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ABSTRACT

In this paper, we build on and extend Gartner and Kolisch (2014)’s hospital-wide
patient scheduling problem. Their contribution margin maximizing model decides
on the patients’ discharge date and therefore the length of stay. Decisions such as
the allocation of scarce hospital resources along the clinical pathways are taken.
Our extensions which are modeled as a mathematical program include admission
decisions and flexible patient-to-specialty assignments to account for multi-morbid
patients. Another flexibility extension is that one out of multiple surgical teams
can be assigned to each patient. Furthermore, we consider overtime availability of
human resources such as residents and nurses. Finally, we include these extensions in
the rolling-horizon approach and account for lognormal distributed recovery times
and remaining resource capacity for elective patients. Our computational study on
real-world instances reveals that, if overtime flexibility is allowed, up to 5% increase
in contribution margin can be achieved by reducing length of stay by up to 30%. At
the same time, allowing for overtime can reduce waiting times by up to 33%. Our
model can be applied in and generalized towards other patient scheduling problems,
for example in cancer care where patients may follow defined cancer pathways.

KEYWORDS
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1. Introduction

The introduction of diagnosis-related groups (DRGs) in prospective payment systems
has put pressure on hospitals to use resources efficiently (Schreyögg et al. (2006a);
Sharma and Yu (2009)). Efficient hospital-wide patient scheduling challenges hospitals
on multiple fronts. In order to be profitable, hospitals have to decide which elective
patients to admit and when to schedule them on scarce resources given high fixed and
low variable costs. Hospitals usually focus on two patient groups which are emergency
and elective patients. Emergency patients visit a hospital unscheduled, in need of
immediate care. Arrival times and resource allocation decisions for this type of patients
are therefore out of the control of the hospital’s operational offline decision making.
Human resource planning is also restricted on staffing and shift scheduling decisions.
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On the other hand, each individual who belongs to the group of elective patients is
scheduled in advance.

Hospital-wide elective patient scheduling has been the focus of previous work and
we build on the approach of Gartner and Kolisch (2014). In a nutshell, they developed
two mathematical models. First, the patient flow problem with fixed admission dates
and second, the patient flow problem with flexible admission dates. Both models were
embedded in a rolling-horizon approach in order to measure how uncertainty affects
the scheduling decisions on metrics such as length of stay and contribution margin.

Our approach extends their work in the following five ways. First, we include a
decision if a patient is admitted or not. Second, our model decides on the assignment
of a patient to one out of several specialties to account for multi-morbid patients.
Third, one out of multiple surgical teams can be assigned to each patient. Fourth, we
take into account overtime of human resources such as residents and nurses. Finally, we
extend a rolling-horizon approach to account for lognormal distributed recovery times
and remaining resource capacity for elective patients. We propose a mathematical
programming formulation which is embedded into an extension of Gartner and Kolisch
(2014)’s rolling horizon planning.

We assume that we can classify a large enough percentage of elective patients accord-
ing to DRG which draws on the early DRG classification problem published by Gart-
ner et al. (2015). The clinical pathway (CP) defines the procedures (such as different
types of diagnostic activities and surgery) as well as the sequence in which they have
to be applied to the patient. CPs can be learned from transactional hospital data
using Machine Learning approaches and has been the focus of Arnolds and Gartner
(2018)’s strategic planning problem. Once a CP is assigned to a patient, the decision is
then on which day each procedure of each patient’s clinical pathway should be done,
taking into account the sequence of procedures as well as scarce clinical resources,
such that the contribution margin is maximized. We consider a DRG-based payment
scheme which is in use for example in Germany (Schreyögg et al. (2006b)) as well
as in other developed-world countries such as the U.S. The payment scheme is not
necessarily linked to DRGs; all healthcare systems that have a length of stay and
patient-dependent contribution margin function can use our model.

Since some data such as recovery times of patients with a length of multiple days
and remaining resource capacity for elective patients can be stochastic, we embed our
model in a rolling horizon approach. Our computational study on real-world instances
reveals that, if overtime flexibility is allowed, up to 5% increase in contribution margin
can be achieved by reducing length of stay by up to 30%. At the same time, allowing
for overtime can reduce waiting times by up to 33%.

The remainder of this paper is structured as follows. In Section 2, we provide a
review of mathematical models applied to patient scheduling and show to what extent
our approach differs from previous and related work. Section 3 presents the mathe-
matical model and illustrates it by means of an example followed by a description of
how the model is embedded into an extension of Gartner and Kolisch (2014)’s rolling
horizon approach in Section 4. In Section 5, we carry out an experimental study based
on real-world data from our collaborating hospital and analyze the impact of our ap-
proaches on metrics such as contribution margin, waiting time and length of stay.
Section 6 provides a discussion of assumptions made for the modelling and the rolling
horizon planning. Section 7 closes the paper with conclusions.
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2. Related Work

Patient scheduling is the process of assigning individual patients and/or patients’ ac-
tivities to time and/or healthcare resources (Gartner and Padman (2017b)) on the
operational decision level. In contrast, appointment scheduling defines a blueprint of
patients’ appointments on a tactical level. While reviews that exclusively focus on pa-
tient scheduling are Gartner and Padman (2017b) and Gartner (2015), appointment
scheduling problems have been reviewed by Hulshof et al. (2012), Ahmadi-Javid et al.
(2017), Kazemian et al. (2017), Leeftink et al. (2018) as well as Marynissen and De-
meulemeester (2019). In this section, we position our paper in the relevant patient
scheduling literature.

One of the most relevant papers in the review of Gartner and Padman (2017b) is
the paper from Gartner and Kolisch (2014) because we extend their work. The authors
formulated a patient scheduling problem using binary programming with the objec-
tive to maximize contribution margin which is a function of length of stay dependent
revenue and costs. The authors assume that patients must be admitted on a set day
or within an admission time window. Multiple resources along the patients’ clinical
pathway are considered. The models which break down into a fixed and flexible admis-
sion date model are embedded in a rolling-horizon approach to evaluate two types of
uncertainties (length of stay and non-availability of resources because of emergencies).

