

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/119812/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Tang, Keke, Song, Peng, Wang, Xiaofei, Deng, Bailin, Fu, Chi-Wing and Liu, Ligang 2019. Computational design of steady 3D dissection puzzles. Computer Graphics Forum 38 (2), pp. 291-303. 10.1111/cgf.13638

Publishers page: https://doi.org/10.1111/cgf.13638

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1

Supplementary Material for "Computational Design of Steady 3D Dissection Puzzles"

1 PRELIMINARIES

Mathematical Notation. A puzzle with n+1 pieces are denoted as $\{P_1, P_2, ..., P_n, R_n\}$, with d_i $(1 \le i \le n)$ represents the extraction direction of the piece P_i . Note that $d_i \in \mathbf{D}$, where \mathbf{D} denotes the six axial directions, i.e., $\mathbf{D} = \{-x, +x, -y, +y, -z, +z\}$.

We call a group of puzzle pieces as a piece group G by considering only the blocking relationship between pieces within G and pieces out of G while ignoring the blocking relationship among pieces within G. In particular, we deonte R_i as a piece group that contains all successive pieces of P_i , i.e., $R_i = \{P_{i+1}, P_{i+2}, ..., P_n, R_n\}$. Note that a piece group is allowed to contain a single piece only.

Lemma 1. If a piece group G_i is blocked by a piece group G_j in direction D_t , then $G_i \cup G_k$ is blocked by G_j in D_t if $G_j \cap G_k = \emptyset$, and G_i is blocked by $G_j \cup G_k$ in D_t if $G_i \cap G_k = \emptyset$.

Lemma 2. If a piece group G_i is blocked by a piece group G_j in l ($1 \le l \le 6$) axial directions, then G_j is blocked by G_i in the l opposite axial directions.

These lemmas appear to be straightforward but as we shall soon see, they are helpful in deriving the formal models below.

2 Proof of Basic Formal Model

2.1 Basic Formal Model

Requirements for P_1 . When constructing P_1 , it should be immobilized by R_1 such that it is only movable along d_1 .

Requirements for P_i $(2 \le i \le n)$. When constructing P_i , it should satisfy the following requirements, where S_i denotes the set of all neighboring pieces of P_i that have been extracted before P_i :

- 1) P_i should be immobilized by P_{i-1} and R_i such that it is movable only along d_i .
- 2) R_i should block P_i from moving along d_{i-1} , if $d_{i-1} \neq d_i$.
- 3) For each $P_j \in \mathbf{S}_i$ and each direction $d' \in \mathbf{D} \setminus \{d_i, d_j\}$, if R_i does not block P_j while P_i blocks P_j from moving along d', then R_i should block P_i from moving along d'.

2.2 Proof of Basic Formal Model

Here we prove puzzle pieces constructed by iteratively partitioning R_{i-1} into P_i and R_i according to the requirements of the *Basic Formal Model* are guaranteed to be generalized interlocking. In other words, we are going to prove that an arbitrary group of pieces in the puzzle $\{P_1, P_2, ..., P_n, R_n\}$ is movable at most along one axial direction (i.e., either immobilized or only movable along one axial direction).

To achieve this, we first prove an arbitrary group of pieces in $\{P_1, P_2, ..., P_n\}$ is movable at most along one axial direction. It is realized by proving that for each k $(1 \le k \le n)$, an arbitrary piece group in $\{P_1, ..., P_k\}$ with P_k is movable at most along d_k using the method of mathematical induction (see **Statement #1**). This is doable because the set of all piece groups in $\{P_1, P_2, ..., P_n\}$ is equivalent to the union of the sets of all piece groups in $\{P_1\}$ with P_1 , $\{P_1, P_2\}$ with P_2 , ..., $\{P_1, P_2, ..., P_n\}$ with P_n , if we ignore duplicated elements in the union of the sets. Next, we generalize the proof to an arbitrary piece group in $\{P_1, P_2, ..., P_n, R_n\}$ (see **Statement #2**).

Statement #1: For each k, an arbitrary piece group in $\{P_1, ..., P_k\}$ with P_k is movable at most along d_k .

Proof:

- 1) When k=1, as R_1 ($R_1=\{P_2,...,P_n,R_n\}$) should block P_1 in all the other five directions except d_1 , thus P_1 is movable at most along d_1 .
- 2) Suppose when k=i-1 $(2 \le i \le n)$, an arbitrary piece group in $\{P_1,...,P_{i-1}\}$ with P_{i-1} is movable at most along d_{i-1} . We are going to prove when k=i, an arbitrary piece group G in $\{P_1,...,P_i\}$ with P_i is movable at most along d_i . To prove this, we classify the statement into two cases:

2.1)
$$P_{i-1} \notin G$$
.

