumption is breached when analysing CCTV footage within city centre

environments due to occlusions caused by pedestrians in populated areas. Addi-

tionally, the limb orientation check assumes that the violence is captured using a



2.3 Violent Behaviour Detection 27

camera with a side view of violence, which is not always true in naturalistic en-

vironments. The authors note that their system will malfunction when presented

with either gang violence, or violence that involves wrestling.

Riberio et al. [113] introduce the Rotation Invariant Motion Coherence (RIMOC)

feature representation which encodes the eigenvalues of second-order statistics ex-

tracted from a set of Histogram of Oriented Flows; the eigenvalue representation

provides rotational invariance. The authors assume that the actions that comprise

violent behaviour are unstructured, and therefore attempting to model violence

that generalises to all instances of violence is difficult. Rather than use a binary

classification scheme, a single class model is fitted using only data that repres-

ents non-violence. A codebook of features is generated using k-means clustering.

This is followed by learning a set of codeword ensembles that encode the spatio-

temporal structure between local features. A set of unseen features are then

evaluated by determining the similarity between learnt and observed ensembles.

If the dissimilarity between the observed and learnt feature ensembles is high,

then the observed feature ensemble is considered violent.

The Scale-Invariant Feature Transform (SIFT) is an interest point detection

and description scheme used to describe local regions within an image based

on pixel intensity [86]. Nievas et al. [104] introduced a SIFT variant, Motion

Scale-Invariant Feature Transform (MoSIFT), to detect and describe patterns of

optical flow. Optical flow refers to the approximation of motion between two

images in sequence across time, derived from correspondence in pixel intensity

between images. The MoSIFT algorithm operates by performing SIFT interest

point detection on appearance data and then removing any detected interest

points whose position corresponds with a point in the optical flow fields with

an insufficient optical flow magnitude. The MoSIFT descriptor is created using

a SIFT descriptor concatenated with a similar encoding that is analogous to a

histogram of optical flows. Nievas et al. [104] described spatiotemporal volumes
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using both SIFT and MoSIFT feature descriptors; The authors used ice hockey

footage to demonstrate that their method could distinguish between scenes of

one-on-one fighting and standard play. Xu et al. [154] used the MoSIFT frame-

work and demonstrated that classification could be improved through the use of

a KDE based feature selection and a sparse encoding scheme.The KDE feature

selection was used to remove irrelevant and redundant information by computing

the probability density function of a MoSIFT descriptor; out of 256 features, only

150 with the greatest value in the probability density function are retained. The

reduced feature representation combined with sparse coding results in an increase

in classification performance when compared to the defaul MoSIFT algorithm.

Gracia et al. [49] present a real-time violence detection system that operates

using computationally cheap methods of image analysis as they argue that ap-

proaches such as MoSIFT, although impressive, are too computationally costly

to be practically implemented in the real world. Their proposed method oper-

ates by performing adjacent frame differencing and applying a fixed threshold

to generate a binary representation of objects in motion. Blobs are extracted

from the binary representation, and the largest blobs are then described using

measures of inter-blob distance and compactness. This method does not provide

state-of-the-art performance but does provide reasonable performance at a sub-

stantially reduced computational cost. The authors note that their method has

trouble analysing slow, continuous motions as differencing between frames will

result in small blobs. This method assumes that violent actions cause the largest

displacement of objects over time as implied by the author’s decision to describe

a scene using the largest blobs. This assumption may fail when considering the

nature of CCTV footage in city centre locations. CCTV often depicts people at

various depth levels relevant to their distance from the camera. Therefore actions

occurring closest to the camera will likely generate the largest blobs, irrelevant

to the action.
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Fisher Vector encoding represents a visual scene by spatially pooling local fea-

tures. Bilinski et al. [5] introduce a spatio-temporal Improved Fisher Vector

(IFV) representation and compares performance with the traditional IFV ap-

proach using violent behaviour detection datasets. The authors describe a compu-

tationally efficient implementation for fast encoding of spatio-temporal features.

The authors report high classification accuracy on violence detection tasks, how-

ever there is a caveat concerning computational cost . Although the proposed

feature encoding can be performed in real-time, the utilised local feature ex-

traction method (Improved Dense Trajectories [143]) can not. Computationally

cheaper feature extraction would be necessary for a system that utilised their

proposed encoding scheme to be deployed for use in active surveillance scenarios.

Hassner et al. [56] introduced the Violent Flows (ViF) dataset containing in-

stances of violent and non-violent crowd behaviour, typically extracted from

footage of crowds attending sporting events. Alongside the dataset, the authors

proposed an optical flow based descriptor. The violent flows descriptor is formed

by first computing the absolute difference in optical flow magnitude between two

successive frames. A threshold is applied to create a binary representation where

1 indicates that the change in flow magnitude is greater than the average change

in flow magnitude, otherwise 0. A temporal set of binary maps that represent

points with strong changes in optical flow are averaged temporally before being

spatially pooled and used to populate a fixed-size histogram. The Violent Flows

representation encodes patterns of relative change in optical flow magnitude over

time. Gao et al. [40] suggest that encoding changes in motion orientation is im-

portant when analysing violent crowds and suggested the ViF variant, Oriented

Violent Flows (OViF). As an independent feature, OViF does not outperform ViF

at classifying violent data, but when used in combination with ViF, provides com-

plementary information that increases performance above ViF levels.

Brémond et al. [13] implement an ontological approach for behaviour detection
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in European metro stations. Using tracking systems, the authors monitored indi-

viduals, groups and crowds and utilised an ontology to determine the perceived

behaviour. The ontology, defined by Brémond et al. [12], is used to determine

whether a camera captures footage of vandalism, overcrowding, persons jumping

over barriers, and persons blocking someone’s path, and fighting (violence). The

ontology defines four rules indicators of violence, if one of these is satisfied, then

violence is detected. Violence is detected if a person is lying down, if group width

variation changes significantly, if a group splits quickly, or if there is significant

variation in motion trajectory amongst the group. The ontology is applied to a

constrained environment in which typical behaviours are clearly identified. It is

arguable the same ontology would be unsuitable for the NTE as an NTE envir-

onment is both physically and socially different compared to a metro station. For

instance, alcohol consumption affects gait [28, 68, 132, 110], leading to unstable

movement that may break ontology rules associated with group width variation

and group splitting without actually being violent.

Marsden et al. [93] present a set of holistic features that represent attributes

of crowd motion, these being collectiveness, conflict, density and mean motion

speed. These features are derived from Kanade–Lucas–Tomasi (KLT) tracked mo-

tion trajectories [134]. Collectiveness describes crowd movement uniformity, and

conflict encodes interaction between neighbouring trajectories. Whether violence

exhibits greater conflict or collectiveness than non-violence is not explored. More

recent research by Marsden et al. [94] investigated the multi-objective training

of deep residual networks. It was reported that training a deep network to sim-

ultaneously solve crowd counting, violent behaviour detection and crowd density

estimation resulted in a model that can detect violence to a greater degree than

a model trained exclusively to solve the violent behaviour detection task. This

suggests that more informative representations of crowd dynamics can be learnt

given alternative crowd based objectives.



2.3 Violent Behaviour Detection 31

Meng et al. [99] used a pre-trained VGG-19 convolutional neural network to

extract a spatial and temporal stream to encode patterns that occur in pixel in-

tensity and short-term motion respectively. The authors demonstrate that the

detection of violent behaviour is greatest when utilising both appearance and

motion information. Furthermore, through the addition of Improved Dense Tra-

jectories (IDT) [143], the authors demonstrated that long-term temporal mo-

tion is beneficial when differentiating between violent and non-violent samples.

Dong et al. [32] utilise Long Short Term Memory (LSTM) networks to extract

spatial, temporal and acceleration streams for the task of violence detection.

An LSTM encodes variable length sequential patterns by selectively storing im-

portant information that defines an action. This research demonstrated that

acceleration provided the greatest performance for one-on-one violence detection

when considered independently from spatial and temporal streams. The com-

bination of all three streams provided the best performance. It is important to

note that each method that concerns deep learning utilised pre-trained models

and that any model fitting was performed using fine-tuning, updating an already

trained model using new data. In Chapter 5, Section 5.7, it is demonstrated that

training from scratch results in a poor model of violence, likely caused by the

small amount of available data.

2.3.1 Conclusion: Detecting Violent Behaviour using Com-

puter Vision

To conclude, the ability of a human completing a video-based task of action de-

tection using footage captured by CCTV is typically poor. The factors associated

with vigilance and quantity have been experimentally studied whereas issues as-

sociated with observer bias has been anecdotally observed. Human observation

ability is sub-optimal given a large amount of data, and often scenes of interest go

unobserved. The mass adoption of CCTV in the United Kingdom has created a
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potential avenue for improving the negative effects of violence. Increased CCTV

allows for the capture of incidents that would previously go unreported and un-

observed.

Identifying scenes of violent behaviour allows for appropriate action to be taken

in an effort to reduce the severity of an injury and the associated cost of treat-

ment (see Chapter 1). Computer vision methods for violent behaviour detection

presented in the literature typically focus on achieving highly accurate systems,

often with an associated high computational cost. In order to be applicable in

an active surveillance situation, algorithms are required to operate in real-time

to handle the constant stream of data sent to CCTV observation environments.

Use of a real-time vision system is highly important when attempting to reduce

the severity of the sustained injury as intervention time is the key factor. An

algorithm that imposes a substantial delay between the time of an action be-

ing performed and time of detection will fail to fulfil the criteria associated with

the research hypothesis. Concisely, computer vision can improve human ability

at detecting violent behaviour which has a theoretical positive influence on the

severity of the sustained injury.

Research using real-world CCTV footage is uncommon, especially regarding NTE

hours in the UK, which are characterised by their increased levels of violence.

Frequently, the Hockey violence dataset is used to evaluate violent behaviour de-

tection techniques [5, 29, 49, 56, 104, 154], however there is no evidence to suggest

that Hockey violence provides a suitable analogue for real-world street violence.

Similarly, research by Riberio et al. [113] and Brémond et al. [13] evaluate their

proposed methods using unique datasets that each have a specific context; viol-

ence and aggression in train/metro station environments. Train/metro station

datasets have a specific context that are not guaranteed to be representative of

violence in city centre NTE environments. Lastly, datasets like BEHAVE [8] or

PETS2015 [79] use actors to portray scenes of violence. Acted scenes may not
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provide an accurate representation of violent behaviours seen in real-world NTE

videos as actors will behave in a manner such to prevent inflicting pain. Using this

data to generate a detection model may lead to a model that generalises poorly

when applied to real-world data. To summarise, research is frequently conduc-

ted using datasets that do not necessarily represent natural scenes within UK

streets. Analysis should be conducted using real-world data to allow for a genu-

ine understanding of how violence detection system will perform in real-world

situations.

2.4 Predictive Modelling

So far, the discussion presented has concerned itself with the development of

computer vision based models for the detection of violent behaviour.

The methods described in Chapters 4 & 5 can be applied as reactive systems,

providing information that allows law enforcement to react in an informed manner

as an event unfolds. The prediction of violent behaviour would allow for preventive

measures to be deployed. Unfortunately, the video data collected (Chapter 3) does

not include information that displays the evolution from non-violence to violence.

Therefore, generating and evaluating predictive models using video data and the

computer vision methods is not feasible.

During data collection, Global Positioning System (GPS) location data for viol-

ent incidents in Cardiff and Northampton was obtained. Using this information,

models that predict violent crime hotspots revealed by the GPS data are gen-

erated. Agent-based modelling provides a simulation of pedestrian movement

dynamics. Within this section, a review of the literature associated with agent-

based modelling is presented. Chapter 6 will present implementation details of an

agent-based model aimed at simulating city centre environments. An evaluation

of the ability of an agent-based model at predicting violent crime is presented.
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In the discussion and closing remarks to this thesis (Chapter 7), a theoretical

foundation disclosing how systems of detection (Chapters 4 & 5) can be integrated

with systems of prediction (Chapter 6) will be presented. This will form the basis

of future work.

2.4.1 Agent Based Modelling

Criminal behaviour is believed to be influenced to some degree by the environ-

ment [131], resulting in a concept in the field of crime prevention which asserts

that non-linear distribution of police resources can minimize the effects of crime.

This concept stems from the idea that certain spatial areas in a town or city re-

quire less police presence than others. By varying the level of police patrol units

and monitoring subsequent changes in crime, it was determined that the amount

of allocated police resources had no significant influence on crime [71]. This re-

search provides contradictory evidence to the assertion that non-linear distribu-

tion of police resource and maximize crime reduction. Sherman et al. [123] claim

that the aforementioned research suffers methodological errors, and in response,

developed their own study on the same topic. Sherman et al. [123] presented

a study which demonstrated that non-linear distribution of police resources was

beneficial. In their study, they identified 110 hotspots using historical crime data.

Fifty-five hotspots were given increased police attention whereas the other fifty-

five were used as a control. The study purports a reduction of 13% in reported

crimes in the areas with increased policing, suggesting that non-linear distribu-

tion of police resources does have an effect on crime. More precise crime mapping

allows you to understand whether a specific establishment along a street is a

contributor to a certain type of crime. Multiple studies have demonstrated that

the rate of crime can be reduced across many types of criminal activity, such as

robbery [123] and different forms of violence (gun [122], physical [10]). However,

the efficiency of hotspot policing is dependant on the type of crime [35]. Simply
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increasing police presence does not yield the maximum reduction in criminal be-

haviour possible, benefits in crime reduction can be improved by identifying the

core factors that are associated with a crime hotspot and applying a more be-

spoke policing strategy [9, 33]. The benefits of hotspot analysis are not tied to

the hotspots themselves as:

The results of our research suggests that hot spots policing generates

small but noteworthy crime reductions, and these crime control be-

nefits diffuse into areas immediately surrounding targeted crime hot

spots. [9]

Police currently analyse historical data to determine hotspots. This form of data

analysis does not allow data analysts to understand how the distribution of crime

changes when presented with a different environment than the one crime initially

took place within. Crime hotspot predictions can be generated using factors

identified as being related to criminal behaviour. This has applications in city

planning and management; in the context of the NTE, a model that can predict

the nature of violent crime would allow the local governing body to best determine

how to design the night time economy environment so to minimize the effects of

violence.

Pedestrian Modelling

Work presented in Chapter 6 proposes the simulation of pedestrian behaviour

within NTE environments with the aim of determining regions of associated with

violent crime. Computer simulations have been developed to mimic the move-

ment of pedestrians so as to offer a better understanding of the effects of en-

vironmental design on the behaviour of moving pedestrians. Prominent work

presented by Helbing et al. [60] introduced a social force model. In this model,

independent simulated agents were guided by rules governing their motivations
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and actions. An agent has a desired spatial goal which they will move towards

using a propulsion force, synonymous with the desired velocity of that agent.

A repulsion force is applied to avoid collisions with the environment and other

agents. Using basic rules applied to each agent in a multi-agent model, emergent

behaviours representative of those exhibited by real-world pedestrians arose. For

instance, in crowds of oppositely moving directions, lanes would naturally form

as they allow agents with a common course of motion to proceed towards their

goal more efficiently. The environment affects the emergence of behaviours such

as lane formation. In situations where pedestrians walk in opposite directions,

appropriately placing obstacles more easily induces lane formation [61]. Envir-

onments can be computationally designed and tested using simulations to alter

pedestrian behaviour [61, 157, 158].

Agent Based Modelling (ABM) has been used to aid risk assessment and dis-

aster planning; by simulating behaviour during potentially harmful events, re-

sponsive measures that reduce injury and prevent loss of life can be determined.

Comparing route planning strategies for the task of evacuating a metro station,

Zhang et al. [158] demonstrated a reduction in evacuation time when simulated

agents considered the local density of other agents when selecting an evacuation

route. Similarly, SAFEgress, and ABM framework, has been used to investig-

ate how signage and local situational information affects routing choices during

disaster scenarios [19]. Further evacuation-based examples include the investig-

ation of exit strategies across various building types [153] and the production of

risk maps [111] in response to earthquakes. By combining an ABM with a hydro-

dynamic simulation, Dawson et al. [27] produced a dynamic ABM that simulated

pedestrian movement during a flood event. The flood simulation is used to es-

timate the vulnerability of individuals to flooding under various conditions and

test flood prevention measures. Research presented so far has been concerned

with evaluating pedestrian risk given certain circumstances, actions and events.

Rather than assess risk from a pedestrian perspective, Hawe et al. [57] used risk
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to inform an ABM for resource management. A simulation was developed to

identify the most effective allocation of emergency resources such that priority

is given to the most critically injured pedestrians in a disaster scenario. In the

context of crime, ABM can be used to test new police strategies as shown by

Dray et al. [33] whose model reported that problem oriented policing is bet-

ter than random patrol, which is accurate to reality [9]. Numerous factors are

assumed to influence harm in the NTE, including premises opening hours, con-

gestion, population, blood alcohol level, etc. The authors of SimDrink present a

proof-of-concept model that predicts harms (violence) during a typical night out

in Melbourne [119]. The SimDrink model provides and experimental platform

that is intended to provide an understanding on how harms are affected by policy

changes such as altering venue operating hours.

There are different types of models for the simulation of pedestrian behaviour.

The type of model used in the experiments described in this thesis is a model

that provides continuous spatial freedom for each simulated agent, this model is

known as an Agent Based Model. An alternative model that arises in the liter-

ature is one that sees the positions of each simulated agent being tied to a cell

within a pre-defined spatial structure. In the case of Cellular Automata, physical

environments are represented using a matrix structure, where each element rep-

resents an occupy-able space by some abstract entity, in the case of this work these

are pedestrians. The state of each cell in the matrix updates at each simulated

discrete time-step based on the state of neighbouring cells. Due to the spatial con-

straints imposed, a Cellular Automata (CA) model is typically computationally

less complex when compared to an Agent Based Model due to the finite number

of possible interactions between simulated agents [7]. However, CA models have

been demonstrated to give realistic emergent phenomena (lane formation, side-

stepping, herding, crowding, etc.) during evacuation and normal scenarios [159].

The work presented in Chapter 6 builds upon an existing Agent Based Model

that models drunken behaviour [101].
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2.4.2 Alcohol, Anger and Stress

Moore et al. [101] have previously described the theoretical mechanisms relating

alcohol intoxication to pedestrian movement and outcomes that include aggression

and violence. Briefly, undesired events that people have no control over trigger

negative emotional responses including stress and anger [20, 114]. This can arise

in cases where many pedestrians occupy a small space as competition for free

space can elicit anger [67]. Furthermore, pedestrians in crowds will experience

repeated invasions to personal space, determined as being within a 1.2-metre

radius of another pedestrian [52]; this also elicits stress [128]. Stress caused by

the invasion of personal space induced is moderated by familiarity with the person

invading personal space and familiarity with the environment itself [52, 58, 69]

and culture [62]. Violence is more likely under conditions of stress [22, 73, 95,

103]. For example, stress is positively associated with hostility in men towards

women [4] and being stressed makes it harder to cope with frustration [95].

Based on the literature, it can be argued that violence and aggression in crowds

are partly attributable to pedestrian congestion eliciting goal inhibition and stress.

For the NTE, however, the additional condition where a proportion of pedestri-

ans are intoxicated to the extent that their gait becomes unstable will contribute

to this. Intoxication effects more than gait, the perceptual [14] and mental of

pedestrians are known to change. Adaptive emergent behaviours, like lane form-

ation and queuing, typically improves pedestrian flow. These and other adaptive

behaviours may be disrupted in the presence of intoxication as pedestrian gait is

affected. Experiments are used to assess whether including variable levels of in-

toxication in an ABM, realised as modifying pedestrian gait, provides additional

explanatory power in simulations designed to identify the likelihood of violence

in NTE crowds.
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2.4.3 Conclusion

Understanding where and when disorder and violence will occur is of value to

efforts aimed at mitigating harm: this can be achieved by altering physical or

social environments through means such as pedestrianising streets, or by adjusting

the opening times of pubs, clubs, and bars. Agent-based models provide in silico

simulations of real-world pedestrian flow. In many night-time locations, alcohol is

used as a social lubricant and is synonymous with an unsteady gait and violence.

The significant value of ABMs is that they can be used in a variety of contexts

to provide risk assessments and inform environment design to minimise harm.

ABMs have not been rigorously applied to NTE contexts, and it is not clear

whether simulations can provide insights to inform the design of the NTE.

2.5 Summary

A review of the literature presented in Chapters 1 and 2 suggests the sub-optimal

use of technology for the task of violent behaviour analysis. More specifically, the

literature presented in this chapter highlights two key areas of research, computer

vision and pedestrian simulation.

Regarding video surveillance, identifying scenes of violent behaviour can result in

a reduction in the severity of an injury and the associated cost of treatment (see

Chapter 1). Reviewing existing methods of violent behaviour detection while

also considering the research hypothesis reveals that current methods are not

sufficient as real-time performance is rarely a concern. Given that injury severity

is contingent upon intervention time, an algorithm that operates with a significant

temporal delay would not satisfy the research hypothesis. Across Chapters 4

and 5, two methods of violent behaviour detection that both operate in real-time

while each maintaining a high detection accuracy, are presented.



2.5 Summary 40

Reviewing the literature on pedestrian simulation and ABM revealed that the

effects of drunken characteristics on emergent behaviour and crime prediction

have not been widely investigated. The value of ABM is that it can be used in a

variety of contexts to provide risk assessments and inform environment design to

minimise harm. This type of model can be beneficial when you consider that the

risk of engaging in a violent altercation increases during NTE hours. Presented

in Chapter 6 is an investigation into the efficacy of alcohol informed pedestrian

simulation model for the task of violent behaviour detection.
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Chapter 3

Video Data Collection and Data

Bias Analysis

3.1 Introduction

Chapters 4 and 5 of this thesis investigates the development and application of

computer vision techniques for the detection and analysis of violent behaviour

captured using CCTV. This chapter will provide an overview of the data collec-

tion procedures performed to gather video data for analysis. In summary, our

data collection used two sources; online repositories used within existing research

and privately sourced data from police organisations in the UK.

Presented in this chapter is an overview of six datasets alongside an investigation

into the biases that exist within each dataset. Data bias arises from inconsisten-

cies in the data capture, or data annotation process [135]. As an extreme example

of data capture bias, a violent behaviour dataset may contain instances of violence

recorded during night time hours, and instances of non-violence recorded during

the day time hours; the difference in lighting condition induces a bias, leading to

a model that associates darkness with violence. In this example, the model will

fail to detect violence that occurs during the day.

Highlighting data bias will help understand the suitability of different datasets

for the task of violent behaviour detection and analysis. Classification results re-
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ported using a dataset whose biases are prominent and easily exploited should be

investigated thoroughly to avoid misrepresentation. In this chapter, it is demon-

strated that state-of-the-art performance for detecting violent behaviour can be

achieved by exploiting data bias; information that has no theoretical relationship

with violence can be used to identify violence. This information is useful for

informing computer vision system design.

