
Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

doi: 10.1016/j.procir.2017.12.227

 Procedia CIRP 67 (2018) 362 – 367

ScienceDirect

11th CIRP Conference on Intelligent Computation in Manufacturing Engineering CIRP ICME '17

Optimizing the number of acoustic emission sensors using the bees
algorithm for detecting surface fractures

 Michael S. Packianathera,*, Mark Eatona, Ioannis Papadopoulosa, Theocharis Alexopoulosa

aSchool of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA, UK

* Tel.: +0044 29 20875911; fax: +0-000-000-0000 +44 29 20874597. E-mail address: PackianatherMS@cf.ac.uk

Abstract

Non-destructive testing methods have gained popularity as they become more widely available. Although there are several techniques that
could be used for this purpose, this paper focuses on acoustic emission sensors for detecting surface fractures and the use of the Bees
Algorithm, a swarm-based technique, for optimizing the number of sensors required to reliably detect surface fractures. The paper describes the
approach that has been used in this study where the dimension of the surface is specified by the user. The results show that, in theory and
through simulation, that the Bees Algorithm is capable of determining the minimum number of sensors needed to locate the surface fracture
with an acceptable level of accuracy. The method described could be used for the purpose of optimization in other engineering as well as non-
engineering applications.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

 Keywords: Acoustic Emission; Structural Health Monitoring; Bees Algorithm;

1. Introduction

The concept of Structural Health Monitoring (SHM) lies
behind the need to ensure reliability and smooth operation of a
product. In some cases the price for abnormalities in the
operation of the product is just monetary. In other cases
however, the price could be human lives, injuries,
environmental damage, or other examples of socially
unacceptable losses. In SHM, there are various methods for
real-time damage detection and evaluation. Many forms of
alarms are invented so that we, the operators/the users/the
passengers/the by-standers can be alerted to the condition of
an engineered system that we are dealing with. Usually SHM
is achieved by placing various forms of sensors on the product
of interest. These sensors work in one way or another in order
to provide us with output information regarding the current
real-time state of that product. These sensors work under the
principle of necessity to achieve full coverage of the
part/product, and to ensure reliable detection of any faults
occurring in real-time. The engineer is the person who makes

sure that these and other additional principles are satisfied in
order to achieve reliable SHM. This is a general description of
the aims of SHM. It fits however to the specific case with
which this paper is dealing with, i.e., the technique of
Acoustic Emission [1]. The optimization of parameters
involved in acoustic emission and in SHM in general is a task
that is performed on site by the human inspector. There is
however a very big dependence on the inspector’s skill,
expertise and knowledge in order to achieve the best results.
Therefore, it is attempted nowadays by many researchers and
optimizers to create computational algorithms that employ
various mathematical, heuristic as well as artificial
intelligence techniques in order to bring standardization and
total optimization to the processes like Acoustic Emission, and
obtain thus the best results of SHM every time [2, 3, 4, 5].
This paper aims to thoroughly investigate the feasibility of
attempting to tackle the optimization problem of acoustic
emission sensor placement and sensor number minimization
with the use of various standard algorithms as well as with the
artificial intelligence and nature inspired Bees Algorithm. The

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

363 Michael S. Packianather et al. / Procedia CIRP 67 (2018) 362 – 367

paper is organized as follows. The basic Acoustic Emission
algorithm is described in section 2. The problem of finding the
optimum position and number of acoustic emission sensors
necessary to get full coverage for a given area is explained in
section 3. Then finding the solution using the Random search
approach and Bess Algorithm search approach are presented
in sections 4 and 5. Finally the conclusion is given in section
6.

2. The initial acoustic emission Algorithm

A basic Acoustic Emission software that was created with
MATLAB served as an initial platform which was later
adapted and improved. Initially the program attempts to
visualize an orthogonal rectangular metallic (Aluminum) plate
by asking the user for certain parameters such as the plate
length, width as well as thickness (the length of the z
dimension). The metallic plate is then created in the form of a
graph as shown in Figure 1.

Fig. 1. The metallic plate is ‘created’ in the form of a graph.

The program then asks the user details about the acoustic
emission event (the ‘hit’) that is going to occur on the plate.
These details are the magnitude of the hit expressed in
decibels (dB) and the minimum detection threshold bellow
which any acoustic emission is disregarded as non-relevant
with the testing procedure, or is considered as background
noise. The attenuation curve for the acoustic emission signal
is then created as shown in Figure 2.

The attenuation curve shown in red is calculated using the
simple exponential decay function given in Equation 1.

