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Summary 

Hippocampal activity patterns representing movement trajectories are reactivated in immobility 
and sleep periods, a process associated with memory recall, consolidation and decision making. 
It is thought that only fixed, behaviorally-relevant patterns can be reactivated, which are stored 
across hippocampal synaptic connections. To test whether some generalized rules govern 
reactivation, we examined trajectory reactivation following non-stereotypical exploration of 
familiar open field environments. We found that random trajectories of varying lengths and 
timescales were reactivated, resembling that of Brownian motion of particles. The animals’ 
behavioral trajectory did not follow Brownian diffusion demonstrating that not the exact 
behavioral experience is reactivated. Therefore, hippocampal circuits are able to generate 
random trajectories of any recently active map by following diffusion dynamics. This ability of 
hippocampal circuits to generate representations of all behavioral outcome combinations, 
experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions 
such as learning, generalization and planning. 
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Introduction 

The hippocampus plays a crucial role in navigation and episodic memory by forming a cognitive 
map of space, encoded by the spatially-selective activity of place cells(O’Keefe and Dostrovsky, 
1971; O’Keefe and Nadel, 1978). At any given moment, the combined activity of place cells 
provides a signal that encodes the instantaneous location of the animal, while the sequential 
firing of these cells can represent entire movement paths through space(O’Keefe and Recce, 
1993; Skaggs et al., 1996). Such neural representations of behavior likely underpin the spatial 
component for memories of places and events, that, when reinstated, can be used for navigation 
in previously explored environments. Consistent with this notion, firing sequences that encode 
behavioral trajectories during exploration can be subsequently replayed by the network. This 
takes the form of place cell representations of movement paths that can last several seconds or 
more, compressed into brief bursts of activity, lasting tens to hundreds of milliseconds(Lee and 
Wilson, 2002). This replay occurs in a variety of behavioral and network states, which may 
reflect different underlying mechanisms and cognitive functions(Foster and Wilson, 2006; 
O’Neill et al., 2010). The replay of temporally-compressed firing sequences of neurons was first 
described during transient network synchronization epochs associated with sharp wave/ripple 
oscillations (SWR) in sleep(Lee and Wilson, 2002). However, subsequently, it has been shown 
that similar phenomena can also occur during exploration simultaneously with theta 
oscillations(Feng et al., 2015; Gupta et al., 2012; Zheng et al., 2016). Moreover, not only 200Hz 
ripple-band oscillations has been seen during compressed trajectory replay but simultaneously 
occurring slower gamma-beta (20-80Hz) band oscillatory components as well. The power of the 
slower oscillatory components of SWRs predicted the fidelity of replay with different oscillatory 
cycles separating trajectory segments with a discontinuous trajectory jump(Carr et al., 2012; 
Pfeiffer and Foster, 2015; Yamamoto and Tonegawa, 2017).  

While replay has been associated with a number of mnemonic processes, including consolidation 
in sleep, goal-directed navigation and decision making at maze choice points (Ólafsdóttir et al., 
2018), the mechanisms underlying its generation remains controversial. Competing lines of 
evidence suggest that sequence firing in replay are generated from either experience-dependent 
mechanisms or, alternatively, reflect hardwired predetermined assemblies(Dragoi and Tonegawa, 
2011; Grosmark and Buzsáki, 2016; Shen and McNaughton, 1996; Silva et al., 2015). On the one 
hand, both the stability of novel spatial maps(Kentros et al., 1998) and the accurate replay of 
novel linear tracks during sleep(Silva et al., 2015) require NMDA receptors. This suggests that 
the associations between spatial cell assemblies during behavior are formed through synaptic 
plasticity. Consistent with this idea, sequences expressed on novel linear tracks during theta 
oscillations only emerge after the first lap(Feng et al., 2015), indicating that they are generated 
through activity-dependent mechanisms. However, novel spatial maps and their reactivated 
trajectories may in part use hardwired circuit connections, which are then refined with the 
animals’ experience(Dragoi and Tonegawa, 2011; Shen and McNaughton, 1996). Indeed, it has 
been shown that firing patterns resembling that of novel paths can also be seen in sleep prior to 
the animal experiencing that path, termed preplay(Dragoi and Tonegawa, 2011; Grosmark and 
Buzsáki, 2016; Ólafsdóttir et al., 2015). However, it is still unclear to what degree preplay 
patterns are refined as a result of exploration to provide a more accurate replay in sleep after the 
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experience(Silva et al., 2015). Nevertheless, several reports describe replay that is not simply a 
product of experience, particularly replay seen during exploration (Gupta et al., 2010; Wu and 
Foster, 2014).  

During exploration, the reactivation seen in transient SWR-associated network bursts tends to 
occur when animals stop briefly (Davidson et al., 2009; Foster and Wilson, 2006). These 
trajectories tend to originate from the animals’ current position and point towards future goal 
locations, even in open two-dimensional (2D) environments where a fixed goal is to be 
reached(Pfeiffer and Foster, 2013). However, during replay in more complex maze 
environments, maze segment combinations that the animal never took before may reactivate 
together in the form of a novel combined trajectory(Gupta et al., 2010). These observations may 
challenge the theory that reactivated trajectories need to be first experienced, in order to be 
stored in the hippocampal circuits. However, unlike replay in sleep, it cannot be ruled out that 
upstream spatial sensory inputs, channeled through the entorhinal cortex, may still be involved in 
driving reactivation events observed during active waking periods(Yamamoto and Tonegawa, 
2017). Indeed, this replay of unexperienced path combinations through the integration of maze 
segments may reflect the imagination of novel situations or map refinement (Gupta et al., 2010). 
These observations do not provide a clear answer as to whether, in the absence of sensory inputs, 
reactivated patterns represent the exact spatial experience of the animal, or, alternatively, are 
generated by a more generalized process that does not require the direct storage of patterns. We 
set out to examine the mechanisms of replay by testing for its occurrence in conditions that 
should not support sequence formation through experience-dependent mechanisms. The behavior 
used in replay studies typically utilizes narrow linear tracks or mazes, in which the animal 
performs repeated stereotyped trajectories. Instead, we utilized an open field enclosure in which 
the animal performed a random pellet-chasing task and then detected replay during a subsequent 
rest period, recorded in a separate sleep box. We found that reactivated trajectories followed 
rules of random movement governed by Brownian diffusion that did not directly reflect the past 
behavioral trajectories of the animal. However, our results were also not consistent with a model 
of replay solely based on a limited number of preexisting cell assemblies, since the number of 
replay trajectories was only constrained by the size of the environment and the diffusion 
dynamics. Instead, the data indicate that hippocampal circuits have the built-in ability to generate 
sequences that link assemblies together across the entire cognitive map, on all temporal and 
spatial scales. Such a mechanism likely provides a framework on which past experiences can be 
reactivated in sleep, or possible future paths can be compared during navigation. 

Results 

Reactivation of 2D trajectories after random foraging  

We examined reactivation following a random exploration of a large (1.2 m diameter) circular 
arena during quiet immobility periods in the absence of sensory drive of the explored 
environment. So far only one study has been able to see the reactivation of 2D 
trajectories(Pfeiffer and Foster, 2013), in that case during awake, exploration-associated SWRs. 
Therefore, the replay shown in that study may have been driven by an upstream sensory drive 
(Yamamoto and Tonegawa, 2017), while the animal was performing a goal-seeking task. The 
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encoding of these reactivated trajectories, however, required the simultaneous recordings from 
many neurons. Therefore, we reasoned that the accurate reconstruction of 2D trajectories in big 
environments requires the simultaneous recording from large assemblies. Accordingly, in four 
rats we recorded CA1 multiple unit activities in 128-channels (32 tetrodes), yielding 
simultaneous recording of 383, 243, 206, 100 putative pyramidal and 31, 18, 30, 24 putative 
interneuron units during each animals’ recording session (Figure S1; Figure S2). Trajectory 
reactivation tends to occur during sharp wave ripple (SWR) oscillatory patterns (Buzsaki, 1989; 
Lee and Wilson, 2002) (Figure 1A). We detected these SWR periods during the quiet immobility 
period after exploration in the absence of theta oscillatory periods (see Star Methods). We 
subdivided each SWR into prediction time windows and used a Bayesian method to estimate the 
location encoded by putative pyramidal neurons (Davidson et al., 2009; Zhang et al., 1998) 
(Figure 1 A-D). Only SWRs that met a quality threshold for the encoded probability (see Star 
Methods) and contained at least five encoded trajectory points were included in the subsequent 
analysis to ensure that only events with reliably encoded places were considered. Altogether 
n=558, 693, 544, 238 SWR events passed the quality threshold for fixed spike number encoding. 
Each prediction window contained the same number of spikes (n=15) to ensure uniform coding 
accuracy. However, similar results were seen using fixed duration windows (8ms, see 
Supplementary Materials) in which case n=519, 624, 79, 65 SWRs passed the quality threshold. 
Reactivation speed was measured by the jump distance between neighboring predicted locations 
(Figure 1E; Figure S3). Although the reactivation speed remained relatively similar within a 
SWR, different SWRs yielded wide ranges of mean reactivation speeds, which were lognormally 
distributed (see Figure 2A inset, all p>0.3 Pearson Chi-Square Test). 