According to Requirement 1, P_i should be blocked by P_{i-1} and R_i ($R_i = \{P_{i+1}, ..., P_n, R_n\}$) in all the other five directions except d_i , thus G is blocked by P_{i-1} and R_i in all the other five directions except d_i due to Lemma 1, namely G is movable at most along d_i .

2.2)
$$P_{i-1} \in G$$
.

As supposed, piece group $G' = G \setminus \{P_i\}$ with $P_{i-1} \in G'$ is movable at most along d_{i-1} . For each other direction

 $D_a \in \mathbf{D} \setminus \{d_{i-1}\}$ of group G', it could also be classified into two cases:

Case 1: D_a of group $G^{'}$ is blocked by R_i or $\{P_1,...,P_{i-1}\}\setminus G^{'}$, then $G^{'}\cup \{P_i\}=G$ is blocked by R_i or $\{P_1,...,P_{i-1}\}\setminus G^{'}$ in D_a according to Lemma 1.

Case 2: D_a is enforced by P_i on its neighbour piece in G' such as $P_b \in G'$, and R_i do not block P_b in D_a . Note that $d_b \neq D_a$ as P_b is extracted before P_i , so P_i is impossible to block P_b in d_b . According to Requirement 3, R_i should block P_i in D_a if $D_a \neq d_i$. Therefore, $G' \cup \{P_i\} = G$ is blocked by R_i in D_a if $D_a \neq d_i$ according to Lemma 1.

Since case 1 and case 2 cover all possible values of D_a , we induce G is blocked in $\mathbf{D} \setminus \{d_{i-1}, d_i\}$.

According to Requirement 2, R_i should block P_i in d_{i-1} if $d_{i-1} \neq d_i$, thus G is movable at most along d_i according to Lemma 1.

As 1) and 2) are satisfied, we can infer that for each k, an arbitrary piece group in $\{P_1, ..., P_k\}$ with P_k is movable at most along d_k .

Statement #2: An arbitrary piece group in $\{P_1, P_2, ..., P_n, R_n\}$ is movable at most along one axis direction.

Proof:

According to **Statement #1**, an arbitrary group of pieces G in $\{P_1, P_2, ..., P_n\}$ is movable at most along one axis direction. Therefore, the group G' with all the other pieces should block G in at least five directions, where $G' = \{P_1, P_2, ..., P_n, R_n\} \setminus G$, $G \cap G' = \emptyset$ and $G \cup G' = \{P_1, P_2, ..., P_n, R_n\}$. According to Lemma 2, G should also block G' in at least five directions, namely G' is movable at most along one axis direction. As G and G' cover all the subset of groups in $\{P_1, P_2, ..., P_n, R_n\}$, we can infer that an arbitrary piece group in $\{P_1, P_2, ..., P_n, R_n\}$ is movable at most along one direction.

3 Proof of the Formal Model

3.1 The Formal Model

By choosing an arbitrary $P_t \in \mathbf{S}_i$ $(1 \le t \le i - 1)$, when constructing P_i , it should satisfy the following requirements, where \mathbf{S}_i denotes the set of all neighboring pieces of P_i that have been extracted before P_i :

- 1) P_i should be immobilized by P_t and R_i such that it is only movable along d_i .
- 2) For each $P_j \in \{P_1, ..., P_{i-1}\} \setminus \{P_t\}$, R_i should block P_i from moving along d_j , if R_i does not block P_j or P_t from moving along d_i and $d_i \neq d_j$.
- 3) For each $P_j \in \mathbf{S}_i$ and each direction $d' \in \mathbf{D} \setminus \{d_i, d_j\}$, if R_i does not block P_j but P_i blocks P_j from moving along d', then R_i should block P_i from moving along d'.

Note that in case we could not find any P_t that satisfies the above three requirements, we allow P_i to be immobilized by R_i only such that it is only movable along d_i .

3.2 Proof of the Formal Model

Here we prove puzzle pieces constructed by iteratively partitioning R_{i-1} into P_i and R_i according to the requirements of *the Formal Model* are guaranteed to be generalized interlocking. In other words, we are going to prove that an arbitrary group of pieces in the puzzle $\{P_1, P_2, ..., P_n, R_n\}$ is movable at most along one axial direction (i.e., either immobilized or only movable along one axial direction).