Other related works are Ceschia and Schaerf (2016) and Bilgin et al. (2012). The
papers focus on the patient admission scheduling problem which assigns patients to
hospital beds over a given time horizon. The objective is to maximize treatment effi-
ciency, patient comfort and hospital utilization, while satisfying all necessary medical
constraints and taking into consideration patient preferences as much as possible. Both
papers are located on a more detailed level than we and Gartner and Kolisch (2014) do:
Patients are assigned to beds and not to a capacity within a specialty. Another differ-
ence is the multi-criteria objective function while our goal is to maximize contribution
margin.

More recent publications not included in Gartner and Padman (2017b) can be bro-
ken down into extensions of the patient admission scheduling (PAS) problem: Turhan
and Bilgen (2017), for example, extend the PAS problem and develop a fix-and-relax
method as a solution approach. Again, our model is different because of the objective
function and constraints but also because we look into the patients’ clinical pathway
and therefore a mix of resources such as diagnostics, operating theatres and beds.
Moreover, Turhan and Bilgen (2017) solve the model in a static way while we embed
our model in a dynamic and rolling horizon approach.

The patient scheduling problem addressed by Bastos et al. (2018) and Burdett
et al. (2017) maximizes the number of patients of each type that a hospital can accept
which is also different from our problem because our model maximizes the contribution
margin associated with the acceptance of patients and overtime costs. Another relevant
paper is Burdett and Kozan (2018) who develop constructive algorithms and hybrid
meta-heuristics to schedule clinical pathways. To conclude, Gartner and Kolisch (2014)
is most relevant because of flexibility extensions in the admission, overtime, specialty
and team assignment. These extensions are modeled using mathematical programming
and incorporated in a rolling-horizon planning framework.
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3. Problem description, model and examples

We will now present the parameters, decision variables, objective function and con-
straints of our mathematical model. It unifies and generalizes the two models proposed
by Gartner and Kolisch (2014). Afterwards, examples will demonstrate the effective-
ness of the flexibility extensions.

3.1. Parameters

Although there exist similarities in the parameters of Gartner and Kolisch (2014)’s
problem description, we will now introduce all necessary sets, indices and constants.

3.1.1. Planning horizon, patients, activities, execution modes, LOS and CPs

Let T := {1, 2, . . . , T} be the set of days with planning horizon T , let S denote the
set of weeks (sennights) with S as last index and let Ts ⊂ T denote the subset of
days in week s ∈ S. Elective patients are denoted by set P, A denotes the set of
all clinical activities to be scheduled and Ap ⊂ A denotes the subset of activities
for patient p ∈ P. Let Mi denote the execution modes of an activity i ∈ A. This
will be used in two ways as the example in Section 3.5 will show: First, execution
modes of an activity can be used to provide flexibility in assigning e.g. a surgical
team to a surgery. Second, execution modes of an admission and discharge activity
will be used to cope for multi-morbid patients that may be assigned to one out of
multiple relevant specialties. Let Lp := {0, 1, 2, . . . , T} denote the set of lengths of
stay for patient p ∈ P in which the maximum length of stay cannot be longer than
the planning horizon T . A patient who is not admitted has zero length of stay. Let E
denote the set of all minimum time lags between clinical activities. A minimum time
lag (i, j) ∈ E of weight dmin

i,j ∈ Z≥0 stipulates that activity j has to be scheduled at

least dmin
i,j days later than activity i. Given the graph (A, E), the admission and the

discharge activity σp and φp, respectively for each patient p ∈ P, we calculate for each
activity i ∈ A the earliest day Ei and the latest day Li on which the activity has to
be scheduled with longest path methods (see, for example, Neumann et al. (2003)).
Let Wi := {Ei, Ei + 1, . . . , Li} denote the time window of activity i. Once we have
calculated the latest day Lφp

in which the discharge activities can be scheduled, the

index of the last week can be calculated by S =
⌈

maxp∈P Lφp

7

⌉

. Accordingly, T can be

set to the last day in the last week T = 7 · S.

3.1.2. Hospital resources, capacity and demand

Scarce hospital resources R are depicted by three subsets. Day resources Rd ⊂ R,
human resources Rh ⊂ R and overnight resources Rn ⊂ R. Each resource k ∈ Rd has

a day capacity R
day
k,t on day t ∈ T , e.g. 1 slot available for trauma and orthopedics in the

master surgical schedule on a Monday. Each human resource k ∈ Rh has a capacity
Rhuman

k,t on day t ∈ T , e.g. 8 hours anesthesia support in the operating theater. In
addition to the day-dependent capacity, there is a maximum week capacity of human
resource k ∈ Rh in week s ∈ S which we depict by Rweek

k,s , for example, 70 hours.
The capacity demand of activity i ∈ A in mode m ∈ Mi on resource k ∈ R is
ri,m,k. An example that illustrates the concept of multiple execution modes is provided
in Section 3.5.3. Capacity and demand are measured in hours for day and human
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resources. For overnight resources, we measure demand and capacity in beds.

3.1.3. Contribution margin, target working hours and overtime costs

We consider a healthcare system in which, given a patient p ∈ P and his length of
stay l ∈ Lp, the hospital receives a contribution margin πp,l. This concept is applicable
in particular to DRG systems with LOS and DRG-dependent contribution margin
functions, see Gartner and Kolisch (2014) but applies to healthcare systems with other
LOS and DRG-dependent contribution margin functions, too. Each human resource
k ∈ Rh has a week target working time of Bo

k, e.g. a 40 hours week. If the target
working time within a week is exceeded, the human resource can compensate that
time with undertime in the following week. If overtime is not compensated in the
following week, it is paid out and overtime costs cok occur.