To verify that the encoded SWR trajectories represented place assemblies of the previous 
environment and were not from chance coding of temporally-organized spike trains, we shuffled 
the cluster identities of the active cells or performed a random 2D rotation of place fields for the 
events already passing the selection criteria. Both randomized events yielded distributions with 
higher mean reactivation speeds [all p<10e-277, Kolmogorov-Smirnov (KS) test] and 
significantly weaker prediction confidence (all p<10e-200, KS test, Figure 2 A-C; Figure S4 A-
B). Next, the role of spike timing in encoding was tested by randomizing them within each SWR. 
As above, spike time-jittered events exhibited higher mean speeds (all p<10e-46 KS test) and 
weaker encoding confidence (all p<10e-45 KS test). Therefore, the original SWR trajectories 
were encoded from temporally-organized spike trains representing the previous environment. 
Using larger time-step intervals to compute the reactivation speeds yielded relatively similar 
mean speed values for the spike jittered data. However, the mean speed of the original data 
increased with time-step interval length, making it eventually larger than the shuffled values for 
the spike jittered data (Figure S5 A). We then examined whether the places expressed during 
SWRs were organized. Firstly, we shuffled the order of encoded places within a trajectory, 
which yielded shifted speed distributions (all p<10e-57 KS test), indicating that each encoded 
location influenced the next. Secondly, we replaced each reactivation speed by randomly drawn 
speeds from other SWRs (Figure 2 D; Figure S4 C). These speed-randomized events exhibited a 
higher coefficient of variation in their jump speed than the unshuffled data (all p<10e-31 KS 
test), indicating that each replay expressed a consistent speed throughout the SWR. To test how 
the use of a quality threshold influenced our results, we performed the same analysis using 
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different quality thresholds. Higher threshold values lead to a larger separation between original 
and shuffled data distributions for reactivation speed (Figure S5 B-C), but the shuffled 
distributions were still significantly different from the original distribution even when no 
threshold was used (i.e., threshold=0, all p<0.01 KS test). Significant differences in the 
distributions were seen as well when we examined events that fell below a quality threshold (all 
p<0.04 KS test, Figure S5 D). Given that with the reduction of the quality threshold the original 
and shuffled distributions got more similar, it is possible that some of the low encoding quality 
events expressed places or trajectories of another environment, perhaps even ‘preplayed’ 
assemblies of the environment the animal explored next. The animal explored a novel 
environment following the rest session we tested (see Start Methods). The proportion of SWR 
events that passed our quality threshold for encoding the subsequent novel environment was low 
(<0.005) in the previous rest session and was not significantly different from the proportion of 
events detected after place fields rotation or spike time jittering generated probability maps 
(Figure S5 E, all p>0.1 Binomial test). These data questions whether preplay of trajectories of the 
subsequently explored novel environment can be seen our data. Nevertheless, we compared the 
speed distributions of the original and shuffled data at different threshold levels to check whether 
any preplay can be seen in our data. At any of the quality threshold we tested [0:0.12], the speed 
distributions were significantly different for the place field rotation generated trajectories (all 
p<10e-4 KS). However, at any threshold levels the speed distributions of the original trajectories 
were not significantly different from those of the spike time jittering trajectories (Figure S5 F, all 
p>0.15 KS test). The speed distribution differences with the place field rotation generated 
trajectories suggest that in the rest session before the exploration of a novel environment a small 
subset of the recorded units maintain consistent correlations with that in the subsequent novel 
environment exploration. Therefore, a possible explanation for these findings is that places 
expressed in some events at least partially represented patches of the subsequent novel 
environment. But, considering that spike time jittered speed distributions were not different from 
those of the original data, these ‘preplayed’ trajectories did not exhibit a consistent order in the 
expression of places to form organized trajectories in which one location will influence the next 
one. Similar to SWRs representing the familiar environment, novel environment encoding SWRs 
expressed consistent trajectories in the subsequent post-novel rest session (Figure S5 C). Hence 
the apparent lack of trajectory preplay was not due to an impairment of replaying these 
trajectories after the novel environment exploration. 

 

Reactivation followed Brownian diffusion dynamics 

Given that each replay location depended on the previous locations and that place changes 
maintained a defined speed range, we then asked whether these trajectories can be approximated 
by a random walk process akin to random particle movements during diffusion(Rudnick and 
Gaspari, 2004). In physics, diffusion processes are described by a power law between mean 
distance and time, which represents an exponential relationship characterized by the value of the 
exponent(Metzler et al., 2012; Vlahos et al., 2008). In Brownian trajectories, the exponent is 
equal to 0.5. To check the relationship between time and distance, first SWR trajectories were 
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subdivided into homogenous groups according to their mean reactivation speed. For each 
reactivation speed group, within each SWR, we took all possible pairs of time windows and 
measured the distance between predicted places and the time interval between them. On a log-
log scale, they showed a linear relationship (Figure 3 A). The power law exponents (α), 
calculated by the slope of the fits, consistently fell near 0.5 (all p>0.2, Wilcoxon signed rank test, 
Figure 3 A; Figure 5 A,D) with the slope estimates with the smallest confidence intervals 
yielding slopes closest to 0.5 (r=0.64 p<10e-4, Figure 5 B,E). Shuffling the places within a 
trajectory resulted in almost flat lines with slopes significantly smaller than the original ones (all 
p<0.0003, Wilcoxon one-tailed signed rank test). Moreover, at any time interval, the distances 
obtained from the original data were fitted better by a Rayleigh distribution than the shuffled 
data, as expected for a 2D Brownian diffusion process (Rudnick and Gaspari, 2004) (all 
p<0.0002 Mann-Whitney test, Figure 3 B-C; Figure 5 C,F). These distance distributions also 
showed a significant overlap (all p>0.1, Wilcoxon test) with those produced by a simulated 
Brownian process with the same speed and length statistics (Figure 3 B-C; Figure 5 C,F). 
Crucially, the same analysis applied to the trajectories of the animal and to trajectories 
reconstructed using neural activity expressed during active behavior yielded different results, 
with both exponents α (all p<10e-4, Wilcoxon signed rank test) and Rayleigh fit (all p<0.02, 
Mann-Whitney test) being incompatible with a Brownian diffusion (Figure 4; Figure 5 G-I). 
Also, comparison with a simulated Brownian motion indicated a significant discrepancy in the 
distance distribution for Δt>2 (all p<0.001, Wilcoxon test) (Figure 4 B-C).  

We showed above that reactivated trajectories, once started from a point were random; however, 
their starting position and the direction of the initial trajectory may express bias. Therefore, 
firstly, we evaluated to what extent the reactivation of starting points was randomly arranged 
over the environment. By computing the entropy of their spatial density distribution (Figure 6 A) 
we found that, although not completely uniform, their degree of randomness was close to the 
maximum entropy (>90%, Figure 6 B) and similar to that of the rat’s behavior (either while 
running or during the entire exploratory session). However, the distribution of the trajectory 
starting locations was not related to that of behavioral occupation time during behavioral periods 
of running (>5cm/s, running all p>0.2) or periods including the entire exploration session (all 
p>0.08, Figure 6 C). Secondly, we examined the distribution of the direction of the initial 
reactivated trajectory (i.e., the first step from the starting point to the second encoded point). We 
computed this distribution for events starting from different zones of the environment 
(distinguishing the central zone blocks from those close the environmental boundary, Figure 6 D-
E). For each of these groups of events, we compared the distribution of reactivation starting 
directions to a uniform distribution (Figure 6 F). After correcting for multiple comparisons, we 
found that the first steps were not significantly directionally tuned for events originating in the 
central blocks (all p>0.1 Rayleigh-test, Benjamini-Hochberg correction), while we found some 
degree of tuning in the initial propagation of events originating in blocks in the vicinity of 
boundaries (all p<0.05 Rayleigh-test, Benjamini-Hochberg correction).  

 

Network oscillations predict reactivation dynamics 
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Co-modulation of different network oscillations may highlight differences in circuit processes 
during reactivation. Past work showed that beta-gamma band (20-30Hz) oscillatory power 
correlated with large jumps in reactivated trajectories(Pfeiffer and Foster, 2015). Therefore, we 
examined, whether the presence of an underlying network oscillation predicted such jumps. 
Oscillations may show a relationship with additional assembly measures because assembly 
differences are not solely related to the encoded distance(Leutgeb et al., 2005). We assessed 
population activity differences (PAD) by a modified cosine distance between spike-count vectors 
as measured across prediction time windows (see Methods). We chose this measure because it 
quantifies the orthogonality of assemblies and reactivated assemblies has been suggested to be 
orthogonal (Malvache et al., 2016)(Figure 7 A; Figure S6). Although the PAD across 
neighboring windows (i.e., Figure 7 A, Δt=1) was increased with the distance of the encoded 
positions, it saturated beyond a certain distance (Figure 7 A inset). The curves with Δt>1 window 
distance were similar, but, these progressively up-shifted with Δt (Figure 7 A). Accordingly, 
PAD correlated with window distance Δt (all p<0.0001), and this correlation was independent of 
the encoded distance (all p<0.0002, partial correlation). This partial correlation analysis was 
performed by taking all prediction window pairs in each SWR and calculating window distance, 
PAD and encoded distance and tested whether window distances can be predicted by PAD even 
when the correlations between PAD and encoded distance were taken into account. In addition, 
we examined the increase of PAD with window distance in cases when the same place was 
encoded over a series of consecutive prediction windows (see encoded distance 0 at Figure 7A). 
Because PAD correlated with elapsed reactivation time (i.e., window distance) independently 
from reactivated positions, reactivation time and trajectory positions may be coded separately 
during SWRs. Interestingly, the substantial orthogonality of the two ensemble measures was 
confirmed by looking at the distance-time relationship (as in Figure 3) but this time using a PAD 
metric. To do so, the PAD distances measured across different encoding windows were 
nonlinearly embedded in a two-dimensional space for each of the speed groups (Figure S7 A). 
Two major differences appeared in this case with respect to the embedded PAD distance 
measure: firstly, the speed of PAD increase was similar in different reactivation speed groups, 
and, secondly, rather than following a power law, an exponential function fitted the curves best. 
Both findings point to major differences in the mechanisms regulating the evolution of the two 
ensemble measures during SWRs.  