3.2 Data Collection

Work presented in Chapters 4 and 5 describe the utilisation of video data for the

generation of models for detecting violent behaviour. The first and foremost task

to complete was data collection, as without data, we lack an essential component

for performing data analysis. Data was gathered using two distinct approaches.

The first was to undertake a literature survey and identify publicly available data-

sets suited towards my thesis subject matter. The second form of data collection

involved obtaining private data from police organisations, who are required to

store video data for various legal purposes. Before my induction into the PhD

program at Cardiff University, Prof Simon C. Moore had arranged an informa-

tion sharing agreement with South Wales police, which allowed access to a small

amount of data captured from CCTV cameras within and around the Cardiff

area. Unfortunately, gathering more data from this source was not possible due

to staffing issues on their end. During early research, I attended a government-led

conference on data access for crime prevention known as Video Analytics for Law

Enforcement or VALE for short. The objective of VALE is to identify the areas

of law enforcement which will benefit from the introduction of computer-based

video analytic techniques. A key point of discussion at the conference was the

lack of data centrality; data was stored and managed by each police organisation

independent of any other. A goal of collating all the video information into one

extensive collection and providing a central point of access was proposed. As



3.2 Data Collection 43

stated at the conference, the VALE program was not official at the time of dis-

cussion, and its fate was subject to upcoming political events. Information on

VALE disappeared shortly after, which was likely due to political turmoil dur-

ing the general election at the time. Although this point of data access is no

longer available, it did highlight that directly contacting the local police organ-

isations may allow us to secure data. A data sharing agreement between Cardiff

University and Northamptonshire Police was developed to allow for data access.

The agreement allowed for the collection of both violent behaviours captured on

CCTV and GPS data related to all crimes within the Northamptonshire region

(see Appendix A).

3.2.1 Northamptonshire Data Agreement

A data sharing agreement was established between those involved with this thesis

and Northamptonshire police. In this section, I will outline the challenges asso-

ciated with collecting and processing video data included in the agreement. Al-

though I was vetted (Non Police Personnel Vetting (NPPV) Level 2) as per the

agreement, I was not allowed direct access to the criminal record storage room

located in Northampton. The process of obtaining data required that I manually

identify records of interest using a computer system and ask a particular member

of staff to retrieve the physical documents. It was typical for the CCTV disc

in the physical record folder to be either broken or missing, making the data

collection process tedious. The failure to preserve data may be a breach of the

Data Protection Act that may have wider ramifications if any case with missing

evidence is recalled to court. During collection, I recovered all records marked as

"Violent Behaviour" between the years of 2013 - 2015; everything prior to 2013 is

stored in a long-term archive building that requires a different process to access.

The video data collected was stored in a proprietary format designed by CCTV

security firm PELCO. A video player was provided but did not offer a means of
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making the data processable by our algorithms. My initial attempt at extracting

the data was to play the video files using the propriety player and directly record

the screen. This approach did not work as the video viewer displayed videos at

an inconsistent frame-rate resulting in the screen recorder either duplicating or

missing frames entirely.

Analysing the proprietary video format using BinWalk, software used to identify

common structures in data, it was determined that the video frames were stored

in JPEG format. The JPEG images could be separated into two groups. The

first group were images that had the same dimensions as the final video as de-

termined by the video viewer. These images could be considered key-frames

as they were visually complete and contained no artefacts bar those expected

from video compression. The second group of images had dimensions of 16 ×N

where N was a seemingly random number being a multiple of 16.A set of pair-

wise values corresponding with (x, y) co-ordinates where 0 ≤ x < videowidth/16

and 0 ≤ y < videoheight/16 were identified by analysing the hexadecimal data

within the video file.It was hypothesised that the proprietary format used a Mo-

tion JPEG type of encoding where key-frames were stored and only fixed sized

blocks that change over time are saved, 16 × 16 image segments were extracted

from non-complete images and placed onto the last complete image using the

(x, y) positional values.

3.3 Crime and Intoxication Data

GPS crime data and intoxicated pedestrian simulation are used to create a pre-

dictive model of violent crime (Chapter 6). GPS crime data was obtained from

both Northampton and Wales Police forces. The information included with

the GPS reports provided by the Police described time, longitude, latitude and

crime type. There are various types of crime recorded by the Police, but for the
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work presented in this document, only crimes related to violent behaviour were

used. The specific category of crime used was Violence Against Person (VAP).

The accuracy of GPS crime coordinates from Northampton are quoted to have

up to a 1.5-metre deviation from the true location. GPS error was not provided

for the South Wales Police data.

Regarding intoxicated behaviour modelling, Blood Alcohol Concentration (BAC)

data gathered from the city of Cardiff was obtained using data sources associated

with existing research [110]. The BAC dataset includes the level of intoxication

(BAC) of pedestrians within Cardiff during the NTE. The BAC dataset also

contains a categorical variable indicating the observed state of a persons gait as

being either normal or staggered.

3.4 Video Datasets

Six video datasets are used throughout this thesis; four of which are datasets

dedicated exclusively for video based violence analysis. Two of these have been

sourced by Cardiff University using data sharing agreements; both South Wales

Police and Northamptonshire Police agreed to share their data CCTV data. Two

crowd abnormality datasets have been used to determine how well the violent

crowd detection method (Chapter 4) generalizes for detecting non-violent scen-

arios that are likely to occur in city centre environments. The six datasets used

throughout this thesis are:

Cardiff Dataset: The Cardiff Violence Dataset (CF-Violence) was sourced from

South Wales Police. Data collection was performed by a member of their staff.

The dataset provided contained approximately 23 hours of footage, of which 1

minute 56 seconds was of violent behaviour. To increase the amount of data, an

extra 90 seconds of violent footage was downloaded from online video repositor-

ies and added to the dataset. Footage was selected if it was manually identified
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as being visually similar to data sourced from the police. (Figure 3.1). In total,

the Cardiff dataset contains 13 scenes of violent behaviour. In addition to nor-

mal behaviour, the data provided contains two scenes of non-violent aggressive

behaviour and 3 instances of post-violence that depict the victim of violence

being tended by medical personnel. Due to unbalanced nature of the dataset, a

random subset of normal behaviour equal in size to that of the violent data is

used during training.

Northampton Dataset: The Northampton dataset (NN-Violence) consists of

18 police records from 18 unique cases, providing 18 instances of violence with a

varying amount of normal data captured before and after the incident. Each po-

lice record contains footage captured from multiple cameras providing different

view points for some of the violent incidents. Even though a single case record

has multiple camera views of an incident, only the best view of an incident is

stored at 30 frames per second at the maximum resolution the capture device

is capable of (typically 704 × 576); all other views are stored at 4-6 frames per

second at a resolution of 704× 288.

Figure 3.1: Still images identified as being visually similar to data

found in the CF-Violence and NN-Violence datasets.
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Violent Flows: Introduced by Hassner et al. [56], this dataset consists of 123

violent and 123 non-violent videos of crowds within and around sporting stadi-

ums. As described by Hassner, the data was extracted from Youtube and there-

fore contains heavy compression artefacts. This dataset is applicable for this

thesis as sporting areas are typically built within city centre environments (Fig-

ure 3.2).

Figure 3.2: Still images extracted from the Violent Flows dataset.

Hockey Violence: Introduced by Nievas et al. [104], the Hockey Violence data-

set contains 500 samples of non-violent, and 500 samples of violent scenes cap-

tured from televised Ice Hockey matches (Figure 3.3). It was observed that

the visual composition of violent scenes found within this dataset is similar to

one-on-one brawls that are typically found in city centre environments. This

observation has yet to formally backed up using quantitative analysis that com-

pares street violence and hockey violence.

UCF Web Abnormality: Introduced by Mehran [98], the UCF dataset con-

tains 20 samples of video footage depicting crowded city environments during

both normal and abnormal behaviour. The 8 videos of abnormal behaviour
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Figure 3.3: Still images extracted from the Hockey violence dataset.

within the UCF dataset each falls into one of three sub-classes; panic, clash

and fight. Footage is recorded using static cameras; each scenario is subject to

changes in illumination and non-pedestrian objects such as vehicles and flags.

The range of normal behaviours include walking, jogging, queueing and timed

road crossings (Figure 3.4).

UMN Crowd Panic: Introduced by Mehran [98], the UMN panic dataset con-

tains footage of a physically simulated panic type scenario. A group of up to

14 people is instructed to partake in standard social behaviour until being told

to flee in unison so to simulate a large disruptive event. The footage is cap-

tured using static cameras pointed towards a controlled environment where no

external influences are present with the exception of very minor global changes

in illumination (Figure 3.5).



3.5 Investigating Bias: Quality and Depth 49

Figure 3.4: Still images extracted from the UCF Web Abnormality

dataset.

Figure 3.5: Still images extracted from the UMN dataset.

3.5 Investigating Bias: Quality and Depth

Biases in the data may be introduced during data capture. Systems with different

image capture characteristics may, by accident, introduce a bias in which scenes
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of abnormality (violence) are represented differently that scenes of normality. In

this section, an analysis of perceived image quality and depth of footage contained

in each video dataset is presented. The hypothesis that aspects associated with

image capture characteristics can be used to classify between scenes that depict

abnormal (violent) and normal behaviour is tested and discussed. The purpose

of this analysis is to demonstrate the internal biases of each dataset that may

lead to computer vision based techniques to achieve state-of-the-art classifica-

tion performance by describing aspects truly unrelated to the action of abnormal

behaviour. In the conclusion, each dataset is ranked based on their data cap-

ture biases, a ranking that should be considered when discussing the ability of

a method to detect abnormal (violent) behaviour correctly. Finally, suggestions

for avoiding certain types of biases will be presented alongside a discussion for

potential future work.

3.5.1 Image Quality Analysis

The perceived quality of an image is affected by the image capture process. Re-

garding digital media, both the hardware and software can introduce various dis-

tortions or artefacts during image capture. In this section, an investigation into

the perceived quality of video images within each dataset is presented. Scenes

of abnormal (violent) behaviour may be recorded under different conditions than

scenes of normal behaviour, for instance, it was observed that footage of violence

in the CF-Violence dataset is often zoomed in (demonstrated in Section 3.5.2);

the act of applying a digital or analogue zoom may introduce noise or distortion.

By applying Image Quality Assessment (IQA), image quality characteristics can

be measured and then use to determine whether an appearance based bias is

present in the data. A bias in perceived image quality may allow for effect-

ive discrimination between violent/non-violent behaviour based on information

that is unrelated to the violent or non-violent behaviour of captured persons. A
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model that exploits image capture characteristics (quality) for violent behaviour

detection may not generalise well as data recorded using another image captur-

ing system whose capture characteristics are different, will be poorly classified.

Presented in the following section is an evaluation of the image quality proper-

ties present in each dataset. Information and knowledge derived from IQA can

be used to inform feature design and aid in debugging of unsupervised machine

learning techniques.

Two branches of IQA are used for evaluating image quality, these are no-reference

(blind) and full-reference assessment. Full-reference methods of IQA utilise a ref-

erence image for comparison with an image that suffers from degraded image

quality; a measurement of the differences between images is used to quantify per-

ceived quality [120, 148]. No-reference methods apply models that extract and

measure properties of image quality [2, 55, 96]. Research has shown that percep-

tual interpretations of quality are typically subjective, and therefore many models

of IQA are based on human perception [2, 55, 89, 96]. In the following analysis, an

overview of each IQA method is presented alongside classification scores achieved

by applying 5-fold cross validation for the task of classifying between normal and

abnormal (violent) scenes. In addition to classification results, distribution plots

for each each IQA measure for both normal and abnormal (violent) samples are

included. To make statements about the typical composition of abnormal (vi-

olent) scenes, the difference in measurement distribution between behavioural

classes is statistically tested.

The testing methodology for this section is first to present an explanation of each

metric of image quality alongside a description of the results with relation to each

dataset; a discussion and conclusion will follow this.
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No-Reference (Blind) Image Quality Analysis

In the proceeding subsections, multiple methods of no-reference IQA from the

literature are introduced. The characteristics of no-reference image quality that

are investigated are: Colourfulness, Sharpness, Contrast, Complexity and Noise.

These characteristics were selected as they are well defined and widely researched

properties of image quality. For each property, the distribution of values popu-

lated by measurements of a particular image property computed using each frame

of within a video for a given dataset is reported. Statistical significance testing

methodologies are applied to determine whether the difference in image quality

characteristics between violent and non-violent samples is significant. Addition-

ally, classification is performed to demonstrate to what degree a violent action

can be detected based on image quality characteristics alone. Using both clas-

sification and statistical significance testing, the existence and severity of image

quality bias in each dataset has been tested and discussed.

Colourfulness

Video footage can undergo massive shifts in perceived colour as both the ob-

ject composition and lighting can drastically change the perceived colour of a

scene. The interpretation of the colourfulness of an image is subjective, as an

extreme example of this, a colour-blind person has an alternative understanding

of the colour of an object due to how their visual receptors process light waves.

Spectroscopy, the study of the interaction between electromagnetic waves and

matter, can be used to determine the colour composition of a scene based on the

distribution of electromagnetic waves emitted from objects that fall within the

visible light spectrum. Humans interpret the visible light spectrum in a non-linear

manner [25]. Therefore, Hasler et al. [55] took a human-centric approach at gen-

erating a measure of image colourfulness. The authors performed a qualitative

study in which 20 participants were asked to rate the colourfulness of a set of
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images. A metric that correlates highly with human perception was developed to

quantify colourfulness. The colourfulness metric defined by Hasler et al. [55] was

utilised as a feature to distinguish between different action classes in the datasets

presented in Section 3.4.

Colour bias arises when one type of action within a dataset has different proper-

ties of colour than other footage depicting other actions; this may occur due to

hardware or environmental context. The reported Area Under Receiver Operating

Characteristic curve AUROC scores obtained using colourfulness as a feature for

classification are 0.68, 0.73, and 0.83 for the Violent Flows, UMN, and UCF Web

Abnormality datasets respectively. The CF-Violence and NN-Violence datasets

achieving an AUROC close to 0.5, suggesting that colourfulness cannot be used

to distinguish between normal and abnormal scenes. In most cases, the Mann-

Whitney U test reports that the distribution of colourfulness between classes are

significantly different (p < 0.05), with the CF-Violence dataset being the only

exception (p > 0.05). The CF-Violence and NN-Violence dataset contain footage

captured by their respective CCTV system during similar times of day/night,

resulting in similar colour characteristics and poor classification. The results are

in contrast with the UCF and Violent Flows datasets which are composed of

footage taken from various sources with different capture characteristics. Normal

behaviour is on average more colourful than abnormal behaviour within these

datasets.

The Hockey dataset is composed of footage from many different games. However,

the environment and general composition of the footage remains fairly consistent,

resulting in poor colour based classification. Interestingly, a multi-modal distribu-

tion with three unique peaks is observed when analysing the colourfulness for the

UMN dataset (Figure 3.6). These peaks correspond to the three types of scenes

found in the UMN dataset which depict an indoor scene(grey scale), an outdoor

scene on grass, and an outdoor scene on concrete. In this case, colour can be
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used to separate capture devices using the recorded content, but not the action.

The UMN case highlights clearly how different environments and hardware can

introduce colour bias.

Violent Flows Hockey UMN

U = 1086810 , p = 0.000 U = 4855519, p = 0.000 U = 78425 , p = 0.000

CF-Violence NN-Violence UCF

U = 355196 , p = 0.0879 U = 7640851 , p = 0.000 U = 64758 , p = 0.000

Figure 3.6: Colourfulness distribution for each dataset.

Sharpness

The property of image sharpness is a subjective measure that relates to the per-

ceived clarity or detail of an image. Within an image that is considered sharp,

the boundaries or edges of an object are clear and well defined. Edges within

a picture with a low level of sharpness will appear blurred, with the change in

tone between two regions within an image being gradual rather than sudden.

Figure 3.7 displays the effects of reducing the level of sharpness. The quality

of camera lenses and compression techniques can reduce the level of perceived
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Figure 3.7: The same image with different levels of perceived sharpness.

sharpness.

The perceived sharpness of images extracted from each dataset is measured using

the method proposed by Bahrami et al. [2]. Bahrami et al. introduce a measure

of sharpness whose reported values for a set of testing images are closely related to

measures of sharpness as reported by humans. Bahrami et al. defined the concept

of Maximum Local Variation (MLV) as the magnitude of the maximum difference

between a pixel and its eight nearest neighbours. The standard deviation of

weighted MLV values is used to represent the sharpness of an image.

An AUROC score of 0.91, 0.82 and 0.71 is reported for the CF-Violence, Viol-

ent Flows, and UCF datasets respectively (Table 3.1). Regarding these datasets,

scenes of normal behaviour depict footage that is, on average, sharper than ab-

normal (violent) scenes (Figure 3.8). The difference between sharpness between

action classes for the NN-Violence, UMN, and Hockey violence dataset are either

insignificant (< 0.05) or report a low value; these datasets report a poor clas-

sification score. Deniz et al. [29] theorised that violent behaviour results in an

increased rate of visual blur due to the fast speed of movement associated with

a punch and capture characteristics of a camera. This theory may explain the

observation that abnormal (violent) scenes in the Violent Flows, CF-Violence and

UCF datasets are on average, less sharp.

Deniz et al. [29] report a high classification rate when measuring the blur in-

duced by motion when evaluating using the Hockey dataset. Blur is inversely
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proportional to sharpness, so one would expect measures of sharpness to per-

form equally well. However, a poor AUROC score is reported. The difference

between the two methods is the scope of measurement. The measurement of blur

by presented by Deniz et al. [29] is locally measured, whereas the measure of

sharpness by Bahrami et al. [2] is global. Globally, the quality associated sharp-

ness/blur is not sufficient on its own to distinguish between scenes of violence and

non-violence when evaluating the Hockey dataset.

Violent Flows Hockey UMN

U = 617348 , p = 0.000 U = 6142590, p = 0.000 U = 108416 , p = 0.000

t = −36.58 , p = 0.000 t = 2.87, p = 0.004 t = 3.91 , p = 0.001

CF-Violence NN-Violence UCF

U = 68198 , p = 0.0000 U = 8374255 , p = 0.1406 U = 71637, p = 0.0000

t = −21.78, p = 0.0000 t = 1.26, p = 0.2060 t = −23.74, p = 0.000

Figure 3.8: Sharpness distribution for each dataset.
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Contrast

The definition of contrast is the ratio between the brightest and darkest spot in

an image. However, according to [96], the human perception of contrast does

not entirely comply with this definition. Matkovic et al. [96] propose the Global

Contrast Factor (GCF) measure of contrast based on the weighted average of local

image contrast values obtained at various image resolutions. The local contrast

weights are assigned such that the singular contrast measurement align with the

human interpretation of contrast of an image. The authors claim that “An image

with a high global contrast causes a global feeling of a detailed and variation-rich

image. As opposed to it, an image with a lower global contrast contains less

information, less details, and appears more uniform”.

The contrast characteristic of data that depicts abnormal (violent) and normal

scenes is similar for the NN-Violence, UCF, and UMN datasets as reflected by

the low t-test and values and AUROC scores that are close to 0.5 (Table 3.1).

Except for the UMN and Hockey datasets, the contrast factor for abnormal scenes

is lower on average than data depicting normality (Figure 3.9).

Complexity

Image complexity refers to the perceived intricacy of patterns and is believed

to have a substantial impact on aesthetic appreciation [89]. Machado and Car-

doso present a method for computing an aesthetically directed value of complex-

ity [88]. An estimate of image complexity is calculated by measuring the Root

Mean Square Error (RMSE) between an image before and after applying JPEG

compression; the compression ratio then divides this value. The concepts of com-

pression and complexity are related [116], and that images with high complexity

are poorly represented when subject to high, lossy compression.

Complexity does not necessarily capture characteristics associated with the cap-
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Violent Flows Hockey UMN

U = 621956 , p = 0.0000 U = 3940132, p = 0.0000 U = 142335 , p = 0.4306

t = −34.89 , p = 0.0000 t = 30.56, p = 0.0000 t = 1.27 , p = 0.2017

CF-Violence NN-Violence UCF

U = 199795 , p = 0.0879 U = 7996233 , p = 0.0000 U = 182884 , p = 0.0000

t = −14.81 , p = 0.0000 t = −3.82 , p = 0.0001 t = −5.27 , p = 0.0000

Figure 3.9: Contrast Factor distribution for each dataset.

ture quality of a camera system but rather the content structure. Therefore,

a reasonable assumption would be that footage obtained from a single image

capturing system would have similar global characteristics. Using city centre

based CCTV as an example, crowd compositions would be expected to be visu-

ally comparable regardless of local actions and behaviours. If this is false, then

there exists the possibility that data has been gathered in a way such that bias

is introduced. In the case of crowds, complexity bias manifests when footage of

violence is captured in a different manner than footage of non-violence, this can

occur due to camera operator movement and zoom. With this in mind, evalu-

ating the CF-Violence dataset using image complexity reveals perfect separation
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between violent and non-violent scenes (Table 3.1). Ideal classification using com-

plexity suggests that the global composition of pedestrians in violent scenes are

entirely different to pedestrians depicted in scenes of normality. An AUROC of

0.85 (Table 3.1) is reported when evaluating the Violent Flows dataset, suggest-

ing that the visual composition of violent and non-violent crowds are different.

The remaining datasets reported weak AUROC scores, indicating that abnormal

and normal scenes are visually similar. With the exception of the UMN data-

set, images that depict abnormal behaviour are typically considered less visually

complex than normal behaviour as indicated by statistically significant (< 0.05)

t-test t values (Figure 3.10).

Violent Flows Hockey UMN

U = 506425 , p = 0.0000 U = 5009512, p = 0.0000 U = 122321 , p = 0.0000

t = −38.84 , p = 0.0000 t = −10.31, p = 0.0000 t = 3.23 , p = 0.0001

CF-Violence NN-Violence UCF

U = 7080 , p = 0.0000 U = 7109462 , p = 0.0000 U = 7640851 , p = 0.0000

t = −50.25 , p = 0.0000 t = −12.74 , p = 0.0000 t = −5.27 , p = 0.0000

Figure 3.10: Complexity distribution for each dataset.
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Estimated Noise

Image noise manifests itself as random variation in pixel intensity caused by

electronic noise, usually affecting the imaging sensor [80]. The quality of image

capture hardware is typically related to the amount of captured noise, and poor

quality hardware is likely to produce noisy imagery. The variance of additive

Gaussian noise was estimated using a method proposed by Immerkaer [66]. Their

approach is reportedly insensitive to the image structure. The author highlights

that thin lines may be considered to be noise by their estimation algorithm “In

highly textured images or regions, though, the noise estimator perceives thin lines

as noise.”.