 (1)

Where:
• is the initial ‘source’ amplitude of the hit in dB
• is the attenuation coefficient which is set to 1.

• is the value of the amplitude of the acoustic
emission signal at a distance (x) away from its
source.

The straight line shown in blue is plotted in order to show
on the graph the point below which the acoustic emission
signal is disregarded as non-relevant with the testing
procedure, or is considered as background noise, i.e., the
minimum detection threshold that was input earlier. It is
immediately noticed that the intersection of the two curves is
shown by a circle. At this distance the signal’s amplitude
drops below the threshold indicated by the user and it is
therefore taken as the maximum distance up to which the
signal travels. This is in fact not true because in reality the
signal travels around the plate many times and bounces off the
edges (edge effect) and depending on the thickness of the
plate it does not attenuate easily. However, this distance is
very useful because it can be considered to be the radius for
the range of the sensors to be used later. This is because the
sensors will act as an exponentially decaying source but only
the other way around. They receive any signal starting from
that distance away from them. In other words, they receive the
lowest amplitude of the signal set by the user, provided that it
is within the indicated distance/radius. The acoustic emission
software will calculate and output this distance. For example,
when the dimension of the plate is 15x10x1, the magnitude of
the hit is 100dB and the threshold is 10dB then the
distance/radius of the sensor was calculated to be 2.3232
units.

Fig. 2. The Attenuation of the signal with distance.

364 Michael S. Packianather et al. / Procedia CIRP 67 (2018) 362 – 367

The algorithm in the software then begins the task of trying
to position the sensors on the plate. It asks the user with a
dialog box whether the sensor placement should take place
manually or automatically. In manual sensor placement, the
user inputs the exact locations where the sensors are to be
mounted on the plate. In the case of the automatic sensor
placement, the software calculates the number of sensors and
positions needed in order to achieve full coverage of the plate
area with the use of the sensor radius found earlier.

In the case of manual placement, the software takes the
user inputs and does some calculations in order to show the
Metallic Plate graph that was presented earlier with the
sensors (dark blue) on the plate along with their radii (light
blue). The source (red star) along with the radius (in red)
indicated earlier by the exponential decay function (which is
said to be the sensor radius) is illustrated in Figure 3.

If it is done automatically, so that full coverage of the
whole plate is the goal and not just coverage of a specific
area, the following sequence of events occurs. Initially, the
software creates an invisible grid on the surface of the plate.
The target is to create a sensor grid that provides full coverage
to the whole area of the plate. The spacing between the lines
both vertically as well as horizontally is equal to the sensor
radius ‘R’. At the intersections of the lines lie the sensor
coordinates. The spacing between the sensors is obviously
equal to ‘R’ as well. The spacing distance of ‘R’ was
preferred over the ‘1.5R’ due to the simple fact that a spacing
of ‘1.5R’ would provide insufficient coverage in some cases
and would therefore leave uncovered areas on the plate. The
thinking process behind this is schematically represented in
Figure 4.

The software then asks the user to indicate the coordinates
of the acoustic emission event (the damage source). The
source coordinates are more or less irrelevant in terms of
whether the source is covered or not because through
automatic sensor placement the program would achieve full

Fig. 3. The metallic plate along with the sensors which were manually placed
by the user.

plate coverage as shown in Figure 5. Additionally, the
program calculated the distance of the source from each
sensor, as well as the time that was required for the acoustic
emission signal to travel and arrive at each particular sensor.
Although this gives full coverage, the focus of this paper is to
investigate if the same could be achieved by placing a fewer
number of sensors at some selected positions as discussed in
the following section.

3. Optimizing the acoustic emission algorithm in terms of
sensor positions and sensor numbers

The goal of full coverage was achieved with the basic
Acoustic Emission software. However, lots of sensors were
needed and they were located away from the plate’s edges.
Although the results computationally fulfilled the purpose of
covering the plate, in practice, the signal detection that they
offer will suffer from edge effects or low detectability due to
the specific spatial configuration in actual conditions. The
number of required sensors calculated by the algorithm in this
example for a plate of 15x10x1 units was 35. This number
was later compared with the number of sensors calculated by
other optimization algorithms. Usually these sensors can be
expensive and minimization of the number of sensors required
to achieve full coverage will lead to great savings. It was
assumed that with the use of artificial intelligence techniques
such as the Bees Algorithm, and by placing the sensors at
random positions on the plate while still aiming to achieve
100% coverage of the plate (by satisfying a certain cost
function), the result would have an advantage over placing the
sensors in a well-defined ordered manner. In particular, the
assumption was that such an approach could achieve a
reduction of the number of sensors used whilst still
maintaining 100% coverage of the area of the plate.