Finally, we assessed whether SWR events associated with different average reactivation speed 
(i.e., average encoding distance at Δt=1) or average PAD (Δt=1) are related to other aspects of 
network activity. Putative interneuron firing rate correlated with average PAD (all p<10e-7) but 
not with average reactivation speed (all p>0.07) during SWRs (Figure 7 C-D; Figure S6) 
indicating that putative interneuron activity was stronger when the orthogonality of place cell 
population patterns was higher during SWRs, independent of the average reactivation speed. 
Similar to putative interneuron activity, we also found that PAD but not reactivation speed 
correlated with the number of active putative pyramidal cells in the SWR and with their firing 
rate (all p<10e-4) during the reactivation event (Figure S7 B). Both the average PAD and 
reactivation speed measured within each SWR showed a distinct relationship with local field 
potential oscillatory power. While average PAD showed a strong correlation with the ripple band 
(150-200Hz, all p<10e-12), reactivation speed was correlated with fast gamma power (≈80Hz, 
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all p<10e-5; Figure 7 B; Figure S6). In addition, both reactivation speed (all p<0.0004) and PAD 
(all p<0.005) were correlated with a slow ≈30Hz-peaked gamma band power. Putative 
interneuron SWR firing rate correlated with both slow gamma (all p<10e-8) and ripples (all 
p<10e-13) but not with fast gamma oscillations (Figure 7 E; Figure S6). Therefore, both ripple-
band power and enhanced putative interneuron firing rate predicted reactivation events involving 
larger changes in assembly pattern orthogonality. In contrast, fast gamma oscillations predicted 
reactivation speed within an event. 

 

Discussion 

Here, we showed that, following non-stereotypical exploration of open environments, SWR 
events reactivated random, 2D trajectories of the previous environment that were governed by a 
Brownian diffusion process. The pattern of the replayed trajectories was not a direct 
representation of behavior since the animals’ trajectory did not exhibit Brownian statistics. This 
suggests that these reactivated 2D trajectories were not a replay of directly learned and stored 
patterns. Moreover, the flexible expression of our patterns, covering wide ranges of temporal and 
spatial scales, makes it unlikely that they reflected a limited repertoire of prewired assemblies. It 
is also unlikely that sensory experience has driven these patterns because the animal rested and 
slept in a different sleep box without any visual contact with the explored environment. Instead, 
our data suggest that the hippocampus is capable of expressing random trajectories of any stored 
map, although preexisting connection topology of hippocampal principal cells may influence 
expression dynamics(Guzman et al., 2016).  

We used a random foraging behavioral paradigm in order to disentangle neural representations 
from stereotyped behavioral motifs. Under such circumstances, one might expect that SWR 
firing encodes individual places or path segments from prior exploration. Alternatively, when the 
animal does not experience similar, stereotyped trajectories multiple times, replay might be 
disordered, where the set of assemblies active during a given SWR are unrelated to each other, 
and their expression of a location at one instance will not influence the next one. However, the 
assembly firing observed here represented a random walk through the environment, where each 
encoded place within the SWR was separated by a similar distance (i.e., had a consistent 
reactivation speed). Such trajectories can be analogous of that of gaseous particle trajectories in 
which the temperature of the media influence the trajectory speed and each time the particle 
collides with another, it will change its movement to a random direction. The Brownian 
reactivated trajectories we observed can be modeled as the sequential recruitment of place cell 
assemblies in which activation of one assembly triggers the expression of the next(Monasson and 
Rosay, 2015; Romani and Tsodyks, 2015) in any spatial direction, but assembly transitions of a 
SWR allowing similar distances only. This ability enables the hippocampus to reactivate 
memory traces covering diverse spatiotemporal scales to meet mnemonic demand flexibly. Such 
activity could represent the default mode of reactivated output during SWRs when unshaped by 
experience or sensory inputs. This would form a part of the generalized network processes that 
endows the hippocampus with the flexibility necessary to provide the support for more 
demanding cognitive tasks. 
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The capacity of the hippocampus to generate unconstrained propagation of activity through 
neural representations of space could underpin a number of potential cognitive functions of 
SWRs, including prospective novel route planning(van de Ven et al., 2016) and replaying 
alternative routes at spatial decision points(Johnson and Redish, 2007; Papale et al., 2016). It 
could also serve to facilitate the assimilation of new maps into existing related representations or 
integrate previously unexplored path segment combinations within a familiar environment(Gupta 
et al., 2010). However, the replay of memory episodes could arise from a mechanism that biases 
the spontaneous propagation of map trajectories towards salient or stereotyped behavioral 
episodes. Stereotypical trajectories may be stored within hippocampal circuits through a process 
that makes the reactivation of behaviorally relevant events more probable than other random 
trajectories. A prior replay of stereotyped trajectories during SWRs and theta oscillation in 
waking exploration(Davidson et al., 2009; Foster and Wilson, 2006; Gupta et al., 2010; Zheng et 
al., 2016) may reinforce this biasing process, as well as activity-dependent strengthening 
between adjacent spatial assemblies during exploration(Ekstrom et al., 2001; Mehta et al., 2000). 
A central feature of episodic experience is that it can cover various time and spatial scales. 
Replay events with different reactivation speeds can construct representations on multiple scales, 
providing the degree of signal compression to convey complex neural representations efficiently.  

The expression of ongoing assembly patterns was not only controlled by diffusion dynamics and 
the reactivation speed range of the event, but the orthogonality of the expressed assemblies was 
also regulated during the course of a SWR event. That is, assemblies expressed further apart 
within a SWR were more orthogonal (i.e., had larger PAD) that those in the vicinity (Figure7 A). 
Such an increase in PAD (i.e. increase in orthogonality) is shown by the positive correlation 
between reactivation time (i.e., encoding window distance during a SWR) and PAD, even when 
PAD versus encoded distance correlation was taken into account. Such a relationship can provide 
the means to encode reactivation time. Our data show that different assemblies can represent the 
same reactivated place, with varying degrees of orthogonality. In this way, orthogonality 
between assemblies can independently represent the relative time elapsed between each encoded 
location and can even signal the duration of staying at a similar place. Over longer periods, such 
as days or weeks, a subpopulation of assemblies encoding places may be altered suggesting that 
the change of spatial assemblies can code for time(Mankin et al., 2012; Ziv et al., 2013). 
Moreover, sequential activation of place cells can signal the time elapsed during a 
task(MacDonald et al., 2011). However, the increase of orthogonality with reactivation time may 
additionally relate to the functional limitation of hippocampal circuit computations. Here, 
multiple orthogonal assemblies that represent overlapping locations would also allow similar 
places represented throughout the SWR, without the same pyramidal cells firing together for 
long durations. 

Considering that assembly orthogonality (i.e., PAD) and reactivation speed are correlated with 
different bands of network oscillations, multiple mechanisms may work in parallel during 
reactivation. In particular, PAD was correlated with ripple-band power. The putative interneuron 
rate was also correlated with PAD, suggesting that interneurons play a role in assembly turnover 
during replay. Although CA2/CA3a region activity triggers sharp waves and SWR emission 
(Csicsvari et al., 2000; Oliva et al., 2016), the ripple oscillation itself is generated by local CA1 
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pyramidal cell-interneuron interactions(Gan et al., 2017; Schlingloff et al., 2014; Stark et al., 
2015). Therefore, it seems possible that changes in assembly orthogonality are modulated 
partially within the CA1 area through the control of local inhibitory interneurons. The local 
emergence of CA1 sequences is supported by the observation that the CA1 network is capable of 
autonomously generating sequences(Stark et al., 2015). When ripples were artificially generated 
with optogenetic stimulation of CA1 pyramidal cells, this gave rise to sequences that were 
similar to that observed during spontaneous SWR emission(Stark et al., 2015). Moreover, the 
consistency between waking sequential coding and SWR activity, artificial or spontaneous, was 
dependent on interneuron firing.  