The distribution of noise for each action class are statistically different in both

distribution shape and mean (< 0.05). However, the t-test value for the UMN

and UCF datasets are low. On average, scenes of abnormal behaviour contain less

noise when compared to images of normal behaviour. The noise characteristics

allow for near perfect classification for the CF-Violence dataset (AUROC = 0.99),

indicating that violent and non-violent scenes have different image quality charac-

teristics. Considering that the noise estimation may interpret thin lines as noise,

the high classification scores for the CF-Violence and Violent Flows datasets may

arise from dense crowds being considered noise.

Full-Reference Quality Analysis

In this section, full-reference image quality metrics are described, and their ability

to generate a model that can distinguish between violent and non-violent beha-

viour is evaluated. The methods discussed in this section operate by applying a

transformation to an image and measuring the difference between the original and

transformed image. Each approach to full-reference quality analysis is defined by

the particular way in which the difference between the original and transformed
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Violent Flows Hockey UMN

U = 453528 , p = 0.0000 U = 4480915, p = 0.0000 U = 112382 , p = 0.0000

t = −39.39 , p = 0.0000 t = −16.51, p = 0.0000 t = 4.39 , p = 0.0001

CF-Violence NN-Violence UCF

U = 5347 , p = 0.0000 U = 7874664 , p = 0.0000 U = 164904 , p = 0.0000

t = −67.63 , p = 0.0000 t = −8.82 , p = 0.0000 t = −10.51 , p = 0.0000

Figure 3.11: Estimated Noise distribution for each dataset.

image is measured. Three methods of full-reference IQA are evaluated; these are

Peak Signal-to-Noise Ratio (PSNR) [148], Visual Information Fidelity (VIF) [120]

and compression ratio.

The transformation applied to an image extracted from a video is image com-

pression. Specifically, Joint Photographic Experts Group (JPEG) compression is

used to transform an image for comparison with the uncompressed original. JPEG

compression within the Scikit-image Python library [138] accepts a quality para-

meter whose potential input is an integer within the range [0, 100]. The quality

parameter increases the rate of compression, higher values sacrifice image quality

in exchange for a smaller file size.
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Using these measures, the full-reference quality of a single frame within a video is

represented using a feature vector where each element represents a full-reference

measure computed using a different image transformation; in this case, the differ-

ence in transformation is controlled by changing the rate of JPEG compression.

Compression is performed multiple times using 50 compression values starting at

0 and increasing at an interval of 2. Computing a measure for all 100 compres-

sion rates was computationally expensive. A single frame in a video is therefore

represented by a feature vector of 50 values where each element is a full-reference

quality measure computed using compression at a given level.

Full-reference methods and results

Peak Signal-to-Noise Ratio (PSNR) (Equation 3.1) is used as a quality measure-

ment between an image and its compressed counterpart, greater values indicate

that the applied compression preserved detail and maintains quality. The output

of PSNR does not correlate with the human perception of image quality [148].

PSNR = 10log10(
R2

MSE) (3.1)

Sheikh et al. [120] proposed the Visual Information Fidelity method of full-

reference IQA. This method is targeted towards quantifying the quality of natur-

alistic scenes and performing human-like quality assessments. The Visual Fidelity

measure is a ratio between two full-referential quality measures, the amount of

reference information that can be extracted from a distorted image as informed

by natural scene statistics, human visual system, and a distortion model. The

second measure of quality used in the ratio is the amount of shared information

between the reference and distorted image [121].

Each of these methods reports similar results when performing quality based clas-

sification for abnormal scene detection. In each case, the reported classification



3.5 Investigating Bias: Quality and Depth 63

metric suggests greater than random selection when determining whether a scene

is normal or abnormal (violent). The CF-Violence dataset achieves almost perfect

classification performance and the Violent Flows and Hockey Violence dataset re-

port high classification. The UMN and NN-Violence datasets are classified least

effectively using full-reference IQA.

Table B.1 (Appendix B) presents the statistically significant (< 0.05) correla-

tion values between each full-reference binary predictions and no-reference IQA

metrics. In general, the full-reference IQA does not correlate strongly with col-

ourfulness, suggesting that the transformation induced by JPEG compression has

little effect on the full-reference IQA methods. In the case of CF-Violence, strong

correlations with estimated noise, contrast, sharpness, complexity and contrast

factor are observed, suggesting that the full-reference IQA approach may be de-

scribing, in some part, these aspects of quality. Regarding the instances of low,

or insignificant correlation between no-reference metrics and full-reference IQA,

It can be inferred that the full-reference IQA are potentially focusing on other

factors of quality not explicitly investigated.

Image Quality Assessment Discussion

In this section, we will discuss the potential effects of IQA based biases within

each dataset. Averaging the classification score obtained using each IQA method

provides a general indication of the image quality based bias for each dataset.

The datasets ordered in descending average AUROC scores are: CF-Violence,

Violent Flows, UCF, Hockey, UMN and the NN-Violence, each reporting average

classification performance of 0.89, 0.83, 0.73, 0.69, 0.62 and 0.60 respectively.

The appearance of footage taken from the Violent Flows and CF-Violence datasets

have distinct characteristic differences between violent and non-violent samples.

These different characteristics may arise through the physical act of capturing the

data. Camera operators target scenes of interest and attempt to focus on the ac-
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tion by changing the camera angle and zooming in of the region of interest. In the

case of Violent Flows and CF-Violence, the perceived sharpness of violent scenes

are lower on average than scenes of non-violence. One hypothesis is that camera

operation may influence this. The act of changing the camera angle to best cap-

ture a scene may induce a motion blur. Applying digital and analogue camera

zoom can alter the quality characteristics of captured footage. Digital zoom will

reduce the perceived resolution whereas analogue zoom can induce visual distor-

tions. In addition to this, when zoomed in, the camera operators movements will

be accentuated, increasing the probability of causing a motion blur. Reduced

image sharpness is associated with reduced contrast, noise and image complexity

(Appendix C Tables C.1 – C.6). An alternative hypothesis is that the structures

observed in normal scenes are different to those in abnormal scenes. It may not

be the operator motion that induces changes in quality characteristics, but rather

that the difference in data capture represents similar structures, such as pedes-

trians, from different perspectives. This assumes that the quality measurement

approaches describe the structures of an image rather than aspects of quality. The

method of noise estimation adopted is reportedly insensitive to the structure of

the image, however estimated noise correlates strongly (Pearson’s R > 0.9) with

complexity which is not insensitive to image structure (Appendix C Tables C.1

– C.6). This may suggest that either noise estimation identifies the structure as

noise and complexity identify noise as image structure or vice versa; it is also

possible that both are true.

The IQA measures used are globally descriptive; therefore if a scene is similar in

composition to normality with only a local difference of a person acting locally

violent or abnormal, then one would expect the distribution of image quality

statistics to be similar for normal and abnormal scenes. This was observed when

analysing the sharpness of the Hockey dataset. Our global evaluation of sharpness

yields poor classification ability whereas the local approach by Deniz et al. [29]

demonstrates greater classification capacity. The fact that the CF-Violence and
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Violent Flow datasets achieve good classification ability using IQA may suggest

that the appearance of the two classes of action are highly dissimilar in either

quality or scene composition.

Creating invariant systems is preferable as they, in theory, generalise well. Identi-

fying methods that normalise quality characteristics will aid machine learning in

the avoiding solving tasks using data that can be considered incorrect or irrelev-

ant to the problem. Although a weak indicator of abnormal behaviour, the image

quality of colourfulness is easy to remove. The potential impact of colour can be

removed by converting images to greyscale. Other factors such as contrast and

sharpness are less easily normalised. The sharpness of an image can be adjusted

using image filters such as a sharpening or blur filter. Data can be theoretically

tuned to have similar sharpness characteristics. However, this process may re-

move valuable data or introduce incorrect information after applying a blur or

sharpen filter respectively. Similarly, the contrast of an image can be balanced

using histogram normalisation procedures [164]. As with sharpening, contrast

normalisation may affect other qualities such as perceived noise. Data augment-

ation is standard practice within the Deep Learning field of computer vision.

Augmenting data to display various quality characteristics may prove beneficial

when generating an invariant model.

3.5.2 Understanding Depth

Intuitively, depth invariance could be understood to be universally preferable; a

highly invariant system is robust to biases in the data and has more potential as

a general solution to a subset of problems. Depth invariance is very important

when considering surveillance systems. It is often better to deploy a camera

system that maximises the amount of data captured. Maximising data capture

is often realised by placing cameras at high altitudes, with the focal direction

pointing down the length of a street. Using this setup, objects within the street
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exist at various depth levels from the camera, and due to the projection of a 3D

scene to a 2D image, a particular object placed at a variety of positions along the

street has different sizes or scales, relative to its depth.

Using work by Laina et al. [76], the approximate perceived depth of a scene

can be obtained. The work mentioned above attempts to approximate a depth

map from a single image using a deep residual network pre-trained on the NYU

Depth dataset [125]. The depth of a frame is encoded using five statistics; mean,

median, min, max and standard deviation of the predicted depth map. 5-fold cross

validation and a linear SVM classifier are used to obtain classification scores that

dictate the ability to separate samples of violence and non-violence based on the

depth derived statistics.

The Hockey and CF-Violence demonstrate the mode of data capture has intro-

duced a depth based bias into each dataset, see Table 3.2. Hockey is a team

based spectator sport, and television broadcasts benefit from a camera operator

focusing tightly on an event of interest. In a standard hockey game, to observe

a pass of the puck from one player to another, a wide camera shot would be

used as distances between connecting players can be large. In contrast, when

a fight occurs, the proximity between players is small, and so a close-up, tight

fitting camera shot better portrays the actions of interest to the spectators. On

a similar note, the violent data contained in the CF-violence dataset is centred

and focused. The camera operator had identified that a fight was underway and

tightly fit the camera to the action to capture identifiable features of the per-

petrators. This explanation holds true for the NN-violence dataset, however to a

lesser degree. Applying this process to the Violent Flows dataset shows classific-

ation performance metrics that represent a minor depth bias.
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Dataset ROC AUC Accuracy ±

CF-Violence 0.92 84.2 ± 2.6

NN-Violence 0.70 63.5 ± 2.1

Hockey 0.73 68.6 ± 4.1

Violent Flows 0.62 55.3 ± 2.0

Table 3.2: Classification when identifying violence using measures of

depth.

3.6 Conclusion

Perceived image quality and depth are two factors that can be exploited to achieve

state-of-the-art classification score on violent behaviour datasets. Depth and

quality bias in the data is problematic as facets do not convey action, a key

determinant of violence. An unsupervised learning technique may generate a

solution that learns image quality/depth statistics rather than motion analysis

based features. The study in this section has highlighted the potential problems

by experimentally demonstrating that good classification performance is achieved

using information that could be considered irrelevant to the task.

To avoid classifying a scene by its perceived depth or image quality characterist-

ics, and instead judge a scene based on the contained actions, it is beneficial to

develop methods that have inbuilt depth/quality normalisation techniques. Un-

fortunately, normalisation may not be enough. Due to the data collection process,

existing datasets do not represent action classes equivalent in all aspects but the

action (violent/non-violent). In the case of CCTV, this can bring into question

the reported ability of a method to correctly classify data. As previously stated,

in the case of the CF-violence dataset, violent scenes are typically tightly focused

on the event whereas non-violent scenes are usually wide, long shots. By tightly

focusing on violence, information associated with a street environment such as
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pedestrians walking and interacting are removed. The lack of surrounding con-

text presents a task of “detect violence”, and not the task of, “given a street

environment, detect violence.” Although similar, these tasks are not equivalent.

The latter task requires a solution that can distinguish between regions pertinent

to violence from other regions associated with non-violent behaviour.
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Chapter 4

Modelling Crowds using

Temporal Texture

4.1 Introduction

Datasets presented in Chapter 3 are characterised as binary classification data-

sets, the ground truth defines each video as violent or non-violent, or normal or

abnormal. The available datasets lack both transitional information that depicts

the actions that occur between normality and abnormality. Therefore, violent

behaviour prediction is not attempted due to the lack pre-violence information

with which to formulate a prediction model. Additionally, the severity of viol-

ence within each dataset has not been evaluated, removing the potential to apply

a regression analysis technique to evaluate the severity of an incident. Due to

these limitations, violent crime detection as presented in this thesis is treated as

a binary classification problem; Given existing examples of violence, fit a model

to evaluate an unseen sample to determine its nature, violent or non-violent. To

perform this process, a feature representation that encodes important aspects

of data must be obtained. This representation should describe characteristics

of violence and non-violence while avoiding other aspects such as image qual-

ity (See Chapter 3). Violent behaviour can manifest in many different forms,

with two distinct classes prominent in the data, these being crowd violence, and

one-on-one violence. Within city centre environments, the pedestrian population
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is high, resulting in the emergence of crowding. Measures of image texture are

well suited for describing the seemingly unstructured patterns that result from

the mass occlusions caused by crowding [91]. Violent behaviour is defined partly

by the actions and movements of engaged combatants, therefore modelling the

temporal dynamics can be useful. Unfortunately, traditional optical flow approx-

imation methods perform poorly on crowded scenes due to self-occlusion [72, 92].

The work presented in this chapter is based on the assertion that the appearance

of abnormally behaving crowds will undergo different patterns of change when

compared to crowds exhibiting normal behaviour. Therefore, a description based

on encoding the change in crowd appearance over time is proposed.

Introduced in this Chapter is the Inter-Frame Uniformity (IFU) measure, a value

that quantifies the uniformity of a sequence that when applied to a visual descriptor,

describes the stability of a crowd’s appearance over time. This measure was pro-

posed by looking at the data. Generally, the appearance of violent crowds between

successive frames depicts greater changes in appearance when compared to nor-

mal behaviour whose appearance changes more gradually. In addition to this, it

was observed that the rate of change of appearance was more variable for viol-

ent behaviour; the appearance of normal behaviour changes in a more consistent

manner. Based on observation, a hypothesis was formulated and tested, that over

a short-time period, the appearance of violent behaviour is less stable over time

when compared to footage of non-violent behaviour. During the testing of this

hypothesis, it was demonstrated that IFU is a powerful descriptor for use in a

violent behaviour classification pipeline.

It has been argued that many methods of violent behaviour detection are too

computationally expensive to be practically implemented in the real-world [49].

As discussed in Chapter 1 & Chapter 2, Section 2.1, theoretical benefits to public

health and safety can be achieved by using computer vision to assist in the active

observation of surveillance footage. With this in mind, the algorithm presented
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in this chapter was designed to operate with a low computational cost.

To summarise, a computationally cheap method of abnormal crowd description

that achieves state-of-the-art results across many datasets, including real-world

CCTV dataset known as CF-Violence, is presented. The proposed method gener-

ates a scene description that can be used to discriminate between abnormal and

normal scenes in the UMN unusual crowd, and UCF Web abnormality datasets.

State-of-the-art discrimination between violent and non-violent scenes as shown

in the Violent Flows and CF-Violence datasets is also reported. An extensive

investigation of the parameter effects of the proposed method is presented. It

is demonstrated that violent behaviour has the property of non-uniform change

over time.

4.2 Related Work

Violent behaviour detection in crowded situations can be considered a subset of

the abnormal crowd detection field of research. For this field, a vast selection of

approaches exists in the literature. Within the literature, there exists an asser-

tion that using optical-flow approximation to uncover motions within dense and

complex crowds is infeasible as flow approximations are poor [72, 92]; this has af-

fected the design of feature representations used to identify abnormally behaving

crowds. Kratz et al. [72] avoid optical flow based motion description by extract-

ing fixed size spatiotemporal volumes and computing spatiotemporal gradients of

pixel intensities which are represented using a three-dimensional Gaussian Mix-

ture Model (GMM). The authors model normal behaviour using a Hidden Markov

Model and declare a new observation as abnormal if it does not fit the learnt

model. Wang et al. [145] also avoid an optical flow based representation when

dealing with crowds, they instead favour statistics computed from wavelet trans-

formed spatiotemporal slices taken from a spatiotemporal volume. Although the



4.2 Related Work 73

effectiveness of optical flow is often a point of theoretical contention when deal-

ing with crowds, there exist many methods that utilise measures of optical flow

with excellent results. Ryan et al. [115] encode optical flow vectors using a three-

dimensional GLCM structure, expressing the dynamics of a local region by the

texture of motion. The authors generate a model of normality using a GMM. The

authors claim that their method is both effective at discerning between normal

and abnormal scenes while maintaining an arguably real-time processing speed

of approximately 9 FPS. Their approach would require input data to be tempor-

ally down-sampled to 9 FPS for real-time use, sacrificing potentially important

information for speed. Wang et al. [146] compute global Histogram of Optical

Flow Orientation (HOFO) on a per-frame basis and model normal behaviour

using two separate methods, one-class SVM learning, and Kernel-Principal Com-

ponent Analysis (PCA) embedding. The authors show that the two approaches

are effective at modelling normal behaviour when used in conjunction with their

proposed descriptor; however, the one-class SVM offered slightly higher perform-

ance. Chen et al. [17] extracted a notion of crowd acceleration and stated that

rapid changes in acceleration could be used to identify a crowd displaying normal

activity from a crowd currently undergoing a situation of panic. Recent work by

Biswas et al. [6] express the problem of abnormal behaviour analysis as identify-

ing sparse, or rarely occurring behaviours. A matrix of features represent video

frames, and matrix decomposition is applied to separate the matrix components

into two groups, low-rank and sparse components; the latter of which is considered

anomalous.

An alternative approach for modelling motion involves tracking features to ob-

tain motion trajectories. Zhou et al. [160] train a Multi-Observation Hidden

Markov Model (MOHMM) using motion trajectories extracted from footage of

normal behaviour using a KLT feature tracker. The probability of the trained

model producing a given observation is computed, if the probability falls beyond

a threshold, then the observation is considered abnormal. Marsden et al. [93]
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utilise a KLT tracker to extract motion trajectories and compute holistic meas-

ures of crowd collectiveness, conflict, and density. These measures form a fea-

ture vector that describes the dynamics of a scene. The approach described by

Zhou et al. [160] applies to many domains of crowd abnormality as it does not as-

sume any specific measurement of crowd motion, whereas the holistic approach by

Marsden et al. [93] is useful on data where the measures documented are known

to exist. Although tracking has shown to perform well at describing crowd beha-

viour, Yang et al. [155] highlight the difficulty in tracking when analysing scenes

with changing illumination, a property common to naturalistic environments.

Early research by Marana [91] formulated the crowd density estimation problem as

a global measure of visual texture. Marana showed that sparse and dense crowds

hold notably different textural compositions. Multiple studies [3, 16, 21, 91, 142]

utilised the GLCM approach for crowd description and had shown that Har-

alick’s GLCM features could be used to determine the density of a crowd suc-

cessfully; the implication being that texture can provide a meaningful descrip-

tion of the visual appearance of crowds. Rao et al. [112] identified the useful-

ness of GLCM for surveillance analysis and incorporated a GLCM description of

tracked pedestrians as part of their anomalous behaviour detection framework.

To justify the choice of GLCM as a spatial descriptor, the authors refer to a crowd

counting paper that utilised GLCM [16]. However, this method is reliant upon

tracking objects, an operation that performs poorly on highly populated crowds

or scenes with large amount of occlusion, like those found in city centre CCTV.

In contrast with the work presented by Rao et al. [112], the work presented in

this chapter focuses on describing how the appearance of a crowd changes over

time as opposed to how local individuals change over time. Global descriptors

report state-of-the-art performance for the task of violent behaviour detection

in crowds while operating in real-time [56, 85]. Specific descriptor methods are

capable of achieving similar performance on crowd datasets [49, 104], however,

this usually incurs a high computational cost resulting in systems that typically
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fails to operate in real-time [49]. Presented in Chapter 5 is a real-time local

descriptor targeted towards the analysis of one-on-one violence [84]. To analyse

crowds in real-time using the local descriptor approach, GPU hardware accelera-

tion is required. In contrast to this, the work presented in this chapter operates

in real-time on standard hardware.

4.3 Proposed Method Overview

Figure 4.1: Flow chart for the proposed method.

The proposed method builds upon Haralick texture features [53] which describe

visual texture using statistics derived from co-occurring grey level intensities.

Haralick features are computed for each frame in a sequence. By describing how

Haralick features evolve over time using simple summary measures, a succinct and

powerful descriptor of crowd dynamics that yields fast compute time and robust-

ness to change over time, is generated. Haralick texture features are extracted

from a GLCM. Haralick texture features are extracted from a GLCM. A GLCM

is generated by counting the co-occurring grey level intensity values found in an

image given a linear spatial relationship between two pixels. The spatial relation-

ship is defined by a parameter pair (θ, d) where θ is the orientation and d is the

distance between two pixels. It is common to define a set of parameter pairs (θ, d)

and to then combine GLCM matrices, this is typically used to provide rotational
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invariance by using a set of orientation parameters, typically in 8 orientations,

spaced π/4 radians apart. The number of grey level values Ng represents the

number of unique intensity values present in an image. It is common to scale an

image from [0, 255] to [0, Ng] before computing a GLCM, where Ng is a defined

number of gray-levels [53].

The following features as defined by Haralick [53] are computed: Energy, Contrast,

Homogeneity, Correlation and Dissimilarity. These measures were identified to

be statistically important [54] and as a result, are implemented in many code

libraries and toolkits. The variable P (i, j) expressed in Equations (4.1-4.5) refers

to the value at the (i, j)th position in a gray level co-occurrence matrix.

Angular Second Moment =
Ng−1∑
i,j=0

P 2
i,j‘ (4.1)

Contrast =
∑Ng−1
i,j=0 Pi,j(i− j)2

(Ng − 1)2 (4.2)

Homogeneity =
Ng−1∑
i,j=0

Pi,j
1 + (i− j)2 (4.3)

Correlation =

[∑Ng−1
i,j=0 Pi,j

[
(i−µi) (j−µj)√

(σ2
i )(σ2

j )

]]
+ 1

2 (4.4)

Dissimilarity =
∑Ng−1
i,j=0 Pi,j|i− j|
Ng − 1 (4.5)

The equations for contrast (Equation 4.2), correlation (Equation 4.4) and dissim-

ilarity (Equation 4.5) are scaled such that the returned value is bounded between

[0, 1]. Given a series of images expressing appearance over time, the aforemen-

tioned texture features are computed in order to generate a time ordered sequence

of texture over time, referred to as x. A statistical summary of each sequence is
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calculated to encode the underlying crowd behaviour. Each sequence x is repres-

ented as a four length feature vector composed of measures of mean, standard de-

viation, skewness (Equation 4.6) and inter-frame uniformity (IFU, Equation 4.7).