Table 1 provides an overview of all parameters and decision variables. The latter
will be introduced next.

Table 1.: Sets, indices, constants and decision variables

Parameter Description

A Set of activities
Ap Set of activities corresponding to patient p ∈ P
αp Earliest admission date for patient p ∈ P
Bo

k Target working hours for human resource k ∈ Rh (e.g. 40
hours)

cok Costs per hour overtime
dmin
i,j Minimum time lag for precedence relation (i, j) ∈ E

E Set of precedence relations
Ei Earliest day to schedule activity i ∈ A
Lp Set of possible lengths of stay for patient p ∈ P
Li Latest day to schedule activity i ∈ A
Mi Set of modes to schedule activity i ∈ A
P Set of patients
φp Discharge activity for patient p ∈ P
πp,l Contribution margin of patient p ∈ P with a length of stay

l ∈ Lp
̟p 1, if the surgery lead time equals 1 day, 0 otherwise
R := Rd

⋃

Rh
⋃

Rn Set of resources (day, human and overnight, respectively)
̺p Recovery time of patient p ∈ P
ρp Recovery time induction activity of patient p ∈ P
ri,m,k Capacity demand on resource k ∈ R if activity i ∈ A is

scheduled in mode m ∈Mi

Rk,t Maximum capacity of resource k ∈ R (e.g. 10 hours of a CT,
number of available beds) on day t ∈ T . The matrix unifies
the day, human and overnight resource capacity matrices
which are described next.

R
day
k,t Maximum capacity of day resource k ∈ Rd (e.g. 1 slot in the

master surgical schedule)
Rhuman

k,t Maximum capacity of human resource k ∈ Rh (e.g. 8 hours)
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R
night
k,t Maximum capacity of overnight resource k ∈ Rn (e.g. 70

beds)
Rweek

k,s Maximum week capacity of human resource k ∈ Rh in week
s ∈ S (e.g. 70 hours)

Rreal
k,1 Realization of remaining resource capacity for resource k ∈

R at day t = 1 (e.g. 3.85 hours, 29 beds)
S Set of weeks (sennights)
S Index of the last week within the set of weeks S
Sθ
i Vector of start times for activity i in rolling horizon itera-

tion θ

σp Admission activity for patient p ∈ P
θ Rolling horizon iteration
T Set of days
Ts ⊂ T Subset of days in week s ∈ S
Wi Set of consecutive days to schedule activity i ∈ A

Decision variable Description

ok,s∈ R≥0 Continuous variable to measure overtime for human resource
k ∈ Rh in week s ∈ S

usucck,s ∈ R≥0 Continuous undertime variable for human resource k ∈ Rh

that occurs in week s+ 1 w.r.t. week s ∈ S
xi,m,t 1, if activity i is scheduled in mode m ∈ Mi at day t ∈ Wi,

0 otherwise
yp,l 1, if patient p ∈ P is assigned to LOS l ∈ Lp, 0 otherwise
zp 1, if patient p is admitted, 0 otherwise

3.2. Decision variables

We extend the binary activity-to-day assignment variables used in Gartner and Kolisch
(2014) to a mode dimension. We borrow the concept from multi-mode resource-
constraint multi-project scheduling formulations (Wauters et al. (2016)). Accordingly,

xi,m,t =

{

1,
0,

if clinical activity i ∈ A is done in mode m ∈Mi at day t ∈ Wi

otherwise.

Similar to Gartner and Kolisch (2014), we employ binary variables

yp,t =

{

1,
0,

if patient p ∈ P has a LOS of t ∈ Lp days
otherwise

which assign a patient to a LOS. If the target working time (usually 40 hours) is
exceeded, overtime occurs, expressed by the real valued variable ok,s ∈ R which counts
the overtime for human resource k ∈ Rh in week s ∈ S. Finally, whether a patient is
admitted or not is indicated by the binary variables
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zp =

{

1,
0,

if patient p ∈ P is admitted
otherwise.

3.3. Objective function

Having introduced all necessary parameters and decision variables, the objective func-
tion reads as given by Equation (1).

Maximize z =

∑

p∈P

∑

l∈Lp

πp,l · yp,l −
∑

k∈Rh

∑

s∈S\S

cok ·



ok,s −



Bo
k −

∑

i∈A

∑

m∈Mi

∑

t∈Ts+1∩Wi

ri,m,k · xi,m,t





+



+

(1)

The first term in the objective function denotes the contribution margin for
all patients while the second term denotes overtime costs. Herein, the term
(

Bo
k −

∑

i∈A

∑

m∈Mi

∑

t∈Ts+1∩Wi
ri,m,k · xi,m,t

)+
calculates the undertime that occurs

in week s + 1 which is the difference between the target working time and human
resource requirements of all activities in that week while (x)+ denotes max{0, x}. The
net overtime of week s can then be expressed as the difference of overtime in week s,
ok,s, and undertime in week s + 1. Multiplying (net overtime)+ of human resource k

with the overtime cost per hour cok and summing up over all human resources give the
total overtime costs. Note that this objective function is non-linear. A linearization is
provided in Appendix B.

3.4. Constraints

In what follows, we add constraints to our model which we break down by clinical
pathways, day and overnight resource constraints and working time regulations.

3.4.1. Clinical pathways, day and overnight resource constraints

Constraints (2) ensure minimum time lags between all consecutive activities of an
admitted patient.

∑

m∈Mj

∑

t∈Wj

t · xj,m,t ≥
∑

m∈Mi

∑

t∈Wi

t · xi,m,t + dmin
i,j · zp ∀p ∈ P, (i, j) ∈ Ep (2)

Day resource constraints (3) ensure that the demand for each day resource does not
exceed its capacity.