While the power of ripple oscillations was associated with PAD and was not related to 
reactivation speed, fast gamma power was only related to reactivation speed and not to PAD. 
Interestingly, waking gamma oscillation power is correlated with the actual speed of the animal 
(Ahmed and Mehta, 2012). Fast gamma oscillations have been associated with interactions 
between CA1 and neighboring regions such as the dentate gyrus and the entorhinal cortex(Colgin 
et al., 2009; Sullivan et al., 2011). This suggests that reactivation dynamics regulated by 
reactivation speed is correlated with interregional interactions and not with local activity 
modulation mechanisms like inhibitory activity or ripple power. Therefore, some of the 
regulatory mechanisms determining reactivated trajectories might originate from nonlocal 
mechanisms such as the medial entorhinal cortex inputs, including those that encode 
speed(Yamamoto and Tonegawa, 2017; Ye et al., 2018). At the same time, however, slow 
gamma band oscillations show a complementary behavior, relating to both reactivation speed 
and PAD. In agreement with this finding large jumps in reactivation places have been suggested 
to occur in different slow gamma packets(Pfeiffer and Foster, 2015) and even theta sequences 
represent more stretched trajectories when slow gamma oscillations were nested on theta 
oscillations(Zheng et al., 2016). In our case, larger amplitude, slow gamma events predicted 
larger jump sizes, but it also predicted larger PAD distance. Our results point to a complex 
system of information routing at work during the unfolding of SWR events. Understanding the 
mechanism of information routing and the underlying system interactions will require a more 
detailed description of the activity state not only of CA1 but also of neighboring 
areas(Ólafsdóttir et al., 2016; O’Neill et al., 2017).  
 

The ability of the hippocampal network to spontaneously reactivate random trajectories of the 
previously active map provides not only a scaffold on which to build declarative memory traces, 
but also means to generate potential future behavioral choices. Attractor networks are able to 
optimize cost functions to solve complex problems(Hopfield and Tank, 1985). Such random 
replay may reflect such an optimization ability of the hippocampal attractor network representing 
space(Samsonovich and McNaughton, 1997). The ability of hippocampal circuits to replay 
random trajectories of a recently experienced environment may provide better behavioral 
solutions and help behavioral adaptation through initiating optimization processes during sleep.  
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Main Figure Legends 

Figure 1.  

Reactivation of random 2D trajectories during SWRs 

(A) Neuronal population activity during a SWR. Top four traces show low-pass filtered 
(<2.5kHz) local field potential traces from different tetrodes along with one ripple-band (150-
250Hz) filtered trace. Below, the raster plot marks the spike timing of n= 185 putative pyramidal 
neurons that were active during the SWR. (B-C), Stacked Bayesian probability maps (B) from 
five representative prediction windows from the SWR in (A) and the corresponding cumulative 
map (C) representing the sum of all probability maps. Hotter colors correspond to higher 
probability values. (D) Trajectory reconstructed from probability maps of the SWR in (A). (E) 
Sorted mean (±SD) reactivation speed of SWR events (n=558) from one animal. The cumulative 
map and the encoded trajectory of five events are highlighted representing different reactivation 
speeds. As above, the heat map shows the posterior probability density. Grey and black dots on 
the plotted trajectories indicate the start and end points respectively. Examples of encoded 
trajectories from additional animals are show in in Figure S3. See also Figures S1 and S2. 

 

Figure 2.  

Comparison of original and shuffled trajectories 

(A) Sorted mean (±SD) reactivation speed of SWRs and shuffled counterparts for an example 
session. An equal number of original and randomized events are displayed. Inset: lognormal 
distribution (dashed line) fits the distribution of mean reactivation speeds for the original events 
(p=0.7 Pearson Chi-Square test). (B-C) Distribution of the mean reactivation speed (B) and 
encoding confidence (C) for the original (n=558) and shuffled (n=279000) events. (D) 
Distribution of coefficient of variation of the reactivation speed for original events and those in 
which step sizes representing reactivation speeds were randomly assigned from other events. 
Filled circles display the median of different distributions. Results for the additional animals are 
shown in Figure S4. See also Figure S5.  

 

Figure 3.  

Reactivated trajectories resemble Brownian diffusion  

(A) Log-log plot of the time interval (i.e., encoded window distance) and the distance of 
reactivated positions for different mean reactivation speed groups (n=59, 287, 87, 33, 32 
respectively for each). Mean (±SEM) distance is shown for the original events (blue) and those 
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in which the position order was shuffled (red) along with linear regression fit for original events 
(dashed line) and slopes values (α). Scheme on the top explains how the time-distance 
relationship was measured on different trajectories. The distances were measured from the 
reference point t0 to the next trajectory points (t2, t3 …). Four trajectories are displayed on the 
sides which were all aligned together to originate from the same location. The circles around 
common starting location illustrate the distance measurement to the next trajectory points 
relative to t0. (B) Distribution of trajectory distances and the best-fit Rayleigh distribution for 
different time intervals for original (n=1915, 1084, 562, 250) and shuffled events (n=584331, 
392171, 223826, 107002). Left column: original data; Right column: encoded points shuffling. 
Pink overlaid bars show the distribution obtained from a simulated Brownian motion with equal 
diffusion constant (n equal to original events, all p>0.1 Wilcoxon test). (C) Average Chi-square 
distance for different time-step intervals between the distribution of trajectory distances and the 
Rayleigh best fit (blue, with ±SD shade). Red and pink lines: the same measure for shuffled 
events and simulated Brownian motion respectively. Results for additional animals are 
summarized in Figure 5 A-C. See also Figure S7 

 

Figure 4.  

Animal trajectories during exploration are different from Brownian diffusion 

(A) Log-log plot of the time interval and the mean distance (±SEM) traveled by the animal for 
different temporal resolutions (Γ on the left, representing the time between trajectory points for 
∆t=1). Linear regression fits (dashed line) and slopes values (α) are also shown. (B) The example 
demonstrates the comparison of Rayleigh best-fit (black line) and the actual distribution (blue 
bars). Time interval Γ=1.1s is shown with representative time-step intervals. Pink overlaid bars 
show the distribution obtained from a simulated Brownian motion with equal diffusion constant 
(n equal to original events) (for ∆t>1 p<0.001 Wilcoxon test). (C) Average (shaded region: ±SD) 
Chi-square distance between the distribution of trajectory distances and the best-fit Rayleigh 
distribution for different time-step intervals. Pink line: same measure for simulated Brownian 
motion. Note that the Chi-square distance diverges for larger time intervals. Results for 
additional animals are summarized in Figure 5 (G-I). See also Figure S7 

 

Figure 5.  

Testing for Brownian diffusion properties and comparison of different conditions 

(A) Average regression slope obtained (see Figure 3A) from original data (blue) and encoded 
positions shuffling (magenta) for each animal’s session using fixed-spike windows. The 
theoretical prediction of a slope equal to 0.5 is shown for reference (blue line (B) Results for 
individual regression lines. For each regression, we show the relationship between the 
discrepancy of the slope from 0.5 (absolute value) and the size of the confidence interval on the 
estimated slope value for the original data using fixed-spikes windows. For every session, the 
estimated slopes were gathered by using different reactivation speed group subdivisions starting 
from 3 up to the maximum number of subdivision in which at least a minimum number of SWRs 
events belong to each group (see Start Methods). The correlation line between the two quantities 
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is also shown (r=0.64, p<10e-4, n=39). (C) Average Chi-square distance between the distribution 
of reconstructed trajectory distances and the Rayleigh best-fit (maximum likelihood). Results are 
shown for every session from different animals using fixed-spikes windows. Results for the 
original data (blue), simulated Brownian motion (purple) were not significantly different (all 
p>0.4 Wilcoxon test) but original data Chi-square distances were significantly different from 
those resulted from encoded positions shuffling (red, all p<0.005 Wilcoxon test). (D-F) Same as 
above but using fixed-time windows. Regression result for (E): r=0.59, p<10e-4, n=36. Results 
for the original data and simulated Brownian motion were not significantly different (all p>0.35 
Wilcoxon test) but original data Chi-square distances were significantly different from those 
resulting from encoded positions shuffling (red, all p<0.01 Wilcoxon test). (G-I) Same as above 
but showing results from the analysis of the trajectories of the animals. Slopes in (G) obtained 
from active (5cm/s) behavior (blue) and from reconstructed positions from neural activity 
(purple) were similar (all p>0.4 Wilcoxon test). Regression result for (H): r=0.14, p=0.4, n=48. 
Results from original trajectories and those from simulated Brownian motion were different (all 
p<0.001 Wilcoxon test). All error bars ±SD. See also Figure S7. 

Figure 6.  

The start location and propagation directionality of reactivated trajectories are random. 

(A) Examples of the spatial distributions representing the density of the encoded starting 
positions during SWRs, the animal’s occupation time for periods of active behavior (speed > 
5cm/s) and over the entire exploration session. (B) Entropy-estimate of the degree of randomness 
of spatial distributions for trajectory starting position density (blue), active behavior (gray) and 
behavior in the entire session (ocra). Entropy values were normalized to the maximum entropy of 
the uniform distribution over the same number of spatial bins (horizontal line). Data for grouped 
animals is shown. (C) Spatial correlation of reactivation starting point density with running 
occupation time (gray) and entire session occupation time (ocra) were not significant in any of 
the four animals (run: all p>0.2, entire session all p>0.09). (D) Example of the distribution of the 
direction of the first encoded trajectory steps. Distributions were calculated separately for 
different sub-regions of the environment depending on where the trajectory was originated from 
(see inset on the top right for an illustration of the division of the environment in 25 sub-regions). 
Red circle illustrates the boundaries of the environment, while dashed rectangle illustrates the 
separation of histogram zones near the center or the boundaries. (E) The displacement 
distribution of the reactivation trajectories measured relative to the trajectory origin. The first 
four trajectory point distributions (columns) are shown from two different zones of trajectory 
origin (rows) as in (D). Intensity levels represent probability values with hot colors indicating 
higher relative probabilities than colder colors. (F) The session-by-session lowest p-value (each 
point correspond to separate session/animal) for testing uniformity of the directionality of 
reactivation first-steps (Rayleigh-test, Benjamini-Hochberg correction for multiple comparisons). 
P-values were evaluated separately for portions of the environment either laying at its center 
(Core zone, left) or along its border ones (Periphery, right, all p<0.03) (see STAR Methods). 
Lines mark 0.05 significance level.  

