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ABSTRACT: In order to study the role of S1PRs in inflammatory skin disease, S1PR modulators are dosed orally and topically in 

animal models of disease.  The topical application of S1PR modulators in these models may however lead to systemic drug concen-

trations which can complicate interpretation of the observed effects. We set out to design soft drug S1PR modulators as topical tool 

compounds to overcome this limitation.  A fast follower approach starting from the clinically validated drug ponesimod allowed the 

rapid development of an active phenolic series of soft drugs. The phenols were however chemically unstable.  Protecting the phenol 

as an ester removed the instability and provided a pro-soft drug that is converted by enzymatic hydrolysis in the skin to the active 

phenolic species.  In simple formulations, topical dosing of these S1PR modulators to mice led to micromolar skin concentrations but 

no detectable blood concentrations.  These topical tools will allow researchers to investigate the role of S1PR in skin, without in-

volvement of systemic S1PR biology.

Sphingosine-1-phosphate receptor (S1PR) agonists, such as fin-

golimod and ponesimod (Figure 1), initially activate S1P receptors, 

but subsequently trigger receptor internalisation and down regula-

tion of signalling; shutting down the sphingosine-1-phosphate sig-

nalling pathway.  Fingolimod was approved in 2010 for the treat-

ment of relapsing/remitting multiple sclerosis and is the only S1PR 

agonist approved to date.1  It is efficacious at low doses (0.5 

mg/day) and at low steady state systemic concentrations (Cmax 3.1 

ng/mL).  Recently the potential for the S1PR pathway to be of ther-

apeutic use in the treatment of a range of diverse inflammatory skin 

diseases has emerged.2-6 Some studies have explored the skin biol-

ogy of S1PR agonists by topical application of these compounds in 

various animal models of diseases such as atopic dermatitis,4 aller-

gic dermatitis5 and psoriasis.6  Topical application can however 

also lead to systemic effects.  Following penetration through the 

stratum corneum, drugs will eventually distribute into the vascula-

ture.  If the rate of absorption exceeds the rate of elimination, topi-

cal dosing will lead to systemic drug exposure.  Topical dosing of 

potent drugs, such as fingolimod, may lead to sufficient systemic 

drug concentrations to elicit measureable biological effects, com-

plicating the interpretation of such studies.   

 

Figure 1. Selected S1PR modulators.  

In order to remove the potential for systemic exposure, we decided 

to develop a soft drug S1PR modulator.7  Soft drugs are locally ac-

tive, in this case in the skin, but are designed to undergo rapid sys-

temic metabolism to metabolites, which are either inactive or rap-

idly cleared from systemic circulation.8  Due to ease of access of 

the diseased organ, many dermatological diseases are ideally suited 

to treatment with topical soft drugs, which can safely engage bio-

logical targets, previously shown to lead to adverse side effects, 

following oral dosing. 

In their paper describing ponesimod’s discovery, Bolli et al. dis-

closed that phenols, such as compound 4a, although active were 

unsuitable for progression, as an oral drug, due to high clearance in 

both in vitro and in vivo experiments.9  The authors speculated that 

the high clearance may be due to the fact that phenols are well-

known substrates for phase 2 metabolism conjugating enzymes.10  

Glucuronidation is a common phase II metabolism pathway that 

covalently conjugates glucuronic acid, in a base-catalysed process 

from UDPGA (uridine-50-diphosphoglucuronic acid) to lipophilic 

substrates via UGT enzymes (uridine-50-diphosphoglucuronosyl 

transferases).11  Sulfation, another common phase II metabolism 

pathway, covalently links a substrate to a sulfo group (SO3), usu-

ally derived from 3'-phosphoadenosine-5'-phosphosulfate (PAPS), 

via sulfotransferase enzymes.12  As the glucuronide and sulfate me-

tabolites are highly polar, and therefore water-soluble, they subse-

quently undergo renal or biliary elimination.  Due to their affinity 

for phase II metabolism, phenols are commonly used motifs when 

designing soft drugs.13,14  There is little evidence of clinically rele-

vant drug-related inhibition of glucuronidation or sulfation, so the 

risk of drug-drug interactions is considered to be low.15  Accord-

ingly we set out to utilise phase II metabolism pathways as the ma-

jor routes of clearance for our S1PR agonist soft drugs.   