Skewness indicates the asymmetry found in a distribution and can be used to

deduce whether a distribution is showing a general increase or decrease in value

over time. Inter-frame Uniformity (IFU) as expressed in Equation 4.7 is a meas-

ure of adjacent sample similarity within time ordered data. It is expressed as

the scaled L2 norm (Equation 4.7) of the sequence y where sequence y is formed

by taking the absolute difference between adjacent samples within sequence x,

yt = |xt − xt+1|. Sequence y is normalized by its sum before being input into

Equation 4.7. IFU returns values within the range [0, 1] where 0 and 1 represent

non-uniform, and uniform change over time respectively. This particular measure

of uniformity was designed to be sensitive to sudden change in value over time

and is therefore intended to be suited towards highlighting more abrupt changes

in time-ordered data. As discussed in the introduction of this chapter, IFU was

created after observing the available data. It was observed that scenes of violent

behaviours in crowds are characterised by a substantial and inconsistent rate of

change in appearance over short periods. IFU provides a measure with which to

test whether the observed property truly characterises violent crowds.

Skewness = E(x− µ)3

σ3 (4.6)

IFU =
|y|2

√
(T − 1)− 1√

(T − 1)− 1
(4.7)

It was observed that different spatial regions in frame depicted different beha-

viour, therefore each video is spatially sub-divided into M × N non-overlapping

sub-regions (cells) before applying the aforementioned method to each. Each cell

is represented by twenty values that describe the appearance, and change in ap-

pearance over time. Twenty histograms are generated using values taken from



4.4 Experiments and Results 78

each cell within the M ×N grid, one histogram for each feature. Through empir-

ical analysis it was found that using logarithmically distributed histogram bins

within the range of [0, 1] provided the best performance. Histograms representing

skewness are bounded between [−1.4, 1.4] and the bins are logarithmically, and

symmetrically distributed around zero such that bin spaces are closer at values

closer to zero.

In the case of surveillance footage, failure to remove background information

may lead to the description of landmarks as opposed to crowd dynamics. Two

GLCMs generated adjacent in time will have a very similar composition as static

objects will introduce the same information in both matrices. To remove static

information that typically corresponds to the background of a scene, adjacent

GLCMs are subtractedMt−M(t−1), where t represents the frame being analysed.

All values less than zero are assigned a value of zero. This approach comes at

a near negligible computational cost and offers robustness to minor translational

camera motion due to the spatially unconstrained nature co-occurrence matrices.

4.4 Experiments and Results

As discussed in the introduction to this chapter, the violent behaviour detection

problem is formulated as a binary classification task. For each frame of a video, an

algorithm will report whether violent behaviour or non-violent behaviour is depic-

ted. In this section, an overview of the classification methodology, experimental

set-up and results are presented.

A classification label is generated for each video frame in order to provide a con-

tinuous activity feed usable in CCTV observation scenarios. This is achieved by

classifying a description vector computed using the previous n frames in sequence,

by default n is assigned to be equal to the number of frames per second. The

parameter Ng, used to generate the grey level co-occurrence matrix, is assigned
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a value of 32. The parameters (θ, d) are assigned as (0, 1), see Section 4.4.1 for

an explanation regarding the choice of these parameters. M and N , which spe-

cify frame sub-division used to encode spatial information are assigned the value

of 4, Section 4.4.2 discusses the effects of using different values for M and N .

All experiments were conducted using K-fold cross validation where data is split

into K partitions with K − 1 partitions being used for training a random forest

classifier [11]. The remaining partition is used for testing; the random forest is

composed of 50 trees. The parameter K is assigned a value of 5, 5, 2, and 2

when processing the CF-Violence, Violent Flows, UMN and Web Abnormality

datasets respectively. The choice of K = 2 was informed by the literature [98].

To reduce variability introduced by random sampling during cross validation,

each experiment is performed 10 times and the average result is reported. As

stated previously, features are extracted such that each frame in a sequence is

represented by a single vector. Features extracted from a single source video are

not permitted to be placed in both training and testing partitions at the same

time, as features extracted from any single video are likely to belong to the same

distribution and may lead to over-fitting.Results are reported using receiver op-

erating characteristic (ROC) curves, A common way to summarise these curves

is to report area under the curve. Area under ROC dictates the discrimination

performance between binary classes, a value of 1 indicates perfect discrimination.

The proposed method was implemented using Python and the Scikit-image lib-

rary. All experiments were performed using an Intel i7-4790 at 3.6GHz processor.

Given a temporal window size n of 24, and a resolution of 640×480, the proposed

method operates at 76.92 frames per second, or 0.013 seconds per frame.

Decomposing the importance of temporal features it was found that the measure

of Intra-frame Uniformity is highly descriptive (Figure 4.2) when applied to the

two datasets whose abnormal class contains only violent samples, these being

the CF-Violence and Violent Flows datasets. Looking at the average IFU val-

ues returned by these datasets, it was observed that the appearance of violent
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scenes within the Violent Flows dataset change in a less uniform manner over time

(Table 4.1). It was also observed that appearance of scenes in the CF-Violence

dataset, as represented by ASM and Homogeneity measures, exhibit the same

property. Given this observation, an additional experiment was formulated to

deduce whether or not a lower IFU is indicative of violent behaviour when com-

pared to normal behaviour. The Web Abnormality dataset contains examples of

violence within the Abnormal class. All non-violent abnormal scenes have been

separated to create two new binary datasets, these are Violent or Normal (VoN),

and Violent or Abnormal (VoA), the latter differs in that the Abnormal class

is composed of the Non-Violent abnormal samples from the Web Abnormality

dataset. It was observed that the IFU measure reported across all appearance

features for both VoN and VoA (Table 4.1), is less for scenes of violence, this

suggests that violence has a greater non-linear change in appearance over time

when compared to non-violence. Continuing the IFU analysis, it was found that

scenes of abnormality as displayed in the UMN dataset have a greater IFU than

scenes of normality, this highlights that a low IFU is not indicative of all types

of abnormal behaviour.

When testing the UMN dataset, the proposed approach achieves comparable clas-

sification ability to other state-of-the-art methods (Table 4.3) when using a tem-

poral window size greater than 64 frames in length (Table 4.7). The results show

that the rate of classification increases as the temporal window length increases.

It is believed that as the panic situation winds down, the key characteristics of

panic are less prominent, therefore increasing the temporal window size prolongs

the time in which the dominant characteristics remain in the decision making

process.

The results reveal that the measure of mean appearance over time is the a weak-

est descriptor when applied to the Web Abnormality and Violent Flows datasets

(Figure 4.2), it is hypothesise that the appearance of crowds within these data-
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Figure 4.2: Classification performance achieved by each temporal fea-

ture type.

sets vary a lot as the are recorded from different sources, therefore strong visual

correspondences in appearance across samples is unlikely. Both the UMN and CF-

Violence dataset use fixed cameras which record different crowd behaviours within

the same environment. Given that the environment can guide the flow/behaviour

of a crowd, then typical crowd compositions emerge during scenes of normality, in

which case the mean appearance offers high classification ability as inter-sample

visual similarity is more likely to occur between samples that depict normality.

An evaluation on the Violent Flows dataset using the methodology outlined in the

seminal paper by Hassner et al. [56]. The proposed method offers comparable

performance with existing methods (Table 4.5). The only alternative method

to report a greater classification accuracy than the proposed approach does not

operate in real-time [49], unlike the proposed method which does boast real-time

performance.
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Figure 4.3: Classification performance achieved by each texture feature

type.

Method AUC

Proposed 0.9782

ViF [56] 0.80

OViF [40] 0.76

Fast Fight [49] 0.89

Table 4.2: CF-Violence classification score.

4.4.1 Pixel pair relationship

As stated in Section 4.3, a grey level co-occurrence matrix is generated by count-

ing pixel pair occurrences given a relationship defined by parameters (θ, d). An

investigation into the effects of (θ, d) was performed to determine whether or not
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Figure 4.4: ROC curves for each tested dataset.

Method AUC

Proposed 0.9956

Optical Flow [98] 0.84

SF [98] 0.96

MDT [90] 0.9965

Chaotic Invariants [152] 0.99

Biswas [6] 0.9838 (Average)

Table 4.3: UMN classification performance scores including state-of-

the-art results.

a common value exists that offers good performance across different data types.

The effects of these parameters were evaluated by performing multiple experi-

ments with a range of values. The experiments use each combination that can be

composed from one of three orientation configurations and one of five different
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Method AUC

Proposed 0.8218

SF [98] 0.73

Optical Flow [98] 0.66

Table 4.4: UCF Web Abnormality Crowd dataset classification per-

formance scores including state-of-the-art results.

Method Accuracy (±) AUC

Proposed 86.03 ± 4.25% 0.9403

Fast Fight [49] 69.40 ± 5.0 % 0.7500

ViF [56] 81.30 ± 0.21 % 0.8500

OViF [40] 76.80 ± 3.90 % 0.8047

Holistic Features [93] 85.53 ± 0.17 % –

MoSIFT [154] 83.42 ± 8.03 % 0.8751

MoSIFT (KDE / Sparse Coding) [154] 89.05 ± 3.26 % 0.9357

Table 4.5: Violent Flows dataset classification performance scores in-

cluding state-of-the-art results.

distance values, this provides 15 different experiments. The first orientation con-

figuration is a set of 8 orientation values spaced π/4 radians apart, the second set

contains 4 orientation values spaced π/2 radians apart. The final orientation set

contains a single value of 0. The five distance values are a sequence of integers

that double in size starting from 1. The results of this experiment are shown

in Figure 4.5. Across all tested datasets, a common trend is observed in that

orientation has no significant impact on descriptive ability. A second experiment

was conducted in which each cell was randomly rotated by either 0, 90, 180 or

360 degrees, No significant difference in classification performance were observed

when using each of the three orientation configurations.
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When analysing the results from the Web Abnormality, Violent Flows and CF-

Violence datasets, a negative correlation between ROC and parameter d was

reported; the relationship between ROC and parameter d is less uniform for the

UMN dataset. It was hypothesised that this pattern occurs due to the distance

between interacting entities within each video. For instance, the crowds structure

depicted in the CF-Violence and Violent Flows dataset can be described as being

densely populated. In densely populated crowds, pedestrians are typically in

close proximity to one another. In contrast to this, the UMN dataset is sparsely

populated and the distance between moving entities is much larger. In the close

proximity scenario, a small distance value is better suited towards identifying

meaningful relationships between two interacting entities, conversely, in a sparse

scenario a small value for d may not be great enough to relate two distant entities,

in which case a greater value of d should be chosen. Ultimately, it was determined

that the parameter pair (0, 1) provides the best performance across all datasets.

4.4.2 Cell Size

Described in Section 4.3 is a process where a frame is split into sub-regions,

referred to as cells. These cells are described independently of each other to form a

description of the local spatial region. A frame is then represented by aggregating

the information from each cell into a single descriptor. This process is performed

as a scene may consist of different local behaviours that will not be strongly

represented when processing the entire scene as a single cell (M = N = 1).

Presented in this section is a discussion of the relationship between cell parameters

M and N , and classification performance.

The Violent Flows dataset sees maximal classification score when N = M = 2.

When the scene decomposition becomes too fine M = N > 8 the classification

performance drops, a similar trend occurs when analysing the Web Abnormality

dataset. It is hypothesised that a larger cell size is more suitable for describing
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Figure 4.5: Graphs show the effects of pixel pair relationship paramet-

ers: a) CF-Violence, b) Violent Flows, c) UCF Web Abnormality, d)

UMN Panic.

the global characteristics of behaviour in a dense crowd. Using a fine grid results

in the description of small components such as individuals, in which case the

characteristics encoding the effect of an individual on a crowd is less explicitly

encoded as the local cell aggregation process used to form the global descriptor

discards spatial locality of behaviour, and therefore any relationship between

an action and its associated reaction is also discarded. Larger cell sizes will

encapsulate multiple people and therefore describe the interaction, both action

and reaction.

The CF-Violence dataset does not follow the same aforementioned trend. Instead

a positive correlation between grid size and classification score is observed, sug-

gesting that in this case, small individual components of a scene are sufficient
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Figure 4.6: The effect on accuracy of using different values for M and

N where M = N .

WE

enough to describe violent behaviour. This is reasonable when considering the

contrast between normal and abnormal behaviour during the NTE, for instance,

violent acts such as kicking or punching are vastly dissimilar to the typical types

of normal behaviour, therefore smaller cells that encapsulate individual actions

are still capable of encoding abnormal behaviour as its the action, not the inter-

action that matters. In contrast, the difference between the individual actions of

people within the Violent Flows dataset during violent and non-violent scenes is

less clear, and so the interactions are important, and as stated prior, encoding

interactions require larger observation windows.
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4.4.3 Window Length

In this subsection, an investigation into the effects of parameter n is conducted

to determine if the description of crowd behaviour is best formulated using either

short or long term temporal dynamics. The following values of n are used inform

feature extraction: 6, 12, 24, 32, 64 and 128. Classification results show that all

datasets favour larger window sizes (Figure 4.7), suggesting that the distinction

between scenes of normality and abnormality is made more clear over long periods.

Although each dataset has its preferential window length, it is important to note

that short window sizes still offer reasonably good performance across all datasets.

When transitioning from normal to abnormal behaviour, the amount of time

required for the majority of the feature vector to be composed of information from

abnormal behaviour will be greater the larger the observation window. Assuming

that class transitions are not represented by the descriptor, the worst case for

classifying abnormal behaviour will see a delay of at most n frames. Therefore

shorter observation windows are more appropriate for use in a real-time system

as it will allows for more instantaneous updates regarding the dynamics of the

scene.

4.5 Conclusion

To summarise, GLCM texture features that are typically used in crowd density

estimation were temporally encoded to create an effective method that describes

crowd dynamics. It was shown that the proposed method is highly effective at dis-

criminating between scenes of normal and abnormal behaviour. Additionally, the

proposed approach is computationally cheap and operates in real-time. Analysis

revealed that violent behaviour typically holds a less uniform rate of change over

time when compared to other types of typical crowd behaviour, further analysis

must be conducted to identify whether or not this property exists given alternat-
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Figure 4.7: The effect on accuracy of using different window sizes n.

ive measurements of crowd behaviour. An in-depth evaluation of the parameter

effects of the proposed method was conducted to provide insight for selecting suit-

able parameter values. Further research can be conducted to determine a method

of adaptively choosing the optimal parameters given some data.
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Chapter 5

Modelling One-on-One and

Crowd Violence using Violent

Interest Points

5.1 Introduction

The previous chapter concerns the subject of both crowd analysis and detecting

violence that occurs in crowded environments. The approaches discussed in the

previous chapter are not suited towards the analysis of scenes of violent behaviour

that depict one-on-one violence. When presented with instances of one-on-one

violence, the method presented in Chapter 4 performs poorly relative to existing

research (Table 5.1). It was hypothesised that in a violent crowd, the violent

behaviour is usually prominent and widely distributed due to the large population

engaged in violence. In contrast, one-on-one violence can be described as being

localised, a violent act between two individuals may not necessarily contribute

much information to the overall scene. While two people fight, other actors in a

scene may be behaving normally, continuing on their business. If the violent act

does not contribute substantially to the scene, then the description of violence

may be entangled and hidden within the description of other activities in the

background. Although not directly intended, it is demonstrated that the approach
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presented in this chapter offers comparable performance with the state-of-the-art

reported results for violent behaviour detection in crowds (Chapter 4).

The method presented within this chapter utilises an interest point detection

methodology, in which actions associated with violence are detected and used

to describe the nature of a scene. As informed by the literature, characteristics

associated with violent behaviour in naturalistic environments are established

and mathematically formulated. Literature informed feature design was partly

motivated by poor performance reported after failed attempts at learning a useful

feature representation using a deep learning architecture (Section 5.7).

Informed by the literature, the characteristics associated with violent behaviour

are: Motion Acceleration, Inverse Laminar Flow and Convergence; these meas-

ures are computed from a set of dense motion trajectories. As the aforementioned

characteristics are derived from dense motion trajectories, a matrix of values for

each characteristic is returned. The size of each matrix is equal to the spatial

dimensions of the source video. The resultant matrices represent the motion char-

acteristics for objects at each pixel position of a video frame. Regions with higher

values are more likely depict actions associated with violence. This information

is used as a prior in an interest point detector scheme to produce a set of interest

points based on actions that exhibit properties associated with violence. In this

chapter, it is demonstrated that interest point sampling strategies based on vi-

olent characteristic priors produce a set of informative features. When encoded

using a BoW scheme, the set of features from the interest point detector pro-

duce a more powerful description of a violent scene than features sampled using

a regular grid structure.

Finally, an analysis of the underlying dynamics of violence reveals that the nature

of violent behaviour can vary drastically, and that violence does not adhere to a

singular definition with respect to the characteristics investigated.
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5.2 Related Work

Both, Datta [26] and Deniz [29] produced methods that detect violence by identi-

fying high motion acceleration, a property expected to belong to violent beha-

viour. Deniz notes that high acceleration often manifests itself as a visual motion

blur which can be measured by identifying the shape of an ellipse in a radon trans-

formed power spectrum composed using two consecutive images. Datta takes a

more structured approach to solve the task of measuring person-on-person viol-

ence by first determining a person’s silhouette, and subsequently their head, for

tracking. The third derivative of motion, known as Jerk, is then incorporated in

the composition of the Acceleration Measure Vector to describe violent motion.

The drawback of this work is that it assumes a person’s body is both visible and

trackable, which in a city centre environment is not feasible due to occlusions

caused by pedestrians in populated areas.

In contrast to person-on-person violence, Hassner et al. [56] looked at differenti-

ating between violent and non-violent crowds. The authors introduced the Violent

Flows dataset alongside the Violent Flows (ViF) feature vector that measures the

average magnitude of dominant motions over time. Gao et al. [40] state that ViF

does not capture behaviour whose orientation shifts while maintaining a constant

velocity and demonstrated that combining their own Oriented ViF (OViF) and

ViF increases classification ability.

Nievas et al. [104] extended the SIFT descriptor to work on optical flow data and

created Motion Scale Invariant Feature Transform (MoSIFT). Nievas et al. [104]

used a combination of MoSIFT and SIFT features to classify between violent

and non-violent scenes that occur in ice hockey. Xu et al. [154] extended the

work of Nievas and applied a kernel density estimation process to select the most

representative features in a vector that were subsequently encoded using a sparse

coding scheme. This allowed MoSIFT features to achieve excellent classification
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on person-on-person violence as well as on crowded data. Gracia et al. [49]

argue that approaches such as these, although impressive, are too computationally

costly to be practically implemented in the real-world so they propose a more

efficient method of violence detection. Gracia et al. [49] perform adjacent frame

difference and apply a fixed threshold to extract the largest blobs which are then

described using measures of inter-blob distance and compactness.

Riberio et al. [113] introduce the Rotation Invariant Motion Coherence (RIMOC)

feature that is based on the eigenvalues of second-order statistics extracted from

a Histogram of Oriented Flows. A multi-scale structure is used to model spati-

otemporal configurations of features. The authors assume that violent behaviour

is unstructured and aim to distinguish this difference by analysing the likelihood

of a feature belonging to a model of normality.

The work presented in this chapter is more akin to that of MoSIFT or STIP [77]

but with a focus on using trajectory dynamics to identify spatio-temporal regions

that exhibit non-linear, high acceleration interactions that are typical of violent

behaviour. The key insight provided by our method is that utilising appropriate

priors associated with violence results in more powerful scene description. The

proposed approach is designed to function well on real-world surveillance data

and is theoretically scale-invariant. Included in this chapter is a comparison of

feature sampling strategies that demonstrates the benefit of using an interest

points detection framework.

5.3 Proposed Method

Using a linear combination of three measures of motion trajectory, a response map

that highlights spatiotemporal regions that are suggestive of violent behaviour

can be generated. In this approach, motion trajectories are computed using a

particle advection process that is widely used in the field of pedestrian analysis
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due to its robustness to small occlusions [98, 102, 162]. A multi-scale region

selection process is used to extract spatiotemporal regions from the response

map. Extracted regions are then described and for use in a classification model.

5.3.1 Particle Advection

The process of advection can be defined as the movement of an object through

a medium guided by an underlying flow field; this process can be envisioned as

a leaf in a river flowing downstream guided by the local flow of the water. In

the context of our work, particle advection is performed by first generating a

uniform set of particles that overlay the initial frame of a spatiotemporal volume.

Each particle is advected using a Gaussian average of local optical flow vectors

computed between successive frames. Particle advection is used to determine a

set of motion trajectories T over τ frames for each pixel in a frame.

Inverse Laminar Flow

It has been observed that pedestrians walking through an environment would tend

to exhibit laminar flow as they walked towards their destination providing their

pathway is not obstructed [59, 156]. Pedestrians are not the only entities that exist

in a city centre environment that exhibit this behaviour, with a vehicle being the

most prominent example. After watching video footage, it was also observed that

participants of a violent situation were often unstable in their movements as they

attempted to perform violent gestures towards another person. Based on data

observation and findings in the literature, it was hypothesized that inverse laminar

flow is an indicator of potentially violent behaviour. For each trajectory T , two

values representing the trajectory distance Tdist and trajectory displacement Tdist
are computed. Trajectory distance Tdist is defined as the total distance travelled

over τ frames. Trajectory displacement Tdist is defined as the absolute difference
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Figure 5.1: Visualisation of a set of dense trajectories extracted from

a violent interaction.

between the trajectories initial starting position and its final position after τ

frames. These two values are combined to form the inverse laminar flow response
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Rilf shown in Equation 5.1.

Rilf = 1− (Tdisp/Tdist) (5.1)

Acceleration Response

It has been observed that violent acts tend to show a greater increase in velo-

city when compared to normal behaviour. Typically, to injure a person during

a fight, you must build up a substantial amount of force more quickly that your

opponent, this process manifests as high acceleration. This was also one of the

key principles behind the Maximum Warping Energy method of violence recog-

nition [97]. To generate the acceleration response Ra, the pixel associated with

the starting position of a trajectory is assigned the maximum acceleration value

observed along the trajectory. The acceleration values are then divided by the

maximum acceleration of all trajectories at a given point in time.

Motion Convergence

The location of an interaction between multiple entities can be identified by de-

termining the point where they converge if they were to continue in their respect-

ive motion. For example, in a real-life scenario, this can manifest itself as two

people approach one another, or to use a more extreme example, a fist moving

towards a person’s body. The local trajectory convergence response is used to

describe whether or not particle trajectories interact. This is achieved by gen-

erating a 2D-histogram using each particle (x, y) position at the end of their

trajectory. Histogram bins represents are representative of pixels in the source

video. Convergence manifests within the 2D histogram as a bin whose value is

greater than 1 as multiple particles share the same position in space, indicating

that the particle trajectories converged onto the same position. The convergence
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frame 1 frame 7

Figure 5.2: Example of the acceleration response output after analysing

the acceleration properties of motion trajectories.

value of a trajectory is number of particles that share the same end position, as

indicated by the 2D histogram. To form the response map Rc, a value is assigned

to the pixel associated with the initial position of each particle equal to that of

the convergence value obtained by the trajectory. During this process, to reduce

noise and smooth the results, a Gaussian blur is applied to the 2D histogram

after it is generated.
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5.3.2 Response Map

Trajectory responses outlined in previous sections are linearly combined to form

a single response map (Equation 5.2).