∑

i∈A:t∈Wi

∑

m∈Mi

ri,m,k · xi,m,t ≤ R
day
k,t ∀k ∈ Rd, t ∈ T (3)
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Human resource constraints (4) ensure that the demand for each human resource does
not exceed its day-dependent capacity.

∑

i∈A:t∈Wi

∑

m∈Mi

ri,m,k · xi,m,t ≤ Rhuman
k,t ∀k ∈ Rh, t ∈ T (4)

Overnight resource constraints (5) guarantee that admitted patients do not exceed
bed capacity for each specialty. An example is provided in Section 3.5.2.

∑

p∈P

(

∑

m∈Mσp :

rσp,m,k=1

min{t,Lσp}
∑

τ=Eσp

xσp,m,τ −
∑

m∈Mφp
:

rφp,m,k=1

min{t,Lφp}
∑

τ=Eφp

xφp,m,τ

)

≤ R
night
k,t ∀k ∈ Rn, t ∈ T

(5)

Constraints (6) ensure that once a patient is admitted to a specialty which is repre-
sented by the admission activity’s mode, he must be discharged from that specialty.

∑

t∈Wσp

xσp,m,t =
∑

t∈Wφp

xφp,m,t ∀p ∈ P,m ∈Mσp
(6)

3.4.2. Working time regulations

Constraints (7) link the overtime variables ok,s for human resource k ∈ Rh and
week s ∈ S with the capacity requirement and the target working time.

Bo
k ≥

∑

i∈A

∑

t∈Ts:t∈Wi

∑

m∈Mi

ri,m,k · xi,m,t − ok,s ∀k ∈ Rh, s ∈ S (7)

3.4.3. LOS calculation and assignment

Constraints (8) set the length of stay as the difference between the day of admission
and the day of discharge for each patient.

∑

l∈Lp

l · yp,l =
∑

m∈Mφp

∑

t∈Wφp

t · xφp,m,t −
∑

m∈Mσp

∑

t∈Wσp

t · xσp,m,t ∀p ∈ P (8)

Constraints (9) guarantee that exactly one length of stay is assigned to each patient.
If a patient is not admitted, his LOS becomes zero.

∑

l∈Lp

yp,l = 1 ∀p ∈ P (9)
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3.4.4. Activity-to-mode-and-day assignment and admission decision

Constraints (10) ensure that each activity is scheduled at most once which implies
that each activity which is processed, exactly one processing mode is chosen.

∑

m∈Mi

∑

t∈Wi

xi,m,t ≤ 1 ∀i ∈ A (10)

Constraints (11) ensure that once a patient is admitted, all his activities are scheduled.
Otherwise, none of his activities are scheduled.

∑

i∈Ap

∑

t∈Wi

∑

m∈Mi

xi,m,t = |Ai| · zp ∀p ∈ P (11)

3.4.5. Decision variables

Variable definitions and their domains are given by (12)–(15).

0 ≤ ok,s ≤ Rweek
k,s −Bo

k ∀k ∈ Rh, s ∈ S (12)

xi,m,t ∈ {0, 1} ∀i ∈ A,m ∈Mi, t ∈ Wi (13)

yp,l ∈ {0, 1} ∀p ∈ P, l ∈ Lp (14)

zp ∈ {0, 1} ∀p ∈ P (15)

3.5. Examples

In what follows, we give examples of overtime reduction, bed allocation and show a
sample test instance that we solve to optimality.

3.5.1. Overtime reduction examples

We now provide three examples to demonstrate cases where overtime cannot be re-
duced, overtime is partially reduced and where overtime can be reduced entirely. All
of the cases consider the reduction of overtime in week s + 1, given overtime that
occurred in week s. To give an example, we assume one human resource, denoted by
k = 1 which is a nurse who has worked 50 hours in week s = 1 and builds up ten
hours of overtime (o1,1 = 10), based on Bo

1 = 40 hours per week target working time
as given by her contract. The result when the nurse works 50, 35 and 0 hours in week
s = 2 are shown in Table 2. As a consequence, overtime cannot be reduced, is partially
reduced and completely reduced, respectively.
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Table 2. Overtime reduction examples

Case Overtime in
week s = 1

Undertime in
week s = 2

Remaining overtime
in week s = 1

No reduction 10 (40− 50) 10
Partial reduction 10 (40− 35) 5
Complete reduction 10 (40− 0) 0

As can be seen, if the nurse works 50 hours in week s = 2, the nurse cannot reduce
overtime that was built up in week s = 1. As a consequence, the second part of
objective function (1) reads as (10 − (40 − 50)+)+ = 10 and overtime costs co1 are
multiplied by 10.

In the case of partial overtime reduction, we assume that the nurse works 35 hours
in week s = 2. As a result, the second part of Objective function (1) reads as (10 −
(40− 35)+)+ = 5 and overtime costs co1 are multiplied by 5.

In the case of complete overtime reduction, we assume that the nurse has week
s = 2 overtime compensation through time off. As a result, the second part of objective
function (1) reads as (10 − (40 − 0)+)+ = 0. This means that no overtime costs are
paid out.

3.5.2. A flexible specialty allocation example

In what follows, we provide an example to demonstrate the concept of flexible spe-
cialty allocation with the following parameters: We have a planning horizon of T :=
{1, . . . , 7} days, overnight resources Rn := {1, 2} and a single patient P := {1} with
admission time window Wσ1

= {1, 2, 3} and discharge time window Wφ1
= {5, 6, 7}.