Although 4a had been shown to be rapidly cleared, which was con-

firmed in our hands (Table 1), the compound displayed poor aque-

ous solubility.  Aqueous solubility is an important parameter for 

topically applied drugs as it can support use in a higher water con-

tent formulation, such as a creams, which may be preferred by pa-

tients over oily formulations like ointments.  We therefore set out 

to improve the aqueous solubility of 4a.  

Keeping the 3-chloro-4-hydroxybenzylidene motif from 4a con-

stant we synthesised a series of phenols with different substituents 

to replace the 2-tolyl 4a motif with aromatic or aliphatic groups 

(Scheme 1).  Using Method A the appropriate aniline was reacted 



 

with 2-chloroacetyl chloride to give the corresponding 2-chloro-N-

phenylacetamide, which was condensed with 1-isothiocyanatopro-

pane to give the required thiazolidinone core 2a,b.  Subsequent 

condensation with 3-chloro-4-hydroxybenzaldehyde 3, generated 

compounds 4a,b.  Compounds 4c-g with aliphatic R1 groups used 

Method B, where amines 1c-g were reacted with 1-isothiocya-

natopropane, then with 2-bromoacetyl bromide in the same reaction 

vessel.  The resulting thiazolidinone cores 2a-g were condensed 

with 3-chloro-4-hydroxybenzaldehyde 3 and the products 4c-g ob-

tained using preparatory HPLC.  4h was prepared by BBr3 demeth-

ylation of the anisole 4b to give the corresponding phenol.  Com-

pounds 9a-9e replaced the n-propyl group of 4a with several small 

N-linked aliphatic substituents, while compounds 9f-l looked at ef-

fects of substituents on the 4-hydroxybenzylidene group (Scheme 

2).   

The appropriately substituted thiazolidin-4-one core 7a-f was syn-

thesised utilising a one-pot, two step reaction.  Alkyl amines were 

reacted with 1-isothiocyanato-2-methylbenzene 5 to give the result-

ing thiourea 6a-d which was condensed with 2-bromoacetyl bro-

mide, followed by addition of pyridine to furnish the desired thia-

zolidin-4-one.  The thiazolidin-4-one cores 6a-d were condensed 

with the 4-hydroxybenzaldehyde 3 to give 9a-d.  9e was synthe-

sised by treatment of 9c with BBr3. 2a was reacted with 8f,g,i-l to 

furnish products 9f,g,i-l.  9h was synthesised using a Negishi cou-

pling with dicyanozinc and palladium tetrakis from 9f.   

The configuration of the double bonds in ponisimod and 4a were 

determined by X-ray crystallography.9  The HMBC and NOESY 

data of ponesimod and 4a were compared with 9k and 10a (see 

supporting information). The HMBC data for the alkene proton to 

the carbonyl carbon (H9-C3 or H9’-C3’) in all cases was consistent 

and suggested a Z double bond arrangement of the alkene bond (the 

size of the 1H-13C coupling constant was estimated to be 6-7 Hz). 

The only cross peaks observed in the NOESY experiments were 

between the 2-tolyl and imine groups. These weak signals between 

the respective methyl groups (see supporting information) were 

also observed for ponesimod, 4a, 9k and 10a.  It may be expected 

that if the imine was in the E configuration that there would have 

been cross peaks observed between the methyl of the 2-tolyl group 

and the NCH2 protons of the imine group, however this was not 

observed.  Taken together, the data was consistent with the Z con-

figuration observed using X-ray crystallography but did not con-

firm it.  Based on the analysis of analogous compounds 4a-h, 9a-l 

and 10a-i were assigned to the Z,Z-isomer, unless stated otherwise.  

Compounds 4c-h and 9a-e were designed to improve solubility by 

reducing logD or aromatic ring count.16  Although the CHIlogD 

values were lower or equivalent for 4d-g and 9a-e, the compounds 

did not show an improvement in aqueous solubility (Table 1).  Re-

ducing the aromatic ring count 4c-e and 4g failed to improve aque-

ous solubility, while 4f gave an improvement in aqueous solubility 

(>250 µM) possibly due to a 3-log unit reduction in CHIlogD, but 

had a pIC50 of <6.0.  The addition of a 2-phenol group into the R1 

position, compound 4h, lowered the CHIlogD by 1.1 units and im-

proved aqueous solubility to 220 µM.  Two of the changes to the 2-

propylimino group showed an improvement in aqueous solubility.  