R = (w1Rilf + w2Rc + w3Ra) (5.2)

The limits of the combined response are [0, 1], providing the sum of the three

weights is equal to one. As scale invariance is necessary (see Chapter 3), the

Difference of Gaussians (DoG) blob detection approach [81] is used to select the

appropriate region size with which to represent an area in the response map. DoG

is performed by applying different Gaussian filters to an image and subtracting

the response. Applying the DoG process will generate a value for a given point in

an image that representing the magnitude of difference between a focal area and

its context; the difference is maximal when the gradient between context and focus

is at its steepest. Applying the DoG process using Gaussian kernels of increasing

size produces a set of responses that represent the magnitude of difference between

focus and context at different scales. The output that results from subtracting

two filtered images is multiplied by the σ value used to generate a Gaussian

kernel, this is performed in order to normalise the DoG response and introduce

scale invariance. The scale of an interest points is determined by identifying

the maximum value across DoG responses of varying scales. In addition to this,

non-maxima suppression is applied to reduce the number of detected interest

regions. This process produces a set of locally contrasting regions and determines

the optimal scale with which to represent an area of a video frame based on the

combined response map.

When analysing appearance, the intensity of an object remains constant regard-

less of its spatial depth relative to the camera. Therefore, a DoG approach for

detecting an object based on appearance should appropriately identify the object,
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albeit at a smaller scale. Motion data does not hold this property, the motion

magnitude of an object drops as object depth increases, creating a situation where

the distance objects cannot be reliably detected. Therefore, a scale normalisation

step is introduced by dividing the value of the DoG filter response by the local

maximum value of the combined response (Equation 5.2).

5.3.3 Feature Extraction

Motion velocity and acceleration data was obtained from trajectories that were

initialized within an N×N area as dictated by the interest region and scale selec-

tion process. Motion velocity and acceleration are encoded by separating values

temporally into three groups, each of which is used to generate a histogram that

is then concatenated with each other in temporal order before being normalised

using L2 normalisation. Orientation was not encoded in the description of mo-

tion as features extracted from a scene where objects move vertically will not

generalise well to describe a similar scene in which the dominant directionality

of motion is horizontal; this example is common in CCTV surveillance systems.

In addition to temporal motion descriptors, data from each trajectory response

map that falls within the previously defined region is extracted. The aforemen-

tioned data is used to generate a histogram by placing values into β uniformly

spaced bins before applying L2 normalisation. Appearance is encoded using the

Histogram of Oriented Gradients [24] approach.

5.4 Relative Response Importance

In this section, the underlying dynamics of violent and non-violent behaviour

are compared by examining the distribution of each proposed trajectory response

measurement outlined in Section 5.3. It was demonstrated that violent behaviour
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has different characteristics based on the context of the scene, and that viol-

ent footage is more closely characterised by non-linear, accelerating, convergent

movements than non-violent footage. The processes described in Section 5.3 are

applied to produce a set of interest points and their respective response values as

dictated by the output produced post region/scale selection. The value of each

point represents in some part the degree in which the corresponding underlying

motion that generated it adheres to our definition of violence, which to reiterate,

is stated to be a function of non-linear, accelerating, convergent movement. Given

the lack of latent processes in the proposed method, the values of each component

and their respective contribution to the final response value can be determined.

Conducting this process post scale selection will provide an invariant measure

of the importance of each element. Using the aforementioned process, it can be

determined whether or not the three trajectory responses present different values

when applied on violent and non-violent data.

Response values associated with each class, violent and non-violent, are used

to generate a distribution of values for each measure and class. Kolmogorov-

Smirnov and Kruskal-Wallis [74] tests are performed to determine whether or not

the set of values for each measure extracted from violent and non-violent have a

similar distribution and a similar median. Analysing the median will allow us to

draw conclusions regarding the relative magnitudes of each response type given

different classes of the same data. Figure 5.3 provides a visual representation of

the median response per class where each distribution is composed of interests

points detected using the parameters outlined in Section 5.5. In most cases, both

the distribution and median of response values for each measure is significantly

different between the violent and non-violent samples. The reported p-statistics

for each test returned a value less than 0.05. There was no statistically significant

difference between aggressive and violent behaviour in the NN-Violence dataset

for the IFL attribute.
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It is observed that each type of data used different aspects of motion to their

advantage. Interest regions presented in the CF-Violence dataset shows an in-

creased acceleration and convergence response for violent data compared to the

non-violent counterpart; it is important not to interpret this as violent motions

holding greater acceleration, but rather salient movements in a violent scene are

locally more unique in their acceleration aspect. To further express this point, a

non-violent action may present far greater acceleration values than those found in

a violent scene. However, if these values are uniform across the scene, they yield a

weak response in the presented approach, an action returns a high response when

it is locally unique (locally maximal, maximally contrasting). A clear statement

regarding the global rate of acceleration cannot be presented as the processes that

aim to introduce scale invariance removes global information. This applies when

interpreting all given response values using the outlined approach. Instead, state-

ments presented in this section regard the relative importance of each attribute

defined in Section 5.3 given the environment or context of an action.

The data shows that in city centre environments, interest regions in a non-violent

scene weakly utilise the convergence response; this suggests that in standard be-

haviour, few outlier interactions between pedestrians take place. This is inferred

from both the NN-Violence and CF-Violence datasets (Figure 5.3). When examin-

ing the third class representing aggressive behaviour in the NN-Violence dataset,

a middle ground is observed. Aggressive behaviour places a greater emphasis on

convergence than non-violent actions, but to a lesser extent than violent beha-

viour; this expresses that the importance of analysing convergence is reflected in

the escalation of violent behaviour. That is to say, as violence evolves, it is more

important to focus on what objects are interacting and how these interactions

take place.

For each dataset, the response values for each attribute has less variation for

violent data when compared to non-violent data, suggesting that violent scenes
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utilise each attribute more evenly. In the non-violent case, at least one response

type is vastly under-represented relative to the others This demonstrates that non-

violent actions do not adhere to our definition of violence as strictly as behaviours

presented in violent data.

Although violent samples adhere to our definition more closely that non-violence,

the analysis in this section suggests that violence does not have an explicit static

definition, but is instead modified by the environment and context of a scene.

If we assume the characteristics of violence were constant, then we will expect

to see similar relative response importance. Instead, it was found that violence

captured by different CCTV systems are similar in characteristics, but different to

violence associated with hockey and crowds. This understanding is corroborated

by results presented in Section 5.6 where methods designed to analyse violent

crowds perform relatively poorly when analysing CCTV data. It is important to

consider the variation in violent behaviour when creating a general solution to

the violence detection problem.

5.5 Experimental Setup

The ability of an algorithm to detect violent behaviour using a binary classific-

ation approach to separate feature vectors into one of two classes, violent and

non-violent, is evaluated in this section. Results are reported using overall classi-

fication accuracy and receiver operating characteristic scores. When testing using

the NN-Violence and CF-Violence datasets, we performed K-fold cross-validation

with K equal to five and evaluated the mean score across all folds. Classification

was performed using the Scikit-learn implementation of the Linear SVM classi-

fier. Testing methodologies outlined in their respective seminal papers are used

when evaluating violence detection algorithms using the Hockey [104] and Violent

Flows [56].
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a) CF-Violence b) Hockey c) Violent Flows

d) NN-Violence e) NN-Violence, Three Class

Figure 5.3: Median response separated by action class and individual

response type where I, A and C represent Inverse Laminar Flow, Ac-

celeration and Convergent response respectively.

Feature extraction at each frame position of a video was performed using tra-

jectories of length τ . K-means clustering was to create a visual vocabulary for

feature encoding based on visual word occurrences. A vocabulary size of 500

was empirically chosen as it resulted in high classification performance without

requiring a large amount of time to generate the vocabulary, allowing for faster

testing. Vocabulary size parameter optimisation may further increase perform-

ance. Each frame in a video is represented using an L2 normalised histogram of

word occurrences based on the features that occurred in the past Wt frames. A

small parameter forWt may not capture the co-occurrence of features in time and

subsequently miss crucial relationships between features. In the case of the CF-

Violence and NN-Violence datasets the value ofWt is set to twice their respective

frame-rate. One key variable in the proposed approach is the number of frames a
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particle is advected along, otherwise referred to as trajectory length τ throughout

this chapter. Given that short-term motion typically characterises violent actions

then a small value for τ should be adequate to capture the properties of violent

behaviour. τ = 8 for all experiments as it allowed for real-time feature extraction.

To reduce computation time, videos are resized so that their spatial dimensions

are 160× 120.

The weights for each response map (w1, w2, w3) were all assigned a values of 1
3 so

that each response type is treated equally and that final response R is bounded

between [0, 1]. A response threshold is applied to suppress weak features. The

threshold value is equal to one twentieth the maximum weight for a given frame.

A proportional threshold avoids situations where no features are detected, this

can occur when all response values fall below a static threshold. A static threshold

can result in zero detected features, and without features, we have no information

to train a classifier. The proposed approach, naively implemented in C++ and

CUDA and using the previously defined parameters operates at ≈ 55 frames per

second when working on a Nvidia 760 GTX GPU, and i7-4790 CPU at 3.60Ghz.

5.6 Results

Results reported by the proposed method are compared with results obtained

using the Violent Flows, Oriented Violent Flows [56], Fast Fight detection [49]

and MoSIFT [104] methods of violence detection. Additionally, a comparison is

made with results obtained by classifying features extracted using the C3D deep

learning architecture [136] trained on the Sports 1M datasets [70]. Experiment-

ation has shown that the proposed approach, in general, offers good all round

classification performance when trying to determine whether or not a scene dis-

plays violent behaviour. Table 5.1 indicates that the proposed approach achieves

comparable performance against existing methods when classifying one-on-one vi-
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olence as shown in the Hockey violence dataset. The application of the proposed

method on the Violent Flows dataset, like before, attains comparable results with

existing methods.The application of the ViF and OViF descriptors on the Viol-

ent Flows dataset as presented in their respective papers utilise global feature

extraction; global feature extraction encodes global spatial structure, generating

a representation that is not robust to both rotation and translation. It is argu-

ably acceptable to apply a global description method to the Violent Flows dataset

as the events depicted are centrally focused. Events presented in the other data-

sets are not centrally focused; therefore local feature description is preferable over

global approaches when analysing surveillance footage as the unfolding events are

not guaranteed to be the central focus of the camera. The application of ViF and

OViF on the NN-Violence and CF-Violence datasets utilise the same approach

used to test the Hockey violence dataset as explained in their respective papers.

Briefly stated, the authors apply their feature description to a set of interest re-

gions identified using a Space-Time Interest Point detector [77]; a Bag of Words

model is produced, and classification is performed based on feature occurrence

within a spatiotemporal volume. It is demonstrated that the proposed approach

outperforms all other tested methods when applied to the city centre surveillance

datasets, NN-Violence and CF-Violence (Figures 5.4 and 5.5).

For comparison, the required computation time for each tested method on the

violent flows dataset is presented in Table 5.3. The Violent Flows dataset was

chosen as a point of reference for two reasons. The dataset is publicly available

which allows for direct comparison with potential future research. Secondly, the

Violent Flows dataset depicts dense population which results in more detected

interest points than any other dataset, creating a worst-case runtime scenario for

interest point detection based approaches.

A second experiment using the CF-Violence dataset was conducted in which in-

terest regions found using the proposed approach were described using the ViF
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Method Classifier Hockey Violent Flows CF-Violence NN-Violence

Proposed Linear SVM 0.97 0.94 0.96 0.76

Chapter 4 Random Forest 0.87 0.94 0.98 0.74

Fast Fight Random Forest 0.90 0.75 0.89 0.59

ViF Linear SVM 0.88 0.88 0.80 0.62

OViF Linear SVM 0.90 0.81 0.76 0.62

MoSIFT Linear SVM 0.99 0.88 - -

C3D Linear SVM 0.99 0.90 0.96 0.56

Table 5.1: Receiver Operating Characteristic scores for each dataset.

Method Classifier Hockey Violent Flows CF-Violence NN-Violence

Proposed Linear SVM 91.1± 1.9 87.3± 3.1 94.4± 5.0 74.9± 3.4

Fast Fight Random Forest 82.4± 0.6 69.4± 5.0 85.4± 5.0 71.5± 10.3

ViF Linear SVM 81.6± 0.2 81.2± 1.8 64.6± 6.4 66.1± 6.0

OViF Linear SVM 84.2± 3.3 76.8± 3.9 59.2± 8.6 66.3± 6.6

MoSIFT Linear SVM 96.7± 0.7 83.4± 8.0 - -

C3D Linear SVM 94.9± 1.54 83.7± 4.1 98.0± 3.1 72.6± 18.5

Table 5.2: Reported accuracy and standard deviation for each dataset.

and OViF descriptors. Classification results indicate an increase in ROC score

when compared to the same description of areas identified by STIP (Table 5.4);

this suggests that the proposed method of region extraction identifies more rel-

evant regions of a scene when analysing violent behaviour.

5.6.1 Feature Sampling Strategies

Existing research suggests that dense feature sampling using a grid structure out-

performs salient region detection frameworks for both image [107] and video [124,
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Method FPS time per frame (ms)

Proposed 44.0 0.0227

Chapter 4 76.9 0.0131

Fast Fight 660 0.0015

ViF 40.8 0.0245

OViF 19.5 0.0512

C3D (Nvidia GTX 760) 2.7 0.3773

C3D (Nvidia Titan X) 30.1 0.0332

Table 5.3: Average operating-time for each method using the Violent

Flows dataset.

Method Detector Classifier ROC Accuracy

ViF Ours SVM 0.88 76.8± 4.6

OViF Ours SVM 0.82 65.7± 9.0

ViF STIP SVM 0.80 64.6± 6.4

OViF STIP SVM 0.76 59.2± 8.6

Table 5.4: Results obtained when utilising the ViF and OViF

descriptors to describe regions identified using the proposed solution

and similar regions identified using STIP.

144] based classification tasks. The general principle is a dense set of features can

be efficiently sampled using a set of overlapping grid structures. Wang et al. [144]

conclude that such an approach provides greater classification ability when pro-

cessing real-world data. Similar findings by Shi et al. [124] informed the design

of the RIMOC method of violent behaviour detection [113]. In this section, the

effects of feature density and differences between feature sampling strategies are

investigated and discussed.

The density of features identified using the proposed approach is determined by
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Figure 5.4: Receiver operating characteristic curve for each method

tested on the CF-Violence dataset.

a threshold value which filters out weak responses to produce a set of interest

points. The threshold is computed by multiplying the maximum response R for

a given frame by some real number t which lies in the range [0, 1]. The quantity

of features is directly related to the computational cost of the method, the fewer

regions that must be described, the faster the system. The ideal threshold for a

computationally efficient system should maximise classification performance and

minimise feature sample count. Figure 5.6 plots the ROC performance metric

against the average feature count per-frame for each dataset given the values of

0.05, 0.1, 0.2, 0.3 for t. For each dataset, the relationship between the average

number of features per-frame and classification performance is observed as be-

ing positive. These results corroborate existing research on image classification

tasks [107] that shows that the more samples used, the greater the classifica-

tion ability. The spatial distribution of identified regions may have an affect
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Figure 5.5: Receiver operating characteristic curve for each method

tested on the NN-violence dataset.

on the classification performance. A measure that quantifies the proportion of

a frame that is described by the interest points is used to analyse the spatial

distribution of the sampled features. This is achieved by counting the number

of unique pixels that fall within an interest region and dividing by the num-

ber of pixels in an image. Figure 5.7 depicts the relationship between feature

count and the average proportion of a frame that is described. As the feature

count increases, the proportion of the frame that is described tends towards one.

The results show that the more of the frame that is described, the greater the

classification score (Figure 5.8). It is understood that the positive relationship

observed demonstrates that dense sampling increases the scope of the description,

capturing more actions and background information provides contextual inform-

ation. It is important to investigate whether the distribution of features sampled

using the proposed approach provides any benefits over a grid-based sampling
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approach. The dense-grid sampling method described by Wang et al. [144] is

used. In the cases of the NN-Violence, CF-Violence and Violent Flows datasets,

it was observed that the proposed approach offers greater classification ability

(Figure 5.9). The dense grid-based sampling approach is guaranteed to describe

regions of a frame that can be considered noise. It is hypothesised that a dense

grid-based sampling approach gives equal power to noisy, background information

than it does the meaningful information. In comparison, the proposed approach

is not guaranteed to sample data that is considered noise, and that it is also cap-

able of uneven spatial sampling in which an informative region in a frame may

be sampled more frequently than other areas, giving less power to features that

describe noisy regions. There is no difference between the two sampling methods

when analysing the Hockey violence dataset.

There is a strong positive correlation between classification performance, and

screen coverage. The more of the screen that is described, the greater the score.

5.6.2 One Class Learning

When evaluating whether a new sample belongs to either the violent or non-

violent class, there exists a fundamental assumption that the data you feed into

a system belongs to one of the two learnt classes. In the CCTV datasets, CF-

Violence and NN-Violence, there are a small number of violent samples. There-

fore, there is a possibility that there exists an unseen violent sample that breaches

the fundamental assumption by not belonging to either of the learnt distributions

for non-violence and violence. Work presented in Section 5.4 demonstrates that

violent behaviour in different contexts can have different characteristics, giving

evidence towards the possibility that there exists a sample that breaches the fun-

damental assumption of classification. In this hypothetical case, the classifier

would be expected to perform similarly to a random classification process. As

discussed in Section 5.6.1, dense feature sampling that covers a large proportion
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Figure 5.6: Relationship between sample count per-frame and classi-

fication performance (ROC).

of the background results in greater performance. This suggests that scenes of

violence and non-violence are best described with context. Assuming this is true,

if we change the context of a violent scene, but keep the violence identical, then

it is likely that we would misclassify a violent sample. Given this theoretical

situation, it is difficult to evaluate whether or not our models generalise to suf-

ficient degree to avoid this issue. Although unlikely, in the worst case scenario,

all violence that exists in the datasets is unrepresentative of the true distribu-

tion of violent behaviour. In an attempt to quantify the potential performance

of the classifier in such a situation, one-class learning methodology is adopted.

A model of normality is created by fitting using only the data that represents

non-violence. Using this model of normality, the likelihood that a new sample

belongs to a learnt non-violent model can be determined. If the likelihood is low,

then the sampled is considered depicting violence, or more generally, as depicting
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Figure 5.7: Relationship between the proportion of the frame described

and feature count per-frame.

abnormal behaviour.

To perform one-class classification, non-violent data is used to fit a Gaussian Mix-

ture Model using an Expectation Maximisation (EM) algorithm. To determine

the number of mixture components in our model, multiple models using various

component values are trained, and the model that minimises the Akaike Inform-

ation Criterion (AIC) is selected. The potential number of components in each

model are [10, 20, 40, 80, 160]. A similar methodology has been used to detect ab-

normal behaviour in an underground train station [137]. In comparison with the

binary learnt model, a drop in classification performance as measured using the

ROC metric is observed (Figure 5.10). CCTV footage captures behaviour that

takes place within a mostly consistent and static environment. The effects of the

environment, both physical and social, influence the behaviour of pedestrians to
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Figure 5.8: Relationship between the proportion of the frame described

and classification performance.

produce a common mode of behaviour. Due to the influence of the environment,

data in the CCTV datasets that is non-violent is similar. In contrast, the Violent

Flows dataset contains footage obtained from a wider range of unique environ-

ments, increasing the variation in types of normal behaviour. Due to the difference

in variation of behaviour, it is believed that the one-class learning methodology

more easily learns a model of normality for the CCTV datasets than it does for

the Violent Flows dataset as there are fewer outlier behaviours. This is reflected

in the difference in ROC measure between one-class and two-class learning, the

difference is greatest for the Violent Flows dataset (Figure 5.10).
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Figure 5.9: Comparing dense grid and interest point sampling meth-

ods. This bar plot demonstrates the difference in ROC classification

performance achieved by a dense grid sampling approach and the pro-

posed method.

5.6.3 Model Transfer

As discussed in Section 5.4, the kinetic definition of violence is not singular,

but appears to be modulated by other factors such as environment, context or

capture mechanisms. This observation is further tested by attempting to transfer

knowledge learnt from one dataset in order to classify another. The classification

results presented in Table 5.5 demonstrate the classification performance achieved

when training a model using one dataset, and testing using another. Poor data

transferability is reported as indicated by the relatively poor classification results.

It appears that the CF-Violence dataset proves to be a poor candidate for model
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Figure 5.10: Comparison between one class and two class learning

methods. This bar plot demonstrates the difference in ROC classi-

fication performance achieved by a one class, and two class learning

scheme.

training, potentially due to the low violent sample count. The low sample count

provides a small subset of potential violence, resulting in a model that does not

generalise well. Models trained on the Hockey and Violent Flows datasets capture

characteristics that allow for non-random classification performance. However,

the results obtained are relatively distant from the maximum classification score

as presented in Table 5.1. This may suggest that the descriptor fails to capture

many important aspect of violence that generalise well. An alternative hypothesis

is that the datasets lack common aspects due to large differences in performed

actions and environments in each dataset. Due to hardware limitations, experi-

ments involving the NN-Violence dataset failed to execute.
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Training Testing AUROC

CF-Violence Hockey 0.51

CF-Violence Violent Flows 0.55

Hockey CF-Violence 0.76

Hockey Violent Flows 0.72

Violent Flows CF-Violences 0.83

Violent Flows Hockey 0.75

Table 5.5: Reported AUROC by training a linear SVM classifier using

one dataset and testing using another.

5.7 Deep Learning: Training from scratch

The results achieved by the C3D network as presented in Section 5.6 utilised

a pre-trained model. For a given input video, a set of features were extracted

based on the information present in the pre-trained model. The model was pre-

trained using the Sports1M dataset, chosen for the inclusion of fast actions that

are similar to those seen in violence. Following is a brief overview of the results

obtained when attempting to fit a C3D model using only data contained within

the violent behaviour datasets exclusively. Understanding how well the C3D

model fits the data requires looking at the reported model accuracy and loss

values, and analysing how they change each time the model weights are updated.

Results will be interpreted with respect to the training and validation set. The

model is fit and evaluated using the training set to produce the training loss and

training accuracy. The validation loss and accuracy is obtained by evaluating the

model using unseen data.

As presented in Figures 5.11, 5.12 , 5.13 and 5.14, the accuracy values reported

by the training set for each dataset appears to converge and stabilise after a

few epochs. The training accuracy is low for each dataset with the CF-Violence
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reporting the highest value of 75% accuracy; the remaining datasets report a

training accuracy close to 50%. The validation accuracy fails to stabilise and is

lower than the training accuracy with the exception of the Hockey dataset.