We assume that the admission activity σ1 and discharge activity φ1 can be executed
in two modes Mσ1

= {1, 2} and Mφ1
= {1, 2}. This means that there is the option

to admit the patient to the surgical or to the internal medicine specialty as we as-
sume that beds are not ring-fenced. The mode-dependent specialty requirements are
thus rσ1,1,1 = 1, rσ1,1,2 = 0, rσ1,2,1 = 0, and rσ1,2,2 = 1. Table 3 provides an exam-
ple specialty allocation. The first four rows provide the decision variables xσ1,m,t and
xφ1,m,t, respectively. We assume that the x-variables in the solution come up with the
following assignment: xσ1,1,2 = 1 and xφ1,1,7 = 1 and 0 otherwise. This clearly satisfies
constraints (10) because

∑

m∈{1,2}

∑

t∈Wi

xi,m,t ≤ 1 ∀i ∈ {σ1, φ1}. Now, the last two rows

of the table show how the overnight resources are allocated. As can be seen, the patient
requires a bed on overnight resource k = 1 starting with the night between days 2 and
3 until the night between days 6 and 7. The table also reveals that overnight resource
k = 2 is not allocated as shown in the last row.

3.5.3. An example for the flexible hospital-wide elective patient flow problem

In what follows we give an example with four patients of which the LOS dependent
contribution margin is given in Table 4.
Consider the set of weeks S := {1, 2} and the set of days T := {1, . . . , 14}. Activities i ∈
A, resources Rd := {1, 2, . . . , 9}, Rh := {10, 11, 12, 13}, and Rn := {14, 15} are shown
in Table 5.

10



Table 3. A bed allocation example

t ∈ T 1 2 3 4 5 6 7

xσ1,1,t 0 1 0 – – – –

xφ1,1,t – – – – 0 0 1

xσ1,2,t 0 0 0 – – – –

xφ1,2,t – – – – 0 0 0

k = 1 :
∑

p∈P





∑

m∈Mσ

min{t,Lσ1
}

∑

τ=Eσ1

xσ1,m,τ −
∑

m∈Mφ

min{t,Lφ1
}

∑

τ=Eφ1

xφ1,m,τ



 0 1 1 1 1 1 0

k = 2 :
∑

p∈P





∑

m∈Mσ

min{t,Lσ1
}

∑

τ=Eσ1

xσ1,m,τ −
∑

m∈Mφ

min{t,Lφ1
}

∑

τ=Eφ1

xφ1,m,τ



 0 0 0 0 0 0 0

Table 4. LOS dependent contribution margins (in Euros) for the four patients in the example

t 5 6 7 12 13 14
π1,t 3,772.67 3,711.80 3,650.94 - - -
π2,t 3,498.41 3,436.15 3,373.90 - - -
π3,t - - - 3,292.69 3,204.17 3,161.10
π4,t - - - 3,833.47 3,797.35 3,763.30
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Table 5. Activities (a), day, human and overnight resources (b) and the cyclic MSS (c)

i ∈ A Description

1 Admission of pat. 1
2 Spine CT for pat. 1
3 Spinal surgery of pat. 1
4 Discharge of pat. 1

5 Admission of pat. 2
6 Arteriography for pat. 2
7 Stent implantation of pat. 2
8 Discharge of pat. 2

9 Admission of pat. 3
10 X-ray for pat. 3
11 Herniotomy of pat. 3
12 Discharge of pat. 3

13 Admission of pat. 4
14 Sonography for pat. 4
15 Cholecystectomy of pat. 4
16 Discharge of pat. 4

(a)

k ∈ R Description Rk,t

1 Radiology unit 0.5h on workdays,
0 otherwise

2, . . . , 5 MSS slot 1, . . . ,
4 for surgical spe-
cialty

See cyclic MSS

6, . . . , 9 MSS slot 1,
. . . , 4 for in-
ternal medicine
specialty

See cyclic MSS

10 Surgeon 1 2h Mo.–Fri., 0
otherwise

11 Surgeon 2 2h Mo.–Fri., 0
otherwise

12 Surgical nurse 1 2h Mo.–Fri., 0
otherwise

13 Surgical nurse 2 2h Mo.–Fri., 0
otherwise

14 Surgical ward 2 beds on work-
days,
1 otherwise

15 Internal medicine
ward

2 beds on work-
days, 1 otherwise

(b)

1 2 3 4 5 6 7

Slot 1 (8–10 a.m.) Surgical Int. Med. – – – – –
Slot 2 (10–12 a.m.) – – Surgical Int. Med. – – –
Slot 3 (12–14 a.m.) – Surgical Int. Med. – – – –
Slot 4 (14–16 a.m.) – – Int. Med. – Surgical – –

(c)
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Clinical pathways and resource requirements for day resources are shown in Figure 1.
Each of the surgical activities i ∈ {3, 7, 11, 15} have 4 modes. Activity i = 3 belongs
to the surgical specialty and therefore any of the 4 surgical specialty slots can be
assigned. In contrast, activity i = 7 is a stent implantation and therefore, the patient
belongs to the internal medicine specialty. Since the internal medicine specialty has 4
slots (see Table 5(c)), there are 4 options or assignment modes. The same principle is
applied to activities 11 and 15: because they can be executed either in one of the 4
surgical MSS slots or in one of the 4 internal medicine MSS slots. All other activities
have, for simplicity 1 mode. The generation of the surgery modes has to be done by
preprocessing where the number of modes depends on the available surgery slots.

patient 1 patient 2

patient 3 patient 4

Notation:

i j

ri,m,k

dmin

i,j

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

4 4

2 3

r1,1,14 = 1 r2,1,1 = 1

3
r3,m,k = 1 1

6
∀m = 1, . . . , 4, k = 2, . . . , 5

r4,1,14 = 1 r5,1,14 = 1 r6,1,1 = 1

3
r7,m,k = 1 1

6
∀m = 1, . . . , 4, k = 6, . . . , 9

r8,1,14 = 1

r9,1,14 = 1 r10,1,1 = 1

3
r11,m,k = 1 1

6
∀m = 1, . . . , 4, k = 2, . . . , 5

r12,1,14 = 1 r13,1,14 = 1 r14,1,1 = 1

3
r15,m,k = 1 1

6
∀m = 1, . . . , 4, k = 6, . . . , 9

r16,1,14 = 1

Figure 1. Clinical pathways for the four patients

In Figure 1, r1,1,14 = 1 denotes that activity 1 (the admission activity for patient 1)
requires 1 bed from the surgical ward. The minimum time lag dmin

3,4 = 4 between
activity 3 and 4 in Figure 1 denotes that at least four days of recovery time have to
pass between the surgery and the discharge of patient 1.