9a with a 2-oxetan-3-ylimino group moderately increased solubil-

ity to 150 µM, compared to 79 µM for 4a.  9e gave an improvement 

in aqueous solubility (>250 µM) presumably due to the addition of 

the polar hydroxyl-group and the commensurate reduction in CHI-

logD, but unfortunately the compound had a pIC50 of <6.0.  The 

fact that 9a improves aqueous solubility and was equipotent iden-

tifies the 2-oxetan-3-ylimino group as a potentially useful change 

to incorporate in the design of future compounds. 

Having examined two of the vectors off the thiazolidin-4-one core 

we turned our attention to the benzylidene substituent to optimise 

activity, aqueous solubility and hepatic metabolism.  For reason of 

synthetic expediency, we kept the 2-tolyl and n-propyl groups in 

place with the intention of combining the optimum substituents in 

subsequent design rounds.  We therefore synthesised a series of 

phenols (9f-9l) using the method shown in Scheme 2. 9f-9l con-

tained a range of electron withdrawing and donating groups ortho 

to the 4-phenol of the benzylidene substituent. 9f, 9g and 9i-9k 

were largely equipotent to 4a, while 9h and 9l had a pIC50 of <6.0, 

presumably in the case of 9l due to increased steric bulk (Table 2).  

The trifluoromethyl group of 9g had low aqueous solubility, while 

9f and 9h-9l had acceptable solubility.   

Scheme 1. 

 

Method A (i) 2-chloroacetyl chloride, TEA, THF, -78 ˚C to RT, 

2h (ii) 1-isothiocyanatopropane, NaH, DMF, RT, 16h. Method B 

(iii) 1-isothiocyanatopropane, CH2Cl2, RT, 2h (iv) 2-bromoacetyl 

bromide, pyridine, CH2Cl2, 0 ˚C to RT, 1h (v) NaOAc, AcOH, 65 

˚C, 16h (vi) BBr3, CH2Cl2, -70 ˚C to 0 ˚C, 3h. 

Scheme 2. 

 

(i) R2NH2, CH2Cl2, RT, 1h (ii) 2-bromoacetyl bromide, pyridine, 

CH2Cl2, 0 ˚C to RT, 2h (iii) NaOAc, AcOH, 65 ˚C, 16h (iv) dicy-

anozinc, Pd(PPh3)4, DMA 100 ˚C, 1.5h. (v) BBr3, DCM, -78 ˚C, 3h 

then 0 ˚C, 3h.  

  



 

Table 1. Optimisation of the thiazolidinone core. 

 

Compound R1 R2 CHIlogDb Kinetic Solubility 

(µM)c 
H S1PR1 pIC50

d 

4a 2-tolyl n-Pr 3.8 79 7.4 

4b 2-anisole n-Pr 3.3 79 7.2 

4c i-Pr n-Pr >4.3 20 6.8 

4d 

 

n-Pr 3.7 70 7.4 

4e 

 

n-Pr 2.6 75 6.7 

4fa 

 

n-Pr 0.6 >250 <6.0 

4g cyclopropane n-Pr 3.4 79 6.2 

4h 2-phenol n-Pr 2.7 220 6.6 

9a 2-tolyl 

 

2.6 150 7.3 

9b 2-tolyl 

 

3.6 79 6.7 

9c 2-tolyl CH2CH2OMe 2.9 110 6.3 

9d 2-tolyl CH2CH2CH2F 3.4 20 7.6 

9e 2-tolyl CH2CH2OH 1.9 >250 <6.0 

aracemic mixture.  bReverse-phase HPLC method to determine the chromatographic hydrophobicity index (CHI).  cThe aqueous kinetic 

solubility of the test compounds was measured using laser nephelometry. dHuman S1PR1 activity was measured using a human PathHunter 

β-Arrestin recruitment assay.  All pIC50s reported in this table correspond to n ≥ 2, reported as their geometric mean.