In each case, the loss value appears to converge on a value after a few epochs. This

may suggest that the model weight optimisation process is stuck in a local minima,

failing to update the model weights in any significant capacity. In response to

this, the learning rate of the Stochastic Gradient Descent (SGD) optimiser was

increased from 0.001 to 0.01 after 30 epochs, to no great effect.

The reported results indicate that training a model from scratch to learn a feature

representation for violent behaviour detection is difficult. The literature seems to

agree with this statement given that existing work that concerns deep learning for

violent behaviour detection utilise pre-trained networks and/or transfer learning

strategies to achieve good results for violent behaviour detection [94, 32, 143, 99].

It is hypothesised that the amount of available data for the violent detection task

is too low to learn a useful representation. For instance, the Violent Flows dataset

contains 123 samples per-class, far below the rule of thumb of 5000 per-class [45].

5.8 Conclusion

In this chapter, three measures of dense motion trajectories have been proposed

that when combined produce a response map that highlights regions within a

spatio-temporal volume that contain behaviours associated with violence. The

violence response is normalised and sampled using a Difference of Gaussians ap-

proach to achieve scale invariance. It has been experimentally demonstrated that

the proposed approach achieves state-of-the-art performance across a wide vari-

ety of violence detection datasets. Furthermore, two CCTV surveillance datasets

were used to evaluate the ability of multiple violent behaviour detection methods

at detecting violent behaviour captured by real-world surveillance systems.
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Figure 5.11: Training and validation accuracy/loss when fitting a C3D

model using the CF-Violence dataset.
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Figure 5.12: Training and validation accuracy/loss when fitting a C3D

model using the NN-Violence dataset.
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Figure 5.13: Training and validation accuracy/loss when fitting a C3D

model using the Hockey dataset.
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Figure 5.14: Training and validation accuracy/loss when fitting a C3D

model using the Violent Flows dataset.
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Chapter 6

Predicting Violent Hotspots

6.1 Introduction

Across Britain, there exists a night-time social culture in which groups of people

congregate around establishments that serve alcoholic beverages. There is an

increased risk of assault-related injury within and around premises licensed to

sell alcohol [149]. Increased levels of drunkenness, disorderly behaviour and

assault-related injury, characterise the environment associated with this social

culture [44, 82, 83, 161]. Information regarding the practices observed in a social

setting can be used to inform policing strategies, for instance, in response to the

observed increase of injury around licensed premises, targeted policing procedures

were applied, resulting in a substantial reduction in assaults [149]. Developing

policing strategies using information about the local area and its communities

leads to a reduction in the severity of wounds inflicted during a violent incid-

ent [37]. Minimizing the effects of violence has a substantial impact on the related

costs, such as medical costs, and costs associated with lost working hours [38].

Numerous factors are assumed to influence harm in the Night-Time Economy

(NTE), including premises opening hours, congestion, population, blood alcohol

level, etc.

An ABM was developed by Moore et al. [101] that saw the implementation of

a drunken stagger to simulate intoxicated behaviour associated with pedestrians
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that have ingested alcohol. The gait of a pedestrian varies considerably depending

on their level of alcohol-induced intoxication [1, 110]. Alcohol affected gait causes

greater uncertainty in pedestrian flow around bars and nightclubs [101]. In this

chapter, simulation modelling is used to investigate the effects of alcohol affected

gait on the emergence of violence in the NTE. The hypotheses being that greater

intoxication disrupts normal emergent behaviour seen in sober pedestrians, giving

rise to encounters that, by their nature, increase the likelihood of violence and

aggression. The significant value of ABMs is that they can be used in a variety of

contexts to provide risk assessments and inform environment design to minimise

harm. ABMs have not been rigorously applied to NTE contexts, and it is not clear

whether simulations can provide insights to inform the design of the NTE. The

aim of the work presented in this chapter is to investigate the relationship between

observed pedestrian behaviour produced by an ABM and real-world crime data.

The purpose of this analysis is to evaluate the suitability of an ABM as a violent

behaviour prediction tool. Additionally, with respect to real-world environments,

a robust comparison between Moore’s intoxication informed ABM, and a sober

model is performed.

Understanding where and when disorder and violence will occur is of value to

efforts aimed at mitigating harm: this can be achieved by altering physical or

social environments through means such as pedestrianising streets, or by adjust-

ing the opening times of pubs, clubs, and bars. Agent-based models provide in

silico simulations of real-world pedestrian flow but assume agents are homogen-

eous. In many night-time locations, alcohol is used as a social lubricant and is

synonymous with an unsteady gait and violence. Empirically justified effects of

alcohol, by time and dose, are incorporated in an agent-based model to simulate

drunken behaviour. Geo-coded crime data is used to evaluate and compare viol-

ent crime modelling using intoxicated and sober ABM simulations. In addition

to intoxication state, the relationship between invasions of personal space, ped-

estrian density, and pedestrian velocity with violent behaviour are investigated.
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The work in this chapter demonstrates that an agent-based model can be used to

predict violent crime, and that simulating intoxicated pedestrian dynamics can

be beneficial for violent crime modelling. Additionally, the development and in-

clusion of a measure of PSI was informed by the literature, and determined to be

a useful factor for the prediction of violent crime.

6.2 Intoxicated Agent-Based Modelling

Presented in this section are the implementation details for the ABM used to in-

vestigate the correlation between emergent behaviour and real-world crime data.

The proposed investigation requires a model that simulates pedestrian movement

to, and from, drinking establishments in an NTE environment. Implementation

details are presented across two sub-sections, the first discusses inter-agent in-

teractions, and the second describes route selection. The implementation details

introduced combine to produce a model in which an agent moves through an

environment in a manner that is representative of either a intoxicated or sober

pedestrian.

6.2.1 Intoxicated Gait Simulation

Work presented by Moore et al. [101] defined intoxication (drunkenness) as a

loss of balance leading to the inability of the intoxicated person to keep their

centre of mass stable. This behaviour is simulated by applying a propulsion force

generated by randomly sampling a standard Gaussian distribution (µ = 0, σ = 1).

The simulated force associated with intoxication F drunk is applied to a pedestrian

at each time-step t as expressed in Equation 6.1. To avoid sharp jittering motion

caused by large random forces, the force at time-step t, F drunk
t , is smoothed using
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F drunk
t−1 .

F drunk
t = 0.5Frnd + 0.5F drunk

t−1 (6.1)

The Generalized Centrifugal Force Model (GCFM) is a spatially continuous force

based model for pedestrian simulation. As typical with force based models, the

movement vector of a pedestrian is determined by the sum of forces (Equa-

tion 6.2); these being the driving force
−−→
F drv
i for agent i, repulsion force

−−→
F rep
ij

between agent i and neighbouring agents j, and repulsion force
−−→
F rep
iw between

agent i and wall w. For intoxicated pedestrian simulation, the GCFM force for-

mulation is modified by adding an intoxicated force (Equation 6.3).

−→
F =

−−→
F drv
i +

∑
j∈Ni

−−→
F rep
ij +

∑
jw∈Wi

−−→
F rep
iw (6.2)

−→
F =

−−→
F drv
i +

∑
j∈Ni

−−→
F rep
ij +

∑
jw∈Wi

−−→
F rep
iw +

−−−→
F drunk (6.3)

6.2.2 Agent Routing

To guide an agent from one point in space to another, a traversal path is selected.

A traversal path describes a set of points between an agents’ current position

and its goal. Points along a traversal path are used to guide an agent towards

its destination. During the initialisation stage of our simulation process, a graph

is generated. Each edge in the graph denotes the cost of traversing from one

point to another, where the cost of traversal is defined as being equal in value

to distance in metres. Using a graph-based search, the optimal traversal path

between two points in an environment can be identified. To generate behaviour

that is more representative of real-world environments, a road crossing deterrence
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is implemented to keep agents on the pavement, and a random process is added

to increase variation in the traversal path selection process.

Road Walking Deterrence

Our experiments involve simulating NTE environments, these environments in-

clude roads with no marked or signalled crossing points, allowing pedestrians the

ability to cross the road whenever they deem appropriate. Palamarthy et al. [108]

used Gap Acceptance theory to decide when to cross a road, while Wang et al. [147]

studied the factors associated with the unmarked crossing of roads. Unfortu-

nately, research that informs where, rather than when to cross does not exist at

the time of writing. Data describing traffic conditions in our simulated environ-

ments in unavailable. Given the lack of required information, vehicle movement

or traffic is not explicitly simulated; instead, it is assumed that pedestrians in a

simulation expect vehicles to be on the road, and as a result, aim to remain on

the pavement to avoid accidents. The lack of functional vehicle simulation does

not allow for emergent behaviours such as pedestrians waiting on the pavement

until it is safe to cross.

To ensure pedestrians act realistically and stay on the pavement, a road crossing

penalty is applied to an agents’ path choice when they select their route. A

road crossing penalty is induced based on the amount of time a pedestrian would

remain on the road. Typically, the cost associated with a pedestrian moving from

one point to another is equal to the distance of the journey in metres. However,

when crossing a road, an increased traversal cost is induced. The road traversal

cost is equal to the product of the distance d of crossing and the angle of incidence

θ (in radians). The cost of traversing a road is defined as d(θ + 1); the addition

of 1 ensures that the cost associated with crossing a road equals at least d, the

standard traversal cost between two points. Figure 6.1 demonstrates the angle

of incidence. The road traversal cost is lower when the path of motion of a



6.3 Data 128

pedestrian is closer to being perpendicular to the direction of the road.

Figure 6.1: Theta is the minimum angle between the pedestrian’s dir-

ection of travel and a line perpendicular to the direction of the street.

The red square is the intended destination for the purple pedestrian.

Random Path Selection

If all pedestrians in our simulation selected the optimal traversal path, the we

would observe uncharacteristic behaviour. It would be unrealistic to expect every

person, especially while intoxicated, to make optimal path selection decisions.

Given the lack of literature on the relationship between intoxication and routing

decisions, the following decision was made arbitrarily. When routing, a pedestrian

selects the top 10% of the possible traversal paths leading from a given point to

the pedestrians goal, and then selects one randomly.

6.3 Data

GPS crime data and CCTV surveillance data was obtained from both Northamp-

ton and South Wales Police forces. The data included with the GPS reports were

time, longitude, latitude and crime type. Only crimes whose definition describes

physical violence between two or more people are used. The accuracy of the GPS
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coordinates from Northampton is quoted to have up to a 1.5-metre deviation from

the true location. No reported GPS error was provided for the South Wales Police

data. Two-dimensional KDE is applied to the positional GPS crime data to gen-

erate an aerial profile of an environment; high-intensity regions represent dense

crime populations; these regions highlight where violent behaviour occurs within

an environment. This representation is used to evaluate how well an agent-based

model can approximate true crime by comparing model output with the kernel

density estimated representation of GPS crime data.

In addition to positional crime data, CCTV footage of various locations through-

out the cities of Cardiff and Northampton was obtained. CCTV data is used to

count the mean and standard deviation of the number of pedestrians that are

participating in the NTE at any given moment in time; this value is used as

an input to our simulations to ensure they reflect real-world conditions by sim-

ulating the correct number of pedestrians. Blood alcohol concentration (BAC)

levels of pedestrians in the Northampton NTE were not available. Therefore,

data gathered from the city of Cardiff by Perham et al. [110] was used to in-

form model drunkenness for all intoxication informed simulations. Figure 6.2(a)

and 6.2(b) represent the true distribution and Gaussian approximation function

used to generate the level of intoxication in drunk pedestrians for our simulations

respectively.

6.3.1 Model Output

The experiments discussed in this chapter involve simulating pedestrian move-

ment in real-world environments. Aspects associated with pedestrian behaviour

are measured and correlated with real-world crime data. Three attributes asso-

ciated with pedestrian behaviour are analysed, these are: density, velocity and

Personal Space Invasion (PSI). As stated in the Section 6.1, existing research has

shown stress to be related to crowding and violence, and that invasion of per-
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(a) (b)

(c) (d)

Figure 6.2: True distribution of BAC levels (a) and Gaussian estimated

distribution (b). Disentangled BAC distributions by stagger status,

observed (c) and estimated (d)..

sonal space invokes stress in an individual. It is hypothesised that implementing

a notion of personal space invasion and generating two-dimensional heat maps

of PSI will produce an output that reflects true violence. The profile generation

procedure presented in the JuPedSim [18] framework is used to produce a two-

dimensional profile that represents an environment from a top-down perspective,

where intense invasions of personal space are represented using greater values. To

generate this data, each agent in a simulation is assigned a value P that indic-

ates the extent to which an agents’ personal space is invaded. P (Equation 6.4)

is expressed as the sum of exponential distances between an agent and all its

neighbours within a 1.2 metre radius, the boundary of personal space defined by

Hall [52]. As per the JuPedSim method, a Voronoi diagram is produced for each
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time-step in a simulation using the positional data of each pedestrian. Each cell is

weighted by the corresponding pedestrians P value. A two-dimensional profile is

generated by applying a discretisation process to the weighted Voronoi diagram,

where each pixel in the discrete space represents m metres in the real world. A

set of profiles are compiled across many simulations and averaged to produce a

single output. Examples of such outputs can be viewed in Figures 6.4 and 6.3.

In addition to PSI, this process is performed to also produce an aerial profile for

both pedestrian velocity and density. Simulations are performed such that the

simulated time is equal to an hour of real time; this process is performed multiple

times using various initialisation to remove bias induced by certain starting con-

ditions. Generating reports is a time-consuming task, and the computation time

is inversely proportional to the value of m. In Figures 6.4 and 6.3, each discrete

cell represents 2m and 5m respectively; these values were chosen as they provided

simulation reports with acceptable detail without requiring a large amount of

time to produce.

P =
N∑
i

exp(Di) (6.4)

6.3.2 Kernel Density Estimation

In their raw form, the positional nature of violent crime data points are incom-

patible with our simulation output. GPS data points exist within a continuous

spatial space whereas our simulation output is discrete. Our simulations pro-

duce multiple two-dimensional arrays of values that represent a top-down view

of a real-world environment, where each element in the array represents an area

in the real-world in m2 units. To perform correlation and prediction of violent

crime, we need to place our crime data points into the same spatial structure.

To generate our ground truth data from GPS data points, Kernel Density Es-
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Figure 6.3: Heatmaps produced post simulation. Results are averaged

across 50 initialisations.

Figure 6.4: Heatmaps produced post simulation. Results are averaged

across 50 initialisations.

timation (KDE) [126] is used. The KDE process will produce a two-dimensional

probability density function of violent crime that is sampled using a discrete grid

with dimensions that match the simulation output. There are two parameters



6.3 Data 133

that define the nature of the resulting probability density function, these are the

kernel type and bandwidth. It is assumed that the distribution of violent crime

is Gaussian in nature, and a Gaussian kernel is used when applying KDE. The

bandwidth typically controls the size of the smoothing function, increasing the

bandwidth will increase the size of violent crime hotspots in our ground truth

data.

In the literature, there are few examples where bandwidth selection was required

for analysing violent crime data [23, 141, 48]. In cases where violent crime has

been investigated using KDE, a different bandwidth is selected with justification

relative to the purposes of the experiment and the environment analysed. In

the wider literature, Chainey [15] proposed Predictive Accuracy Index (PAI) for

determining the optimal bandwidth for crime hotspot analysis. PAI is computed

using two concepts, the hit rate percentage and the area percentage. The hit

rate describes the proportion of crimes that were correctly predicted where an

accurate prediction is defined as a crime existing spatially inside a predicted

hotspot area. The area percentage represents the proportion of area that the

hotspots cover with respect to the total area of the region being analysed. PAI is

computed by dividing the hit rate percentage by area percentage. PAI describes

the proportion of crimes predicted relative to the size of the area covered by

the hotspot estimates. Bandwidth selection using PAI attempts to identify the

bandwidth that produces hotspots that when analysed, results in the greatest hit

rate while describing the least possible space.

To calculate PAI, 10-fold cross-validation is used to separate data into training

and testing groups. Hotspots are obtained by applying Gaussian Kernel Density

Estimation on the training set using a given bandwidth size. As the predicted

hotspots are Gaussian, a violent crime is considered correctly predicted if it falls

within the area that describes the 95% confidence interval of the estimated Gaus-

sian. Using the test data, the hit rate percentage is computed by calculating the
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proportion of test data points correctly predicted using the estimated hotspots

derived from the training data. The PAI computation process is performed for

many different bandwidth sizes.

After applying the PAI process, the bandwidth with the highest PAI provides an

associated hit rate of 23% and 66% for the Northampton and Cardiff environment

respectively (Figures 6.6 & 6.5). The ground truth, in this case, would consist

of hotspots that represented only 23% and 66% of the crime data within each

dataset. In the case of Northampton, the majority of violent crime data samples

will be excluded from the analysis. To produce an accurate predictive model, our

ground truth must represent as much data as possible. A constraint is applied to

ensure a bandwidth is selected such that predictive ability (hit rate) is above 90%.

The hit rate constraint can be adjusted based on the requirements of the user, if

a less accurate model is sufficient, then a lower value can be selected. A high hit-

rate threshold may result in a bandwidth whose associated hotspots are enlarged

such that they consume the entire environment; in this case, a perfect hit rate

would be achieved, but all information regarding the spatial distribution would

be lost. A value of 90% was selected so that the ground truth is representative of

a substantial majority of the data available. The bandwidth associated with the

highest PAI value with a hit rate greater than 90% is 0.01508 for Northampton

and 0.05578 for Cardiff. Figures 6.7 and 6.8 depict the estimated violent crime

hotspots for their respective environment using the constrained PAI method of

bandwidth selection.

6.4 Experiments

In this section, two distinct NTE environments from two cities in the United

Kingdom are described. Each environment is simulated using sober pedestrian

dynamics and intoxicated pedestrian dynamics. Each model, sober and intoxic-
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Figure 6.5: PAI and predictive accuracy (hit rate) for each bandwidth

applied to the Northampton data.

ated, is evaluated with respect to their ability to generate an output that can

predict violent crime.

6.4.1 Case 1: Northampton Club District

The first experiment outlined in this chapter focuses on Northampton’s clubbing

district. This particular environment is constrained to a single street (Bridge
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Figure 6.6: PAI and predictive accuracy (hit rate) for each bandwidth

applied to the Cardiff data.

Street) as all clubs within the local area lay within it. There is a total of five

establishments that serve alcohol during NTE hours. The complexity of the

simulated environment is low, as its design is linear as shown in Figure 6.7.

Accompanied by the aerial view of the simulated environment is a profile view

representing true violence (Figure 6.7). A functioning road that allows traffic

to flow unconstrained at any time is present. Our simulations account for this

and aim to keep pedestrians walking along the pavement as observed in CCTV
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(a) (b)

Figure 6.7: a) Aerial view of the Northampton club district. b) Ground

truth violent crime distribution (PAI selected KDE bandwidth).

footage of the environment. The average target population of our simulation is

64.369, with a standard deviation of 10.141, and we add agents to our simulation

such that the agent count matches the true average pedestrian count.

6.4.2 Case 2: Cardiff’s Greyfriars Road

The second experiment is reflects on one of the main clubbing districts in the

city of Cardiff, Wales. A notable aspect of this environment as displayed in

Figure 6.8 is that the environment is non-linear, requiring pedestrians to traverse

corners. The primary area of simulation, in this case, is shared between two

streets, Greyfriars Road and The Friary, with five and two drinking establishments

respectively. Along The Friary no cars are permitted, creating an open area
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for pedestrians to walk freely. Along Greyfriars Road, the road accepts traffic,

therefore, the road crossing behaviour discussed in Section 6.2.2 is applied. The

average target population of our simulation is 100.161, with a standard deviation

of 16.168, as guided by real-world pedestrian counts of the area.

(a) (b)

Figure 6.8: a) Aerial view of the Greyfriars road. b) Ground truth

violent crime distribution (PAI selected KDE bandwidth).

6.5 Results

Correlation measures and Ordinary Least Squares (OLS) regression are used to

evaluate and compared pedestrian simulations. Correlation analysis using Zou’s

test [163] is performed to determine whether the output produced by an intox-

ication informed model is significantly different from a standard sober model.

Regression modelling is used to generate a prediction model that utilises all three

measures of pedestrian behaviour. A regression model is used to determine the

importance of factors for modelling violent crime. More specifically, regression is

used test the impact of PSI for modelling violent crime when considered alongside

measurements of density and velocity.
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6.5.1 Correlation

In this section, the correlation between individual measurements of pedestrian

behaviour and violent crime is examined. The aim is to determine whether the

correlations reported using measurements from a intoxication informed model are

significantly different from correlations between true crime and measurements

output from a sober pedestrian simulation model.

Both measures of personal space invasion (PSI) and density correlate positively

with violent crime (Figures 6.9 & 6.10). A weak inverse correlation between

violent crime and pedestrian velocity is also observed. The correlation strength

for density is greater than PSI for the Northampton environment; the opposite is

true for the Cardiff environment.

The Zou confidence intervals indicate whether two correlation values are signi-

ficantly different as well as the direction and magnitude of the difference.If the

confidence interval contains zero, then the observed difference is insignificant,

and that the difference in correlation values cannot be declared as originating

from two distinct processes. Pearson’s R and Spearman’s Rho correlation meas-

ures are used for the Northampton and Cardiff environments respectively; these

correlation methods were selected by analysing the bivariate scatter plots of dens-

ity/PSI/velocity and violent crime.

The bivariate scatter plots associated with the Northampton experiment show

a linear relationship between variables of density, PSI and velocity with violent

crime (Appendix D.1). The Zou confidence intervals show the correlation val-

ues for each variable is significantly different between intoxicated simulation and

non-intoxicated simulation. The correlation values derived from the intoxicated

process are weaker than the same correlations reported by the non-intoxicated

process.

The bivariate scatter plots associated with the Cardiff simulation show a non-
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linear relationship between variables of density, PSI and velocity with violent

crime (Appendix D.2). Zou confidence intervals reveal that the difference between

PSI correlation values for intoxicated and non-intoxicated models is insignificant

at lower KDE bandwidth values; when the bandwidth is greater than 0.05, the

difference becomes significant and positive, indicating that in terms of PSI, the in-

toxicated simulation better correlates with violent crime than the non-intoxicated

process. At low KDE bandwidth values (< 0.05), the difference in density correl-

ation values is significant and negative, indicating that at low KDE values, the

non-intoxicated simulation produces a density output that more strongly correl-

ates with violent crime than the intoxicated process. At higher KDE bandwidth

values (> 0.10), the difference between significant and positive. At the bandwidth

determined by PAI, the difference between PSI correlation values is significant

and positive, and the difference between density is significant and negative.