Figure 7.  

Network oscillations associated with different reactivation events 

(A) The relationship between the encoded distance of trajectory positions and PAD during SWR 
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for an example session is shown. Solid line: neighboring trajectory positions (i.e., time interval 
∆t=1); dashed lines represent ∆t=2,3,4. Triangles: average PAD for ∆t=1,2,3 calculated from 
continuous sequences encoding the same spatial bin. (∆t=1to ∆t=2 all p<10e-6; ∆t =2 to ∆t =3 all 
p<0.015 Wilcoxon). Inset: linear regression slopes obtained from subsets of data of increasing 
encoded distance interval. (*: p<0.01, rest: p>0.15). (B) Correlation of average PAD (top) and 
average reactivation speed (bottom) with the different bands of the SWR-associated power 
spectrum (single session). The correlation was calculated across different SWR events (n=558) 
(PAD ≈30Hz p<0.003, PAD 150-200Hz p<10e-13; Reactivation Speed ≈30Hz p<10e-4, 
Reactivation Speed ≈80Hz p=10e-6). (C) Correlation of summed putative interneuron firing rate 
with the average PAD or with reactivation speed for a single session (±SEM). For each SWR, 
average PAD and reactivation speed were measured for ∆t=1 (PAD, p<10e-6, Reactivation 
Speed p=0.44). (D) Same as (C) but correlations were calculated for single putative interneurons 
and the distribution of correlations coefficients is shown. (E) Correlation of summed putative 
interneuron rate with different components of the SWR associated power spectrum for a single 
session (≈30Hz p<10e-9, 150-200Hz p<10e-14). Results for the additional animals are shown in 
Figure S6.  

 

 

STAR Methods 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and datasets should be directed to and will be 
fulfilled by the Lead Contact, Jozsef Csicsvari (jozsef.csicsvari@ist.ac.at). 

Experimental Model and Subject Details 

All procedures involving experimental animals were carried out in accordance with Austrian 
animal law (Austrian federal Law for experiments with live animals) under a project license 
approved by the Austrian Federal Science Ministry. A total of four adult male Long-Evans rats 
(Janvier, St-Isle, France) were used for the experiments. Rats were housed individually in standard 
rodent cages (56×40×26 cm) in a temperature and humidity controlled animal room. All rats were 
maintained on a 12 hr light/dark cycle and all testing performed during the light phase. Food and 
water were available ad libitum prior to the recording procedures and body weight at the time of 
surgery was 300-375 g. 

Methods Details  

Animals and Surgery 

Animals were implanted with microdrives housing 32 (2x16) independently movable tetrodes 
targeting the dorsal CA1 region of the hippocampus bilaterally. Each tetrode was fabricated out 
of four 10 um tungsten wires (H-Formvar insulation with Butyral bond coat California Fine Wire 
Company, Grover Beach, CA) that were twisted and then heated to bind them into a single 
bundle. The tips of the tetrodes were then gold-plated to reduce the impedance to 200-400 kΩ. 
During surgery, the animal was under deep anesthesia using isoflurane (0.5-3% MAC), oxygen 
(1-2l/min), and an initial injection of buprenorphine (0.1mg/kg). Two rectangular craniotomies 
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were drilled at relative to bregma (centered at AP= -3.2; ML= ±1.6), the dura mater removed and 
the electrode bundles implanted into the superficial layers of the neocortex, after which both the 
exposed cortex and the electrode shanks were sealed with paraffin wax. Five to six anchoring 
screws were fixed on to the skull and two ground screws (M1.4) were positioned above the 
cerebellum. After removal of the dura, the tetrodes were initially implanted at a depth of 1-1.5 
mm relative to the brain surface. Finally, the microdrive was anchored to the skull and screws 
with dental cement (Refobacin Bone Cement R, Biomet, IN, USA). Two hours before the end of 
the surgery the animal was given the analgesic Metacam (5mg/kg). After a one-week recovery 
period, tetrodes were gradually moved into the dorsal CA1 cell layer (stratum pyramidale). After 
completion of the experiments, the rats were deeply anesthetized and perfused through the heart 
with 0.9% saline solution followed by a 4% buffered formalin phosphate solution for the 
histological verification of the electrode tracks. 

Data Acquisition and Behavior  

The animals were housed individually in a separate room under a 12h light/12h dark cycle. 
Following the postoperative recovery period, rats were reduced to and maintained at 85% of their 
age-matched preoperative weight. Water was available ad libitum. Each animal was handled and 
familiarized with the recording room and with the general procedures of data acquisition. Four to 
five days before the start of recording, animals were familiarized at least 30 min with a circular 
open-field environment (diameter=120 cm). On each recording day (1 or 2 recording days were 
performed per animal), the animal underwent a behavioral protocol in the following order: 
exploration of the familiar circular open-field environment (40 mins), sleep/rest in rest box 
(diameter=26cm, 50 mins). Directly after this rest session the animals also explored a novel 
environment for an additional 40 min and rested after for 50 mins. The novel environment 
recordings were performed in the same recording room but in an enclosure of a different geometric 
shape but similar size (e.g., a square environment of 100cm width). The wall of both the familiar 
and novel environment enclosures was 30cm in height, which limited the ability of the animal to 
access distal room cues. In addition, in two animals a 50 mins sleep/rest session was performed 
before the familiar exploration. During open-field exploration sessions, food pellets (MLab rodent 
tablet 12mg, TestDiet) were scattered on the floor to encourage foraging and therefore good 
coverage of the environment.  

A headstage with 128 channels (4 x 32 channels, Axona Ltd, St. Albans, UK) was used to 
preamplify the extracellular electric signals from the tetrodes. Wide-band (0.4 Hz–5 kHz) 
recordings were taken and the amplified local field potential and multiple-unit activity were 
continuously digitized at 24 kHz using a 128-channel data acquisition system (Axona Ltd St. 
Albans, UK). A small array of three light-emitting diode clusters mounted on the preamplifier 
headstage was used to track the location of the animal via an overhead video camera. The animal’s 
location was constantly monitored throughout the daily experiment. The data were analyzed off-
line. Only one recording day with the best unit yield was included in the subsequent spike 
clustering and data analysis procedures.  

Spike Sorting  

The spike detection and sorting procedures were performed as previously described(O’Neill et 
al., 2006). Action potentials were extracted by first computing power in the 800-9000 Hz range 
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within a sliding window (12.8 ms). Action potentials with a power of >5 SD from the baseline 
mean were selected and spike features were then extracted by using principal components 
analyses. The detected action potentials were segregated into putative multiple single units by 
using automatic clustering software (http://klustakwik.sourceforge.net/). These clusters were 
manually refined by a graphical cluster cutting program. Only units with clear refractory periods 
in their autocorrelation and well-defined cluster boundaries were used for further analysis. We 
further confirmed the quality of cluster separation by calculating the Mahalanobis distance 
between each pair of clusters(Harris et al., 2000). Periods of waking spatial exploration, 
immobility, and sleep were clustered together and the stability of the isolated clusters was 
examined by visual inspection of the extracted features of the clusters over time. Putative 
pyramidal cells and putative interneurons in the CA1 region were discriminated by their 
autocorrelations, firing rate, and waveforms, as previously described (Csicsvari et al., 1999a). In 
this way, we were able to identify the activity of 933 CA1 putative pyramidal units and 103 
putative interneurons in 4 recording sessions performed in four different animals. 

 

Quantification and Statistical Analysis 

Rate Map Generation 

As described in previous work (Dunn et al., 2015) we used a maximum entropy model inference 
paradigm to reconstruct the two-dimensional spatial distribution of each cell’s firing probability. 
As a statistical model, we considered the maximum entropy model known as kinetic Ising model. 
We first separated running periods from periods of quiescence by applying a 5 cm/s speed filter. 
The activity of the cells was binned in 12.8 ms bins, and a binary variable Si(t) was assigned to 
each neuron for each bin. Si(t) has +1/−1 values, denoting the presence/absence of spikes emitted 
by neuron i within time bin t. Letting the state of each neuron at time t depend on the state of the 
population in the previous time step t − 1 , the maximum entropy distribution over the state Si(t) 
of neuron i at time t is 

  (1) 

where H(t) would be identified as the time-varying covariate having the role of the external field 
in statistical physics. Eq. 1 defines a GLM (Generalized Linear Model), where, in each time bin, 
mostly only one or zero spikes per bin are observed and the interaction kernel extends one time 
step in the past. 

To find what values of H(t) are the most likely to generate the observed data given Eq. 1, we 
maximized the log-likelihood function 

 (2) 

with respect to H(t).  
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The log-likelihood measures how well the model explains the statistics in the observed data. In 
our analysis, we have used the natural logarithm. Since the external field, H(t), can explain the 
variations in the firing rate as the rat navigates in space, it becomes important to model it 
appropriately.   