As soft drugs must be rapidly cleared systemically and phenols 

commonly undergo phase 2 metabolism, we used human hepato-

cytes (H Heps)to study this potential route of metabolism.  We 

sought to obtain clearance rates of greater than 85% human liver 

blood flow (>4.8 mL/min/g); data shown in Table 2.  We then 

measured intrinsic clearance in human liver microsomes (HLM) to 

determine if phase 1 metabolism was contributing to the observed 

intrinsic clearance in hepatocytes.  As glucuronidation is a base-

catalyzed process, where conserved carboxylate and histidine resi-

dues facilitate the deprotonation of the phenol, we expected to see 

an effect of the pKa of the phenolic hydrogen on the rate of hepatic 

clearance.14  We explored the effect of the phenol pKa on hepatic 

clearance with a set of ortho-substituents and a meta-pyridine (Ta-

ble 2).  Electron-withdrawing groups did reduce the pKa of phenols 

4a and 9f-i vs unsubstituted 9j and these compounds also have in-

creased hepatic clearance rates.  However, weakly electron-donat-

ing groups in 9k and 9l led to an even greater increase in hepatic 

clearance rates despite the expected increase in pKa.  For this phe-

nolic scaffold ortho-substituents led to an increase in glucuronida-

tion rate in all cases and was independent of phenolic pKa. 

Table 2. Effect of substituents on the phenol. 

 

Compound R1 X H 

S1PR1 

pIC50
a 

Kinetic Sol-

ubility 

(µM)b 

pKac HLM Cld H Heps 

Cle  

Stabilityf CHI 

logDg 

4a Cl CH 7.4 79 6.8 1.6 8.4 6 3.8 

9f Br CH 7.7 79 6.4 1.6 6.0 16 3.9 

9g CF3 CH 7.5 14 6.6 1.0 4.2 10 3.8 

9h CN CH <6.0 220 - - <0.5 20 - 



 

9i H N 7.0 110 7.1 2.8 7.9 4 3.0 

9j H CH 7.1 79 8.3 2.4 1.7 0 3.5 

9k Me CH 7.6 78 8.5 2.8 31 3 3.8 

9l i-Pr CH <6.0 79 8.6 - 12 3 4.3 

aHuman S1PR1 activity was measured using a human PathHunter β-Arrestin recruitment assay.  All pIC50s reported in this table corre-

spond to n ≥ 2, reported as their geometric mean. bThe aqueous kinetic solubility of the test compounds was measured using laser nephelom-

etry. cpKa was determined using a potentiometric fast UV-metric titration method. dIntrinsic clearance in human liver microsomes 

(mL/min/g). eIntrinsic clearance in human liver hepatocytes (mL/min/g). f% decrease in purity when stored in DMSO solution for 28 days. 
gReverse-phase HPLC method to determine the chromatographic hydrophobicity index (CHI). 

Although several compounds shown in Table 2 satisfy the rapid 

clearance requirements of a soft drug and retain primary activity, 

none were suitable for progression into in vivo studies due to chem-

ical stability liabilities.  After being stored in DMSO solution for 

28 days, analysis showed that originally pure compounds had de-

graded to a variable extent.  Compounds with electron-withdrawing 

groups ortho to the phenol (4a, 9f-h) were the least stable with a 6-

20% impurity formed over 28 days. Compounds with neutral or do-

nating groups in the ortho position (9j-l) were more stable, in some 

cases giving compounds, which were stable over a 28 day period 

(9j).  The instability in solution represented a major development 

hurdle as topical drugs are usually stored in solution or suspensions 

(cream, ointment, paste, lotion or gels), rather than in solid form, 

as is the case for oral drugs.  We turned our attention to identifying 

the impurity and preventing its formation.   

We conducted NMR studies of compound 9h after incubation in 

DMSO-d6 for 6 months (see supporting information for HMBC and 

NOESY spectra).  In that time the impurity had increased from 20% 

to 32% of the mixture based on the integration of H18 vs H18’ in the 
1H NMR spectrum.  The NOESY spectrum of the mixture indicated 

no changes in the arrangement of the imine (no correlation was ob-

served between H11-H19 or H11’-H19’).  HMBC experiments meas-

uring the three bond coupling constant between H9-C3 and H9’-C3’ 

were analysed and confirmed that the double bond in the major 

component (68%) had a coupling constant of 6.4 Hz indicating a Z 

arrangement, while in the minor component (32%) the coupling 

was measured at 11.9 Hz indicating an E arrangement.   

As we expected them to be significantly less active due to the ori-

entation of the phenol group, no examples of (Z,E) compounds 

were isolated.   

The association between electron withdrawing groups and the rate 

of the isomerisation could be explained by the requirement for a 

base catalysed isomerisation mechanism (see supporting infor-

mation for proposed mechanism).  We hypothesised that protecting 

the phenol via alkylation (as in ponesimod) or acylation would re-

move the ability of the conjugated pi-system to isomerise the dou-

ble bond from Z to E.  To test this theory we synthesised com-

pounds 10a-i via esterification of the parent phenol (Scheme 3).  