6.5.2 Regression

To understand the factors that are important when predicting violent crime,

an OLS regression model [75] is used. The purpose of this analysis is to com-

pare sober and intoxication informed simulation output, and to also determine

whether PSI provides any meaningful information for the task of predicting vi-

olent crime when considered alongside measures of density and velocity. In this

experiment, the predictor variables are density, velocity and PSI. The target

variable for the OLS regression is a true crime heat map produced by applying

the PAI method of bandwidth selection to GPS crime data. The determined ker-

nel bandwidths are 0.032 and 0.045 for the Northampton and Cardiff experiments

respectively.

Four models based on the environment (Cardiff/Northampton) and pedestrian

intoxication state (Sober/Drunk) are produced. The Northampton environment

is associated with a multicollinearity index of 16.29 and 10.04 for the sober and
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intoxication informed variables respectively. Regarding the Cardiff environment,

the multicollinearity index values are 15.96 and 15.38 for sober and intoxication

informed variables. Given that the multicollinearity index is high, the inter-

pretation of the OLS model factors can be imprecise. To address this, Principal

Component Analysis is used to transform the data such that the multi-collinearity

index is 1. The transformed data is less interpretable as the information from

one factor can be distributed across multiple principal components. Tables 6.1

and 6.2 present the loadings and squared correlation between the original pre-

dictor variables and the transformed principal components. The importance of

predictors and their relationship with violent crime can be interpreted using PCA

variable loadings and regression coefficients.

Squared Correlations Loadings

Model Data PC1 PC2 PC3 PC1 PC2 PC3

Sober Velocity 0.329298 0.670215 0.000486 -0.419034 0.907106 0.0396252

PSI 0.783383 0.058214 0.158403 0.646312 0.267341 0.71471

Density 0.762703 0.0860848 0.151212 0.637724 0.325098 -0.698298

Intoxicated Velocity 0.342606 0.657165 0.000228 -0.421489 0.90637 0.0289855

PSI 0.800706 0.0613116 0.137983 0.644354 0.276847 0.712856

Density 0.785205 0.0814744 0.13332 0.638087 0.319138 -0.700711

Table 6.1: Correlation between Principal Components and variable

loadings for the Northampton experiment.

Concerning the Northampton experiment, the squared correlations reveal that

the first principal component correlates with all three variables, density, psi, and

velocity (Table 6.1). The sign of the variable loadings indicate that as velocity

decreases, measures of density and PSI increase. When considering the first prin-

cipal component in relation to the regression coefficient (Table 6.3), the regres-

sion model suggests that PSI and density are positively related with violent crime
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Squared Correlations Loadings

Model Data PC1 PC2 PC3 PC1 PC2 PC3

Sober Velocity 0.0945457 0.894343 0.0111116 0.26556 0.955581 0.127837

PSI 0.602377 0.0758632 0.32176 0.670311 -0.278311 -0.687914

Density 0.643729 0.00921382 0.347058 0.692937 -0.096992 0.714445

Intoxicated Velocity 0.0213025 0.978122 0.000575 0.123982 -0.991816 -0.0304822

PSI 0.684828 0.0043458 0.310825 0.702967 0.0661106 0.708143

Density 0.679706 0.0118625 0.308432 0.700333 0.109225 -0.705411

Table 6.2: Correlation between Principal Components and variable

loadings for the Cardiff experiment.

whereas velocity displays a negative relationship with violent crime. Density and

PSI correlates with with the third principal component, however the correlation

is much weaker than the correlation with the first principal component. The

variable loadings for the third component indicate that as density increases, PSI

decreases. Looking at the regression coefficient, the relationship between density

and violent crime, and PSI and violent crime, with respect to the third principal

component, is positive and negative respectively. To summarise this, the regres-

sion analysis across all components has revealed that the relationship between

density and violent crime is positive. Regarding PSI, the relationship appears

non-linear, with a portion of PSI information exhibiting a positive relationship

with violent crime and a smaller proportion being negatively related with vi-

olent crime. Similar to PSI, evaluation of the variable loadings and regression

coefficients reveals a non-linear relationship between velocity and violent crime.

In the case of Northampton, a regression model that considers all three variables

reports an average (across all bandwidths) increase in R2 of 7.1% and 10.3%

for sober and intoxication modelling when compared to regression analysis that

excludes PSI.
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Regarding the Cardiff experiment, the squared correlation between velocity and

the second principal component strong and weak for the first and third component

(Table 6.2). The second principal component almost entirely represents velocity.

The regression coefficient for the second component (Table 6.4) is negative for the

intoxicated model, indicating a negative relationship between velocity and true

crime. The second principal component for the non-intoxicated model is statistic-

ally insignificant (p > 0.05, Table 6.4). Density and PSI are positively correlated

with the first principal component, and with respect to the regression coefficient,

suggests that density and PSI are positively related to violent crime. The third

principal component shows that as density increases, PSI decreases. With re-

spect to the third principal component and the associated regression coefficient,

PSI and density are exhibit a positive and negative relationship with true crime

respectively. To summarise the findings across all components for the Cardiff

environment, the relationship between PSI and violent crime is positive whereas

the relationship between density and violent crime is non-linear. Depending on

the intoxication state, velocity is either negatively related to violent crime or

considered insignificant for prediction.

In the case of Cardiff, a regression model that considers all three variables reports

an average (across all bandwidths) increase in R2 of 88.1% and 89.3% for sober

and intoxication modelling when compared to regression analysis that excludes

PSI.

Similar to the analysis in Section 6.5.1, OLS regression analysis was performed

multiple times, each time altering the target variable by changing the KDE kernel

size used to generate ground truth. In most cases, the R2 reported by a regression

model fitted with data from an intoxication informed simulation is greater than

the corresponding sober model (Figures 6.11 and 6.12). Neither intoxicated or

non-intoxicated pedestrian simulations can produce measurements that predict

violent crime with complete accuracy. Each model produces different outputs
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Experiment Variable Coefficient std.error t-statistic probability

Intoxicated CONSTANT 0.00787828 7.24842e-005 108.69 0.00000

PC1 0.00184862 5.22036e-005 35.4117 0.00000

PC2 0.000741737 8.10551e-005 9.15102 0.00000

PC3 -0.0042652 0.000139124 -30.6575 0.00000

Sober CONSTANT 0.00787828 7.00965e-005 112.392 0.00000

PC1 0.00200761 5.11942e-005 39.2156 0.00000

PC2 0.000781503 7.76813e-005 10.0604 0.00000

PC3 -0.00400725 0.000125896 -31.8297 0.00000

Table 6.3: Northampton regression results.

Experiment Variable Coefficient std.error t-statistic probability

Intoxicated CONSTANT 0.000134781 4.4355e-006 30.3868 0.00000

PC1 0.00222796 3.76796e-006 15.1116 0.00000

PC2 -0.00569789 4.44833e-006 -3.20604 0.00135

PC3 0.00142708 5.6341e-006 17.5695 0.00000

Sober CONSTANT 0.000134781 4.46858e-006 30.1619 0.00000

PC1 5.16402e-005 3.8595e-006 13.38 0.00000

PC2 -6.84245e-006 4.51549e-006 1.51533 0.12970

PC3 -7.53107e-005 5.41947e-006 13.8963 0.00000

Table 6.4: Cardiff regression results.

as governed by drunken gait. Given that each simulation output is the product

of a different process (intoxication state), then there exists the possibility that

the information contained in the output is complementary to the task of violent

crime prediction. As an experiment, regression using a joint model in which both

sober and intoxication informed simulation outputs are included as variables was

performed. Figures 6.11 and 6.12 indicate that model accuracy can be increased
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Figure 6.11: Bandwidth against OLS R squared for the Northampton

environment.

by considering output from both sober and intoxication informed models at the

same time.

6.6 Discussion

Based on the regression analysis, it is observed that including a measure of in-

vasions of personal space can improve violent crime prediction. However, the

degree of improvement is contingent on the environment being analysed. Our

results provide evidence for the assumption that invasions of personal space in-

duce violent behaviour. The investigation of PSI was justified by the assumption

that invasion of personal space induces violent behaviour. This assumption stems
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Figure 6.12: Bandwidth against OLS R squared for the Cardiff envir-

onment.

from studies by Sundstrom et al. [128], and Kanaga and Flynn [69] which demon-

strate that invasion of personal space increases individual stress; multiple studies

identify the relationship between violent behaviour and stress [4, 22, 73, 95, 103].

The experiments presented In this chapter has revealed a relationship between

simulated invasions of personal space and recorded violence. Furthermore, the

use of PSI as a predictor variable yields an improved model for predicting violent

crime when compared to a model that excludes the variable.

Regarding the density-violence relationship, Moore et al. [101] state that “it is

plausible that crowding in and of itself may not be causally related to violence”.

Concerning the Northampton scenario (Section 6.4.1), it is observed that density

correlates with true violence to a high degree, and achieves a greater absolute

value than either velocity or PSI. Although it is plausible that crowding may not
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be causally related to violence, the evidence seems to suggest it can be used as a

reasonably accurate indicator of violence. However, the strength of this statement

does depend on the environment being analysed as indicated by the reduced

performance of density when analysing the Cardiff environment (Section 6.4.2).

As of writing, there exists no literature discussing the relationship between ped-

estrian velocity and violence. The following results are an observation of the

model’s output and do not corroborate any existing research. The results show

that pedestrian velocity and regions of violence have a weak inverse correlation.

In the Northampton case, a strong correlation between crowding (density) with

violence is observed; an associated behaviour pattern of crowding is that people

move at a reduced speed as competition for space is greater. If the correlation

between crowding and violence is strong then intuitively, reduced velocity may

also indicate regions of potentially violent behaviour. An alternative view is that

reduced velocity prolongs exposure of a pedestrian to their neighbours, increasing

the likelihood that one of the neighbouring pedestrians may perform an act that

induces aggression.

The output from the intoxicated model was subtracted from the output of the non-

intoxicated model to highlight the difference in mode output (Figures 6.13 & 6.14).

In relation to the Cardiff Environment (Figure 6.14), velocity derived from the

intoxicated model is greater in regions that lack club entrances when compared to

velocity derived from a non-intoxicated model. Likewise, non-intoxicated pedes-

trians exhibit greater velocity around club entrances than intoxicated pedestrians.

This may suggest pedestrians are more easily able to resolve movement through

constrained spaces when not intoxicated. In open areas, the random movement

from intoxication appears to allow pedestrians to more easily resolve interactions,

allowing the pedestrian to maintain a high velocity. This is in comparison to non-

intoxicated pedestrians, who in the simulation, may require slowing down to avoid

colliding with another person. The intoxicated model appears to increase local
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pedestrian density and result in increased invasions of personal space. This may

result from the random intoxication force, allowing pedestrians to get closer to

one another than they would normally allow when free of the influence of alcohol.

In summary, the comparison between intoxicated and non-intoxicated simula-

tion for violent crime prediction was not conclusive. The regression analysis of

the Northampton environment revealed that the intoxicated model performed

worse than the non-intoxicated model, regardless of the selected bandwidth size.

The correlation analysis revealed that intoxicated measures of PSI more strongly

correlated with violent crime than PSI derived from a non-intoxicated simula-

tion process. However, the opposite trend was observed for velocity and density.

Concerning the Cardiff environment, the correlation analysis revealed that for

small KDE bandwidths, the non-intoxicated simulation produced output that

more strongly correlated with violent crime. The inverse is true when analysing

violent crime heat maps generated using larger KDE values. Regression analysis

reveals that the intoxicated model outperforms the non-intoxicated model across

all bandwidths. For both Northampton and Cardiff environments, predictors

derived from intoxicated simulation have shown to be beneficial when used in

conjunction with predictors from a non-intoxicated simulation. Data from both

intoxicated and non-intoxication informed simulations have proven to contrib-

ute complementary information as combining information results in a regression

model with an increased R2 score compared to a model built using exclusively

intoxicated or non-intoxicated data.

Based on the presented analysis, another question arises: Does the improvement

gained from including intoxicated behaviour mechanisms in an ABM yield signific-

ant benefits in the real-world applications? Future work is required to investigate

the practical benefits of a intoxicated pedestrian model.
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Figure 6.13: Pixel-wise difference between sober and intoxication gen-

erated output for the Northampton environment.

6.7 Conclusion

To conclude, it has been demonstrated that an agent-based model can be used

to predict violent crime. Furthermore, including intoxicated pedestrian dynamics

can improve predictive power when utilised alongside to a typical agent-based

simulation model. Through experimentation, evidence has been provided for the

hypothesis that invasions of personal space are related to violent behaviour. To

achieve these findings, a measure of Personal Space Invasion was defined based

on the theorem presented in the field of Proxemics [52]. Future work would

involve the deployment of predictive models in the real world to inform policing

strategies; by evaluating each model’s ability to improve the effects of crime, it
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Figure 6.14: Pixel-wise difference between sober and intoxication gen-

erated output for the Cardiff environment.
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will be possible to demonstrate the practical difference between models.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion and Future Work

Contained in this Chapter is a summary of the methods developed for this thesis

along with an outline for future work. Also presented is a comparison and discus-

sion of the two computer vision based detection methods presented in Chapters 4

and 5.

7.2 Violent Behaviour Detection using CCTV

Presented within this thesis are two methods of violent behaviour detection. The

development of two methods resulted from the timing associated with the avail-

ability of data. During development of work presented in Chapter 4, data that

depicted violence in crowded situations was more abundant than footage of one-

on-one violence. As more data was obtained, the focus shifted towards a more

general method that was theoretically more suitable for analysing one-on-one vi-

olence. Both methods demonstrated state-of-the-art classification performance at

the time of their development.
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Modelling Crowds using Temporal Texture

The method outlined in Chapter 4 concerns the detection of violent behaviour

within crowded environments. The research disclosed in this chapter takes in-

spiration and methodologies from crowd counting techniques. Existing research

has demonstrated that measurements derived from texture, specifically GLCM,

are powerful at capturing structural information crowds, resulting in high crowd

counting accuracy. Given that the structure of a static crowd (still image) could

be encoded, it is hypothesised that temporal analysis of GLCM features could

be used to capture crowd motion dynamics that are capable of discriminating

between different behavioural classes when used in conjunction with a machine

learning classifier. Temporal changes in appearance are represented by measur-

ing how GLCM features change over time using four statistics: mean, standard

deviation, skewness and IFU.

IFU was used to describe the stability of a crowd’s appearance over time. Gener-

ally, the appearance of violent crowds between successive frames depicts greater

changes in appearance when compared to normal behaviour whose appearance

changes more gradually. In addition to this, it was observed that the rate of

change of appearance was more variable for violent behaviour; the appearance of

normal behaviour changes in a more consistent manner. Based on observation,

a hypothesis was formulated and tested, that over a short-time period, the ap-

pearance of violent behaviour is less stable over time when compared to footage of

non-violent behaviour. During the testing of this hypothesis, it was demonstrated

that IFU is a powerful descriptor for use in a violent behaviour classification

pipeline.

It has been argued that many methods of violent behaviour detection are too

computationally expensive to be practically implemented in the real-world [49].

As discussed in Chapters 1 Chapter 2, Section 2.1, theoretical benefits to public

health and safety can be achieved by using computer vision to assist in the active
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observation of surveillance footage. With this in mind, the algorithm presented

in this chapter was designed to operate with a low computational cost.

Given that violence detection in crowds is a sub-field of abnormal behaviour

detection in crowds, our method was applied to abnormality detection datasets

to test generalisability. The method generalised well to other types of behaviour

detection tasks, providing comparable performance with state-of-the-art methods

on non-violence datasets.

Modelling One-on-One and Crowd Violence using Violent Interest Points

Presented in Chapter 5 is an alternative method that operates by locating, and

subsequently describing, regions of interest based on motion characteristics associ-

ated with violent behaviour. The characteristics are: high acceleration, non-linear

movement and convergent motion. A justification for each characteristic can be

found within Chapter 5, but a brief overview will follow. High acceleration has

long been associated with violent behaviour, a fact discussed in both Chapter 2

and Chapter 5; simply put, to incur damage, an object must be moving at high

speed. The field of research associated with understanding pedestrian movement

identifies that normal behaviour tends to exhibit a laminar flow, that is pedes-

trians typically move along a linear line without significant deviations. Finally,

object convergence is an analogue of physical interaction. By computing a per-

pixel measure of each of these properties, multiple response maps are generated.

Computing these characteristic on a per-pixel level results in an image where

regions with greater values are more likely depict actions associated with violence.

This information is used as a prior in an interest point detector scheme to produce

a set of interest points based on actions that exhibit properties associated with

violence. In Chapter 5, it is demonstrated that interest point sampling strategies

based on violent characteristic priors produce a set of informative features. When

encoded using a BoW scheme, the set of features from the interest point detector
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produce a more powerful description of a violent scene than features sampled

using a regular grid structure.

Finally, an analysis of the underlying dynamics of violence reveals that the nature

of violent behaviour can vary drastically, and that violence does not adhere to a

singular definition with respect to the characteristics investigated.

Summary

A common trait and design goal of each method was the ability to operate within

real-time. Real-time operation was defined as providing a decision of whether

a frame depicted violence within 0.033 seconds (30 FPS); the motivation set

out in Chapter 1 imposed this requirement for systems that detect violence can

both decrease detection time, and increase detection rate. A system that fails

to operate in real-time would fail with decreasing detection time. Additionally,

detecting violence after the fact would provide no immediate benefit to the well

being of those involved. However, it should be noted that analysis of archival

footage may aid in court proceedings.

In summary, the main contributions associated with the detection of violence

using computer vision are:

1. An analysis of the perceived bias in widely used datasets for both violent

behaviour detection and abnormal behaviour detection. The experiments

presented in Chapter 3 demonstrate clearly that the data capture process

and capture devices have induced bias that allows for near perfect classific-

ation based on perceived characteristics of image quality and depth.

2. A computationally cheap method of violent crowd detection that operates

in real-time. The proposed algorithm analyses how specific measures of

texture, known to encode crowd structure, changes over time. Experiments
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demonstrate state-of-the-art performance on both violent behaviour detec-

tion tasks and abnormal crowd behaviour detection tasks. Additionally, IFU

was designed to measure the stability of crowd structure (appearance) over

time. Using multiple datasets that contain both violent and non-violent

samples, it was found that the appearance of violence is less stable over

time when compared to similar scenes depicting normality.

3. Detecting points of interest using measurements associated with violent

behaviour led to a method capable of state-of-the-art performance in real-

time. An analysis of the three characteristics justified as being related to

violence revealed that the underlying dynamics of violence change based

on context. Additionally, interest point sampling outperformed dense grid

sampling.

7.3 Violent Behaviour Prediction using ABM

Demonstrated in Chapter 6, an agent-based model that simulates drunken gait

within real-world environments provides more accurate predictions of violent be-

haviour than a model that lacks drunken characteristics.

In summary, the main contributions associated with the prediction of violence

using agent-based modelling are:

1. Demonstrably shown using regression and statistical testing that an agent-

based model informed by drunken characteristics allows for an increased

level of violent crime prediction when compared to a model that lacks

drunken characteristics.

2. Regression analysis demonstrates that measurements of PSI prove useful

for predicting violent behaviour, providing evidence for the hypothesis that

stress-induced violence results from invasions of personal space.
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Understanding where and when disorder and violence will occur is of value to ef-

forts aimed at mitigating harm: altering the physical or social environment, such

as pedestrianising streets, or changing drinking establishment opening times. Val-

idation is required to demonstrate that changes in predicted violence that stem

from modifications to the simulated environment result in similar changes in the

real-world. Additionally, the current form of analysis does not investigate the

spatial relationships between neighbouring regions in space. For this, spatial re-

gression analysis is to be applied to understand whether the likelihood of violence

at a given position is influenced by activity in neighbouring locations.

Included in Chapter 6 is the foundation for future work for the creation of a

potentially more accurate simulation of drunken pedestrian behaviour. The data

required to the realise this model is currently unavailable, and therefore the the-

oretical model is untested.

7.4 Merging Technologies

The predictive model of violent behaviour generates a heat map that displays, on

average, locations where violent behaviour is likely to occur. However, real-world

cities often host singular events that momentarily increase pedestrian density,

which may influence pedestrian behaviour; the current model, based on typical

behaviour may not generalise well to this case. Assuming that individual dynam-

ics of a pedestrian movement remain constant regardless of density, then correct

simulation initialisation would allow for accurate simulation of non-normal situ-

ations. Given the large quantities of cameras places around city centre envir-

onments, it is possible to determine the pedestrian quantity and even location.

This information could be used to parameterise the agent-based model. Creating

a system that adaptively simulates current situations would theoretically alleviate

the issue of a model failing to generalise to special conditions. A real-time, adapt-
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ive heat-map of violence could then be used to feed information back to CCTV

operators, who could then distribute the focus of a camera onto areas that are

likely to depict violence. Cameras that are focused on areas that are less likely to

capture violence could be watched by a detection algorithm. There are challenges

associated with this system, the key one being pedestrian location determination.

Cameras mostly capture data without depth information. Accurately reversing

the project from 3D to 2D is difficult, introducing uncertainty when attempting

to determine the location of a pedestrian along a street. Furthermore, occlusions

also affect this process, as the camera systems may not physically observe specific

pedestrians.

7.5 Future Work

In order to determine whether the methods proposed in this thesis are suitable

for real-world use, more analysis must be performed. Reporting the violent be-

haviour detection accuracy is not sufficiently informative to suggest whether the

algorithms are suitable for deployment. For instance, a study into the accept-

able levels of false positives would be required. The question that is of interest

is At what point does an assistive system become detrimental to the task due to

distraction caused by excessive false positives?. The answer to this would act as

an objective goal for system development; if a new algorithm produces too many

false positive, then it would be considered unsuitable for real-world deployment.

The information required can be obtained using a study that measures the human

ability at detecting activities whilst presenting varying levels of distraction. The

distraction in this case would manifest in a similar way to an assistive detection

algorithm that produces false positives.

Future research could involve investigating the detection time of violence, determ-

ining how early a behaviour is identified as being violent. Violent samples in the
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available datasets lack the information that occurs prior to violence as well as the

transition information that leads into violence. Without prior information, it is

not possible to analyse the speed of detection, an important property of the mo-

tivation that guides the work presented in this thesis. Ultimately, to investigate

the detection time of both humans and algorithms, more data must be gathered.

In Chapter 3, an analysis of the available data reveals that each dataset contains

some sort of data bias. To further evaluate the methods proposed in Chapters 4

and 5, it would be useful to develop a testing methodology that can uncover

whether feature representations exploit a data bias. A general approach to bias

testing would allow for more insightful comparison between state-of-the-art ap-

proaches, as traditional measures of accuracy fail to capture issues associated

with data bias.