Table 6(a) provides earliest and latest days to schedule the activities as obtained
by longest path calculation. Overtime costs cok per hour overtime for the two types of
human resources are given in Table 6(b).
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Table 6. Earliest and Latest starts, and Number of modes of each activity (a) and Overtime costs per hour
in Euros (b)

i ∈ A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ei 1 1 1 5 1 1 1 5 8 8 8 12 8 8 8 12
Li 3 3 3 7 3 3 3 7 11 11 11 14 11 11 11 14
|Mi| 2 1 4 2 2 1 4 2 2 1 4 2 2 1 4 2

(a)

k ∈ Rh cok

1, 2 170
3, 4 100

(b)

Table 7 provides a summary of the parameters and the number of decision variables
(DV) and constraints (Cts.) for model (1)–(15).

Table 7. Summary statistics of the sample instance

|T | |P| |A|
∑

i∈A

|Wi| |E| |R
d| |Rn| |Rh| |Lp| |S|

∑

i∈A

|Mi| #DV #Cts.

14 4 16 64 12 9 2 4 8 2 36 130 262

The total contribution margin when solving the test instance is 14,127.24 Euros and all
four patients are admitted. However, if no overtime is allowed by fixing variables cok,s =

0 ∀k ∈ Rh, s ∈ S, then only three patients are admitted, leading to a contribution
margin of 10,501.51 Euros.

4. Rolling horizon planning

It is common practice that hospitals undertake daily reallocation decisions for sin-
gle resources including the operating theater and specialties. We therefore embed our
model in a rolling horizon approach in which each day, a problem instance is solved.
This approach has been tested successfully by Gartner and Kolisch (2014). Their ap-
proach can be summarized as follows. In each run, the most recent data is incorporated
as parameters into a mathematical model. Deterministic information is assumed to be
available at the day of planning, including realizations of recovery time and remaining
resource capacities. In this study, we differ from their approach because we employ
expected values for remaining recovery times and remaining resource capacities of fu-
ture days that follow lognormal distributions conditioned on DRG and resource type,
respectively. We have chosen this based on related work (see Min and Yih (2010) and
Gartner and Padman (2016)) as well as results from the fitting of our data to lognormal
distributions, see Appendix C. Because there is no set capacity for emergency patients,
we have to compute with the remaining resource capacity available for scheduling our
set of elective patients.
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4.1. General framework for the rolling horizon planning

Each iteration of the rolling horizon planning is denoted by θ, initialized to θ := 0
at the beginning, and incremented after each iteration by θ ← θ + 1. Let Sθ

i be the
vector of start times for activities i ∈ A obtained by solving the instances for each
rolling horizon iteration θ. The activity that induces recovery for patient p ∈ P is
denoted by ρp. Each subset Ap ⊂ A contains an ordered tuple (1, . . . , ρp, . . . , φp) of
activities that belong to patient p ∈ P. Expected recovery times of patient p ∈ P are
denoted by E[̺p]. The expected remaining capacity of resource k ∈ R on day t ∈ T is
denoted by E[Rk,t]. The realization of remaining capacity available for elective patients
is denoted by Rreal

k,t . More precisely, it is assumed that complete information about the

realized capacity is available only for the beginning of the rolling horizon (day t = 1).
Thus, Rreal

k,1 is considered instead of E[Rk,1]. Next, we have the surgery lead time ̟p

which is 1, if patient p ∈ P has to wait at least one day from the admission until
the surgery date. Otherwise, ̟p = 0. This means that the patient can have surgery
at the beginning of the rolling horizon planning. Next, arriving patient requests are
generated and all activities and further parameters such as precedence relations are
adapted. At the same step, the remaining resource capacity is set for the first day
of the rolling horizon planning t = 1. Afterwards, time windows (amongst remaining
recovery times), precedence relations and time lags are recalculated. Then, the instance
is solved and the schedule is stored for each day θ in vectors Sθ

i .

4.2. Time window and recovery time updating procedure

The procedure to adapt the time windows during each iteration θ follows Figure 2.
We introduce αp which is the earliest admission date for patient p ∈ P. This can be in
the future and may become fixed based on previous rolling planning steps. It can also
be at the beginning of the rolling horizon planning or in the past. Now, to adapt the
time windows, we check in the first step whether or not patients have been discharged
in earlier iterations of the rolling horizon planning. If the discharge activity φp of
patient p ∈ P has been scheduled, we set each time windowWi for each activity i ∈ Ap

empty. This prevents that any activity of the corresponding patient is scheduled which
implies that no decision variables for that particular patient are handed over to the
solver. Therefore, those activities will no longer be scheduled. Second, we check for
day θ, whether the patient has been admitted or is scheduled for admission in future
days. If patient p ∈ P is admitted in the current day or has already been admitted
but not discharged, we first check, whether recovery induction activity ρp has been
scheduled. If it has not yet been undertaken, the earliest start dates of all activities
of the pre-recovery stage of patient p ∈ P are set to 1. Activities ρp ≤ i < φp cannot
start before 1+̟p because of a potential surgery preparation time after the admission
of patient p ∈ P. Accordingly, the earliest start dates are set to 1 for all pre-surgical
activities and 1 + E[ρp] for the discharge activity. Second, if the patient is in the
recovery stage, the earliest start dates of all activities except the discharge activity
are set to day 1 while the earliest discharge date is obtained by the random number
obtained from the lognormal distribution minus the recovery time observed so far.
Note that the recovery stage may be over but not all activities (e.g. post surgical
activities) have been executed for patient p ∈ P yet. Therefore, we set the latest start
of all other activities to the latest day of the planning horizon T . Finally, we ensure
that the time windows of all activities that have been scheduled in former days of the
rolling horizon are empty.
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For each patient p ∈ P
do

if ∃Sθ−τ
φp

=

1|1 ≤ τ ≤ θWi := ∅ ∀i ∈ Ap (16)

if θ < αp

if ∃Sθ−τ
ρp =

1|1 ≤ τ ≤ θ

Ei = 1 ∀i ∈ Ap : i < φp (17)