Here we assumed that the spatial input arises as the sum of two-dimensional Gaussian basis 
functions centered on an evenly spaced M × M square lattice covering the recording 
environment. The spatial field of cell i at time t is then 

 (3)  

where hi is a unit-specific spatially and temporally constant baseline, and  and r are the 
vertices of the regular lattice and the widths of the basis functions, respectively. An accurate 

representation of the cell activity in space can be found by inferring the parameters of the 
linear combination of the Gaussian basis function. We first optimized the values of M (the 
number of Gaussian basis functions in the lattice) and r (their widths). We maximized the 
likelihood over a range of values of M (from 12 to 20) and r (from 6 to 30 cm) and chose the 
values of the parameters that gave the highest Akaike-adjusted likelihood value. In all of the 
models, the parameters (α’s and hi), were found by maximizing the likelihood function given in 
(1.2) by gradient ascent. When comparing the models, we first Akaike-corrected the log-
likelihood. The Akaike information criterion (AIC) is a measure to compensate for overfitting by 
models with more parameters, where the preferred model is that with the minimum AIC value, 
defined as 

 (4)       

where L is the likelihood at the maximum likelihood (ML) estimates of the parameters (α’s and 
hi) for a given value of M and r. k is the number of parameters (here r does not affect this number 
as it is a scale factor for Gaussian basis functions, while larger values of M result in more 
parameters α included in the model). The procedure was performed over all available sessions at 
once so that the resulting optimal parameters (M=15 and r=20 cm) were applied to all of them. 

Firing rate maps can then be expressed for an arbitrary choice of spatial bin size as  

(5) 

where and are the optimized parameters and (x,y) is any position in the environment. In the 
following, we consider a partition of the environment in bins of 4cm. 

Place Cell Classification 

To classify putative pyramidal cells as place cells, we applied a criterion based on sparsity. For 

each cell, we computed the quantity  where ri is the cell firing rate in bin i and oi is 
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the normalized amount of time spent by the animal in the same spatial bin. The sum runs over all 
spatial bins. To establish a significance threshold, we compared the sparsity score for each cell 
with the distribution obtained from shuffling the spike times. Namely, we produced 10000 
surrogates by wrapping the spike times list of a random time comprised between [20s END-20s]. 
Cells whose sparsity score exceeded the 95th percentile of the surrogate distribution were label as 
place cells.  

SWR Detection 

SWR detection was performed in the following way. We first excluded rapid eye movement 
periods (REM). REM periods were detected based on the theta/delta ratio as described in 
(Csicsvari et al., 1999b). To identify periods of theta activity, the theta/delta power ratio was 
measured in 1600 ms segments (800 ms steps in between measurement windows), using   
Thomson’s multi-taper method. 

In the remaining periods of sleep, we computed a wavelet transform (Morlet wavelet) of the local 
field potential. We used wavelet scales spanning a 5Hz – 500Hz range. We then calculated the 
power (root mean square) for each electrode in the 150Hz – 250Hz range, z-scored it and took 
the maximum across the set of electrodes identified as being in CA1. Ripple events were then 
classified by taking peaks in the score passing 5 SD and extending the event window until the 
score dropped below 2 SD. 

The power spectrum for each identified SWR event was then obtained by taking the average 
power over electrodes for different frequency bands covering the 5Hz – 500Hz range. 

Time-Binning of the Data 

Our subdivision of temporal spike trains was performed according to two criteria. We either used 
(1) a traditional subdivision of time in windows of equal duration, or we used (2) windows of 
adaptive size to constraint the number of spikes (from any putative pyramidal cell in the 
population) falling in each of them to be constant. Results are shown for windows of size 15 
spikes and 8ms respectively.  

Reconstruction of Position (Bayesian Decoding) 

We used Bayesian place prediction(Zhang et al., 1998) first to establish whether our population 
of CA1 units would provide sufficient spatial information to reconstruct position during 
exploration: 

. (6) 

P(x) represents the probability that the animal is at a given location. It was set to a uniform 
distribution not to bias our analysis by any place preference of the animal. P(n|x) represents the 
conditional probability that a given spike count occurs at a location. This was estimated using the 
firing probability obtained from the place-rate maps, and adjusted to the assuming that the 
number of spikes follows a Poisson distribution. P(n), the normalizing constant, was used to 
ensure that P(x|n) summed up to 1. The location with the maximum probability was selected as 
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the reconstructed position. Error measurements represented the absolute distance between the 
middle of the reconstructed bin to the real position of the animal. We compared the quality of our 
reconstruction across different window-sizes. The mean error obtained from decoding using 
fixed-time windows or fixed-spike windows was found to be comparable and to have a similar 
dependency on the size of the window used.  

Analysis of Reactivation Events 

SWR detection produced candidate events from which to detect reactivation. To reconstruct the 
content of the SWR-associated activity, we used a Bayesian reconstruction procedure equivalent 
to the one described above and the rate maps obtained from the environment exploration session. 
For each SWR-detected event, we generated a series of population vectors by subdividing the 
period into sub-windows. The sub-widows did not overlap with each other and covered the entire 
SWR duration. Depending on the window-type in use, windows had either a fixed number of 
spikes (n=15) or the duration of each window was fixed (8ms). Events containing less than five 
windows were removed from further analysis.  

Shuffling Procedures 

If not otherwise stated, shuffling procedures are always applied to the sub-set of SWR 
reactivation events that were selected after the application of the quality criteria.  

Spike Jittering Within each reactivation event, the decoding procedure was performed after each 
spike’s occurrence time was randomly and independently reassigned by drawing it from a 
uniform distribution within the event window. The new occurrence times were chosen with a 
resolution of 0.05ms and the samples drawing was performed with replacement.   

Spike Identity Reassignment Decoding of position is performed after each spike was randomly 
and independently reassigned to another CA1 putative pyramidal cell in the simultaneously 
recorded population while keeping the spike occurrence times constant. 

Place Field Rotation To apply a randomizing procedure equivalent to the one-dimensional place 
field rotation(Grosmark and Buzsáki, 2016), we proceeded in the following way. For each unit, 
we projected (Lambert azimuthal equal-area projection) the associated rate map to the bottom-
half of a sphere. The top half of the sphere was completed with a copy of the bottom-half, 
symmetric with respect to the center of the sphere. We then applied a random rotation  to this 
spherical map by randomly selecting 3 Euler angles. We used a zyz convention so that 

. After the rotation we transformed back the bottom half 
of the rotated spherical map by projecting it onto a plane, to finally obtain our new firing rate 
map for the environment. The procedure provided us with a new set of firing rate maps. In turn, 
these maps were used to perform position decoding.        

Encoded Positions Shuffling For each detected reactivation event we generated a new decoded 
trajectory by using the same set of encoded positions but rearranging the order of occurrence. 
The shuffling procedure is equivalent to generate random paths through a constant set of given 
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locations in space. These paths visit all locations within the decoded trajectory and each location 
once.  

Reactivation Speed Shuffling This shuffling procedure works on the statistics of the average 
reactivation speed of different SWRs across the dataset. We first generated a reactivation speed 
pool by gathering the values of the distance between subsequent encoded locations across all 
reconstructed events in the session. We then reassigned to each event its original number of 
reactivation speeds by redrawing them (without replacement) from this pool and the new average 
reactivation speed was calculated for the shuffled event.     

Simulated Brownian Motion To directly compare the propagation dynamics of our reconstructed 
spatial trajectories with the expected results obtainable from a diffusive random walk of the same 
duration, we produced artificial sequences of points using the same number of events in our 
dataset and their respective lengths. For each event selected from our analysis we took its 
duration in time-steps d and its average step length v. Then starting from an arbitrary location d-1 
points were generated sequentially by iteratively picking random steps of length L in the 

direction , with L drawn from a normal distribution  and  drawn from a uniform 
distribution [0 2 ]. 

Reactivated Trajectory Classification 

To ensure that we were considering sleeping activity with space-related content, we applied an 
encoding quality criterion to select only those SWR reactivation events in which place encoding 
was reliable. First, we computed the average likelihood of the encoded position (the maximum of 
the posterior probability) over the prediction windows comprised in the SWR period. To do so, 
we normalized the Bayesian posterior probability so that its sum over all spatial bins at any time 
was equal to 1. Then, for every prediction window, we took the maximum value of the 
normalized probability. If the average maximum value over the windows of a SWR event 
exceeded a threshold of 0.1, the SWR event was admitted for subsequent analysis. Furthermore, 
within the admitted events, we considered only windows whose associated likelihood value 
individually passed the same threshold.  

When analyzing the effects on the reactivation statistics of different quality thresholds, the same 
procedure was applied while varying the value of the threshold in the range between 0 and 0.12. 
After the thresholding, either the events passing the criterion or those failing it were selected for 
further analysis. Selection criteria were generally applied to original data only, with the 
exception of the data in panel FigureS5 E where selection criteria were applied separately to 
original data and all types of shuffled surrogate data.  

We then classified each SWR event that passed the encoding quality criterion by computing the 
average step size occurring between positions encoded from pairs of neighboring, non-
overlapping windows. If the number of available pairs had fallen below three, we removed the 
SWR event from the analysis. 