As mentioned in Chapter 3, both the NN-Violence and CF-Violence datasets

contained instances where a camera operator would focus the camera on useless

information. The key example is that a camera would focus on a road, failing

to capture the side-walk, the area most likely to have pedestrians. Generating a

system that identifies poor camera focus could be used to direct a human operator

to re-adjust in order to better maximise the capture of meaningful data. An

example as to how this could be achieved would be to use a pedestrian detection

algorithm. If no pedestrians are detected for an extended period, then the system

would instruct the operator to readjust the camera focus. Alternatively, models

of movement can be generated that encode vehicle and pedestrian movement; the

direction a camera is looking can then be guided by maximising the amount of

pedestrian movement in the field of view whilst also minimizing captured vehicle

movement.

The work presented within this thesis does not evaluate the effectiveness of the

methods at reducing the impact of violent crime, which is a key motivator outlined

in Chapter 1. The methods disclosed in this thesis would theoretically reduce the
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effects of violence by allowing police personnel to attend a scene of interest more

quickly, resulting in a demonstrable impact on injury severity. Additionally, the

majority of violent instances are not observed by police, and only come to light

when victims arrive at the hospital. Violence detection systems, such as those

outlined in Chapters 4 and 5, should in theory aid in the identification of instances

that would otherwise be missed; this does assume that an instance of violence

falls within the view of a camera.

7.5.1 Drunk Pedestrian Behaviour

The model of intoxicated pedestrian behaviour used in Chapter 6 was based on

an ad-hoc model of drunkenness that was visually validated. This model makes

little distinction between various aspects of gait under the influence of alcohol.

To inform the development of a more accurate model of drunken stagger, a survey

of gait changes under the influence of alcohol was performed. However, it was

found that the information required was not available throughout the few stud-

ies conducted, which gives rise to a potential avenue of research for the future.

Teixido et al. [132] found that female stride length tends to increase and become

more unstable as alcohol intake increases. The perpendicular distance between

their feet as they walk decreases and become more stable. In contrast, the male

stride and step-width becomes more unstable as alcohol intake increases resulting

in higher variance, however the average step-width decreases. Unfortunately, this

study only used two participants, and so the sample size is too small for the data to

be treated as fact. Additionally, the authors note that they may not have allowed

enough time for the alcohol to take full effect. Demuera et al. [28] performed a

similar study to Teixido et al. [132] in which volunteers were given alcohol and

instructed to walk 10 meters in a straight line. The experiment sees the ingestion

of a single intake of sake (8ml/kg), which the authors estimate to produce a BAC

of between 0.14 and 0.17. A key fault with this study is that BAC is estimated
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without regard for an individual’s alcohol consumption ability, potentially provid-

ing poor correlations between true BAC and changes in gait. Jansen et al. [68]

report that the stride length is affected significantly by the increased intake of

alcohol. The authors also report that increased alcohol intake does not affect un-

steadiness, or ataxia. The authors imposed a walking limit on test participants

of 1.11m/s, slightly below the average walking speed of 1.4m/s. A key problem

throughout each aforementioned piece of literature is that the participants do not

consume enough alcohol. Perham et al. [110] performed breathalyser tests on

people in the street during the NTE and noted some various attributes, including

whether or not a person is acting violent, whether they are perceived as drunk

and their BAC level. The study suggests that a BAC of approximately 0.17 or

greater will result in noticeable changes in gait; this value is equal to the upper

limit of participants of the 1985 Jansen study and greater than any BAC reported

in the other pieces of literature. Jansen et al. [68] hypothesised that their parti-

cipants were not drunk enough for them to observe ataxia, and given findings by

Perham, this may be true. Using an approach similar to Aiello et al. [1] in which

drunken gait is stimulated through the use of vision impairment goggles, it would

be possible to gather enough data to produce more accurate data functions of al-

cohol consumption to changes in gait with which to better inform our simulation.

Using existing research, we generated a set of data functions (Figure 7.1) that

specify the change in left/right sway, and forward/backward stagger as alcohol

ingestion increases. We gathered information from a range of studies and applied

multiple regression techniques to obtain functions that describe characteristics

of motion based on blood alcohol concentration. Unfortunately, most studies do

not investigate drunk behaviour beyond 0.16 BAC, the limit after which it was

reported that noticeable motion stagger is induced. More data must be gathered

to complete these drunk behaviour functions.
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Figure 7.1: Incomplete functions visualising the change in stride length

(a) and step width (b) as ingestion of alcohol increases.
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Appendix A

Data Sharing Agreement

As expressed in Chapter 3, data was obtained from Northamptonshire Police. To

secure the data, a data sharing agreement was required and had to be signed by

all users of the data.



1 

 

[Organisation sharing data] 

  
DATA PROCESSING AGREEMENT  

  
This Agreement dated 3rd February 2015 sets out the terms and conditions under which 

personal data held by the specified Data Controllers will be disclosed to the specified Data 

Sharing Partner.  This Agreement is entered into with the purpose of ensuring compliance 
with the Data Protection Act 1998.  Any disclosure of data must comply with the provisions of 

this Act. 
  

1. The Parties 

  

1.1   This Agreement is between Northants Police of Mere Way, Wootton, Northamptonshire, 

NN4 0JQ (“NP”), and Northampton Borough Council of Guildhall, St. Giles Square, 

Northampton, NN1 1DE (“NBC”) (together the “Data Controllers”) and Cardiff University, 

7th Floor, McKenzie House, 30-36 Newport Road, Cardiff, CF24 0DE  (the “Data Sharing 
Partner”). 

  
1.2 The purpose of this Agreement is to define the requirements placed upon the Data 

Sharing Partner by the Data Controllers in relation to the processing of data owned or 

held by the Data Controllers and disclosed to and shared with the Data Sharing Partner 
arising out of the objective set out in Clause 2 below.  The obligations of the Data 

Controllers under the Data Protection Act 1998 must be met, particularly those arising 
from Principle 7. 

  
2. Purpose 

  

 2.1 The purpose of the disclosure is to facilitate research by the Data Sharing Partner to 

identify violence and the causes of violence in night time environments with the view to 

informing violence reduction initiatives, herein after called “the Purpose”.  
 

2.2. This Purpose is consistent with the original purpose of the data collection. 
 

 2.3. This research is consistent with NP’s and NBC’s obligations under Section 17 Crime and 
Disorder Act 1998 to exercise its functions with due regard to the likely effect of the 

exercise of those functions on, and the need to do all that it reasonably can to prevent 

crime and disorder in its area.  
 

3. Definitions 

  

3.1 In this Agreement, the expressions “Data Controllers”, “Personal Data”, “Sensitive 

Personal Data”, “Processing”, “Information Commissioner”, “Subject Access” have the 
same meaning as in Sections 1, 2, and 6 of The Data Protection Act 1998, as amended 

by The Freedom of Information Act 2000. 
 

3.2 “Research Partners”.  
 
3.3  The “Data” is defined as 

3.3.1 Closed Circuit Television Data covering Northampton City Centre, collected for the 
purpose of crime prevention by NBC and used and stored by NP. 

3.3.2 GPS data from police officer and vehicle radio communication devices to include GPS 
coordinates, time and date and to include information allowing the Data Partners to 

disambiguate different officers and vehicles, although not contining information 

allowing the identification of individuals by name. 
3.3.3 Violent crime data including the nature of incidents, time, place and date. 

 
3.4 “ACPO” means the Association of Chief Police Officers. 

 

3.5 The “Designated Manager” means Chief Inspector Dave Spencer  (NP) and Debbie 
Fergusson (NBC) on behalf of the Data Controllers or other such persons as shall be 

notified to the Data Sharing Partner from time to time. 
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3.6 The “Project Manager” means Prof Simon Moore of the School of Dentistry, Cardiff 

University on behalf of the Data Sharing Partner or such other person as shall be notified 
to the Data Controller from time to time. 

 
3.7 “Government Protective Marking Scheme” means a scheme for the classification of 

information. 

 
3.8  “Agreement” means this data sharing agreement together with its Appendices and all 

other documents attached to or referred to as forming part of this agreement. 
 

3.9 Security Incident:  A Security Incident is any suspected failure in information security, 
namely: 

  
       Accidental or deliberate unauthorised destruction of information 

       Accidental or deliberate unauthorised modification of information 

       Accidental or deliberate unauthorised disclosure of information 

       Deliberate and unauthorised non-availability of the system 

       Unauthorised access to the system 

       Misuse of data 

       Theft of assets (including loss or suspected loss of a document or other media 

classified as RESTRICTED or above) 

       Any other event that affects data security, including the physical security of 

buildings or failures in procedures.  

 
3.10 “Police Data” shall mean recorded closed circuit television (CCTV) footage of evening 

environments in which examples of assault and/or violence may or may not be present; 
global positioning system (GPS) data providing the time and location of police assets, 

including police officers, in the night time environment; the location, time and date of 
violent assaults in the night time environment. GPS data will have all reference to 

individual names and other personal information removed before transfer to the Data 

Sharing Partner. In the event that CCTV footage contains features that would allow for 
the identification of individuals, this aspect of the footage will be removed or blurred 

before transfer to the Data Sharing Partner. 
 

4. Information provision 
  

4.1   The Data will be provided over a time period to be agreed in advance by the Parties. It 

will be extracted and compiled in a format that will be password-protected. It will be 
transferred to the Data Sharing Partner by secure means (by hand on encrypted hard 

drives).   

4.2 It is recognised that the Purpose requires access to the Data, which has been previously 
protectively marked by the Data Controllers under the Government Protective Marking 

Scheme. Where no marking is visible on the data, a minimum protective marking of 
RESTRICTED will be assumed. 

4.3 All Data will be handled, transported and stored in accordance with its protective 
marking. 

4.4 Ownership of the Data shall at all times remain with NBC. 

 
5. Use, Disclosure and Publication 

  
5.1   The Data will be used solely for the Purpose as defined above.  

  

5.2 The Data Controllers will retain ownership of their respective Data. No data may be 
copied, published, broadcast or otherwise disseminated to any third party 

without the consent in writing of NBC.  
 

5.3 Access to the Data will be restricted to the personnel listed in Appendix A who are the 

employees or Research Partners of the Data Sharing Partner. In the event that the Data 
Sharing Partner should assign or appoint any other employees or Research Partners to 
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work on the Purpose, they will also be subject to the terms of this agreement. In this 

event the Data Owners will be notified of new personnel and will have the right to bar 
additional individuals from having access to the Data. 

  
5.4 All Data processing will be undertaken in accordance with any relevant legislation or 

policies that have been provided in advance to the Data Sharing Partner in writing by the 

Data Controllers. 

 
5.5  The Data Sharing Partner will not copy any Data or hold it within any other system 

without the written permission of the Data Controllers.  
 

5.6 No steps will be taken by the Data Sharing Partner to contact any Data Subject 
identifiable from the Data unless they have specifically consented to the contact in 

writing.  

 
5.7 No matching of the data with any other Personal Data otherwise obtained from the Data 

Controller, or any other source, will be permitted unless specifically authorised in writing 
by the Data Controller. 

 

6. Data Protection and Human Rights 

  

6.1 The parties agree and declare that the Data will be used and processed with regard 
to the rights and freedoms enshrined within the European Convention on Human Rights. 

Further, the Parties agree and declare that the provision of information is proportional, 
having regard to the purposes of the Agreement and the steps taken in respect of 

maintaining a high degree of security and confidentiality. All Data processing will be 

undertaken in accordance with any relevant legislation e.g. Data Protection Act 1998, 
Freedom of Information Act 2000.  

 
6.2 The Data Sharing Partner will notify any particulars as may be required to the 

Information Commissioner. 
  

6.3  Any Data Protection and Information Security issues will be referred to the Data Owners. 

 

6.4  The Head of Information Standards & Compliance or nominated Representative of the 
Data Owners may undertake monitoring or audit to ensure compliance with the terms of 

this Agreement. 
  

7. Confidentiality 

  

7.1  The Data Sharing Partner shall not use or divulge or communicate to any person (other 

than those whose province it is to know the same for the Purpose, or without the prior 
written authority of the Data Controllers) any Data obtained from the Data Controllers, 

which it shall treat as private and confidential and safeguard accordingly. 
 

7.2  The Data Sharing Partner shall ensure that any individuals involved in the Purpose and to 

whom Data is disclosed under this Agreement are aware of their responsibilities in 
connection with the use of that Data and have confirmed so in writing. 

 
7.3  The obligations imposed upon the Data Sharing Partner and their employees and 

suppliers/subcontractors under this Agreement will continue in full force after the expiry 

or termination of this Agreement. 
 

7.4   Respect for the privacy of individuals will be fully considered in any processing of the 
Data supplied to the Data Sharing Partner. 

 
8.  Retention, Review and Weeding. 

 
8.1 The Data Sharing Partner will have access to the data for the duration of the Purpose. 

After this period, the Data will be returned to the relevant Data Controller or securely 
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destroyed in line with the instructions of that Data Controller. If the data has been 

destroyed, the Data Sharing Partner must confirm this action in writing.  

  

 

 
9. Security 

  
9.1  The Data Sharing Partner recognises that the Data Controllers have obligations relating 

to the security of data in its control under the Data Protection Act 1998 and ISO270001.  
The Data Sharing Partner will apply those relevant obligations as detailed below on 

behalf of the Data Controllers during the term of this Agreement. 
 

9.2  The Data Sharing Partner agrees to apply appropriate security measures, commensurate 

with   the requirements of principle 7 of the Data Protection Act 1998 to the Data e.g. 

make accidental compromise, loss or damage unlikely during storage, handling, use, 
processing, transmission or transport; deter deliberate compromise or opportunist 

attack, and promote discretion in order to avoid unauthorised access. 
  

9.3   All individuals involved in the purpose must be aware of and adhere to the security 

principles contained in this document.  
 

9.4    The Data Sharing Partner will ensure that all employees, Research Partners & 
subcontractors/suppliers with access to Data have been vetted to a level deemed 

satisfactory by the Data Controllers. 

  
9.5    The Data Sharing Partner will ensure that all employees, Research Partners & 

subcontractors/suppliers with access to the Data receive adequate data protection & 
information security awareness training. 

 

9.6  The Data Sharing Partner will ensure that any perceived security incidents or 
vulnerabilities regarding the Data identified by its employees, Research Partners & 

subcontractors/suppliers are reported to the representatives of the Data Controllers at 
the earliest opportunity. The Data Sharing Partner will extend full cooperation to the 

representatives of the Data Controllers in relation to the investigation of any such 

incident or mitigation of any damage arising from such incident. 
 

9.7. The Data will be contained and processed within a secure folder on a non-
networked and immovable storage device. The data will be encrypted. 

Encryption will be removed only to process the Data. Encrypted Data will be processed 

on secured PCs, housed in locked offices, in the School of Computer Science and the 
School of Dentistry, Cardiff University. No Personal Data will be used for the Purpose. 

Data will be securely held and processed at Cardiff University in accordance with the 
University's Procedures for Information Security with access controlled and supervised.  

 
9.8   The parties agree to comply with reasonable requirements concerning storage, access 

or use. 

 
9.9  Access to Data will be confined to authorised employees, Research Partners & 

subcontractors/suppliers of the Data Sharing Partner as necessary to achieve the 
Purpose. In the event that an authorised individual ceases to be involved with the 

Purpose, access rights to the Data will be withdrawn. 

  
9.10 The Data Sharing Partner will ensure that no unauthorised personnel have access to the 

Data.  
  

9.11   There will be no use of sub-contractors to process the Data without the prior written 

approval of the Data Controllers. 
 

9.13  The Data Controllers may wish to review the security measures implemented by the Data 
Sharing Partner. Checks may be carried out by the Data Controller or his representatives 

to ensure that the above arrangements are in place. 
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9.14 The Data Sharing Partner will ensure that the Personal Data accessed is not used other 
than as identified within this Agreement, and that the Agreement is complied with.  

  
 
 

10. Subject Access Requests 

  

10.1The Data Protection Act 1998, s.7 provides individuals with a right to have access to data, 

which is held about them, by a Data Controller, on computer or manual files – unless an 
exemption applies where information can be withheld under certain circumstances. 

 
10.2    The Data Sharing Partner shall give all reasonable assistance as is necessary to the Data 

Controllers in order to enable them to: 
  

-  Comply with request for subject access from the data subjects; 

-  Respond to Information Notices (as defined by the Data Protection Act 1998 served 
upon him by the Information Commissioner; 

- Respond to complaints from data subjects; 
- Investigate any breach or alleged breach of the Act. 

  

in accordance with its statutory obligations under the Data Protection Act 1998. 
  

10.3   The receipt by the Data Sharing Partner of any subject access requests, to the Data 
covered by this Agreement must be reported and any relevant information be 

forwarded, at the earliest opportunity to the Data Protection and Information Security 
Section who will arrange the relevant response to that request. 

  

10.4   This Agreement also acts in fulfilment of part of the responsibilities of the Data 
Controllers as required by paragraphs 11 and 12 of Schedule 1, Part II of the Data 

Protection Act 1998. 
 

11. Complaints & Breaches 

  
11.1    Any complaints in respect of the Data and the processing thereof, will be brought to the 

attention of the designated manager if Cardiff University and will be dealt with in 

accordance with the Cardiff University’s internal complaints procedure. 
  

11.2 The parties agree that any breach of this Data Sharing Agreement will seriously 
undermine and affect the credibility of the Purpose, and may render parties liable for 

breach of the law. 
 

 12.  Disputes 

  
13.1   Any disputes between the parties arising out of or in respect of this Agreement will be 

decided in accordance with the laws of England & Wales and will be subject to the 

jurisdiction of the courts of England & Wales. 
 

14.  Miscellaneous 

  

14.1     This Agreement will continue throughout the term of the Purpose and for as long as 

the Data is held by the Data Sharing Partner unless superseded or replaced by the 
agreement of the parties. 

  
14.2   To ensure the terms of this Agreement are being adhered to, the Data Controllers and 

Data Sharing Partner will each delegate a named individual to oversee this function.   

In the event that the individual(s) cease to continue in their roles, replacements must 
be identified. 

  
14.3   The Agreement will be terminated by any party by 60 days’ written notice to the other 

parties of any such termination.   
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14.4 This Agreement may be executed in any number of counterparts, each of which shall 

be deemed to be an original, and all of which taken together shall constitute one and 
the same instrument. A PDF copy of a signature shall constitute an original signature 

for all purposes. 
  
 

  

Signed on behalf of Northants Police 
Name:  

…………...…………………………… 
Signature:  

…………...…………………………… 
Date:  

…………...…………………………… 
 
In the presence of  
Name:  

…………...…………………………… 
Signature:  

…………...…………………………… 
Date:  

…………...…………………………… 
 
Signed on behalf of Northampton Borough Council 
Name:  

…………...…………………………… 
Signature:  

…………...…………………………… 
Date:  

…………...…………………………… 
 
In the presence of  
Name:  

…………...…………………………… 
Signature:  

…………...…………………………… 
Date:  

…………...…………………………… 
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Appendix A 
 
 

 

Individuals - Access to Data 

 
 

Access to the Research Data will be restricted to those employees of the Data 
Sharing Partner directly involved in the processing of the Research Data in 
pursuance of the Purpose, and any other relevant individuals whom the Data 
Sharing Partner has determined requires access to the Research Data in 
pursuance of the Purpose and who have been approved by the Data 
Controllers. These individuals are listed below: 

 

 
Name 

 

 
Position 

 
Reason for Access 

Simon Moore 
Professor, Cardiff 
University 

Research 

Kaelon Lloyd 
PhD Student, Cardiff 
University 

Research 

Dave Marshall 
Professor, Cardiff 
University 

Research 

Paul Rosin 
Professor, Cardiff 
University 

Research 
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Appendix B

Quality: Full-Reference and

No-Reference correlation

The correlation between full-reference and no-reference image quality assessment

methods.
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Violent Flows Hockey

UCF UMN

CF-Violence NN-Violence

Table B.1: Statistically significant (< 0.05) Point Biserial correlation coefficient between

blind quality measurements and binary prediction using reference based quality analysis..
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Appendix C

No Reference Quality Correlation

Correlation between each no-reference image quality assessment methods.

colourfulness complexity contrast_factor estimated_noise sharpness

colourfulness 1.000000 0.077423 0.203425 -0.022511 0.247942

complexity 0.077423 1.000000 0.560339 0.702943 0.574084

contrast_factor 0.203425 0.560339 1.000000 0.219389 0.484698

estimated_noise -0.022511 0.702943 0.219389 1.000000 0.345738

sharpness 0.247942 0.574084 0.484698 0.345738 1.000000

Table C.1: NN-Violence Blind Quality Correlation

colourfulness complexity contrast_factor estimated_noise sharpness

colourfulness 1.000000 -0.714089 -0.758384 -0.649331 -0.607384

complexity -0.714089 1.000000 0.927929 0.981650 0.965552

contrast_factor -0.758384 0.927929 1.000000 0.902728 0.895552

estimated_noise -0.649331 0.981650 0.902728 1.000000 0.952375

sharpness -0.607384 0.965552 0.895552 0.952375 1.000000

Table C.2: UMN Blind Quality Correlation
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colourfulness complexity contrast_factor estimated_noise sharpness

colourfulness 1.000000 0.217836 0.159848 0.160228 0.019311

complexity 0.217836 1.000000 0.221632 0.951859 0.295015

contrast_factor 0.159848 0.221632 1.000000 0.135176 0.358787

estimated_noise 0.160228 0.951859 0.135176 1.000000 0.311157

sharpness 0.019311 0.295015 0.358787 0.311157 1.000000

Table C.3: Hockey Blind Quality Correlation

colourfulness complexity contrast_factor estimated_noise sharpness

colourfulness 1.000000 0.366699 -0.026336 0.339385 -0.089466

complexity 0.366699 1.000000 0.415317 0.956623 0.321041

contrast_factor -0.026336 0.415317 1.000000 0.302220 0.486171

estimated_noise 0.339385 0.956623 0.302220 1.000000 0.210222

sharpness -0.089466 0.321041 0.486171 0.210222 1.000000

Table C.4: UCF Blind Quality Correlation

colourfulness complexity contrast_factor estimated_noise sharpness

colourfulness 1.000000 0.178709 0.262209 0.180310 0.209685

complexity 0.178709 1.000000 0.578366 0.963129 0.630525

contrast_factor 0.262209 0.578366 1.000000 0.542525 0.599104

estimated_noise 0.180310 0.963129 0.542525 1.000000 0.666680

sharpness 0.209685 0.630525 0.599104 0.666680 1.000000

Table C.5: Violent Flows Blind Quality Correlation
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colourfulness complexity contrast_factor estimated_noise sharpness

colourfulness 1.000000 0.265929 -0.141347 0.247825 -0.082208

complexity 0.265929 1.000000 0.557140 0.954916 0.529659

contrast_factor -0.141347 0.557140 1.000000 0.538375 0.583404

estimated_noise 0.247825 0.954916 0.538375 1.000000 0.584906

sharpness -0.082208 0.529659 0.583404 0.584906 1.000000

Table C.6: CF-Violence Blind Quality Correlation
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Appendix D

Agent Based Modelling:

Bivariate scatter plots
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