Eφp = 1 + E[̺p] (18)

Li = 1 +max {E[̺p], ˆ̺p} ∀i ∈ Ap (19)

Ei = 1 ∀i ∈ Ap : i < ρp (20)

Ei = 1 +̟p ∀i ∈ Ap : ρp ≤ i < φp,

(θ + 1)− αp < ̟p (21)

Ei = 1 ∀i ∈ Ap : ρp ≤ i < φp

(θ + 1)− αp ≥ ̟p (22)

Eφp = 1 +̟p +E[̺p] (23)

Lφp = 1 +̟p + ˆ̺p (24)

Li = Lφp − E[̺p] ∀i ∈ Ap \ φp (25)

αp = αp − θ (26)

Ei = αp ∀i ∈ Ap : i < φp (27)

Ei = αp +̟p i ∈ Ap : ρp ≤ i < φp (28)

Eφp = αp +̟ + E[̺p] (29)

Li = ˆ̺p + αp +̟ ∀i ∈ Ap : ρp < i ≤ φp (30)

Lρp = Lφp − E[̺p] (31)

Wi := ∅ ∀i ∈ Ap : 1 ≤ τ ≤ θ : Sθ−τ
i = 1 (32)

yes

no

no

yes

yes

no

Figure 2. Time window adaptation sub-routine (Gartner (2015))
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5. Experimental investigation

5.1. Data, test instances and evaluation measures

We employed data from a collaborating hospital in the vicinity of Munich, Germany.
To test our model, we created four test instances by varying the number of patients
from 45, 60, 75 and 90 patients labeled by test instance 1, 2, 3 and 4 respectively.
We compare the rolling horizon planning and the perfect information solution on
three metrics while we switch the allowance for overtime on and off. In the perfect
information solution, we assume that the recovery times and the remaining resource
capacities are known. The results are broken down by an economic analysis, waiting
time of elective patients seeking admission, and average lengths of stay, reported in
Sections 5.2, 5.3 and 5.4, respectively.

We generated data based on Gartner and Kolisch (2014)’s test instances. The ma-
jor difference is, however, that the admission decision and the assignment of patients
to specialties is flexible. For the admission decision and the admission time window,
we chose αp which is the patient’s actual admission date and created a 7-day ad-
mission time window around it. Furthermore, we looked into each of the patient’s
co-morbidities to decide whether or not they are eligible for a flexible specialty assign-
ment. The resource capacity of human resources was split into two anesthesia teams,
two surgical teams and two operating theatre nursing teams with overtime costs set to
the German regulations for hospital staff. As our approach takes into account lognor-
mal distributed demand and capacity, we used the parameters as estimated from the
statistical fit (see Appendix C). Across all rolling horizon iterations, the test instances
had, on average, 303,321 decision variables and 6,716 constraints which required, on
average a solution time of 3.9s This is an increase in model complexity and an (ac-
ceptable) increase in solution time as compared to Gartner and Kolisch (2014) where
the average computation time was 0.5s.

5.2. Economic analysis

We run the rolling horizon planning as well as the model using perfect information
and compare the scenarios with and without overtime. Figure 3 shows the results of
our economic analysis.
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Figure 3. Rolling horizon vs. perfect information

The figure reveals differences between the perfect information solution and the rolling
horizon planning which are between 3.0-5.6%. Another observation is that for the
rolling horizon planning, the average contribution margin per patient decreases with
increasing index of the test instances. One explanation for this phenomenon is that the
hospital tries to admit patients in order to increase total contribution margin. However,
resources become more and more scarce such that LOS increases, see Section 5.4, costs
increase and as a consequence, average contribution margin per patient decreases. A
closer investigation of overtime costs reveals that no overtime costs were generated at
the end of the rolling horizon planning.

5.3. Waiting time analysis

Figure 4 shows the average waiting time for admitted elective patients.
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Figure 4. Rolling horizon vs. perfect information

The figure reveals that an increasing number of patients seeking for admission in-
creases the waiting time. As can be seen, the difference between the average waiting
time obtained by the rolling horizon approach and the one obtained by using perfect
information is relatively small in the case when no overtime is allowed (0.9-5.7%).
The differences are higher when overtime is allowed and vary between 4.5-21.4%. A
more detailed analysis reveals that waiting times are below 4 days and acceptable for
non-urgent elective patients.

5.4. Length of stay analysis

Figure 5 shows the average lengths of stay for the different setups.
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Figure 5. Rolling horizon vs. perfect information

19



We observe that the length of stay in the setting with perfect information is lower
as compared to the rolling horizon planning. The difference is between 15.6-33.7%,
depending on the instances. For the rolling horizon planning with overtime we observe
a strictly monotonic increase of LOS along with increasing number of patients seeking
admission. One explanation for this is, as explained earlier, that the model tries to ad-
mit patients to increase contribution margin while LOS can increase because resource
capacity becomes more and more scarce.