Reaction of phenol 9k,f,g with the corresponding acid chloride 

gave compounds 10a-h.  Reaction of phenol 9k with dimethylpro-

panoic acid and DCC gave compound 10i. 

Scheme 3. 

 

(i) Acid chloride (1eq), DMAP (0.05 eq), TEA (1.2eq) in CH2Cl2 

at rt, 16h (ii) 2,2-dimethylpropanoic acid (1eq), DCC (1.2eq), 

DMAP (0.2eq), DMF, 40 ˚C, 16h. 

We were delighted to discover that acylation blocked isomerisation 

and 10a,f shown in Table 3 did not isomerise after being in a 

DMSO solution for 28 days.  Electron-withdrawing groups at R1 

(10b,c) did lead to a slight decrease in purity (6.3 and 1.4% respec-

tively) over the 28 day duration of this experiment, but the degra-

dation product was due to hydrolysis of the ester to the phenol ra-

ther than isomerisation of the double bond.  Decomposition studies 

used 1H-NMR to monitor the increase in the acetic acid methyl 

group peak over 28 days (see supporting information).  10a showed 

no hydrolysis or isomerisation.  However, the chemical stability 

was poor when heteroatoms were alpha to the carbonyl of the ace-

tate group 10d,e and these compound degraded on standing within 

24h, preventing full characterisation.  Chemically, instability was 

not an issue when the heteroatoms were in the beta position 10f,g. 

We needed the ester (pro-drug) to be unstable in skin, to allow the 

phenol (drug) to engage the receptor in the target tissue.  Determin-

ing skin stability using human skin S9 fraction (Table 3) demon-

strated compounds 10a-c,f,g underwent rapid metabolism.  Bulking 

out the ester with i-Pr 10h or t-Bu 10i gave longer half-lives as ex-

pected.   

10a was selected for further study as a pro-soft drug, due its ease 

of synthesis, stability to degradation in solution and instability in 

skin. 

 

Table 3. Effect of substitution at R1 and R2 on skin S9 and chemical stability. 

 
Compound R1 R2 H Skin S9 

(half-life min)b 

Stability 

(% decrease)c 

Ponesimod Cl - >180 0 

10a Me Me 7.3 0 

10b Br Me 8.8 6.3 

10c CF3 Me 8.3 1.4 



 

10d Me CH2OMe - -a 

10e Me CH2NMe2 - -a 

10f Me CH2CH2OH 8.2 0 

10g Me CH2CH2OMe 4.8 - 

10h Me i-Pr  21 - 

10i Me t-Bu >180 - 

aUnstable after 24h in DMSO solution. bStability measured in skin S9 over 180 mins in the presence of enzymatic cofactors. c% loss in 

purity when stored in DMSO solution for 28 days. 

The selectivity of pro-soft drug (Z,Z)-10a and (Z,Z)-9k across 

S1PR1-4 was determined (Table 4). S1PR5 activity was not deter-

mined as this data could not be obtained from commercial suppli-

ers.  As with ponesimod,9 both (Z,Z)-10a and (Z,Z)-9k were most 

active against S1PR1, with >40-fold and >80-fold selectivity re-

spectively over the other S1PR isoforms measured.  (Z,Z)-10a and 

(Z,Z)-9k were equipotent.  Although pro-drugs are typically not ac-

tive compounds, we have kept this nomenclature as it is (Z,Z)-10a 

that is used to deliver the more durable (Z,Z)-9k into the skin.  The 

reactivity of the exocyclic double bond of (Z,Z)-10a was examined 

using a glutathione trapping experiment in human liver micro-

somes; no evidence of glutathione adducts or derivatives was ob-

served (see supporting information). 

Table 4. Selectivity against S1PR1-4.a 

Compound S1PR1 

pIC50 

S1PR2 

pIC50 

S1PR3 

pIC50 

S1PR4 

pIC50 

10a 7.6 <5.0 6.0 <5.0 

9k 8.0b <5.0 6.1 <5.0 

aS1PR1-4 activity was measured using a human PathHunter β-

Arrestin recruitment assay. bThe potency of 9k on S1PR1 slightly 

shifted to a higher value in this experiment, which is independent 

to the experiments performed to establish the SAR (Table 2). 