To compare original results with the shuffling ones obtained from spike jittering, identity 
shuffling and place field rotation, we considered the shuffled versions of the original SWR 



 

26 

quality-filtered events and computed the average step-size without applying an encoding quality 
threshold on the shuffled results.  

As described above, decoding confidence for each SWR event was obtained as the average over 
time of the normalized likelihood. To compare the consistency of the trajectory traveling speed 
within each SWR reactivation event, we computed its coefficient of variation (CV). By 

calculating the mean  and the standard deviation  of all step-sizes within an event we could 

then obtain the ratio that defines the coefficient of variation associated with event i. 

Novel Environment Analysis 

In our experimental paradigm, the exploratory session of the novel environment was both 
directly preceded and directly followed by a quiet rest periods. The two sleep periods took place 
in the same rest box and had similar duration (see above). Therefore we analyzed reactivation 
events coming from these two periods separately.  

Brownian Diffusion Analysis 

We tested to what extent the trajectory reactivation dynamics could be approximated by a 
diffusion process described by a power law equation of the type: 

(7)    

where d represents the distance between two encoded points and t is the interval between the two 
associated decoding windows. (Note that in the case of fixed-time windows t corresponds to an 
actual time interval, while in the case of fixed-spike windows this interval should be measured as 
the number of spikes intervening between the two windows.). G is a constant tuning the average 
speed of the trajectory propagation. To be able to compare the behavior of events sharing a 
similar average propagation speed, we separated the set of selected reactivation events by 
subdividing them into sub-groups of homogeneous average speed. Moreover, since we wished to 
avoid the boundary effects given by the finite dimensions of the environment used for the 
recording, we limited the speed range of our dataset to those reactivation events having a mean 
step size below 20cm/step. This threshold was set to ensure that reactivation trajectories could be 
approximately considered as events propagating freely without boundary limitations for a 
consistent number of steps. Thus, the speed groups were defined by chunking the events 
according to their average speed in evenly spaced intervals between 0 and 20cm/s. For each 
session, the number of speed groups was varied from a minimum of 3 to the maximum number 
of subdivisions that granted at least 20 events for each of them. 

For each speed group, we then built a time-distance relationship. We considered all window pairs 
that occurred at a distance equal to an increasing multiple of the window size, therefore, only 
considering population vectors originating from non-overlapping groups of spikes. For each 
window-distance (i.e., time) group we generated all the squared distances traveled by the set of 

reconstructed trajectories in that segment. We then computed the mean , estimating mean 
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squared traveled distance by trajectories in each speed group (s) after a time interval t. From 
equation (7) it follows that the logarithm of the average traveled distance has a linear 
dependency on the logarithm of the time interval elapsed, where  is the y-axis intercept and  
is the slope of the line. Therefore, to extract the parameters of the power law fit to our data, we 

perform a linear regression over the pairs of points.  

The case of  is of special interest since it corresponds to the mathematical description of 
the so-called Brownian diffusive process. We thus tested the consistency of the regression slopes 
obtained from our data with the Brownian diffusion hypothesis. First, we looked at the 
distribution of the values obtained from individual sessions and for the different speed groups 
(see above) (Figure 5 A,D). For each session, this distribution did not significantly differ from a 
normal distribution centered in 0.5 (all p>0.6 t-test for fixed-spikes windows all p>0.2 t-test for 
fixed-time windows).   

Then we considered each regression slope individually. For each slope, we compared the 
difference of the associated value from 0.5 to the size of the fit 95% confidence interval 
(Figure 5 B,E). A positive relationship between the two quantities was found (r=0.64 p<10e-4 for 
fixed-spikes windows, r=0.59 p<10e-3 for fixed-time windows).  

To further test whether the data follows Brownian diffusion dynamics, we examined whether to 

 follow a Rayleigh distribution, which is the theoretical limit of diffusion processes of this 
type in two dimensions. Therefore, for each speed group and time-interval, we fitted a Rayleigh 
distribution. The goodness of fit was then computed as a Chi-square distance by subdividing 
distance traveled into 12 bins of equal size. Chi-square scores were then averaged for each 
session with each possible time interval and speed group (Figure 5 C,F) and compared to 
encoded positions shuffling results.  

Behavioral Data 

To compare the statistical properties of the reactivated ensembles with those expected from the 
animal’s behavior, we applied the same power law analysis to the paths followed by the animal 
during exploration. To do so, we took trajectory segments continuously above a speed threshold 
(5 cm/s) and we sampled the animal’s position at regular intervals with different temporal 
resolutions (time intervals between 0.12s and 1.1s). For each temporal resolution, we then 
performed an equivalent analysis to the one described above, by treating trajectory segments as 
separate reactivation events (Figure 4-5). values were found to center around 0.7 and to be 
significantly different from a normal distribution centered in 0.5 (t-test p<10e-4) (Figure 5 G-H). 
Chi-square distance from the Rayleigh distribution best-fit was significantly higher than that 
observed from reactivation events (Figure 5 I) (t-test p<10e-3).   

We then used the same set of periods in which the animal was running to perform the power law 
analysis on the locations encoded by neural activity recorded during active behavior. We 
proceeded similarly to the case of sleep reactivation data, by again treating trajectory segments 
as separate reactivation events and using as spatial locations the positions obtained by the 
Bayesian decoding of the associated neural activity. The only difference with the sleep case was 
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the size of the time windows used for binning the spike data. To compensate for the change in 
the temporal scale between sleep reactivation and running-associated activity we increased the 
size of both spike-fixed and time-fixed windows taking it to 100 spikes and 200ms respectively. 
Consistently with the results of the animal behavioral trajectories and as expected from a neural 
activity mostly encoding the actual animal position during navigation, the values of were 
found to be again close to 0.7 (Figure 5 G). This result suggests that the obtained values of the 
power law exponents are not a product of the analysis method we used but that they instead vary 
reflecting changes in the cognitive state.  

Measures of spatial distribution randomness 

To quantify the degree of uniformity of spatial distributions, either those for encoded point 
density or behavioral occupation time, we used a measure of entropy. Spatial density 
distributions were normalized to one and the associated Entropy was calculated as 

 where the sum runs over all the Nb bins of the map and Pi is the value of 
the distribution in the bin i. We also computed the theoretical maximum of the Entropy given the 

number of bins as  obtained in the case of a perfectly uniform 

distribution. The entropy score reported in the figures is then defined as and it runs from 0 
to 1 (where 1 correspond to complete randomness).  

We then measured the angular distribution of the direction taken during the first step of a set of 
reactivation events originating in different portions of the environment. To do so, we defined a 
grid of 5x5 macro square bins tiling the entire environment. We then divided our entire sample 
of selected reactivation events according to the macro-bin containing the position encoded by the 
spikes the first decoding window. The central set of 3x3 macro-bins were considered to be core 
bins as they were not in contact with the environment border and therefore presented no 
geometrical constrain to the directional evolution of the encoded trajectory. The remaining frame 
of 16 macro-bins was instead labeled as peripheral bins as they overlapped with the 
environmental border.  

Measures of reactivation variability 

To investigate the dynamics of neuronal activity within each SWR event and their relationship to 
network oscillations we computed two scores for each SWR event: encoded distance score, 
measured as the spatial distance between pairs of encoded locations, and  population activity 
distance (PAD), calculated by the cosine distance between spike-count vectors (where any value 
>0 was replaced by a 1) from decoding window pairs. Given A and B ( where A and B are any 
two vectors of 1’s and 0’s).  the cosine similarity is computed using a dot product 

. The PAD is obtained by , so that identical vectors 
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have a score of 0, uncorrelated vectors a score of 1 and completely anticorrelated vectors a score 
of 2.  

 

Both scores were separately computed for increasing interval between decoding windows (  
from 1 to 4). For each interval size, we examined the relationship between encoded distance and 
PAD by computing the average PAD associated with average encoding distance in different 
ranges.  

We further computed the overall correlation between the two measures over all pairs of 

windows,  increasing -s and calculated the correlation between the average PAD and the  
interval size. 

PAD Embedding Analysis 

We analyzed the time-propagation properties of an ensemble based on the PAD, as opposed to 
the one obtained from encoded positions. The PAD was obtained from cosine distance and 
similarly to the Bayesian decoding allows us to compute the relative distances between pairs of 
time-windows. To be able to compare the propagation dynamics of this ensemble with that of the 
encoded locations, we run a non-linear dimensionality reduction algorithm to embed the PAD 
values in a 2-dimensional space with Euclidean metric. We transformed the original distance 
matrix of all PAD pairs using the “Sammon” mapping (Sammon, 1969), a variant of non-
classical multi-dimensional scaling (MDS), but we also ran the same analysis with two different 
non-classical MDS criteria (stress and squared stress) and additionally with the ISOMAP 
algorithm(Tenenbaum, 2000), obtaining equivalent results. The embedded distance matrix was 
then used to compute the time-distance relationships shown in Figure S7 A. 

To further test the relationship between PAD and encoded position distance, we ran the 
dimensionality reduction procedure separately on the different reactivation speed-subgroups that 
were defined for the original analysis. No difference was found between the obtained time-
distance curves from different groups (all p>0.05 Wilcoxon test), confirming the observed 
independence between these two measures of neural variability.  

We quantified the properties of the curves obtained from embedding by using either a power law 

fit (of the kind matching the encoded position data) or an exponential fit where 
a corresponds to the saturation y-value of the curve and b is its initial slope, close to t=0. 
Exponential fits were found to be largely better in describing PAD data as compared to linear 
fits, considering any goodness of fit measure.   