5.5. Experiments to evaluate resource capacity variation

When schedulers assign elective patients to scarce hospital resources, they are faced
with the problem of uncertain emergency patient demand. Since this demand can
vary, variance in remaining resource capacity for elective patients should be taken into
account. To this end, we ran experiments from no variance to a variance of 1.0 in the
lognormal distributed resource capacity that can be allocated by elective patients. The
results are shown in Figure 6. The figure shows that a higher variance in remaining
resource capacity leads to a substantial decrease in contribution margin. A closer
analysis of the results revealed that there is a 9.11% gap between the rolling horizon
planning and the perfect information contribution margin for a variance of 1.0. In
this case, the length of stay is substantially longer as compared to the case of the low
variance scenarios. As a consequence, costs are increased because of the increased LOS
and therefore contribution margins are lower.
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Figure 6. Average contribution margin per patient for different levels of variance in the resource capacities
available for elective patients

As a conclusion of the experimental investigation, the benefits of the additional
features of our model as compared to Gartner and Kolisch (2014) are as follows: The
economic analysis has revealed that the model may use overtime temporarily to cope
with new admissions or to ensure patients get discharged without delays. At the end
of the planning horizon, however, it would not be paid out. The waiting time analysis
showed that the model may prefer to substantially delay the admission of patients to
maximize contribution margin. This is a benefit from our variable admission decisions.
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Finally, the resource capacity variation experiments have allowed us to evaluate the
impact of variation on contribution margins. We achieved this by varying the variance
parameter of the lognormal-distributed remaining resource capacities.

6. Discussion

The hospital under consideration does not make transfer decisions across specialties
at the point when patients are scheduled for admission. This means that, before ad-
mission, a multi-morbid patient would not be scheduled on an internal medicine ward
for two days, followed by a recovery on a surgical specialty ward for the remainder of
her hospital stay. Also, during the patient’s hospital stay (after admission) it would
prolong LOS if a patient was scheduled on one specialty and then transferred to an-
other specialty with a different care team. This is different to assumptions made in
bed assignment papers such as Demeester et al. (2009) where, within a specialty, bed
re-assignments are much more common.

In the rolling horizon approach, we use the lognormal distribution to approximate
the patients’ length of stay and remaining resource capacity. This is different from the
approach from Gartner and Kolisch (2014) who, for each patient in the system, used
each patients’ empirical length of stay distribution. The assumption of using lognormal
distribution was based on the statistical test and the literature that supported it, see
Min and Yih (2010).

7. Conclusion

In this paper we have presented a discrete optimization model for the problem of
scheduling elective patients hospital-wide with a combined objective that maximizes
DRG and LOS-dependent contribution margin and minimizes overtime costs. Our
experimental analysis revealed that, if overtime flexibility is allowed, up to 5% increase
in contribution margin can be achieved by reducing length of stay by up to 30%. At
the same time, allowing for overtime can reduce access times by up to 33%.

Limitations in the modelling, computational study and usability in practice may
include that the model does not account for tasks that clinicians have to do besides
the treatment of patients. This workload can come from watch-lists, ward rounds or
pre-medication services. However, these tasks can be added as additional jobs to be
scheduled by the model. Alternatively, in the case of pre-medication ambulance work-
load, clinicians may have a reduced resource capacity on the given day. A drawback of
the computational study is that the rolling horizon planning approach doesn’t guaran-
tee optimality and is only used to plan from one day to another, rather than looking
at multiple stages of the admission and scheduling process.

Future work will incorporate other duties of staff into the model including the
scheduling of individuals’ tasks. Another extension is to embed the approach into Gart-
ner and Padman (2017a)’s E-HOSPITAL platform to train managers how to schedule
elective patients flexibly, effectively and efficiently in their day to day work. Another
extension is the formulation of the problem as a multi-stage stochastic program.
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Appendix A. Abbreviations

Table A1.: List of abbreviations

Abbreviation Description

Avg. Average
CP Clinical pathway
Cts. Constraints
DRG Diagnosis-related group
DV Decision variables
GUI Graphical user interface
ICU Intensive care unit
MSS Master surgical schedule
OR Operating room
PAS Patient Admission Scheduling

Appendix B. Linearization of the objective function

Model formulation (1)–(15) is non-linear and can be linearized by in-
troducing continuous undertime variables usucck,s ∈ R≥0 that replace
(

Bo
k −

∑

i∈A

∑

m∈Mi

∑

t∈Ts+1∩Wi

ri,m,k · xi,m,t

)+

in the objective function. The vari-

ables denote the undertime for a human resource k ∈ Rh, that occurs in the successor

week s + 1, based on week s ∈ S \ |S|. This substitution results in
(

ok,s − usucck,s

)+
,

which is replaced now by another continuous variable onetk,s ∈ R≥0. This represents
the overtime, which cannot be recompensed by the under-time in week s + 1. This
linearization leads to the following additional constraints:

usucck,s ≥



Bo
k −

∑

i∈A

∑

m∈Mi

∑

t∈Ts+1∩Wi

ri,m,k · xi,m,t



 ∀k ∈ Rh, s ∈ S \ |S| (B1)

onetk,s ≥
(

ok,s − usucck,s

)

∀k ∈ Rh, s ∈ S (B2)

As a result, our objective function can be simplified to:
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z =
∑

p∈P

∑

l∈Lp

πp,l · yp,l −
∑

k∈Rh

∑

s∈S\|S|

cok · o
net
k,s (B3)

Appendix C. Distribution Fitting Results

We used simul8’s StatFit tool (Domonkos (2010)) and the built-in Anderson-Darling
test to check whether the empirical recovery time and the capacity distribution fit to
lognormal distributions. The null-hypothesis is that the empirical distribution is equal
to the theoretical distribution. In both cases, the outcome was ‘do not reject’. The
recovery time and remaining resource capacity distributions are shown in Figure C1(a)
and (b), respectively.

(a) (b)

Figure C1. Result of fitting the recovery time (a) and capacity distribution (b)
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