Fig. 4. Schematic illustration of why the sensor spacing should not be equal
to any distance other than ‘R’.

365 Michael S. Packianather et al. / Procedia CIRP 67 (2018) 362 – 367

Fig. 5. The metallic plate along with the sensors which were automatically
placed by the software.

4. The Random Search Approach

This search performed random placement of the sensors on
the plate where the sensors were randomly mounted on
various positions on the plate and then the coverage that they
provide on the plate area was calculated. The final result is a
percentage of the plate area that is covered by an adequate
amount of sensors such that complete signal detection is
achieved. The inputs required are plate dimension (length and
width), the number of sensors available and their range.

After the required input by the user i.e. 15x10, 30 and
2.3232, the algorithm randomly places the number of sensors
specified on the plate’s area. It then calculates the percentage
of the area that sensors cover w.r.t the plate area. It does that
by creating a grid of points on the plate with a spacing of 0.5
units of sensor range (this depends on the resolution that is
required) between them and looping through all of these
points (thus looping throughout the whole plate) in order to
count how many points are being covered by the sensors. A
point is covered if it lies within the range of 3 sensors. The
algorithm produces the graph shown in Figure 6 where the
plate’s boundaries are enclosed by the red lines. The blue
shaded circles are the areas covered by each sensor. The
algorithm counts the number of grid points that are within the
range of three or more sensors (and are thus considered to be
fully covered) and divides this number over the total grid
points of the whole plate area. This is the percentage of the
plate where full detection is achieved (in terms of coverage
only). This method based on a random approach achieves
higher coverage with higher number of sensors. Hence, what
is needed is an intelligent algorithm which can mix heuristic
and random search to find the optimum number of sensors
and positions as described in the following section.

5. The Bees Algorithm Search Approach

The Bees Algorithm [6, 7] is an intelligent swarm based
optimization algorithm which mimics the foraging behavior of

honey bees found in nature. The algorithm maintains the
search through the space by carrying out local search based on
heuristics but at the same time allowing random search to take
place with a small probability in order to avoid premature
convergence. This approach presented in the form of a
flowchart is Figure 7 can be used in order to search various
search spaces and offer the best solutions from all the
available options, depending on the problem at hand. The
Bees Algorithm has been applied in areas like optimization of
classifiers or clustering [8], manufacturing [9] and logistics
[10, 11].

In this case, the Bees Algorithm was modified and sorted
accordingly so that it could offer a solution for the problem of
optimal sensor placement whilst reducing the sensor number
to a minimum. The Bees Algorithm code consists of two
parts. The search algorithm itself and an objective function.

The operation of the objective/fitness function inside the
Bees Algorithm was substituted by another algorithm. The
purpose of this algorithm is to accept some certain parameters
as inputs and give back a specific sensor
position/configuration as output that corresponds to the values
given to these parameters. The initial idea was to randomly
place a specified number of sensors with a specified radius on
a metallic plate area of specified dimension. For example, the
dimensions were set to 20x20, 5, and 2 units. Figure 8 shows
the algorithm placing the 5 sensors randomly on the area of
the plate.

Fig. 6. Graph showing the plate and the areas on the plate covered by the
randomly placed sensors.

366 Michael S. Packianather et al. / Procedia CIRP 67 (2018) 362 – 367

Fig. 7. Bees Algorithm Flowchart (The Bees Algorithm Webpage 2016).

The search begins by calling the function named “Fittest
distances" by finding the distance of each sensor plotted in the
plate-graph of Figure 8 with every other sensor on the plate as
shown in Figure 9.

The order of the sensors is incremental. Starting from
reference sensor 1 and presenting its distance from each
consecutive sensor. The second set of distances shown are the
distances of the reference sensor (sensor number 2 this time)
from all the other sensors. It continues in this way for sensor
number 3, 4 and 5 making them the reference sensors each
time. The algorithm then chooses for each reference sensor
the distance between it and another sensor that is closest to the
optimum distance value of ‘R’ i.e. closest to the sensor radius
specified.

Fig. 8. The sensors are randomly placed on the metallic plate.

Fig. 9. Distances between sensor pairs.

Fig. 10. Starting from sensor 1, the fittest distance of the reference sensor
with its sensor pair.

For each sensor (starting from sensor 1 and continuing
incrementally) the distance from a pair of sensors that is
closest to the value ‘R’ (i.e. its fitness criterion) from all its
other pairs of distances is recorded as shown in Figure 10.