To demonstrate (Z,Z)-10a is a suitable tool for in vivo experiments, 

a topical pharmacokinetic experiment in mice (see supporting in-

formation) using a 1% propylene glycol/ethanol 7/3 formulation 

was carried out.  At 2 and 8 h time points, (Z,Z)-10a concentrations 

in skin and blood were below the lower limit of quantification 

(LLoQ).  (Z,Z)-9k concentrations were below the LLoQ in blood at 

both time points and 134 µM (2h) and 101 µM (8h) in the skin.  The 

pro-drug (Z,Z)-10a is not seen in either skin or blood and is pre-

sumably entirely hydrolysed to (Z,Z)-9k before the 2 h time point. 

(Z,Z)-9k is present in the skin of mice at >100,000-fold above the 

IC50 demonstrating that the modulator is likely to be present at suf-

ficient concentration to inhibit local S1PR1.   

Metabolite identification of (Z,Z)-10a using incubation with human 

skin S9 fraction confirmed that the expected phenol (Z,Z)-9k was 

obtained after hydrolysis of the ester group: no other metabolites 

were observed (Figure 2a).  Based on the stability of (Z,Z)-9k in 

DMSO over 28 days (Table 2) it is likely this hydrolysis is enzy-

matically driven.  We then performed metabolite identification 

studies using (Z,Z)-9k in human hepatocytes to confirm the routes 

of clearance of our S1PR1 modulators.  As before (Z,Z)-9k isom-

erises into (Z,E)-9k in solution; Figure 2b shows the disappearance 

of parent phenol (both (Z,Z)-9k orange and (Z,E)-9k green isomeric 

forms) and identifies the glucuronide conjugation product, hydrox-

ylation products and hydroxylation with sulfation metabolites.   

In conclusion, we have used a fast follower approach to identify 

several highly cleared and active phenolic S1PR1 modulators.  

Many of the phenol soft drugs were unstable in solution due to 

isomerisation.  We were able to prevent this isomerisation by acyl-

ation of the phenol, to deliver chemically stable pro-soft drugs. The 

strategy underpinning our S1PR1 pro-soft drug modulators is illus-

trated in Figure 2c.  When pro-drug (Z,Z)-10a is applied to the skin 

of mice it should be rapidly enzymatically hydrolysed to give (Z,Z)-

9k.  At this point 9k can bind to S1PR1 in the epidermis causing 

receptor internalisation and degradation. (Z,Z)-9k will also start to 

slowly isomerise to (Z,E)-9k. The mixture of isomers of 9k would 

then enter the blood stream and be distributed to the liver, where it 

would be rapidly metabolised and cleared.  The hepatic intrinsic 

clearance rate for phenol (Z,Z)-9k, 31 mL/min/g (Table 2), would 

correspond to 97% liver blood flow if there is a good in vitro to in 

vivo correlation, predicting that a single pass through the liver could 

eliminate the majority of the drug, greatly reducing the risk of sys-

temic on-target toxicities, which to date have limited the use of 

S1PR modulators.  

(Z,Z)-10a provides the community with a valuable new tool that 

will enable targeted studies of S1PR biology in skin, lung or other 

suitable tissues.  

 

 

 

Figure 2. (a) Metabolite identification of (Z,Z)-10a in human skin S9 fraction (n=1). (b) Metabolite identification of (Z,Z)-9k and (Z,E)-9k 

in human hepatocytes(n=1). (c) Depiction of the enzymatic hydrolysis of pro-drug (Z,Z)-10a and the hepatic metabolism of (Z,Z)-9k and 

(Z,E)-9k.
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psoriasis area and severity index; UDPGA, uridine-50-diphos-

phoglucuronic acid; UGT uridine-50-diphosphoglucuronosyl 

transferase; HPLC, high pressure liquid chromatography; rt, room 

temperature; TEA, triethylamine; THF, tetrahydrofuran DMF, di-

methyl formamide; CHI, chromatographic hydrophobicity index; 

HLM, human liver microsomes; DMSO, dimethylsulfoxide; Hz, 

hertz; DMAP, dimethylaminopyridine; DCC, N,N'-Dicyclohexyl-

carbodiimide; DMA, Dimethylacetamide; HMBC, Heteronuclear 

Multiple Bond Correlation; HSQC, Heteronuclear Single Quantum 

Correlation; NOESY, Nuclear Overhauser Effect Spectroscopy. 
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