Interneuron Activity 

For each putative interneuron, we computed its firing rate expressed during every selected SWR 
event. From this set of vectors, we also calculated a population activity measure for each SWR 
event, by averaging over all putative interneuron rates for that event. We then correlated both the 
individual rate vectors and the cumulative one to PAD and speed scores associated with the 
SWR events.  
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Network Oscillations 

The power component of each SWR was assessed in the range of frequency intervals within the 
5-500Hz band using the Morlet wavelet analysis (see above). This analysis provided us with a 
reconstruction of the SWR signal in terms of a set of 60 wavelet components associated with 
different frequency ranges.  For each frequency range, we computed the correlation between the 
oscillatory power provided by the corresponding wavelet component and (i) average encoded 
distance, (ii) average PAD, (iii) putative interneuron population activity (i.e., an average of 
activity of all putative interneurons). 

Data and Software Availability 

Data used in this study will be made available upon request by contacting the lead contact, Jozsef 
Csicsvari (jozsef.csicsvari@ist.ac.at). 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Experimental Models: Organisms/Strains 

Long Evans Rats Janvier, France RjOrl:LE 

Software and Algorithms 

KlustaKwik Harris et al., 2000 https://github.com/kl
usta-
team/klustakwik/ 

Python  
https://www.python.or
g 
 

Python 

MATLAB  https://de.mathworks.c
om/ 

MATLAB 

Other 

12um tungsten wires California Fine Wire 
 

M294520 

Headstage amplifier Axona, St. Albans, UK http://www.axona.co
m/ 
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Figure	S1.	Set	of	simultaneously	recorded	CA1	place	cells,	Related	to	Figure	1	

	

Reconstructed	firing	rate	maps	for	a	set	of	simultaneously	recorded	active	place	cells	(n=299)	from	an	

example	session.	Cells	were	classified	as	place	cells	according	to	a	spatial	sparsity	criterion	(see	Star	

Methods).	Only	cells	with	minimum	average	firing	rate	of	0.1Hz	were	displayed.	Numbers	represent	the	

peak	rate	of	the	cells	(cells	were	sorted	by	their	peak	firing	rate).	
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Figure	S2.	Validation	of	Bayesian	decoding	accuracy	during	exploration,	Related	to	Figure	1	

	

Using	previously	established	firing	rate	maps,	we	used	a	Bayesian	approach	to	reconstruct	the	position	of	

the	animal	from	instantaneous	firing	patterns	during	active	exploration.	Results	are	displayed	from	the	

representative	session	with	rate	maps	displayed	in	(Supplementary	Fig	S1).		

A)	Mean	reconstruction	error	for	fixed-spike	windows	of	different	size.	

B)	Mean	reconstruction	error	for	fixed-time	windows	of	different	size.	

Error	bars:	±SEM.	
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Figure	S3.	Additional	examples	of	reconstructed	trajectories,	Related	to	Figure	1	

	

Examples	of	trajectories	reconstructed	from	probability	maps	of	SWR.	Each	red	line	joins	the	most	likely	

position	obtained	from	the	Bayesian	decoding	of	non-overlapping	fixed-spike	(n=15)	prediction	windows.	

Grey	dot:	starting	position;	black	dot:	last	position.	For	each	reconstructed	trajectory,	we	also	report	the	

duration	of	the	replay	events	(top	number),	the	number	of	trajectory	point	steps	(middle	number)	and	the	

distribution	of	step	sizes	(histogram).	Histograms	range	from	probability	0	to	1	on	the	y	axis	and	from	0	

cm/step	to	40	cm/step	on	the	x-axis	with	bin	sizes	of	4	cm/step.					
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Figure	S4.	Comparison	of	shuffled	and	original	trajectories	for	additional	animals	using	the	using	fixed-

spike	decoding	and	for	fixed-time	decoding,	Related	to	Figure	2	

	

Each	row	corresponds	to	a	separate	session	obtained	from	different	animals.	Rows	from	1	to	3:	further	

sessions	from	the	remaining	three	animals	using	fixed-spike	windows	for	the	predictions.	Rows	from	4	to	7:	

Results	using	fixed-time	window	prediction	displaying	results	from	all	four	animals.		
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Figure S5. Distribution of reactivation event properties for different quality thresholds, Related to 

Figure 2 

 

(A) Session-averaged mean of the average reactivation speed distributions when they were measured across 

different prediction step intervals. Spike jittered data (red) were significantly different from the original 

(blue) distribution in all sessions for ranges ∆t<4 p<10e-4  and  ∆t>5, p<10e-3 KS, while the place field 

rotation data distributions (green) were significantly different from the original data’s distribution at all 

tested time steps (all p<10e-5 KS);  

(B) Session-averaged mean of the average reactivation speed distribution for events falling above different 

quality thresholds. Events from rest sessions following familiar environment exploration are shown. 



Decoding quality computed using the familiar environment map. Shuffled distributions were significantly 

different from the original data. Red: spike jittered data (all sessions and thresholds, p<10e-4 KS); Green: 

place field rotation data (all p<10e-6 KS); Dashed line: Quality threshold of 0.1, used in reactivation 

analysis.   

(C) Same as (B) for events from rest sessions following novel environment exploration. Decoding quality 

computed using the novel environment map. Shuffled distributions were significantly different from original 

data: spike jittered data (all p<0.01 KS), place field rotation data (all p<10e-6 KS). 

(D) Same as (B) for events falling below different quality thresholds. Events from rest sessions following 

familiar environment exploration. Decoding quality computed using the familiar environment map. Shuffled 

distributions were significantly different form that of the original data: spike jittered data (all p<0.04 KS); 

place field rotation data (all p<10e-5 KS).    

(E) Proportion of events passing our selection criteria of 0.1 used in the reactivation analysis. Grey bars on 

the left represent the percentage of events passing quality threshold without restriction on minimal length of 

the number of trajectory point steps. Familiar (F) novel (N) post-rest data are shown. Blue: percentage of 

original events passing length and quality criteria for different sleep rest sessions; Red: same for spike 

jittered data; Green: same for place field rotation data. (Color code here and in the other panels as in Main 

Figure 2). (*: p<10e-3 and n.s. p>0.6, Binomial test).  

(F) Same as (B) but SWR events from the rest session preceding the novel environment exploration were 

tested using the novel environment map. Therefore, the preplay of novel environment trajectories were tested 

here. Spike jittered data distributions were not significantly different from the original ones (all, p>0.1 KS) 

whereas place field rotation data distributions were significantly different (all p<10e-4 KS). 

  

 



 

Figure S6. Network oscillations and putative interneuron activity associated with reactivation events, 

Related to Figure 7 

 

Results of Figure 6 analysis for further recording sessions of different animals. Each session shown, labeled 

from (A) to (C), corresponds to a different animal. Results are reported similarly to Figure 6.  

Top rows left: Correlation of summed putative interneuron rate and the average PAD (all p<10e-7) or 

reactivation speed (all p>0.07). For each SWR, putative interneuron rate and PAD and reactivation speed 

was measured in ∆t=1.    

Top Rows center: Same as above but correlations were calculated for single putative interneurons and 

distribution of correlations is shown. 

Top Rows right: linear regression slopes of Decoded Distance vs. PAD data, obtained from subsets of data of 

encoded distance intervals. Different lines correspond to different time intervals. (*: p<0.01, rest:  p>0.25) 
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Bottom rows:  Correlation of average PAD (magenta) (≈30Hz all p<0.005; 150-200Hz, all p<10e-12), 

average reactivation speed (green) (≈30Hz all p<0.0004; ≈80Hz, all p<10e-5) and summed putative 

interneuron rate (black) (≈30Hz all p<10e-8; 150-200Hz, all p<10e-13) with the different bands of the 

associated SWR power spectrum. Correlation was calculated across different SWR events.  

  



 

 

Figure S7. PAD Embedding and relation to activity sparsity, Related to Figures 3, 4 and 7 

(A)	Log-log	plot	of	the	time	interval	and	the	2-D	non-linear	PAD	embedding.	Light	blue:	different	mean	

reactivation	speed	groups	(n=59,	287,	87,	33,	32	respectively	for	each);	blue:	mean	of	the	speed	groups.	

Maroon	dashed	curve:	linear	fit.	(summed	square	of	residuals=2.25,	p=0.85	Pearson	Chi-Square).	Inset:	

exponential	fit	for	the	across-groups	mean	of	the	PAD	embedding	(left,	orange	dashed,	summed	square	of	

residuals=0.24,	p=0.99	Pearson	Chi-Square	formula	in	the	figure)	and	parameters	obtained	from	the	

exponential	fit	for	all	sessions	(right).	
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(B) Relationship of mean reactivation speed (green) and mean PAD (magenta) with measures of activity 

sparsity: number of putative pyramidal cells active and their combined firing rate during SWR reactivation 

events. Left: results for one example session (Probability of correlation significance: top row p=0.48 and 

p=0.44; bottom row p=10e-11 and p=10e-5), all error bars ±SD. Right: summary of results for all sessions. 

Bars: average correlation coefficient; dots: single session correlation coefficients. (Reactivation Speed p>0.2 

PAD p<10e-4)  

	