It then outputs a message box that shows for each reference
sensor starting from sensor 1 and finishing at sensor 5 the
index of the other sensor that makes a pair with it whose
distance is the closest to the value of R (i.e. the fittest). This is
shown in Figure 11.

The sensor radius was chosen as the optimum distance
between a pair of sensors. It is then displayed how close to the
value ‘R’ is each distance value that occurs between the
reference sensor and other sensors. This is the deviation of a
pair’s distance from the optimum value i.e. a fitness
criterion/value given in Figure 12.

Fig. 11. For each reference sensor, the index of the matching sensor that
allows the distance between them to be closest to the optimum distance R

367 Michael S. Packianather et al. / Procedia CIRP 67 (2018) 362 – 367

Fig. 12. The proximity of each sensor distance from the reference sensor
(denoted each time as a zero) to the optimum value of ‘R’.

Fig. 13. The distances of the sensors on the plate relative to each other.

The algorithm outputs the graph shown in Figure 13 where
the distance of each sensor from every other sensor is plotted
against the sensor numbers (essentially the distances of the
sensors relative to each other).

For each sensor its fittest pair is then chosen and presented
in a matrix along with the fitness value that corresponds to
that pair of sensors. In the end, a big ‘field’ of sensor pairs is
produced along with their individual distances. Note that this
whole procedure would happen for a vast amount of random
sensor locations so that the resulting number of pairs would
be big enough so that it qualifies for being used for Bees
Algorithm. This field can then serve as the search space on
which the Bees Algorithm search mechanisms can operate
and find the global maxima (fittest distances). This was the
philosophy behind the algorithm that served as the
objective/fitness function for the Bees Algorithm search
procedure.

6. Conclusion

In this paper a method of optimizing the position and
number of Acoustic Emission sensors required to achieve full
coverage in order to detect surface fractures have been

presented. The method described is an intelligent optimization
method based on swarm intelligence which is referred to as
the Bees Algorithm. The study has shown that the proposed
Bees Algorithm is capable of searching through a vast search
space in an intelligent way in order to find the optimum
solution by way of following both heuristic and random
approach.

Acknowledgements

The authors would like to thank ASTUTE2020 for
supporting this work.

References

[1] Carlos M. Acoustic emission heeding the warning sounds from materials.
ASTM Standardization News, 2003; 31(10): 26-29.

[2] Yi T, Li H, Zhang X. A modified monkey algorithm for optimal sensor
placement in structural health monitoring. Smart Mater. Struct. 2012;
21(10): 105033-105042.

 [3] Rao ARM, Lakshmi K, Krishnakumar S. A generalized optimal sensor
placement technique for structural health monitoring and system
identification. Procedia Engineering, 2014; 86; 529-538.

[4] Yi TH, Li HN, Gu M. Optimal sensor placement for health monitoring of
high-rise structure based on genetic algorithm. Mathematical Problems in
Engineering, 2011; 2011: 395101-395113.

[5] Baxter MG, Pullin R, Holford KM, Evans SL. Delta T source location for
acoustic emission. Mechanical systems and signal processing, 2007;
21(3): 1512-1520.

[6] Yuce B, Packianather MS, Mastrocinque E, Pham DT, Lambaise A.
Honey bees inspired optimization method: the bees algorithm. Insects,
2013; 4(4): 646-662.

[7] Packianather MS, Landy M, Pham DT. Enhancing the speed of the Bees
Algorithm using Pheromone-based Recruitment, IEEE INDIN, 2009; 789-
794.

[8] Packianather MS, Kapoor B. A wrapper-based feature selection approach
using Bees Algorithm for a wood defect classification system. IEEE
System of Systems Engineering Conference (SoSE), 2015; 498-503.

[9] Yuce B, Pham DT, Packianather MS, Mastrocinque E. An enhancement
to the Bees Algorithm with slope angle computation and Hill Climbing
Algorithm and its applications on scheduling and continuous-type
optimisation problem. Production & Manufacturing Research, 2015; 3(1):
3-19.

[10] Mastrocinque E, Yuce B, Lambiase A, Packianather MS. A multi-
objective optimization for supply chain network using the bees algorithm.
International Journal of Engineering Business Management, 2013; 5(38):
1-11.

[11] Yuce B, Mastrocinque E, Lambiase A, Packianather MS, Pham DT. A
multi-objective supply chain optimisation using enhanced Bees Algorithm
with adaptive neighbourhood search and site abandonment strategy.
Swarm and Evolutionary Computation, 2014; 18: 71-82.