To achieve this, we first prove an arbitrary group of pieces in $\{P_1, P_2, ..., P_n\}$ is movable at most along one axial direction. It is realized by proving that for each k $(1 \le k \le n)$, an arbitrary piece group G in $\{P_1, ..., P_k\}$ with P_k is movable at most along D^G , where D^G is the extraction direction of one piece in G, using the method of mathematical induction (see **Statement #3**). This is doable because the set of all piece groups in $\{P_1, P_2, ..., P_n\}$ is equivalent to the union of the sets of all piece groups in $\{P_1, P_2, ..., P_n\}$ with $P_1, \{P_1, P_2\}$ with $P_2, ..., \{P_1, P_2, ..., P_n\}$ with P_n , if we ignore duplicated elements in the union of the sets. Next, we generalize the proof to an arbitrary piece group in $\{P_1, P_2, ..., P_n, R_n\}$ (see **Statement #4**).

Statement #3: For each k, an arbitrary piece group G in $\{P_1,...,P_k\}$ with P_k is movable at most along D^G , where D^G is the extraction direction of one piece in G.

Proof:

- 1) When k=1, as R_1 ($R_1=\{P_2,...,P_n,R_n\}$) should block P_1 in all the other five directions except d_1 , thus P_1 is movable at most along d_1 .
- 2) Suppose when $k \leq i-1$ $(2 \leq i \leq n)$, arbitrary piece group G'' in $\{P_1,...,P_k\}$ with P_k is movable at most along $D^{G''}$, where $D^{G''}$ is the extraction direction of one piece in G''. We are going to prove when k=i, an arbitrary piece group G in $\{P_1,...,P_i\}$ with P_i is movable at most along D^G , where D^G is the extraction direction of one piece in G. To prove this, we classify the statement into two cases:
- 2.1) If P_i does not adopt any P_t to stabilize it, then R_i $(R_i = \{P_{i+1}, ..., P_n, R_n\})$ should block P_i in all the other five directions except d_i , thus G is blocked by R_i in all the other five directions except d_i due to Lemma 1, namely G is movable at most along d_i .
- 2.2) P_i is constructed by adopting P_t ($t \le i 1$) and R_i , which could be classified into two cases:

2.2.1) $P_t \notin G$.

According to Requirement 1, P_i should be blocked by P_t and R_i in all the other five directions except d_i , thus G is blocked by P_t and R_i in all the other five directions except d_i due to Lemma 1, namely G is movable at most along d_i .

2.2.2) $P_t \in G$.

As supposed, piece group $G^{'}=G\setminus\{P_i\}$ with $P_t\in G^{'}$ is movable at most along one direction $D^{G^{'}}$. We denote P_m $(P_m\in G^{'})$ as an arbitrary piece whose extraction direction is d_m and $d_m=D^{G^{'}}$.

For each other direction $D_a \in \mathbf{D} \setminus \{d_m\}$ of group G', it could be classified into two cases:

Case 1: D_a is blocked by R_i or $\{P_1,...,P_{i-1}\}\setminus G'$, then $G'\cup\{P_i\}=G$ is blocked by R_i or $\{P_1,...,P_{i-1}\}\setminus G'$ in D_a according to Lemma 1.

Case 2: D_a is applied by P_i on its neighbour piece in $G^{'}$ such as $P_b \in G^{'}$, and R_i do not block P_b in D_a . Note that $d_b \neq D_a$ as P_b is extracted before P_i , so P_i is impossible to block P_b in d_b . According to Requirement 3, R_i should block P_i in D_a if $D_a \neq d_i$. Therefore, $G^{'} \cup \{P_i\} = G$ is blocked by R_i in D_a if $D_a \neq d_i$ according to Lemma 1.

Since case 1 and case 2 cover all possible values of D_a , we induce G is movable at most along $\{d_i, d_m\}$.

For the direction d_i and d_m , it could also be classified into two cases:

Case 3: $d_i = d_m$, then G is movable at most along d_i or d_m .

Case 4: $d_i \neq d_m$, it could be also classified into two subcases:

- Subcase 4.1: R_i block P_t or P_m in d_i .
- Subcase 4.2: R_i do not block P_m or P_t in d_i . Then according to Requirement 2, R_i should block P_i in d_m .

In the above two subcases, $G' \cup \{P_i\} = G$ is blocked by R_i in d_i or d_m according to Lemma 1, namely G is movable at most in d_i or d_m .

Since case 3 and case 4 cover all possible values of d_i and d_m , we induce G is movable at most along d_i or d_m .

As 1) and 2) are satisfied, we can infer that for each k, an arbitrary piece group G in $\{P_1, ..., P_k\}$ with P_k is movable at most along D^G , where D^G is the extraction direction of one piece in G.

Statement #4: An arbitrary piece group in $\{P_1, P_2, ..., P_n, R_n\}$ is movable at most along one direction. *Proof:*

Similar to the proof of Statement #2.